PROCESS FOR PRODUCING HIGH MOLECULAR WEIGHT POLYETHYLENE

Information

  • Patent Application
  • 20140329921
  • Publication Number
    20140329921
  • Date Filed
    December 19, 2011
    13 years ago
  • Date Published
    November 06, 2014
    10 years ago
Abstract
In a process for producing polyethylene, ethylene is contacted under polymerization conditions with a slurry of a catalyst composition comprising a particulate support and a Group 4 metal complex of a phenolate ether ligand carried by the support and present in an amount so as to provide about 0.1 to about 35 μιηo of Group 4 metal per gram of the support. The resultant polyethylene has a molecular weight of at least 3×105 g/mol as determined by ASTM 4020, an average particle size, d50, of less 300 microns, preferably about 100 to 250 microns, and a span, log10(d90/d10), of less than 0.4.
Description
FIELD

The present invention relates to process for producing high molecular weight polyethylene.


BACKGROUND

The term “high molecular weight polyethylene” is generally used to define polyethylene having a molecular weight of at least 3×105 g/mol as determined by ASTM 4020 and, as used herein is intended to include very-high molecular weight polyethylene or VHMWPE (generally characterized as polyethylene having a molecular weight of at least 1×106 g/mol and less 3×106 g/mol as determined by ASTM 4020) and ultra-high molecular weight polyethylene or UHMWPE (generally characterized as polyethylene having a molecular weight of at least 3×106 g/mol as determined by ASTM 4020). High molecular weight polyethylenes are valuable engineering plastics, with a unique combination of abrasion resistance, surface lubricity, chemical resistance and impact strength. Thus, in solid, compression molded form, these materials find application in, for example, machine parts, linings, fenders, and orthopedic implants. In sintered porous form, they find application in, for example, filters, aerators and pen nibs.


Currently, high molecular weight polyethylenes are generally produced using Ziegler-Natta catalysts, see, for example, EP186995, DE3833445, EP575840 and U.S. Pat. No. 6,559,249. However, these catalysts have certain limitations with regard to the molecular weight and molecular weight distribution of the polymers that can be produced. There is therefore significant interest in developing alternative catalyst systems for producing high molecular weight polyethylene.


Other known catalysts for olefin polymerization are single site catalysts. According to the present state of technology, high molecular weight polyethylenes are manufactured using these catalysts only in exceptional cases and under economically unprofitable conditions. Thus, with heterogeneous constrained-geometry catalysts, high molecular weight polyethylene is produced only with moderate activity and increased long chain branching, which can lead to reduced hardness and abrasion properties. With so-called phenoxy-imine catalysts, high molecular weight polyethylene is obtained only at low activity at economically disadvantageous temperature levels. Examples of these and other metallocene catalysts are described in WO9719959, WO0155231, Adv. Synth. Catal 2002, 344, 477-493, EP0798306 and EP0643078.


One other potentially useful catalyst system for producing high molecular weight polyethylene comprises a Group 4 metal complex of a bis(phenolate) ether ligand deposited on a particulate support, such as silica. Such a catalyst system is disclosed in International Publications Nos. WO 2003/091262 and WO 2005/108406, the entire disclosures of which are incorporated herein by reference. Research has, however, shown that, although this system provides an effective catalyst for the slurry phase polymerization of polyethylene with molecular weights unachievable with Ziegler-Natta catalysts, the kinetics of the reaction and the particle size and particle size distribution of the resultant polyethylene are highly dependent on the loading of the active material on the support.


United States Patent Application Publication No. 2008/0051537 discloses a supported, heterogeneous catalyst composition comprising: 1) a substrate comprising a solid, particulate, high surface area, surface modified, inorganic oxide compound, 2) a Group 4 metal complex of a bis(phenolate) ether ligand; and optionally 3) an activating cocatalyst for the metal complex. The catalyst composition is said to be useful for the production of high molecular weight polymers by the gas phase polymerization of propylene, 2-methyl-4-butene, and mixtures of ethylene with one or more C3-8 α-olefins, especially propylene, 1-butene, 1-hexene, 2-methyl-4-butene, or 1-octene.


SUMMARY

Accordingly, the invention resides in one aspect in a process for producing polyethylene, the process comprising:


(a) providing a catalyst composition comprising a particulate support and a Group 4 metal complex of a phenolate ether ligand carried by the support and present in an amount so as to provide about 0.1 to about 35 μmol of Group 4 metal per gram of the support; and


(b) contacting ethylene with a slurry of the catalyst composition under polymerization conditions such as to produce polyethylene having a molecular weight of at least 3×105 g/mol as determined by ASTM 4020, an average particle size, d50, of less 300 microns, preferably about 100 to 250 microns, and a span, log10(d90/d10), of less than 0.4.


Conveniently, the Group 4 metal loading is from about 1 to about 30 μmol/gram of the support, such as from about 2 to about 25 μmol/gram of the support.


Conveniently, the particulate support has an average particle size, d50, of less than 58 microns, such as less 30 microns, such as about 4 to about 25 microns. Generally, particulate support comprises an inorganic oxide, such as silica.


Typically, the particles of the support are treated with an organoaluminum compound before said Group 4 metal complex is deposited on the support.


In one embodiment, the Group 4 metal complex has the following general formula:




embedded image


wherein at least two of the bonds from the oxygens (O) to M are covalent, with the other bonds being dative; AR is an aromatic group that can be the same or different from the other AR groups with each AR being independently selected from the group consisting of optionally substituted aryl and optionally substituted heteroaryl; B is a bridging group having from 3 to 50 atoms not counting hydrogen atoms and is selected from the group consisting of optionally substituted divalent hydrocarbyl and optionally substituted divalent heteroatom-containing hydrocarbyl; M is a metal selected from the group consisting of Hf and Zr; each L is independently a moiety that forms a covalent, dative or ionic bond with M; and n′ is 1, 2, 3 or 4.


In another embodiment, the Group 4 metal complex comprises a bis(phenolate) ether ligand having the following general formula:




embedded image


wherein each of R2, R3, R4, R5, R6, R7, R8, R9, R12, R13, R14, R15, R16, R17, R18, and R19 is independently selected from the group consisting of hydrogen, halogen, and optionally substituted hydrocarbyl, heteroatom-containing hydrocarbyl, alkoxy, aryloxy, silyl, boryl, phosphino, amino, alkylthio, arylthio, nitro, and combinations thereof; optionally two or more R groups can combine together into ring structures (for example, single ring or multiple ring structures), with such ring structures having from 3 to 12 atoms in the ring (not counting hydrogen atoms); and B is a bridging group having from 3 to 50 atoms not counting hydrogen atoms and is selected from the group consisting of optionally substituted divalent hydrocarbyl and optionally substituted divalent heteroatom-containing hydrocarbyl.


In yet another embodiment, the bis(phenolate) ether ligand is selected from:




embedded image


The present invention is still further directed to polyethylene powder having a molecular weight of at least 3×105 g/mol as determined by ASTM 4020 produced by one or more of the above-noted processes.


The present invention is still further directed to a porous article produced by sintering polyethylene powder having a molecular weight of at least 3×105 g/mol as determined by ASTM 4020 produced by one or more of the above-noted processes above.







DETAILED DESCRIPTION

Described herein is a process for producing polyethylene having a molecular weight of at least 3×105 g/mol as determined by ASTM 4020, by slurry polymerization using a catalyst composition comprising, as an active component, a Group 4 metal complex of a phenolate ether ligand deposited on a particulate support in an amount to provide a Group 4 metal loading of about 0.1 to about 35 μmol/gram of the support. The resultant polymer has an average particle size, d50, of less 300 microns and a span, log10(d90/d10), of less than 0.4.


DEFINITIONS

As used herein, the phrase “characterized by the formula” is not intended to be limiting and is used in the same way that “comprising” is commonly used. The term “independently selected” is used herein to indicate that the groups in question—e.g., R1, R2, R3, R4, and R5—can be identical or different (e.g., R1, R2, R3, R4, and R5 may all be substituted alkyls, or R′ and R2 may be a substituted alkyl and R3 may be an aryl, etc.). Use of the singular includes use of the plural and vice versa (e.g., a hexane solvent, includes hexanes). A named R group will generally have the structure that is recognized in the art as corresponding to R groups having that name. The terms “compound” and “complex” are generally used interchangeably in this specification, but those of skill in the art may recognize certain compounds as complexes and vice versa. For the purposes of illustration, representative certain groups are defined herein. These definitions are intended to supplement and illustrate, not preclude, the definitions known to those of skill in the art.


“Optional” or “optionally” means that the subsequently described event or circumstance may or may not occur, and that the description includes instances where said event or circumstance occurs and instances where it does not. For example, the phrase “optionally substituted hydrocarbyl” means that a hydrocarbyl moiety may or may not be substituted and that the description includes both unsubstituted hydrocarbyl and hydrocarbyl where there is substitution.


The term “alkyl” as used herein refers to a branched or unbranched saturated hydrocarbon group typically although not necessarily containing 1 to about 50 carbon atoms, such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, t-butyl, octyl, decyl, and the like, as well as cycloalkyl groups such as cyclopentyl, cyclohexyl and the like. Generally, although again not necessarily, alkyl groups herein may contain 1 to about 20 carbon atoms. “Substituted alkyl” refers to alkyl substituted with one or more substituent groups (e.g., benzyl or chloromethyl), and the terms “heteroatom-containing alkyl” and “heteroalkyl” refer to alkyl in which at least one carbon atom is replaced with a heteroatom (e.g., —CH2OCH3 is an example of a heteroalkyl).


The term “alkenyl” as used herein refers to a branched or unbranched hydrocarbon group typically although not necessarily containing 2 to about 50 carbon atoms and at least one double bond, such as ethenyl, n-propenyl, isopropenyl, n-butenyl, isobutenyl, octenyl, decenyl, and the like. Generally, although again not necessarily, alkenyl groups herein contain 2 to about 20 carbon atoms. “Substituted alkenyl” refers to alkenyl substituted with one or more substituent groups, and the terms “heteroatom-containing alkenyl” and “heteroalkenyl” refer to alkenyl in which at least one carbon atom is replaced with a heteroatom.


The term “alkynyl” as used herein refers to a branched or unbranched hydrocarbon group typically although not necessarily containing 2 to about 50 carbon atoms and at least one triple bond, such as ethynyl, n-propynyl, isopropynyl, n-butynyl, isobutynyl, octynyl, decynyl, and the like. Generally, although again not necessarily, alkynyl groups herein may have 2 to about 20 carbon atoms. “Substituted alkynyl” refers to alkynyl substituted with one or more substituent groups, and the terms “heteroatom-containing alkynyl” and “heteroalkynyl” refer to alkynyl in which at least one carbon atom is replaced with a heteroatom.


The term “aromatic” is used in its usual sense, including unsaturation that is essentially delocalized across several bonds around a ring. The term “aryl” as used herein refers to a group containing an aromatic ring. Aryl groups herein include groups containing a single aromatic ring or multiple aromatic rings that are fused together, linked covalently, or linked to a common group such as a methylene or ethylene moiety. More specific aryl groups contain one aromatic ring or two or three fused or linked aromatic rings, e.g., phenyl, naphthyl, biphenyl, anthracenyl, or phenanthrenyl. In particular embodiments, aryl substituents include 1 to about 200 atoms other than hydrogen, typically 1 to about 50 atoms other than hydrogen, and specifically 1 to about 20 atoms other than hydrogen. In some embodiments herein, multi-ring moieties are substituents and in such embodiments the multi-ring moiety can be attached at an appropriate atom. For example, “naphthyl” can be 1-naphthyl or 2-naphthyl; “anthracenyl” can be 1-anthracenyl, 2-anthracenyl or 9-anthracenyl; and “phenanthrenyl” can be 1-phenanthrenyl, 2-phenanthrenyl, 3-phenanthrenyl, 4-phenanthrenyl or 9-phenanthrenyl.


The term “alkoxy” as used herein intends an alkyl group bound through a single, terminal ether linkage; that is, an “alkoxy” group may be represented as —O-alkyl where alkyl is as defined above. The term “aryloxy” is used in a similar fashion, and may be represented as —O-aryl, with aryl as defined below. The term “hydroxy” refers to —OH.


Similarly, the term “alkylthio” as used herein intends an alkyl group bound through a single, terminal thioether linkage; that is, an “alkylthio” group may be represented as —S-alkyl where alkyl is as defined above. The term “arylthio” is used similarly, and may be represented as —S-aryl, with aryl as defined below. The term “mercapto” refers to —SH.


The term “allenyl” is used herein in the conventional sense to refer to a molecular segment having the structure —CH═C═CH2. An “allenyl” group may be unsubstituted or substituted with one or more non-hydrogen substituents.


The term “aryl” as used herein, and unless otherwise specified, refers to an aromatic substituent containing a single aromatic ring or multiple aromatic rings that are fused together, linked covalently, or linked to a common group such as a methylene or ethylene moiety. More specific aryl groups contain one aromatic ring or two or three fused or linked aromatic rings, e.g., phenyl, naphthyl, biphenyl, anthracenyl, phenanthrenyl, and the like. In particular embodiments, aryl substituents have 1 to about 200 carbon atoms, typically 1 to about 50 carbon atoms, and specifically 1 to about 20 carbon atoms. “Substituted aryl” refers to an aryl moiety substituted with one or more substituent groups, (e.g., tolyl, mesityl and perfluorophenyl) and the terms “heteroatom-containing aryl” and “heteroaryl” refer to aryl in which at least one carbon atom is replaced with a heteroatom (e.g., rings such as thiophene, pyridine, pyrazine, isoxazole, pyrazole, pyrrole, furan, thiazole, oxazole, imidazole, isothiazole, oxadiazole, triazole, etc. or benzo-fused analogues of these rings, such as indole, carbazole, benzofuran, benzothiophene, etc., are included in the term “heteroaryl”). In some embodiments herein, multi-ring moieties are substituents and in such an embodiment the multi-ring moiety can be attached at an appropriate atom. For example, “naphthyl” can be 1-naphthyl or 2-naphthyl; “anthracenyl” can be 1-anthracenyl, 2-anthracenyl or 9-anthracenyl; and “phenanthrenyl” can be 1-phenanthrenyl, 2-phenanthrenyl, 3-phenanthrenyl, 4-phenanthrenyl or 9-phenanthrenyl.


The terms “halo” and “halogen” are used in the conventional sense to refer to a chloro, bromo, fluoro or iodo substituent.


The terms “heterocycle” and “heterocyclic” refer to a cyclic radical, including ring-fused systems, including heteroaryl groups as defined below, in which one or more carbon atoms in a ring is replaced with a heteroatom—that is, an atom other than carbon, such as nitrogen, oxygen, sulfur, phosphorus, boron or silicon. Heterocycles and heterocyclic groups include saturated and unsaturated moieties, including heteroaryl groups as defined below. Specific examples of heterocycles include pyrrolidine, pyrroline, furan, tetrahydrofuran, thiophene, imidazole, oxazole, thiazole, indole, and the like, including any isomers of these. Additional heterocycles are described, for example, in Alan R. Katritzky, Handbook of Heterocyclic Chemistry, Pergammon Press, 1985, and in Comprehensive Heterocyclic Chemistry, A. R. Katritzky et al., eds, Elsevier, 2d. ed., 1996. The term “metallocycle” refers to a heterocycle in which one or more of the heteroatoms in the ring or rings is a metal.


The term “heteroaryl” refers to an aryl radical that includes one or more heteroatoms in the aromatic ring. Specific heteroaryl groups include groups containing heteroaromatic rings such as thiophene, pyridine, pyrazine, isoxazole, pyrazole, pyrrole, furan, thiazole, oxazole, imidazole, isothiazole, oxadiazole, triazole, and benzo-fused analogues of these rings, such as indole, carbazole, benzofuran, benzothiophene and the like.


More generally, the modifiers “hetero” or “heteroatom-containing”, and “heteroalkyl” or “heteroatom-containing hydrocarbyl group” refer to a molecule or molecular fragment in which one or more carbon atoms is replaced with a heteroatom. Thus, for example, the term “heteroalkyl” refers to an alkyl substituent that is heteroatom-containing. When the term “heteroatom-containing” introduces a list of possible heteroatom-containing groups, it is intended that the term apply to every member of that group. That is, the phrase “heteroatom-containing alkyl, alkenyl and alkynyl” is to be interpreted as “heteroatom-containing alkyl, heteroatom-containing alkenyl and heteroatom-containing alkynyl.”


“Hydrocarbyl” refers to hydrocarbyl radicals containing 1 to about 50 carbon atoms, specifically 1 to about 24 carbon atoms, most specifically 1 to about 16 carbon atoms, including branched or unbranched, saturated or unsaturated species, such as alkyl groups, alkenyl groups, aryl groups, and the like. The term “lower hydrocarbyl” intends a hydrocarbyl group of one to six carbon atoms, specifically one to four carbon atoms.


By “substituted” as in “substituted hydrocarbyl,” “substituted aryl,” “substituted alkyl,” and the like, as alluded to in some of the aforementioned definitions, is meant that in the hydrocarbyl, alkyl, aryl or other moiety, at least one hydrogen atom bound to a carbon atom is replaced with one or more substituent groups such as hydroxy, alkoxy, alkylthio, phosphino, amino, halo, silyl, and the like. When the term “substituted” appears prior to a list of possible substituted groups, it is intended that the term apply to every member of that group. That is, the phrase “substituted alkyl, alkenyl and alkynyl” is to be interpreted as “substituted alkyl, substituted alkenyl and substituted alkynyl.” Similarly, “optionally substituted alkyl, alkenyl and alkynyl” is to be interpreted as “optionally substituted alkyl, optionally substituted alkenyl and optionally substituted alkynyl.”


The term “saturated” refers to the lack of double and triple bonds between atoms of a radical group such as ethyl, cyclohexyl, pyrrolidinyl, and the like. The term “unsaturated” refers to the presence of one or more double and triple bonds between atoms of a radical group such as vinyl, allyl, acetylide, oxazolinyl, cyclohexenyl, acetyl and the like, and specifically includes alkenyl and alkynyl groups, as well as groups in which double bonds are delocalized, as in aryl and heteroaryl groups as defined below.


By “divalent” as in “divalent hydrocarbyl”, “divalent alkyl”, “divalent aryl” and the like, is meant that the hydrocarbyl, alkyl, aryl or other moiety is bonded at two points to atoms, molecules or moieties with the two bonding points being covalent bonds.


As used herein the term “silyl” refers to the —SiZ1Z2Z3 radical, where each of Z1, Z2, and Z3 is independently selected from the group consisting of hydrogen and optionally substituted alkyl, alkenyl, alkynyl, heteroatomcontaining alkyl, heteroatom-containing alkenyl, heteroatom-containing alkynyl, aryl, heteroaryl, alkoxy, aryloxy, amino, silyl and combinations thereof.


As used herein the term “boryl” refers to the —BZ1Z2 group, where each of Z1 and Z2 is as defined above. As used herein, the term “phosphino” refers to the group —PZ1Z2, where each of Z1 and Z2 is as defined above. As used herein, the term “phosphine” refers to the group —PZ1Z2Z3, where each of Z1, Z2, and Z3 is as defined above. The term “amino” is used herein to refer to the group —NZ1Z2, where each of Z1 and Z2 is as defined above. The term “amine” is used herein to refer to the group —NZ1Z2Z3, where each of Z1, Z2, and Z3 is as defined above.


Other abbreviations used herein include: “iPr” to refer to isopropyl; “tBu” to refer to tert-butyl; “Me” to refer to methyl; “Et” to refer to ethyl; “Ph” to refer to phenyl; “Mes” to refer to mesityl(2,4,6-trimethyl phenyl); “TFA” to refer to trifluoroacetate; “THF” to refer to tetrahydrofuran; “Np” refers to napthyl; “Cbz” refers to carbazolyl; “Ant” refers to anthracenyl; and “H8-Ant” refers to 1,2,3,4,5,6,7,8-octahydroanthracenyl; “Bn” refers to benzyl; “Ac” refers to CH3CO; “EA” refers to ethyl acetate; “Ts” refers to tosyl or, synonymously, paratoluenesulfonyl; “THP” refers to tetrahydropyran; “dppf” refers to 1,1′-bis(diphenylphosphino)ferrocene; “MOM” refers to methoxymethyl.


“Polyethylene” means a polymer made 90% ethylene-derived units, or 95% ethylene-derived units, or 100% ethylene-derived units. The polyethylene can thus be a homopolymer or a copolymer, including a terpolymer, having other monomeric units. A polyethylene described herein can, for example, include at least one or more other olefin(s) and/or comonomer(s). The olefins, for example, can contain from 3 to 16 carbon atoms in one embodiment; from 3 to 12 carbon atoms in another embodiment; from 4 to 10 carbon atoms in another embodiment; and from 4 to 8 carbon atoms in yet another embodiment. Illustrative comonomers include, but are not limited to, propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 4-methylpent-1-ene, 1-decene, 1-dodecene, 1-hexadecene and the like. Also utilizable herein are polyene comonomers such as 1,3-hexadiene, 1,4-hexadiene, cyclopentadiene, dicyclopentadiene, 4-vinylcyclohex-1-ene, 1,5-cyclooctadiene, 5-vinylidene-2-norbornene and 5-vinyl-2-norbornene. Other embodiments may include ethacrylate or methacrylate.


“High molecular weight polyethylene” refers to polyethylene compositions with weight-average molecular weight of at least about 3×105 g/mol and, as used herein, is intended to include very-high molecular weight polyethylene and ultra-high molecular weight polyethylene. For purposes of the present specification, the molecular weights referenced herein are determined in accordance with the Margolies equation (“Margolies molecular weight”).


“Very-high molecular weight polyethylene” refers to polyethylene compositions with a weight average molecular weight of less than about 3×106 g/mol and more than about 1×106 g/mol. In some embodiments, the molecular weight of the very-high molecular weight polyethylene composition is between about 2×106 g/mol and less than about 3×106 g/mol.


“Ultra-high molecular weight polyethylene” refers to polyethylene compositions with weight-average molecular weight of at least about 3×106 g/mol. In some embodiments, the molecular weight of the ultra-high molecular weight polyethylene composition is between about 3×106 g/mol and about 30×106 g/mol, or between about 3×106 g/mol and about 20×106 g/mol, or between about 3×106 g/mol and about 10×106 g/mol, or between about 3×106 g/mol and about 6×106 g/mol.


The term “bimodal” refers to a polymer or polymer composition, e.g., polyethylene, having a “bimodal molecular weight distribution.” A “bimodal” composition can include a polyethylene component with at least one identifiable higher molecular weight and a polyethylene component with at least one identifiable lower molecular weight, e.g., two distinct peaks on an SEC curve (GPC chromatogram). A material with more than two different molecular weight distribution peaks will be considered “bimodal” as that term is used although the material may also be referred to as a “multimodal” composition, e.g., a trimodal or even tetramodal, etc. composition.


The term “broad” as in “broad molecular weight distribution” includes the case where a polyethylene composition is comprised of a blend of higher and lower molecular weight components but where there are not two distinct peaks on an SEC curve (GPC chromatogram), but rather a single peak which is broader than the individual component peaks.


“Ultra-high molecular weight polyethylene component” refers to a polyethylene component in a bimodal (or multimodal) composition with a weight average molecular weight of at least about 3×106 g/mol. In some embodiments, the ultrahigh molecular weight polyethylene component has a weight average molecular weight between about 3×106 g/mol and about 20×106 g/mol, or between about 3×106 g/mol and about 15×106 g/mol, or between about 3×106 g/mol and about 10×106 g/mol, or between about 3×106 g/mol and about 6×106 g/mol. When the composition includes more than two components, e.g., a trimodal composition, the multimodal composition may have more than one ultra-high molecular weight component.


“Very-high molecular weight polyethylene component” refers to a polyethylene component in a bimodal (or multimodal) composition with a weight average molecular weight of less than about 3×106 g/mol (e.g., less than about 2.5×106 g/mol, about 2.25×106 g/mol, or about 2.0×106 g/mol) and more than about 1×106 g/mol.


Ligands

The ligands employed in the catalyst used in the present process can generally be defined as phenolate ether ligands and more particularly bis(phenolate) ether ligands. For example, the ligands suitable for use in the may be characterized by the following general formula:




embedded image


wherein each ligand has at least two hydrogen atoms capable of removal in a binding reaction with a metal atom or metal precursor or base; AR is an aromatic group that can be the same as or different from the other AR groups with, generally, each AR being independently selected from the group consisting of optionally substituted aryl or optionally substituted heteroaryl; and B is a bridging group having from 3 to 50 atoms (not counting hydrogen atoms). In one preferred embodiment, B is a bridge of between about 3 and about 20 carbon atoms (not including hydrogen atoms).


Generally, the “upper aromatic ring” is the ring to which the hydroxyls are bonded or part of. Similarly, the “lower aromatic ring” is the ring to which the oxygens are bonded or part of. In some embodiments, AR-AR (that is, the structure formed from one upper aromatic ring and its corresponding lower aromatic ring) is a biaryl species, more specifically a biphenyl.


In some embodiments, the bridging group B is selected from the group consisting of divalent hydrocarbyl and divalent heteroatom containing hydrocarbyl (including, for example, between about 3 and about 20 carbon atoms), which may be optionally substituted. In more particular embodiments, B is selected from the group consisting of optionally substituted divalent alkyl, alkenyl, alkynyl, heteroalkyl, heteroalkenyl, heteroalkynyl, aryl, heteroaryl and silyl. In any of these embodiments, the bridging group can be substituted with one or more optionally substituted hydrocarbyl or optionally substituted heteroatom-containing hydrocarbyl groups, such as optionally substituted alkyl, alkenyl, alkynyl, heteroalkyl, heteroalkenyl, heteroalkynyl, aryl, or heteroaryl. It should be noted that these substitutions are in addition to the bonds between the bridging group B and the oxygen atoms in formula I. Two or more of the hydrocarbyl or heteroatom-containing hydrocarbyl groups can be joined into a ring structure having from 3 to 50 atoms in the ring structure (not counting hydrogen atoms). In some embodiments in which the bridging group includes one or more ring structures, it may be possible to identify more than one chain of bridge atoms extending from the oxygen atoms, and in such cases it can be convenient to define the “bridge” as the shortest path of connectivity between the oxygen atoms, and the “substituents” as the groups bonded to atoms in the bridge. Where there are two alternative, equally short paths of connectivity, the bridge can be defined along either path.


In still other embodiments, B can be represented by the general formula -(Q′R402-z″)z′— wherein each Q″ is independently either carbon or silicon and where each R40 is independently selected from the group consisting of hydrogen and optionally substituted hydrocarbyl or optionally substituted heteroatomcontaining hydrocarbyl. Two or more R40 groups may be joined into a ring structure having from 3 to 50 atoms in the ring structure (not counting hydrogen atoms). In these embodiments, z′ is an integer from 1 to 10, more specifically from 1 to 5 and even more specifically from 2-5, and z″ is 0, 1 or 2. For example, when z″ is 2, there is no R40 group associated with Q″, which allows for those cases where one Q″ is multiply bonded to a second Q″. In more specific embodiments, R40 is selected from the group consisting of hydrogen, halogen, and optionally substituted alkyl, alkenyl, alkynyl, heteroalkyl, heteroalkenyl, heteroalkynyl, aryl, heteroaryl, alkoxyl, aryloxyl, silyl, boryl, phosphino, amino, alkylthio, arylthio, and combinations thereof, where at least one R40 group in B is not hydrogen. In any of the embodiments mentioned above, the B group can include one or more chiral centers. Thus, for example, B can be represented by the formula —CHR50—(CH2)m—CHR51—, where R5 and R51 are independently selected from the group consisting of optionally substituted alkyl, heteroalkyl, aryl or heteroaryl, R5 and R51 can be arranged in any relative configuration (e.g., syn/anti, threo/erythro, or the like), and where the ligand can be generated as a racemic mixture or in an enantiomerically pure form.


In particular embodiments, the bridging group B includes a chain of one or more bridge atoms extending from the oxygen atoms and one or more of the bridge atoms situated adjacent to one or both of the oxygen atoms is bonded to one or more substituents (not counting bonds to one or both of the oxygen atoms or neighboring bridge atoms along the chain, as noted above), where the substituents are independently selected from the group consisting of optionally substituted alkyl, heteroalkyl, aryl and heteroaryl. In more particular embodiments, the bridging group B is substituted with a plurality of substituents that are independently selected from the group consisting of optionally substituted alkyl, heteroalkyl, aryl and heteroaryl, such that each of the bridge atoms that is adjacent to one or both of the oxygen atoms is bonded to at least one substituent, again not counting bonds to the oxygen atoms or neighboring bridge atoms. In such embodiments, two or more of the substituents can be joined into a ring structure having from 3 to 50 atoms in the ring structure (not counting hydrogen atoms).


Thus, in some embodiments, the O—B—O fragment can be characterized by one of the following formulae:




embedded image


where each Q is independently selected from the group consisting of carbon and silicon, each R60 is independently selected from the group consisting of hydrogen and optionally substituted hydrocarbyl and heteroatom containing hydrocarbyl, provided that at least one R60 substituent is not hydrogen, wherein the R60 substituents are optionally joined into a ring structure having from 3 to 50 atoms in the ring structure not counting hydrogen atoms, and m′ is 0, 1, 2 or 3. Specific O—B—O fragments within these embodiments include, for example, O—(CH2)3—O, O—(CH2)4—O, O—CH(CH3)—CH(CH3)—O, O—CH2—CH(CH3)—CH2—O, O—CH2—C(CH3)2—CH2—O, O—CH2—CH(CHMe2)—CH2—O, O—CH2—CH(C6H5)—CH2—O, O—CH(CH3)—CH2—CH(CH3)—O, O—CH(C2H5)—CH2—CH(C2H5)—O, O—CH(CH3)CH2CH2CH(CH3)—O, O—CH(C6H5)CH2CH(C6H5)—O,




embedded image


Other specific bridging moieties are set forth in the example ligands and complexes herein.


In particular embodiments, the ligands can be characterized by the general formula:




embedded image


wherein each of R2, R3, R4, R5, R6, R7, R8, R9, R12, R13, R14, R15, R16, R17, R18, and R19 is independently selected from the group consisting of hydrogen, halogen, and optionally substituted hydrocarbyl, heteroatom-containing hydrocarbyl, alkoxy, aryloxy, silyl, boryl, phosphino, amino, alkylthio, arylthio, nitro, and combinations thereof; optionally two or more R groups can combine together into ring structures (for example, single ring or multiple ring structures), with such ring structures having from 3 to 12 atoms in the ring (not counting hydrogen atoms); and B is a bridging group as defined above.


In more specific embodiments, R2, R3, R4, R5, R6, R7, R8, R9, R12, R13, R14, R15, R16, R17, R18, and R19 is independently selected from the group consisting of hydrogen, halogen, and optionally substituted alkyl, heteroalkyl, aryl, heteroaryl, alkoxyl, aryloxyl, silyl, amino, alkylthio and arylthio. In some embodiments, at least one of R2 and R12 is not hydrogen and in still other embodiments both R2 and R12 are not hydrogen.


In more specific embodiments, R2 and R12 are selected from the group consisting of an aryl and a heteroaryl (e.g., phenyl, substituted phenyl, antrazenyl carbozyl, mesityl, 3,5-(t-Bu)2-phenyl and the like); R3, R4, R5, R6, R7, R8, R9, R13, R14, R15, R16, R17, R18, and R19 are defined as above; and B is:




embedded image


wherein Q, R60, and m′ are as defined above.


In another specific embodiment, R2 and R12 are independently selected from the group consisting of substituted or unsubstituted moieties of the general formulae:




embedded image


wherein the denoted broken bonds are points of attachment to the remaining portion of the molecule; R4 and R14 are each an alkyl; R3, R5, R6, R7, R8, R9, R13, R15, R16, R17, R18, and R19 are hydrogen, and B is selected from the group consisting of:




embedded image


The illustrated structures are provided for purposes of illustration and should not be viewed in a limiting sense. For example, one or more of the rings may be substituted with one of more substituents selected from, for example, Me, iPr, Ph, Bn, tBu, and the like.


In more specific embodiments, the ligands can be characterized by the formula:




embedded image


In formula III, each of R2, R3, R4, R5, R6, R7, R8, and R9 is independently selected from the group consisting of hydrogen, halogen, and optionally substituted alkyl, alkenyl, alkynyl, heteroalkyl, heteroalkenyl, heteroalkynyl, aryl, heteroaryl, alkoxyl, aryloxyl, silyl, boryl, phosphino, amino, mercapto, alkylthio and arylthio, nitro, and combinations thereof. The remaining substituent B is defined as above.


In more specific embodiments, R2 is selected from the group consisting of an aryl and a heteroaryl; R4 is alkyl; R3, R5, R6, R7, R8, R9 are hydrogen; and B is:




embedded image


wherein Q, R60, and m′ are as defined above.


In another particular embodiment, R2 is selected from the group consisting of substituted or unsubstituted moieties of the general formulae:




embedded image


R4 is alkyl; R3, R5, R6, R7, R8, R9 are defined as above; and B is selected from the group consisting of:




embedded image


In one embodiment, the ligands are selected from the group consisting of the structures illustrated below:




embedded image


Ligand Preparation

Generally speaking, the ligands disclosed herein be prepared using known procedures, such as those described, for example, in March, Advanced Organic Chemistry, Wiley, New York 1992 (4th Ed.). More specifically, the ligands of the invention can be prepared using a variety of synthetic routes, depending on the variation desired in the ligand. In general, the ligands are prepared in a convergent approach by preparing building blocks that are then linked together either directly or with a bridging group. Variations in the R group substituents can be introduced in the synthesis of the building blocks. Variations in the bridge can be introduced with the synthesis of the bridging group. The preparation of suitable ligands has also been described in detail in, for example, WO 03/091262, WO 2005/0084106, U.S. Pat. No. 7,060,848, U.S. Pat. No. 7,091,292, U.S. Pat. No. 7,126,031, U.S. Pat. No. 7,241,714, U.S. Pat. No. 7,241,715, and U.S. Patent Publication No. 2008/0269470; the entire contents of which are incorporated herein by reference.


Metal Precursor Compounds

Once the desired ligand is formed, it may be combined with a metal atom, ion, compound or other metal precursor compound. For example, in some embodiments, the metal precursors are activated metal precursors, which refers to a metal precursor (described below) that has been combined or reacted with an activator (described below) prior to combination or reaction with the ancillary ligand. In some applications, the ligands are combined with a metal compound or precursor and the product of such combination is not determined, if a product forms. For example, the ligand may be added to a reaction vessel at the same time as the metal or metal precursor compound along with the reactants, activators, scavengers, etc. Additionally, the ligand can be modified prior to addition to or after the addition of the metal precursor, e.g. through a deprotonation reaction or some other modification.


In general, the metal precursor compounds may be characterized by the general formula M(L)n where M is a metal selected from Group 4 of the Periodic Table of Elements, more specifically from Hf and Zr, especially Zr. Each L is a ligand independently selected from the group consisting of hydrogen, halogen, optionally substituted alkyl, heteroalkyl, allyl, diene, alkenyl, heteroalkenyl, alkynyl, heteroalkynyl, aryl, heteroaryl, alkoxy, aryloxy, boryl, silyl, amino, phosphino, ether, thioether, phosphine, amine, carboxylate, alkylthio, arylthio, 1,3-dionate, oxalate, carbonate, nitrate, sulfate, and combinations thereof. Optionally, two or more L groups are joined into a ring structure. One or more of the ligands L may also be ionically bonded to the metal M and, for example, L may be a noncoordinated or loosely coordinated or weakly coordinated anion (e.g., L may be selected from the group consisting of those anions described below in the conjunction with the activators); and optionally two or more L groups may be linked together in a ring structure. (See, e.g., Marks et al., Chem. Rev. 2000, 100, 1391-1434 for a detailed discussion of these weak interactions.) The subscript n is 1, 2, 3, 4, 5, or 6. The metal precursors may be monomeric, dimeric or higher orders thereof.


Specific examples of suitable hafnium and zirconium precursors include, but are not limited: HfCl4, Hf(CH2Ph)4, Hf(CH2CMe3)4, Hf(CH2SiMe3)4, Hf(CH2Ph)3Cl, Hf(CH2CMe3)3Cl, Hf(CH2SiMe3)3Cl, Hf(CH2Ph)2Cl2, Hf(CH2CMe3)2Cl2, Hf(CH2SiMe3)2Cl2, Hf(NMe2)4, Hf(NEt2)4, Hf(N(SiMe3)2)2Cl2, Hf(N(SiMe3)CH2CH2CH2N(SiMe3))Cl2, and, Hf(N(Ph)CH2CH2CH2N(Ph))Cl2, as well as ZrCl4, Zr(CH2Ph)4, Zr(CH2CMe3)4, Zr(CH2SiMe3)4, Zr(CH2Ph)3Cl, Zr(CH2CMe3)3Cl, Zr(CH2SiMe3)3Cl, Zr(CH2Ph)2Cl2, Zr(CH2CMe3)2Cl2, Zr(CH2SiMe3)2Cl2, Zr(NMe2)4, Zr(NEt2)4, Zr(NMe2)2Cl2, Zr(NEt2)2Cl2, Zr(N(SiMe3)2)2Cl2, Zr(N(SiMe3)CH2 ZrCH2CH2N(SiMe3))Cl2, and Zr(N(Ph)CH2CH2CH2N(Ph))Cl2. Lewis base adducts of these examples are also suitable as metal precursors, for example, ethers, amines, thioethers, phosphines and the like are suitable as Lewis bases. Specific examples include HfCl4(THF)2, HfCl4(SMe2)2 and Hf(CH2Ph)2Cl2(OEt2). Activated metal precursors may be ionic or zwitterionic compounds, such as [M(CH2Ph)3+][B(C6F5)4] or [M(CH2Ph)3+][PhCH2B(C6F5)3] where M is Zr or Hf. Activated metal precursors or such ionic compounds can be prepared in the manner shown in Pellecchia et al., Organometallics, 1994, 13, 298-302; Pellecchia et al., J. Am. Chem. Soc., 1993, 115, 1160-1162; Pellecchia et al., Organometallics, 1993, 13, 3773-3775 and Bochmann et al., Organometallics, 1993, 12, 633-640, each of which is incorporated herein by reference.


The ligand to metal precursor compound ratio is typically in the range of about 0.1:1 to about 10:1, or about 0.5:1 to about 5:1, or about 0.75:1 to about 2.5:1, and more specifically about 1:1.


As also noted above, in another aspect the invention relates to metal-ligand complexes. Generally, the ligand (or optionally a modified ligand as discussed above) is mixed with a suitable metal precursor (and optionally other components, such as activators) prior to or simultaneously with allowing the mixture to be contacted with the reactants (e.g., monomers). When the ligand is mixed with the metal precursor compound, a metal-ligand complex may be formed, which may be supported with an appropriate activator to form a supported catalyst (or co-supported catalyst) suitable for use in accordance with the present invention.


Metal-Ligand Complexes

The metal-ligand complexes according to the invention, which may be supported with an activator to form a catalyst of the present invention, can in general be described in a number of overlapping or alternative ways. Thus, the metal-ligand complexes can be described as complexes having dianionic, chelating ligands that may occupy up to four coordination sites of the metal atom. The metalligand complexes can also be described as having dianionic ligands that form two seven-member metallocycles with the metal atom (counting the metal atom as one member of the seven member ring). Also, in some embodiments, the metal-ligand complexes can be described as having dianionic, chelating ligands that use oxygen as binding atoms to the metal atom.


Also, in some embodiments, the metal-ligand complexes can be described as having ligands that can coordinate in at least two approximate C2 symmetric complex isomers. By approximate C2 symmetry it is meant that the ligand coordinates with a metal such that the ligand parts occupy four quadrants around the metal center extending towards the ligands L in an approximate C2 symmetric fashion, and approximate means that true symmetry may not exist due to several factors that effect symmetry, including, for example, the effect of the bridge. In these embodiments, the conformation of the ligand around the metal can be described as lambda or delta. At least two isomeric complexes can be formed which may be enantiomeric or diastereomeric to each other. For ligands containing one or more chiral centers (e.g., substituted bridges with chiral centers), diastereomeric metal ligand complexes can be formed. The diastereomeric complexes formed by a particular ligand-metal precursor combination can be used as mixtures of diastereomers, or can be separated and used as diastereomerically-pure complexes.


These isomeric structures may be separately formed by employing suitable metal precursors containing appropriately substituted ligands (such as chelating bis-amide, bis-phenol, or diene ligands, as described below), which may strongly influence the stereochemistry of complexation reactions. It is known that group 4 metal complexes containing chelating ligands can be used as metal precursors in complexation reactions with the bridged bis-cyclopentadienyl ligands to control the stereochemistry of the resulting bridged metallocene complex, as is described in Zhang et al., J. Am. Chem. Soc., 2000; 122, 8093-8094, LoCoco et al., Organometallics, 2003, 22, 5498-5503, and Chen et al., J. Am. Chem. Soc., 2004, 126, 42-43. The use of analogous Group 4 metal precursors containing appropriately substituted chelating ligands in complexation reactions with the bridged bis (biaryl) ligands described herein may provide a mechanism to influence the stereochemistry of the resulting chiral approximately C2-symmetric metal-ligand complexes. The use of analogous chiral Group 4 metal precursors containing appropriately substituted chelating ligands that possess one or more chiral centers may provide a mechanism to influence the absolute stereochemistry of the resulting chiral approximately C2-symmetric metal-ligand complexes. The use of substantially enantiomerically pure Group 4 metal precursors containing appropriately substituted chelating ligands that possess one or more chiral centers may provide a mechanism to prepare substantially enantiomerically or diastereomerically pure approximately C2-symmetric metal-ligand complexes of this invention.


In some cases, it may also be possible to separate mixtures of enantiomers or diastereomers by means of diastereomeric/enantiomeric resolution using a chiral reagent. See, for example, Ringwald et al., J. Am. Chem. Soc., 1999, 121, pp. 1524-1527.


The various diastereomeric complexes may have different polymerization performance when used as catalysts for polymerizations, resulting, for example, in the formation of polymer products having bimodal molecular weight and/or composition distribution.


In one embodiment, metal-ligand complexes used in the present catalyst may be characterized by the general formula:




embedded image


wherein each of AR, M, L, B, and n′, are as defined above; and the dotted lines indicate possible binding to the metal atom, provided that at least two of the dotted lines are covalent bonds.


In this regard it is to be noted that Ln′ indicates that the metal M is bonded to a number n′ groups of L, as defined above.


It is to be further noted that, in one preferred embodiment, B is a bridge of between about 3 and about 50 carbon atoms (not including hydrogen atoms), and more preferably is a bridge of between about 3 and about 20 carbon atoms.


More particularly, the metal-ligand complex used herein can be characterized by the general formula:




embedded image


wherein each of R2, R3, R4, R5, R6, R7, R8, R9, R12, R13, R14, R15, R16, R17, R18, and R19 areas defined above for structure (II), and M, L, n′, B, are as defined above and as further explained in connection with structure (V). The dotted lines indicate possible binding to the metal atom, provided that at least two of the dotted lines are covalent bonds.


Specific examples of suitable metal-ligand complexes include:




embedded image


embedded image


Metal-Ligand Complex Preparation

The metal-ligand complexes can be formed by techniques known to those of skill in the art, such as combinations of metal precursors and ligands under conditions to afford complexation. For example, the complexes of this invention can be prepared according to the general scheme shown below:




embedded image


As shown in Scheme 13, a ligand according to formula II is combined with the metal precursor M(L)n under conditions to cause the removal of at least 2 leaving group ligands L, which are shown in the scheme as combining with a hydrogen (H). Other schemes where the leaving group ligand combines with other moieties (e.g., Li, Na, etc.) employing other known routes for complexation can be used, including for example, reactions where the ligand L reacts with other moieties (e.g., where the alkali metal salt of the ligand is used and the complexation reaction proceeds by salt elimination).


Catalyst Support

The metal-ligand complex described above is supported on a particulate support in order to obtain the supported catalyst of the present invention. Suitable supports include silicas, aluminas, clays, zeolites, magnesium chloride, polystyrenes, substituted polystyrenes and the like. In organic oxide supports and especially silica supports are normally preferred.


Conveniently, the average particle size, d50, of the support is less than 58 microns and generally not more than 50 microns, such as less than 30 microns, for example about 4 to about 25 microns. Thus, it is found that, by controlling the particle size of the support within the above limits, the activity of the catalyst is improved. In addition, it is in some cases desirable that the support has a span, log10(d90/d10) less than 0.6. Although not critical the morphology of the support can also influence the polymerization reaction so that in general it is desirable to employ supports having substantially spherical particles.


Prior to loading the metal-ligand complex, the support is generally treated with an activator (such as one or more of the activators described below) and especially with an organoaluminum compound, such as an alumoxane, for example methyl alumoxane (MAO). Such treatment can include calcination of the support at a suitable temperature, say, from about 500° to about 900° C., e.g., about 600°, preferably in a non-oxidizing environment, e.g., nitrogen. The calcined product can then be slurried with a suitable solvent, e.g., toluene, to which a source of activating material is added, and heated to about 50° C. After removing the solvent and drying, a treated support is obtained suitable for receiving the metal-ligand complex.


Loading the metal-ligand complex on the support is generally achieved by dispersing each of the components in a liquid hydrocarbon, combining the resultant slurries and vortexing the mixture under a protective atmosphere of dry argon for about 1 to about 3 hours.


It is important in the present process that the loading of the metal-ligand complex on the support is controlled so as to be in a relatively narrow range of from about 0.1 to about 35 μmol of the metal-ligand complex, preferably from about 1 to 30 μmol of the metal-ligand complex, more preferably from about 2 to 25 μmol of the metal-ligand complex, per gram of the supported catalyst. Thus, it is found that maintaining the metal-ligand complex loading with these narrow limits facilitates control of the kinetics of the polymerization process and allows the production of high molecular weight polyethylene with a particle size, d50, of less 300 microns, preferably from about 100 μm to about 250 μm and a span, log10(d90/d10), of less than 0.4. Particles of this narrow size and size distribution range are particularly suitable for producing filters on controlled porosity.


Two different metal-ligand complexes may be deposited on the organic′ or inorganic support to form a two component co-supported catalyst. Such two component catalysts are particularly useful for the production of bimodal ultra-high molecular weight polyethylene. In such a case, the total loading of the two metal-ligand complexes deposited on the support is from about 0.1 to about 35 μmol of the metal-ligand complexes, preferably from about 2 to 25 μmol of the metal-ligand complexes, per gram of the supported catalyst.


When two metal-ligand complexes are deposited on the support, the molar ratio of the first complex to the second complex may be about 1:1, or alternatively the supported two-component complex may include a molar excess of one of the complexes relative to the other. For example, the ratio of the first complex to the second complex may be about 1:2; about 1:3; about 1:5; about 1:10; about 1:20 or more. In one embodiment, the ratio of the first metal-ligand complex to the second metal-ligand complex deposited on the support is between about 1:1 and 1:10 and in another embodiment between about 1:1 to about 1:5. Further, the ratio may be adjusted as needed and may be determined experimentally in order to obtain a bimodal composition with a target split between the high molecular weight component and the low molecular weight polyethylene component.


Activators for the Metal-Ligand Complexes

The metal-ligand complexes described above are active polymerization catalysts when combined with one or more suitable activators. Broadly, the activator(s) may comprise alumoxanes, Lewis acids, Bronsted acids, compatible non-interfering activators and combinations of the foregoing. These types of activators have been taught for use with different compositions or metal complexes in the following references, which are hereby incorporated by reference in their entirety: U.S. Pat. No. 5,599,761, U.S. Pat. No. 5,616,664, U.S. Pat. No. 5,453,410, U.S. Pat. No. 5,153,157, U.S. Pat. No. 5,064,802, EP-A-277,004 and Marks et al., Chem. Rev. 2000, 100, 1391-1434. In some embodiments, ionic or ion forming activators are preferred. In other embodiments, alumoxane activators are preferred.


Suitable ion forming compounds useful as an activator in one embodiment comprise a cation that is a Brønsted acid capable of donating a proton, and an inert, compatible, non-interfering, anion, A−. Suitable anions include, but are not limited to, those containing a single coordination complex comprising a charge-bearing metal or metalloid core. Mechanistically, the anion should be sufficiently labile to be displaced by olefinic, diolefinic and unsaturated compounds or other neutral Lewis bases such as ethers or nitriles. Suitable metals include, but are not limited to, aluminum, gold and platinum. Suitable metalloids include, but are not limited to, boron, phosphorus, and silicon. Compounds containing anions that comprise coordination complexes containing a single metal or metalloid atom are, of course, well known and many, particularly such compounds containing a single boron atom in the anion portion, are available commercially.


Specifically, such activators may be represented by the following general formula:





(L*-H)d+(Ad−)


wherein L* is a neutral Lewis base; (L*-H)+ is a Brønsted acid; Ad− is a noninterfering, compatible anion having a charge of d-, and d is an integer from 1 to 3. More specifically Ad− corresponds to the formula: (M′3+Qh)d− wherein h is an integer from 4 to 6; h−3=d; M′ is an element selected from Group 13 of the Periodic Table; and Q is independently selected from the group consisting of hydrogen, dialkylamido, halogen, alkoxy, aryloxy, hydrocarbyl, and substituted-hydrocarbyl radicals (including halogen substituted hydrocarbyl, such as perhalogenated hydrocarbyl radicals), said Q having up to 20 carbons. In a more specific embodiment, d is one, i.e., the counter ion has a single negative charge and corresponds to the formula A−.


Activators comprising boron or aluminum can be represented by the following general formula:





(L*-H)+(JQ4)


wherein: L* is as previously defined; J is boron or aluminum; and Q is a fluorinated C1-20 hydrocarbyl group. Most specifically, Q is independently selected from the group consisting of fluorinated aryl group, such as a pentafluorophenyl group (i.e., a C6F5 group) or a 3,5-bis(CF3)2C6H3 group. Illustrative, but not limiting, examples of boron compounds which may be used as an activating cocatalyst in the preparation of the improved catalysts of this invention are tri-substituted ammonium salts such as: trimethylammonium tetraphenylborate, triethylammonium tetraphenylborate, tripropylammonium tetraphenylborate, tri(n-butyl)ammonium tetraphenylborate, tri(tbutyl) ammonium tetraphenylborate, N,N-dimethylanilinium tetraphenylborate, N,Ndiethylanilinium tetraphenylborate, N,N-dimethylanilinium tetra-(3,5-bis(trifluoromethyl)phenyl)borate, N,N-dimethyl-(2,4,6-trimethylanilinium)tetraphenylborate, trimethylammonium tetrakis(pentafluorophenyl)borate, triethylammonium tetrakis(pentafluorophenyl)borate, tripropylammonium tetrakis(pentafluorophenyl)borate, tri(n-butyl)ammonium tetrakis(pentafluorophenyl)borate, tri(secbutyl)ammonium tetrakis(pentafluorophenyl)borate, N,Ndimethylanilinium tetrakis(pentafluorophenyl)borate, N,N-diethylanilinium tetrakis(pentafluorophenyl)borate, N,N-dimethyl-(2,4,6-trimethylanilinium)tetrakis(pentafluorophenyl)borate, trimethylammonium tetrakis-(2,3,4,6-tetrafluorophenylborate and N,N-dimethylanilinium tetrakis-(2,3,4,6-tetrafluorophenyl)borate; dialkyl ammonium salts such as: di-(i-propyl)ammonium tetrakis(pentafluorophenyl)borate, and dicyclohexylammonium tetrakis(pentafluorophenyl)borate; and tri-substituted phosphonium salts such as: triphenylphospnonium tetrakis(pentafluorophenyl)borate, tri(o-tolyl)phosphonium tetrakis(pentafluorophenyl)borate, and tri(2,6-dimethylphenyflphosphonium tetrakis(pentafluorophenyl)borate; N,N-dimethylanilinium tetrakis(3,5-bis(trifluoromethyl)phenyl)borate; HNMe(C18H37)2+B(C6F5)4; HNPh(C18H37)2+B(C6F5)4and ((4-nBu-Ph)NH(n-hexyl)2)+B(C6F5)4 and ((4-nBu-Ph)NH(n-decyl)2)+B(C6F5)4. Specific (L*-H)+ cations are N,N-dialkylanilinium cations, such as HNMe2Ph+, substituted N,N-dialkylanilinium cations, such as (4-nBu-C6H4)NH(n-C6H13)2+ and (4-nBu-C6H4)NH(n-C10H21)2+ and HNMe(C18H37)2+. Specific examples of anions are tetrakis(3,5-bis(trifluoromethyl)phenyl)borate and tetrakis(pentafluorophenyl)borate. In some embodiments, the specific activator is PhNMe2H+B(C6F5)4.


Other suitable ion forming activators comprise a salt of a cationic oxidizing agent and a non-interfering, compatible anion represented by the formula:





(Oxe+)d(Ad−)e


wherein: Oxe+ is a cationic oxidizing agent having a charge of e+; e is an integer from 1 to 3; and Ad−, and d are as previously defined. Examples of cationic oxidizing agents include: ferrocenium, hydrocarbyl-substituted ferrocenium, Ag+, or Pb2+. Specific embodiments of Ad− are those anions previously defined with respect to the Brønsted acid containing activating cocatalysts, especially tetrakis(pentafluorophenyl)borate.


Another suitable ion forming, activating cocatalyst comprises a compound that is a salt of a carbenium ion or silyl cation and a noninterfering, compatible anion represented by the formula:





©+A


wherein:


©+ is a C1-100 carbenium ion or silyl cation; and K is as previously defined. A preferred carbenium ion is the trityl cation, i.e. triphenylcarbenium. The silyl cation may be characterized by the formula Z4Z5Z6Si+ cation, where each of Z4, Z5, and Z6 is independently selected from the group consisting of hydrogen, halogen, and optionally substituted alkyl, alkenyl, alkynyl, heteroalkyl, heteroalkenyl, heteroalkynyl, aryl, heteroaryl, alkoxyl, aryloxyl, silyl, boryl, phosphino, amino, mercapto, alkylthio, arylthio, and combinations thereof. In some embodiments, a specified activator is Ph3C+B(C6F5)4.


Other suitable activating cocatalysts comprise a compound that is a salt, which is represented by the formula (A*+a)b(Z*J*j)−cd wherein A* is a cation of charge +a; Z* is an anion group of from 1 to 50, specifically 1 to 30 atoms, not counting hydrogen atoms, further containing two or more Lewis base sites; J* independently each occurrence is a Lewis acid coordinated to at least one Lewis base site of Z*, and optionally two or more such J* groups may be joined together in a moiety having multiple Lewis acidic functionality; j is a number form 2 to 12; and a, b, c, and d are integers from 1 to 3, with the proviso that a×b is equal to c×d. See, WO 99/42467, which is incorporated herein by reference. In other embodiments, the anion portion of these activating cocatalysts may be characterized by the formula ((C6F5)″″-LN-M″″(C6F5)3) where M″″ is boron or aluminum and LN is a linking group, which is specifically selected from the group consisting of cyanide, azide, dicyanamide and imidazolide. The cation portion is specifically a quaternary amine. See, e.g., LaPointe, et al., J. Am. Chem. Soc. 2000, 122, 9560-9561, which is incorporated herein by reference.


In addition, suitable activators include Lewis acids, such as those selected from the group consisting of tris(aryl)boranes, tris(substitutedaryl)boranes, tris(aryl)alanes, tris(substituted aryl)alanes, including activators such as tris(pentafluorophenyl)borane. Other useful ion forming Lewis acids include those having two or more Lewis acidic sites, such as those described in WO 99/06413 or Piers, et al. “New Bifunctional Perfluoroaryl Boranes: Synthesis and Reactivity of the ortho-Phenylene-Bridged Diboranes 1,2-(B(C6F5)2)2C6X4 (X H, F)”, J. Am. Chem. Soc., 1999, 121, 3244-3245, both of which are incorporated herein by reference. Other useful Lewis acids will be evident to those of skill in the art. In general, the group of Lewis acid activators is within the group of ion forming activators (although exceptions to this general rule can be found) and the group tends to exclude the group 13 reagents listed below. Combinations of ion forming activators may be used.


Other general activators or compounds useful in a polymerization reaction may be used. These compounds may be activators in some contexts, but may also serve other functions in the polymerization system, such as alkylating a metal center or scavenging impurities. These compounds are within the general definition of “activator,” but are not considered herein to be ion-forming activators. These compounds include a Group 13 reagent that may be characterized by the formula G13R503-pDp where G13 is selected from the group consisting of B, Al, Ga, In and combinations thereof, p is 0, 1 or 2, each R5 is independently selected from the group consisting of hydrogen, halogen, and optionally substituted alkyl, alkenyl, alkynyl, heteroalkyl, heteroalkenyl, heteroalkynyl, aryl, heteroaryl, and combinations thereof, and each D is independently selected from the group consisting of halogen, hydrogen, alkoxy, aryloxy, amino, mercapto, alkylthio, arylthio, phosphino and combinations thereof. In other embodiments, the Group 13 activator is an oligomeric or polymeric alumoxane compound, such as methylalumoxane and the known modifications thereof. See, for example, Barron, “Alkylalumoxanes, Synthesis, Structure and Reactivity”, pp 33-67 in “Metallocene-Based Polyolefins: Preparation, Properties and Technology”, Edited by J. Schiers and W. Kaminsky, Wiley Series in Polymer Science, John Wiley & Sons Ltd., Chichester, England, 2000, and references cited therein. In other embodiments, a divalent metal reagent may be used that is defined by the general formula M′R502-p′Dp′, and p′ is 0 or 1 in this embodiment and R50 and D are as defined above. M′ is the metal and is selected from the group consisting of Mg, Ca, Sr, Ba, Zn, Cd and combinations thereof. In still other embodiments, an alkali metal reagent may be used that is defined by the general formula M″R5 and in this embodiment R5 is as defined above. M″ is the alkali metal and is selected from the group consisting of Li, Na, K, Rb, Cs and combinations thereof. Additionally, hydrogen and/or silanes may be used in the catalytic composition or added to the polymerization system. Silanes may be characterized by the formula SiR504-qDq where R50 is defined as above, q is 1, 2, 3 or 4 and D is as defined above, with the proviso that there is at least one D that is a hydrogen.


The activator or a combination of activators may be supported on an organic or inorganic support. Suitable supports include silicas, aluminas, clays, zeolites, magnesium chloride, polystyrenes, substituted polystyrenes. The activator may be co-supported with the metal-ligand complex. Suitable metalligand supports are more fully described in the section entitled “Catalyst Supports” above.


The molar ratio of metal:activator (whether a composition or complex is employed as a catalyst) employed specifically ranges from 1:10,000 to 100:1, more specifically from 1:5000 to 10:1, most specifically from 1:10 to 1:1. In one embodiment of the invention mixtures of the above compounds are used, particularly a combination of a Group 13 reagent and an ion-forming activator. The molar ratio of Group 13 reagent to ion-forming activator is specifically from 1:10,000 to 1000:1, more specifically from 1:5000 to 100:1, most specifically from 1:100 to 100:1. In another embodiment, the ion forming activators are combined with a Group 13 reagent. Another embodiment is a combination of the above compounds having about 1 equivalent of an optionally substituted N,N-dialkylanilinium tetrakis(pentafluorophenyl)borate, and 5-30 equivalents of a Group 13 reagent. In some embodiments from about 30 to 2000 equivalents of an oligomeric or polymeric alumoxane activator, such as a modified alumoxane (e.g., alkylalumoxane), can be used.


Slurry Phase Ethylene Polymerization

When combined with an activator as described above, the supported metal-ligand complex catalysts described herein are particularly well suited for use in the slurry phase polymerization of ethylene to produce ultra-high molecular weight polyethylene or a bimodal polymer composition comprising at least one UHMWPE component.


In this process, the supported catalyst and the activator are slurried with a suitable solvent, generally a hydrocarbon having from about 4 to about 14 carbon atoms and contacted with ethylene under polymerization conditions which typically include a temperature about 20° C. to about 90° C., for example about 65° C. to about 85° C., and a pressure of about 4 bar to about 40 bar for a time of about 15 minutes to about 2.10 minutes. Control of the molecular weight of the UHMWPE produced is effected by the addition of hydrogen typically in amounts between about 0% and about 10% of hydrogen, specifically about 0% and about 5% by volume of the ethylene feed.


In addition to the supported catalyst and the activator, the polymerization slurry may contain from about 5 to less than 40 ppm by volume of a compound effective to increase the conductivity of the hydrocarbon solvent, such as Octastat® 2000, 2500, 3000, 5000, or Statsafe® 2500, 3000, 5000, 60006633, or Atmer® 163. Further the slurry may contain a scavenger, such as an alkyl magnesium compound, typically in an amount between about 0.5 mmol and about 16 mmol per liter of the hydrocarbon solvent.


Polyethylene Product

The product of the slurry polymerization process described above is polyethylene powder having a molecular weight, as determined by ASTM 4020, of between about 3×105 g/mol and about 30×106 g/mol, or between about 1×106 g/mol and about 20×106 g/mol, or between about 3×106 g/mol and about 20×106 g/mol, or between about 3×106 g/mol and about 10×106 g/mol, or between about 3×106 g/mol and about 6×106 g/mol. The powder may have a monomodal molecular weight distribution or a bimodal molecular weight distribution, in the latter case with a first part of the powder having a molecular weight in the range of about 3×106 g/mol to about 30×106 g/mol and a second part powder having a molecular weight in the range of about 0.3×106 g/mol to about 10×106 g/mol. Generally, the amount of the second lower molecular weight fraction is in the range of 0 to 40%.


In addition, the resultant polyethylene powder has an average particle size, d50, of less than 300 μm, preferably from about 100 μm to about 250 μm and a span, log10(d90/d10), of less than 0.4. In this respect, the polyethylene powder particle size measurements referred to herein are obtained by a laser diffraction method according to ISO 13320.


The bulk density of the present polyethylene powder is typically between about 0.13 and about 0.5 g/ml, generally between about 0.2 and about 0.5 g/ml, especially between about 0.25 and about 0.5 g/ml. Polyethylene powder bulk density measurements referred to herein are obtained by DIN 53466.


Further the polyethylene powder typically has a crystallinity of about 60 to about 85% and a molecular weight distribution (Mw/Mn) of about 2 to about 30.


Uses of the Polyethylene Product

The polyethylene powder produced by the present process can be used in all applications currently envisaged for conventional forms of VHMWPE and UHMWPE. Thus the powder can be compression molded or ram extruded into shaped articles for use in, for example, machine parts, linings, fenders, and orthopedic implants.


However, the VHMWPE and UHMWPE produced by the present process is particularly useful in the production of porous articles generally by sintering the powder, either alone or mixed with other polyethylene material or carbon. The sintering is generally conducted in a mold at a temperature between about 140° C. and about 300° C., such as between about 170° C. and about 240° C., normally in the absence of applied pressure until the surfaces of individual polymer particles fuse at their contact points to form a porous structure. In this way, it is possible to produce porous articles having a flexural strength according to DIN ISO 178 in excess of 0.2 MPa and a pressure drop of less than 30 mbar. Pressure drop values are measured using a disc-shaped sample of the porous article having a diameter of 140 mm, a thickness of 6.2-6.5 mm (depending on shrinkage) and an airflow rate of 7.5 m3/h and measuring the drop in pressure across the thickness of the sample.


The invention will now be more particularly described with reference to the following non-limiting Examples.


In the Examples, the silica support treated with poly(alumoxane) was produced according to the following procedure:


Silica, PQ PD10001 (with a d50 of 12.5 μm) which had previously been calcined at 600° C. for 5 hours under vacuum (10000 mg), was placed in a 500 ml three-neck round-bottom flask. The silica was slurried in toluene (120 mL) and PMAO-IP (Azko-Nobel) (40.64 mL of a 2.339 mol/L solution in toluene) was added to the vortexing silica/toluene slurry. The reaction mixture was slurried for 30 minutes at room temperature and then heated to 50° C. The toluene was then removed under vacuum with continuous stirring and heating at 50° C. A dry material was obtained after 1.5 hours, resulting in 14.02 g of PMAO-IP/silica supported activator. The resulting supported catalyst had an Al loading of 5.00 mmol Al per gram PMAO-IP/Silica.


Catalysts described hereafter were obtained by treating the PMAO-IP treated silica support with a toluene solution of a ZrCl2 bis(phenolate) ether complex having the formula:




embedded image


The bis(phenolate) ether ligand was synthesized as described in WO 2005/108406 and was complexed with Zr(CH2Ph)2Cl2(EtO) in toluene at 80-100° C. for 1-3 hours. The reaction mixture was concentrated and cooled to −30° C. over night. Pentane was added to the concentrated toluene reaction mixture before cooling. The complex was obtained as a crystalline material and was dissolved in toluene to give a solution with a concentration of 4.0 mM of the complex.


Polymerization described in the Examples hereafter were conducted in a 3 liter reactor which was first flushed with argon and then conditioned with a mixture of a hydrocarbon solvent (a mixture of C8 to C12 aliphatic hydrocarbons) (1.5 liter) and an aluminium alkyl (TEA 200 mmol/1). After a conditioning time of 15 to 30 minutes, the liquids were removed by evacuation. The reactor was then filled with 2 liter of the hydrocarbon solvent, together with the appropriate amount of Octastat® 2000 to reach a concentration level of 30 ppm, and heated to 80° C. under stirring (750 rpm). 9.2 mL of a 20 wt. % heptane solution of butyloctylmagnesium (BOM; 8 mmol) were then charged to the reactor under nitrogen flow, followed by varying amounts of hydrogen. The reactor was then pressurized at seven bar ethylene pressure.


Average particle size, d50, measurements referred to in the Examples and the remainder of the specification are measured by a laser diffraction method according to ISO 13320. Particle size distribution are expressed by the span, calculated as: span=log10(d90/d10). Catalyst activities are expressed either in kg PE per g catalyst, or in kg PE per mmol catalyst.


Example 1
Comparative

The solution of complex described above (25.0 ml, 100.0 μmol) was added to a slurry of the PMAO-IP/Silica (5.00 mmol Al/g) (2500 mg) in heptane (50.0 ml) in a 250 ml Schlenk flask. The slurry was stirred at room temperature for 2 hours and then dried at 40° C. under vacuum. This took about 1.5 hours. The resulting pale yellow supported catalyst had an Al loading of 5.00 mmol Al per gram PMAO-IP/Silica and a transition metal loading of 40.0 μmol per gram final catalyst.


In the glove-box, 25 mg of supported catalyst (corresponding to 1 μmol metal) were weighed into a dropping funnel and suspended in 30 mL of hydrocarbon solvent. The content of the dropping funnel was then transferred to a metal cartridge under argon flow and the cartridge was sealed and pressurized under nine bar argon. The catalyst suspension was injected into the reactor, whilst parameters like temperature, ethylene flow, ethylene pressure were monitored. After injection, the cartridge was rinsed with 40 mL hydrocarbon solvent. After a total of 220 L ethylene were consumed, the monomer feed was closed, the reactor cooled down to room temperature, vented, flushed with nitrogen and the polymer slurry was collected. The polymer was then filtered, washed with isopropanol and dried at 80° C. overnight. The polymer was found to have an average particle size, d50, of 300 μm, and a span of 0.458.


Example 2

In this example, the catalyst synthesis was conducted as in Example 1 except that 12.5 ml (50.0 μmol) of the complex solution were used. The resulting pale yellow supported catalyst had an Al loading of 5.00 mmol Al per gram PMAO-IP/Silica and a transition metal loading of 20.0 μmol per gram final catalyst.


Polymerisation was conducted as in Example 1, except that 50 mg of supported catalyst (corresponding to 1 μmol metal) were used. The polymer was found to have an average particle size, d50, of 227 μm, and a span of 0.378.


Example 3

In this example, the catalyst synthesis was conducted as in Example 1 except that 6.25 ml (25.0 μmol) of the complex solution were used. The resulting pale yellow supported catalyst had an Al loading of 5.00 mmol Al per gram PMAO-IP/Silica and a transition metal loading of 10.0 μmol per gram final catalyst.


Polymerisation was conducted as in Example 1, except that 100 mg of supported catalyst (corresponding to 1 μmol metal) were used. The polymer was found to have an average particle size, d50, of 173 μm, and a span of 0.380.


Example 4

In this example, the catalyst synthesis was conducted as in Example 1 except that 3.125 ml (12.5 μmol) of the complex solution were used. The resulting pale yellow supported catalyst had an Al loading of 5.00 mmol Al per gram PMAO-IP/Silica and a transition metal loading of 5.0 μmol per gram final catalyst.


Polymerisation was conducted as in Example 1, except that 200 mg of supported catalyst (corresponding to 1 μmol metal) were used. The polymer was found to have an average particle size, d50, of 133 μm, and a span of 0.356.


Example 5

In this example, the catalyst synthesis was conducted as in Example 4 except that 5000 mg of the PMAO-IP/Silica (5.00 mmol Al/g) were used. The resulting pale yellow supported catalyst had an Al loading of 5.0 mmol Al per gram PMAO-IP/Silica and a transition metal loading of 2.5 μmol per gram final catalyst.


Polymerisation was conducted as in Example 1, except that 400 mg of supported catalyst (corresponding to 1 μmol metal) were used. The polymer was found to have an average particle size, d50, of 115 μm, and a span of 0.381.


Example 6

In this example, the catalyst synthesis was conducted as in Example 4 except that 8000 mg of the PMAO-IP/Silica (5.00 mmol Al/g) were used in combination with 500 μL (2 μmol) of the 4 mmol/L complex solution. The resulting pale yellow supported catalyst had an Al loading of 5.0 mmol Al per gram PMAO-IP/Silica and a transition metal loading of 0.25 μmol per gram final catalyst.


Polymerisation was conducted as in Example 1, except that 4000 mg of supported catalyst (corresponding to 1 μmol metal) were used. The polymer was found to have an average particle size, d50, of 50 μm, and a span of 0.459.


Example 7
Comparative

In this example, polymerisation was conducted with the catalyst described in Example 1, and the maximal ethylene volume was set to 150 L instead of 220 L. The polymer was found to have an average particle size, d50, of 278 μm, and a span of 0.461.


Example 8
Comparative

In this example, polymerisation was conducted with the catalyst described in Example 1, and the maximal ethylene volume was set to 100 L instead of 220 L. The polymer was found to have an average particle size, d50, of 258 μm, and a span of 0.420.


The results of the above Examples are summarized in Table 1 below.


















TABLE 1






Loading
Cat weight
Cat amount

VN


Activity
Activity


Sample
[μmol/g]
[mg]
[μmol]
Yield [g]
[ml/g]
d50 [μm]
span
[g/g]
[kg/mmol]
























Example 1 (comp)
40
25
1
275
1440
300
0.458
11000
275


Example 2
20
50


1390
227
0.378
5500


Example 3
10
100


1450
173
0.380
2750


Example 4
5
200


1200
133
0.356
1375


Example 5
2.5
400


1570
115
0.381
690


Example 6
0.25
4000


1270
55
0.459
69


Example 7 (comp)
40
25

187.5
1360
278
0.461
7500
187.5


Example 8 (comp)



125
1400
258
0.420
5000
125








Claims
  • 1. A process for producing polyethylene, the process comprising: (a) providing a catalyst composition comprising a particulate support and a Group 4 metal complex of a phenolate ether ligand carried by the support and present in an amount so as to provide 0.1 to 35 μmol of Group 4 metal per gram of the support; and(b) contacting ethylene with a slurry of the catalyst composition under polymerization conditions such as to produce polyethylene having a molecular weight of at least 3×105 g/mol as determined by ASTM 4020, an average particle size, d50, of less 300 microns, preferably 100 to 250 microns, and a span, log10(d90/d10), of less than 0.4.
  • 2. The process of claim 1 wherein the Group 4 metal loading is from 1 to 30 μmol/gram of the support.
  • 3. The process of claim 1 wherein the Group 4 metal loading is from 2 to 25 μmol/gram of the support.
  • 4. The process of claim 1 wherein the particulate support has an average particle size, d50, of less than 58 microns.
  • 5. The process of claim 1 wherein the particulate support has an average particle size, d50, of less than 50 microns.
  • 6. The process of claim 1 wherein the particulate support has an average particle size, d50, of less than 30 microns.
  • 7. The process of claim 1 wherein the particulate support has an average particle size, d50, of about 4 to about 25 microns.
  • 8. The process of claim 1 wherein the particulate support has a span, log10(d90/d10) less than 0.6.
  • 9. The process of claim 1 wherein the particulate support comprises an inorganic oxide.
  • 10. The process of claim 1 wherein the particulate support comprises silica.
  • 11. The process of claim 1 wherein the particles of the support are treated with an organoaluminum compound before said Group 4 metal complex is deposited on the support.
  • 12. The process of claim 1 wherein the Group 4 metal complex is a complex of a bis(phenolate) ether ligand.
  • 13. The process of claim 12 wherein the Group 4 metal complex has the following general formula:
  • 14. The process of claim 12 wherein the bis(phenolate) ether ligand has the following general formula:
  • 15. The process of claim 12 wherein the bis(phenolate) ether ligand is selected from:
  • 16. The process of claim 1 wherein the Group 4 metal is zirconium.
  • 17. Polyethylene powder produced by the process of claim 1.
  • 18. A porous article produced by sintering the polyethylene powder of claim 17.
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/IB2011/003245 12/19/2011 WO 00 5/30/2014