PROCESS FOR PRODUCING HIGH PURITY FIBRINOGEN AND THROMBIN FOR FIBRIN SEALANT

Information

  • Patent Application
  • 20160137719
  • Publication Number
    20160137719
  • Date Filed
    October 14, 2015
    9 years ago
  • Date Published
    May 19, 2016
    8 years ago
Abstract
The present invention relates to a fibrin sealant kit comprising purified fibrinogen and thrombin. The invention particularly relates to an improved chromatographic process for the purification of thrombin and fibrinogen components devoid of any significant plasminogen and other impurities. The absence of plasminogen facilitates the exclusion of a proteolytic inhibitor (aprotinin) from among the kit components.
Description
FIELD OF THE INVENTION

The present invention relates to the field of therapeutic protein purification from human plasma. In one aspect, the present invention relates to improved methods for manufacturing fibrinogen and thrombin through all-chromatography process. Another aspect of the present invention relates to a fibrin sealant kit consisting of purified thrombin and fibrinogen.


BACKGROUND ART

During wound healing, fibrin clot is considered as the final step in the coagulation cascade. The process of forming a fibrin clot involves conversion of fibrinogen to fibrin monomers by thrombin (Factor IIa) and cross linking of these fibrin monomers to form a fibrin polymer in the presence of Factor XIII. The resulting fibrin clot acts as a hemostatic plug to seal of the capillaries at the site of injury. During surgical procedures, fibrin sealants are used to aid the surgical closure procedures.


Bergel discovered fibrin's physiological gluing properties in 1909. Since then fibrin has been used as an adhesive. However, it was the clotting property of whole blood that was used and not purified Fibrin. In 1944, Cronkite used fibrinogen component from blood along with thrombin to secure a skin graft but, the low concentrations of fibrinogen and thrombin in the preparation failed to give a good quality clot. In 1975, Maitras was the first to use a concentrated preparation of Fibrinogen for this purpose. Since then the synthetic glues have been increasingly replaced by biological glues. The biological surgical sutures are effective, easy to use and reasonably well tolerated by the patients, but its viral safety, adhesiveness and absence of toxicity to adjacent tissues are the problems still being addressed to varying extents.


The commercial kits consists of components of clot formation like fibrinogen, thrombin, calcium chloride, and an anti-fibrinolytic, typically a plasmin inhibitor. The anti-fibrinolytic (like aprotinin) helps to prevent early degradation of the fibrin clot that may be brought about by plasmin contamination in the fibrinogen-thrombin preparations.


There are several patents in the prior art that discloses the methods of preparation and compositions of concentrates of Fibrinogen and Thrombin in biological glues. Few deal with methods of preparation of Fibrinogen and Thrombin separately as individual proteins and a few others discuss their processes together as components of a fibrin sealant kit, which mainly involve precipitation of fibrinogen from plasma by the addition of organic solvents or salts at defined concentrations, pH and temperature conditions.


U.S. Pat. No. 5,290,918 and U.S. Pat. No. 5,395,923 disclose methods for the preparation of a protein concentrate coagulable by thrombin, and containing mostly fibrinogen, endogenous Factor XIII and fibronectin. This purification process does not involve any chromatography step.


U.S. Pat. No. 7,550,567 discloses a process for purifying fibrinogen, comprising one or more process steps in which one or more contaminating proteins are depleted by negative chromatography and/or negative adsorption using cation exchanger, hydrophobic gel and/or dye gel. However, absence of plasminogen contamination in the preparation to avoid the use of a protease inhibitor in the Fibrin sealant kit and the final purity levels were not discussed.


WO1997026280A1 discloses a method for the recovery of fibrinogen from a fibrinogen-containing material by affinity. But the plasminogen levels are not quantified in the final preparations.


The second major component in the fibrin sealant kit is Thrombin. Thrombin is obtained by proteolytic cleavage of prothrombin. Purification methods in literature generally describe processes for the purification of prothrombin from plasma and a final single step comprising proteolytic conversion of purified prothrombin to thrombin. Several methods for the purification of prothrombin have been disclosed in prior art. Some of the related patent prior art disclose methods involving protein precipitation alone by addition of salts or other chemicals in one or more steps, while a few other patents disclosed a combination of protein precipitation followed by single or multiple chromatography steps.


U.S. Pat. No. 5,354,682 discloses the purification and recovery of human thrombin produced in commercial-scale quantities. EP 0439156 discloses a process for the production of a liquid thrombin wherein a combination of anion exchange followed by cation exchange chromatography is employed for the purification. U.S. Pat. No. 8,012,728 discloses a method for the preparation of thrombin which is stable in the liquid state. U.S. Pat. No. 5,981,254 discloses a process of preparing biological glue. US 20060134769 discloses a method for the preparation of virus-inactivated thrombin. U.S. Pat. No. 6,245,548 discloses a method for converting pure prothrombin or prothrombin free of other coagulating factors to thrombin by treating prothrombin with sodium citrate. U.S. Pat. No. 5,907,032 discloses a process for the production of thrombin particularly human thrombin that are capable of being produced in a freeze-dried form. The final purity of thrombin and the absence of plasminogen in the preparations have not been elaborated in these patents.


The methods relating to fibrin sealant kits have also been disclosed in prior art, with the kits being made of components like fibrinogen, thrombin, calcium chloride and aprotinin, a protease inhibitor for the preparation of a biological glue. This is exemplified in the inventions described in U.S. Pat. No. 4,427,650, U.S. Pat. No. 5,716,645, U.S. Pat. No. 5,290,918, U.S. Pat. No. 5,395,923, U.S. Pat. No. U.S. Pat. No. 5,739,288 and U.S. Pat. No. 5,981,254. Most of the preparations described in the prior art on Fibrin sealant kits are found to be using aprotinin as the anti-fibrinolytic agent to prevent premature lysis of the clot from the contaminating plasminogen in the fibrinogen/thrombin preparations.


Avoiding the use of bovine or synthetic aprotinin can eliminate the risk of hypersensitivity reactions that are known to occur upon repeated exposures to aprotinin as described in a study published in the J Thorac Cardiovasc. Surg. 1998 Apr; 115(4):883-9). In this, the authors have described a subgroup of patients who developed aprotinin-specific antibodies after topical aprotinin application. The authors suggest that any use of aprotinin in patients should be documented and patients with pre-exposure to aprotinin in any form must be carefully monitored to avoid unexpected anaphylactic reactions. They have even questioned the necessity of adding aprotinin as a stabilizing agent in fibrin sealants. A similar conclusion was drawn by another group that studied the adverse effects of fibrinolysis inhibitor aprotinin in wound healing after suturing tissues with fibrin glue (Biomaterials 24 (2003) 321-327). They showed that even liver tissue which is known to have high fibrinolytic activity was sealed and repaired well in the absence of plasminogen inhibitors. On the contrary, if aprotinin was added, the non-degraded matrix remained in the tissue even after 15 days and affected migration of repair cells. They concluded that the presence of the fibrinolysis inhibitor in the fibrin glue application was detrimental to wound healing.


There are many patents in the prior art—U.S. Pat. No. 7,816,495, U.S. Pat. No. 5,834,420, U.S. Pat. No. 4,022,758, US 20130274444, CA 1041424, U.S. Pat. No. 5,792,835, CN 102295696, U.S. Pat. No. 5,138,034, AU 2001023311, DE 19824306, U.S. Pat. No. 6,960,463, U.S. Pat. No. 6,037,457, US 20120195953, AU 199332064, CN 1207064, US 20140154231, U.S. Pat. No. 6,960,463, U.S. Pat. No. 6,960,463, DE 19824306, which disclosed purification of fibrin or purification of thrombin but many of them have not disclosed the levels of the contaminants in the final products.


SUMMARY OF THE INVENTION

There is a requirement for purifying fibrinogen and thrombin in a combination of chromatography steps to obtain final purified preparations that have extremely low or undetectable levels of the contaminant, plasminogen. The inventors of the present invention have developed a fibrin sealant kit comprising highly purified preparations of fibrinogen and thrombin with extremely low or undetectable amounts of plasminogen. The sealant is hence a fibrinolysis inhibitor-free kit. By avoiding the use of bovine or synthetic aprotinin, the risk of hypersensitivity reactions that are known to occur upon repeated exposures to aprotinin, can be eliminated.


The present invention discloses an approach to overcome the above challenge of preparing and purification of fibrinogen and thrombin with low levels of plasminogen. The present invention describes a complete end-to-end multi-step chromatography process to obtain fibrinogen and thrombin of increased purity. In addition, the process avoids the use of tranexamic acid in free form or bound to affinity matrices, a compound with proven neurotoxic effects. The advantage of these highly purified preparations is that they have minimal or undetectable levels of plasminogen and so that these sealant kits can be manufactured by excluding aprotinin.


The present invention relates to a fibrin sealant kit comprising purified fibrin and thrombin. The invention particularly relates to purification of fibrinogen and thrombin from human plasma through an all-chromatography process. The fibrinogen and thrombin preparations thus obtained are found to be free of the major fibrinolytic contaminant plasminogen.





BRIEF DESCRIPTION OF THE FIGURES


FIG. 1: An outline illustration of a process scheme for simultaneous purification of Fibrinogen and Thrombin by chromatography without the use of an ethanol precipitation step



FIG. 2A: SDS-PAGE analysis of Fibrinogen



FIG. 2B: SDS-PAGE profile of Thrombin





DESCRIPTION OF TABLES

Table 1: Plasminogen levels in preparations of the present invention versus the competitor market brands


DETAILED DESCRIPTION OF THE INVENTION

Fibrin sealant tissue adhesive has become an important and versatile surgical tool. It is composed primarily of two components, viz., fibrinogen and thrombin. Fibrin sealant acts by mimicking the final stage of the natural clotting mechanism to form a fibrin clot that is broken down by fibrinolysis and reabsorbed by the body naturally over the course of several days. The process by which fibrinogen and thrombin combine in the presence of Factor XIII and calcium chloride to form a fibrin clot has been well described in scientific literature.


Currently, fibrin sealant is used in virtually every surgical specialty. The primary area of usage is cardiovascular surgery, where applications include sealing of complex suture lines, vascular conduits, cannulation sites and vascular anastomoses. In neurosurgery, fibrin sealant is commonly used as an adjunct to dural closures, to reduce postoperative cerebral spinal fluid leakage and in the repair of dural defects. Fibrin sealant is effective in sealing dead spaces left after surgical excision (as in axillary dissection), where there is a potential for serous drainage leading to seroma formation. In general surgery, fibrin sealant is used to achieve hemostasis on raw surfaces of the liver and in reconstruction of the spleen, especially following traumatic injury. There are other documented applications of fibrin sealant in orthopaedic, ophthalmologic, trauma, head and neck, gynecologic, urologic, gastrointestinal and dental surgeries.


Although commercial fibrin sealant made from pooled plasma-derived human fibrinogen and human thrombin has been available in Europe, Canada and Japan for several years (since 1972 in Europe), the US Food and Drug Administration (FDA) did not approve the commercial product for use in the USA until May 1998. Delay in availability of commercial fibrin sealant in the USA was largely due to concerns over possible viral disease transmission from blood-borne pathogens such as HIV, hepatitis B virus, and hepatitis C virus.


Currently, licensed commercial fibrin sealants contain fibrinogen and thrombin derived from pooled, virally inactivated human plasma. They also contain an anti-fibrinolytic agent, bovine aprotinin. Future generations of fibrin sealant are likely to be free of bovine products due to reported instances (albeit rare) of reactions to bovine aprotinin. Commercial fibrin sealant has been used in >4 million procedures worldwide to date, with only one reported case of suspected viral disease transmission (human parvovirus transmission in Japan). As increasingly sensitive virus detection techniques become available, shortening or even closing the window for infectious donations, and as improved virus inactivation techniques are developed, such as solvent detergent cleansing, general acceptance of products derived from pooled plasma may grow. In fact, pooled, virus-inactivated blood products have been shown to be very safe [Ann Clin Lab Sci Winter 2001 vol. 31 no. 1 108-118).


In a preferred embodiment of the invention described herein, the process is characterized by an initial fractionation of the plasma into two, three or more components by a molecular sieve chromatography process using resins from any of the standard chromatography resin manufacturers. The commonly used resins for gel permeation are Sephacryl™, Superose™, Sephadex™, Superdex™, Cellufine™ or others. The frozen plasma is initially thawed and pooled and filtered to remove particulate matter. The filtered plasma is then fractionated on a gel permeation column which simultaneously removes high molecular weight lipids and lipoproteins from the protein fractions of interest. Fractions II and III obtained after Chromatography-I are the starting materials for the Fibrinogen and Thrombin processes.


Purification of Fibrinogen:


Step 1(a): The thawed and pooled plasma after filtration is loaded onto a gel filtration column, packed with any of the commonly used matrices like Cellufine, Sepharose or any other commercial brand. Three major fractions (fraction 1, fraction 2 and fraction 3, as in FIG. 1) are obtained after group separation on the column, packed to a height of in the range of 30 to 60 cm.


Step 1(b):


The column is run in a suitable buffer composed of phosphate, citrate or other similar buffer salts that provide a pH range of 6.5 to 7.5. The buffer salt molarity to a concentration of 0.05 to 0.5M, preferably less than 150 mM. In addition, the buffer contains additives of salts in suitable quantities to preserve the activity of sensitive proteins. The column is loaded with thawed, pooled and filtered plasma and the three protein fractions are collected as shown in FIG. 1.


Step 1(c):


In a preferred embodiment of the invention described herein, the process is characterized by an initial fractionation of the plasma into three components by a molecular sieve chromatography process using resins like Cellufine, Sepharose or any other gel filtration media from any of the standard chromatography resin manufacturers. Fraction-2 obtained from the first gel filtration column shown in FIG. 1, is processed for Fibrinogen purification through a multi-step chromatography process. This fraction is loaded on a hydrophobic column, a HIC column like phenyl sepharose (although other hydrophobic resins with ligands of butyl, octyl and related bound to any base matrix other than Sepharose may also be used). The HIC column is equilibrated with a buffer containing Tris phosphate or similar salts in the range of 50 mM to 500 mM, containing salts like ammonium sulphate, sodium sulphate or sodium chloride-like salts generally used in HIC, at a concentration of 0.05M to 0.5M in the pH range of 6.5 to 7.5. The column is eluted with the same buffer but containing reduced concentration of the salt such as ammonium sulphate in the pH range of 7.0 to 8.0.


Step 1(d):


The eluate containing fibrinogen from the HIC column of Step 1(c), is subjected to a Solvent/Detergent (S/D) treatment for viral inactivation. The virally inactivated sample is further purified by loading it onto an anion exchange resin (like DEAE, Q or other similar ligands bound to chromatography matrices like Sepharose).


Step 1(e):


The treated solution from step 1(d) is subjected to an anion exchange column which is equilibrated with Tris phosphate or similar salts in a concentration range of 10 mM to 150 mM containing sodium chloride in the range of 10 mm to 150 mM in the pH range of 6.5 to 7.5. This column is then washed with suitable buffer and fibrinogen is eluted with a buffer containing the same salts as the equilibration buffer but a higher concentration of sodium chloride in the range of 50 mM to 200 mM in the same pH range.


Step 1(f):


The ion exchange eluate obtained from step 1(e) containing purified fibrinogen is collected and subjected to pasteurization at 60° C. for 10 hrs for viral inactivation.


Step 1(g):


The buffer exchanged with a solution containing the formulation excipients and the final formulated solution of Fibrinogen is subjected to sterile filtration and freeze drying. Upon reconstitution, the purified fibrinogen contains over 95% clottable protein and has a clear appearance. This is one of the components of the Fibrin sealant kit.


Step 1(h):


The fibrinogen obtained from the step 1(g) is subjected to formulation and lyophylization before filling into the vials. The finally obtained fibrinogen is in the concentration range of 25 mg to 150 mg per ml. The pH range of fibrinogen solution in the kit is in the range of 6.5 to 7.5.


Purification of Thrombin:


Step 2(a):


In a preferred embodiment of this invention, Thrombin is purified from Fraction-3 (FIG. 1) obtained as described in Step 1(a).


Step 2(b):


Fraction-3 containing prothrombin is loaded onto an anion exchange column containing ligands like DEAE or Q bound to chromatography matrices such as Sepharose, Sephadex or other chromatography resins. The elute from anion exchange column is loaded onto an affinity resin which is heparin bound to a matrix such as sepahrose. The buffer used is citrate or phosphate buffer in the molarity range of 0.01 M to 0.1 M, in the pH range of 6.5 to 8.5. The sample is loaded and eluted in the same buffer with increasing amounts of sodium chloride (0 to 0.5M). The eluate from this column contains Prothrombin along with other vitamin K dependant proteins and this is further processed for the purification of Thrombin.


Step 2(c):


The anion exchange eluate fraction containing prothrombin (from Step 2(b)) is subjected to a viral inactivation procedure, by the addition of solvent detergent (S/D).


Step 2(d):


The sample obtained from step 2(c) is loaded and collected by elution using a buffer containing increasing amounts of NaCl (0 to 0.5M) and a small amount of CaCl2 (0 to 50 mM).


Step 2(e):


The prothrombin obtained at the end of the step in Step 2(d) is bound to an anion exchange column in the pH range of 6 to 9, equilibrated with Tris phosphate or other suitable buffers in the molarity range of 5 to 100 mM. In the presence of equilibration buffer, viz., buffer containing calcium chloride (1-50 mM), the bound prothrombin is allowed to undergo on-column cleavage to thrombin at temperatures of 4° C.


Step 2(f):


Thrombin is eluted from the column and subjected to nanofiltration for virus removal using any of the standard commercially available nanofilters.


Step 2(g):


The thrombin obtained from the step 1(g) is subjected to formulation and lyophylization before filling into the vials. This process yields thrombin in the range of 400 to 800 IU per ml (and optionally an additional vial of Thrombin at a lower strength in the range of 2 to 10 IU/ml). This is then formulated, sterile filtered and lyophilized in vials for use as a component in the fibrin sealant kit. The pH range of thrombin solution in the kit is in the range of 6.5 to 7.5.


Human Plasminogen present in human fibrinogen preparations is estimated using a quantitative ELISA based method. Plasminogen binds to anti-human plasminogen antibody coated onto a 96-well microtitre plate. In the next step, the polyclonal anti-human plasminogen primary antibody binds to the captured plasminogen antigen on the microtitre well. The bound polyclonal antibody reacts with a specific secondary antibody conjugated to horseradish peroxidase (HRP). The content of plasminogen in the preparation is detected using a chromogenic substrate TMB (3,3′,5,5′-Tetramethylbenzidine). The amount of color developed is determined by measuring the absorbance at 450 nm wavelength, after stopping the reaction using sulfuric acid. At a defined linear range of concentration of Plasminogen, the amount of color developed is proportional to the concentration of the Plasminogen antigen. Using an appropriate certified reference standard for the standard curve, the unknown quantity of Plasminogen in fibrinogen preparation is determined. The kit prepared using the purified Thrombin and Fibrinogen components have been found to have undetectable amounts of plasminogen contamination.


The Fibrin Sealant Kit of the present invention comprises the following components: Fibrinogen—25 mg to 150 mg per ml—reconstituted in 1 mL of Water for Injection (WFI), Thrombin—400 to 800 IU per ml (and optionally an additional vial of Thrombin at a lower strength in the range of 2 to 10 IU/ml)—reconstituted in 1 mL of 40 mM CaCl2, 1 mL WFI vial, 1 mL 20 to 60 uM, CaCl2 vial.


A representative Table 1 below indicates the levels of plasminogen in some of the most popular fibrin sealant kits in the market. The enhanced purity of the fibrinogen obtained is compared to the other products from competitors, that are available in the market.


It was observed that the product prepared using the process of the present invention exhibited an activity of greater than 0.1 million IU of Thrombin per liter of plasma and a specific activity of greater 3000 IU/mg of protein. This is higher than the reported yield and specific activity values (1500 to 2500 IU/mg) in published literature. Similarly for Fibrinogen, the yield was 600 to 1000 mg/liter of plasma with clottable protein equal to 100%, whereas the other procedures gave lesser yields and clottable protein which are only close to 70%.


The fibrin sealant kit described in the present invention comprises highly purified preparations of fibrinogen and thrombin. Fibrinogen and Thrombin shows purities greater than 98% by SDS-PAGE and HPLC analysis. The Fibrinogen preparation has extremely low or undetectable amounts of plasminogen contaminant. This is advantageous as it helps in omitting a component of the kit, a plasminogen inhibitor (also known as a protease inhibitors, like aprotinin or tranexamic acid). The sealant is hence a fibrinolysis inhibitor-free kit.

Claims
  • 1. An integrated method for the isolation and purification of plasma derived fibrinogen and thrombin, without the use of ethanol precipitation, comprising subjecting plasma to gel filtration chromatography to obtain three fractions (Fraction I, Fraction II and Fraction III) which are subjected to further all-chromatographic steps followed by viral inactivation.
  • 2. A method according to claim 1 comprises isolation followed by purification of fibrinogen, involving: a) collection of a fraction from gel chromatography of human plasma;b) addition of ammonium sulphate to a concentration of 0.05M to 0.5M;c) loading on a hydrophobic column (HIC);d) conducting S/D virus inactivation for elute obtained from step c;e) subjecting the treated solution from step d to anion chromatography for further purification;f) conducting virus inactivation for achieving high levels of fibrinogen purity;g) filtration of the solution obtained from step f; andh) formulation and lyophilisation of the solution obtained from step g.
  • 3. A method according to claim 1 comprises isolation followed by purification of thrombin, involving a) collection of a fraction through gel chromatography of human plasma;b) loading the fraction onto an anion exchange column equilibrated with a buffer comprising an acetate, citrate or similar salt with a molarity of 0.01 M to 0.1 M in the pH range of 6.5 to 8.5, eluting a partially purified prothrombin with the same buffer containing sodium chloride;c) conducting S/D virus inactivation for enveloped virus;d) collecting purified prothrombin by elution with a buffer containing increasing amount of NaCl ranging from 0 to 0.5M;e) subjecting the said solution from step d to an anion exchange in the pH range of 6 to 9 in a buffer containing 1 to 50 mM concentration of calcium chloride;f) executing nanofiltration of the solution obtained from step e for virus removal; andg) formulation and lyophilisation of the solution obtained from step f.
  • 4. A fibrin sealant kit devoid of a proteolytic inhibitor, comprising purified fibrinogen, thrombin and calcium, with very low or undetectable levels of plasminogen contamination.
  • 5. Fibrin sealant kit according to claim 4, wherein the concentration of fibrinogen is 25-150 mg/ml.
  • 6. Fibrin sealant kit according to claim 4, wherein the concentration of thrombin is 400 to 800 IU per ml.
  • 7. The concentration of thrombin in the fibrin sealant kit of claims 4-6, may optionally comprise an additional vial of Thrombin at a lower strength in the range of 2 to 10 IU/ml.
  • 8. A fibrin sealant kit of claim 4 wherein the source of calcium is calcium chloride.
  • 9. The amount of calcium chloride in the fibrin sealant kit of claims 4-8 is in the range of 20 to 60 uM.
Priority Claims (1)
Number Date Country Kind
5704/CHE/2014 Nov 2014 IN national