Process for producing improved superabsorbent polymer aggregates from fines

Abstract
Improved water absorbent polymers can be prepared by agglomerating acrylic acid gel polymer fines with small quantities of difunctional epoxides.
Description

INTRODUCTION
Water-insoluble hydrogel-forming polymers are materials which are capable of absorbing large quantities of fluids such as water and body waste and which are further capable of retaining such absorbed fluids under moderate pressures. These absorption characteristics of such materials make them especially useful for incorporation into absorbent articles such as disposable diapers.
Frequently, hydroqel-forming absorbent materials comorise poIymers of polymerizable unsaturated carboxylic acids or derivatives thereof, such as acrylic acid and/or alkali metal and alkyl acrylates. These polymers are rendered water-insoluble by cross-linking the carboxyl group-conlaining polymer chains using conventional cross-linking agents such as di- or poly-functional monomer materials. The degree of cross-linking in hydrogel and hydrogel-forming materials not only determines their water-solubility but is also an important factor in estab1ishing two other characteristics of fluid absorbing hydrogels, i.e., absorbent capacity and gel strength. Absorbent capac1ty oz "gel voIume" is a measure of the amount of water or body fluid which a given amount of hydrogel-formirg material will absorb. Gel strength relates to the tendency of the hydrogel formed from such material to deform or "flow" under an applied stress.
For an overview of absorbent polymers of the type described above, reference is made to the references cited in U.S. Pat. No. 4,698,404 which cited references are specifically incorporated herein by reference.
While cross-linking agents may be used to prepare gel polymers as described above, it is possible to prepare acrylic acid gel polymers without utilizing cross-linking agents. Such products are described in U.S. Pat. No. 4,654,039, the disclosure of which is incorporated herein by reference.
Most absorbent gel polymers are normally polymerized in the form of an aqueous solution which produces hydrogel. This hydrogel is then usually dried and ground to a particle size most suitable for incorporation into absorbent products such as diapers, toweling and the like. The qrinding process tends to produce a percentaqe of fines which are small particles that cannot be utilized as such in the finished products souqht to be porduced from the gel polymers.
Another useful process for producing superabsorbent polymers is the batch, inverse suspension process. The main advantaqe of batch, inverse suspension products, such as described in the patents cited below, over gel products is the speed of absorotion. Increased speed is also one of the imorovements offered by the products resulting from this invention. The batch, inverse suspension technology is described in U.S. Pat. No. 4,340,706 with an improvement in such process heing further described in U.S. Pat. No. 4,698,404, the disclosures of which patents are incorporated herein by reference.
OBJECTS OF THE INVNETION
The invention has as one of its objects a method of utilizing acrylic acid gel polymer fines to produce an improved superabsorbent polymeric product.
Another object of the invention is to provide a treatment for the fines of an acrylic acid gel polymer made by conventional solution polymerization which fines are subsequently agglomerated to produce a polymeric superabsorbent product having more rapid salt absorbency characteristics.
Other objects will be used here and after.





THE DRAWING
The drawing illustrates a commercial agglomerating device that may be used in the practice of the invention.





THE INVENTION
The invention comprises a method of making an improved water-absorbent polymer from absorbent acrylic acid gel polymer fines which have an average particle size less then about 500 microns which comprises agglomerating said particles with at least 0.05% by weight of a difunctional eooxide.
The Absorbent Acrylic Acid polymer Gel Fines
Acrylic acid polymer gel fines may result from any number of polymerization techniques but most often will occur using a solution pclymerization method such as, for instance, solution polymerization of partially neutralized acrylic acid. Other methods of producing acrylic acid polymers which result in gel fines usable in the practice of the invention are cited as references in the specification of U.S. Pat No. 4,654,039. While this patent describes the production of these polymers using laboratory scale equipment and methods, when such polymers are produced usinq large-scale crushing, mixing and grinding equipment, there are produced as an unwanted byproduct a substantial quantity of fines. These fines will vary in particle size depending upon the manufacturing process. This invention contemplates using polymer particle fines having an average particle size less than 500 microns. A preferred particle size range is less than about 250 microns. The acrylic acid gel polymers most useful in the practice of the invention contain from 50 to 99.999 mole percent of acrylic acid.
The agglomeration is conducted using at least 0.05%, preferahly between 0.1-2%, and most preferably between 0.2-0.8% by weight of difunctional epoxide which functions in conjunction with water as an agglomerating agent. Its main function, however, is to provide a cross-linking effect. Examples of the difunctional epoxides are ethylene glycol diglycidyl ether, 1,4-butanediol diglycidyl ether, (poly)-ethylene glycol diglycidyl ether, (poly)-propylene glycol diglycidyl ether, (poly-glycerin diglycidyl ether, and the like. Other difunctional epoxides are the haloepoxy compounds including, for instance, epichlorohydrin, .alpha.-methylepichlorohydrin and the like. Of the above materials, the diglycidyl ethers are preferred with ethylene glycol diglycidyl ether (EGDGE) being most preferred.
As indicated, the difunctional epoxide functions in the invention in its most preferred embodiment when water is the primary agglomerating agent. Depending upon the finished particle size sought, the amount of water added may vary between 1-20% and preferably 3-10% by weight. The amount of water added will determine the particle size of the finished aggregate. As a general rule, the greater amount of water the larger will be the aggregate.
To achieve optimum efficiency, the fines should be agglomerated to increase the particle size of the starting fines at least 2-5 times, and preferably 5-30 times.
Where the aggregates produced by the aggregation process are too large, they may be ground down to finer particle size without losing their absorptive properties. Where the aggregates produced by the process are still too small, they may be recycled back to the agglomerater for further aggregation.
Two different commercial acrylic acid absorbent polymer fines were agglomerated using a so-called Turboflex agglomerator manufactured by Bepex Corporation. This mixing device is generically described in the drawing.
Evaluations utilized the two commercial fines of acrylic acid superabsorbent polymer of the type illustrated in U.S. Pat. No. 4,654,039. The particle size distributions for Fine No. 1 and Fine No. 2 are shown below.
__________________________________________________________________________Particle Size Distributionof Starting FinesWeight percent +70 +100 -70 + 200 -100 + 200 -200 + 325 -325Sample Mesh Mesh Mesh Mesh Mesh Mesh__________________________________________________________________________Fine No. 1 0.24 24.24 34.88 40.64Fine No. 2 0.08 42.08 39.84 18.00__________________________________________________________________________
These fines were agglomerated using the TurbofIex mixer with the results being set forth below in Table I. Additional tests were run with the data being set forth in Table II.
TABLE I__________________________________________________________________________Agglomeration Study at Bepex__________________________________________________________________________ Run Wt % Wt %Test Time Lbs/hr Second Water Second Wt %No. Feed (Mins) Feed Binder Added Binder +20 Mesh__________________________________________________________________________1 No. 1 95 890 5.60 0.00 4.92 No. 1 24 890 7.00 0.00 4.93 No. 1 12 890 7.00 0.00 1.7(-200 Mesh)4 No. 2 60 800 7.80 0.00 12.55 No. 2 30 800 6.25 0.00 7.36 No. 2 30 800 8.85 0.00 16.77 No. 1 60 960 8.68 0.00 8.78 No. 1 12 960 PEG 600.sup.4 6.83 0.87 4.59 No. 1 16 960 PEG 8000 6.06 0.78 3.310 No. 1 9 960 EGDGE 8.97 0.23 5.111 No. 2 10 990 EGDGE 7.78 0.20 7.0__________________________________________________________________________ Inlet.sup.1 Dryer Outlet IFX.sup.2Test Wt % Wt % Dryer Bed Dryer Outlet FinalNo. -20 + -140 Temp Temp Temp % Water.sup.3 % Water__________________________________________________________________________1 65.6 29.5 201 135 133 9.5 4.92 71.2 23.9 199 130 123 10.4 6.43 57.6 40.7 202 149 141 10.5 5.34 66.1 21.4 194 133 130 14.8 6.65 66.1 26.6 199 143 136 13.9 6.16 57.0 26.3 200 153 409 13.6 5.87 64.0 27.3 205 155 128 11.4 4.58 57.9 37.7 195 127 124 9.59 42.9 53.8 195 135 129 8.610 39.6 55.4 177 133 11811 53.0 40.0 186 133 126__________________________________________________________________________ .sup.1 Dryer temperatures are the average for the three zones during the last 15 minutes of the run. .sup.2 Turboflex Aggregator .sup.3 Percent moistures are based on 3 hours at 105.degree. C. .sup.4 Poly(ethylene glycol)
TABLE II__________________________________________________________________________ Wt % Wt %Sample Fines Primary Second Water Second Centrifuged.sup.1 Lock-Up.sup.2 Vortex.sup.3Number Source Binder Binder Added Binder Capacity(g/g) (sec) Test(sec)__________________________________________________________________________1 No. 1 Water 5.6 32.0 120 4.452 No. 1 Water 7.0 32.3 120 4.333 No. 1 Water 7.0 33.5 120 6.144 No. 2 Water 7.8 41.0 90 5.75 No. 2 Water 6.25 42.8 29.5 5.06 No. 2 Water 8.85 41.6 37 5.527 No. 1 Water 8.68 33.8 90 5.18 No. 1 Water PEG 600 6.83 0.87 33.0 90 7.979 No. 1 Water PEG 8000 6.06 0.78 33.0 90 5.2210 No. 1 Water EDGDE 8.97 0.23 24.2 90 6.3611 No. 2 Water EDGDE 7.78 0.2 29.7 14.2 3.6512 13.0 3.56__________________________________________________________________________ .sup.1 0.9% saline .sup.2 Lock-Up Test = time required for 1 g of SA to absorb 30 g of 1.59 saline without mixing .sup.3 Vortex Test = time required for 50 g of 0.9% saline to lose vortex when 2 g of SA is added with stirring
Claims
  • 1. A method of making an improved water-absorbent polymer from dried, crushed, and ground fines of absorbent acrylic acid gel polymers of the type capable of absorbing large quantities of fluid, and also containing from 50-99.999 mole percent of acrylic acid, which dried, crushed, and ground fines have an average particle size less than about 500 microns and which fines are obtained by drying, crushing, and grinding a polymer gel obtained from solution polymerization of acrylic acid and its salts, which method consists essentially of agglomerating said dried, crushed, and ground fines by adding thereto at least 0.05 percent by weight of a difunctional epoxide and from 1 to 20 percent of water, then mixing and reacting same with the fines, thereby agglomerating the fines to obtain an improved water absorbent agglomerated polymer having an increased particle size of from 5-30 times the size of the starting dried, crushed, and ground fines.
  • 2. The method of claim 1 where the average particle size is less than about 100 microns.
  • 3. The method of claim 1 where for difunctional epoxide is ethylene glycol diglycidyl ether.
Parent Case Info

This is a Continuation application of U.S. Ser. No. 203,368, filed May 31, 1988 now abandoned.

US Referenced Citations (5)
Number Name Date Kind
4123397 Jones Oct 1978
4340706 Obayashi et al. Jul 1982
4401795 Herman et al. Aug 1983
4654039 Brandt et al. Mar 1987
4698404 Cramm et al. Oct 1987
Foreign Referenced Citations (1)
Number Date Country
0255814 Dec 1985 JPX
Non-Patent Literature Citations (1)
Entry
Translation of Japanese Kokai Application No. 55-119942 to Oobayashi, published Mar. 13, 1982.
Continuations (1)
Number Date Country
Parent 203368 May 1988