The invention relates to refractory metal alloy powders and, more particularly, relates to process(es) for producing refractory metal alloy powders.
Advanced gas turbine engines require alloys exhibiting very high melting points in order to increase performance and operating efficiency. Molybdenum-based alloys have been developed to increase the turbine operating temperature as disclosed in U.S. Pat. No. 5,693,156 to Berczik, U.S. Pat. No. 5,595,616 to Berczik, and U.S. Pat. No. 6,652,674 to Woodard et al., which are all incorporated herein by reference in their entireties. The molybdenum-based refractory metal alloys described therein are attractive candidates to replace nickel-based alloys due to their higher melting point temperatures (approximately 4000° F. to 5000° F.), high coefficients of thermal conductivity (approximately 690 BTU-in/hr ft2-° F.), low coefficients of thermal expansion (approximately 3.5×10−6/° F.), and high modulus. In part, these characteristics are due to these alloys containing constituents with widely varying melting points.
However, the characteristic high temperature capabilities of the aforementioned molybdenum-based alloys also present an obstacle during the production and processing of the alloys. Due to the high melting points and high thermal conductivity coefficients, the molybdenum-based alloys prove to be extremely difficult to melt and cast using traditional processes. Additionally, the mechanical properties of the alloys are highly dependent upon a fine microstructure that cannot be obtained through traditional casting or powder metallurgical processes. As disclosed in U.S. Pat. No. 5,595,616, it was discovered that complete melting and rapid solidification of the melt is necessary to produce the ideal microstructure and subsequent mechanical properties exhibited by these molybdenum-based alloys.
In the past, a widely-recognized process for producing powders of these aforementioned molybdenum-based alloys was rotary atomization as disclosed in U.S. Pat. No. 5,595,616. While rotary atomization was capable of producing usable materials, the process demonstrated limited efficiency. The low efficiency of rotary atomization and the inability of other powder production techniques to produce an ideal powder are directly related to the difficulties present in fully melting the aforementioned molybdenum-based alloy and allowing a homogeneous, fully alloyed liquid to form which could then be rapidly solidified.
Therefore, there is a need for a powder production process capable of efficiently producing powder with the ideal microstructure.
In accordance with one aspect of the present disclosure, a process for producing refractory metal alloy powders broadly comprises blending at least one powder with at least one solvent and at least one binder to form a slurry; forming a plurality of agglomerates from the slurry; screening the plurality of agglomerates; sintering the plurality of agglomerates; and melting the plurality of agglomerates to form a plurality of homogenous, densified powder particles.
In accordance with another aspect of the present disclosure, a molybdenum-based refractory metal alloy made according to a process broadly comprising the steps of blending at least one powder with at least one solvent and at least one binder to form a slurry; forming a plurality of agglomerates from the slurry; screening the plurality of agglomerates; sintering the plurality of agglomerates; and melting the plurality of agglomerates to form a plurality of homogenous, densified powder particles.
The details of one or more embodiments of the invention are set forth in the accompanying drawings and the description below. Other features, objects, and advantages of the invention will be apparent from the description and drawings, and from the claims.
Like reference numbers and designations in the various drawings indicate like elements.
The process disclosed herein may be employed to manufacture a powder form of any one of several refractory metal alloys known to one of ordinary skill in the art. For example, such refractory metal alloys that may be manufactured in a powder form may include the oxidation resistant molybdenum alloys disclosed in U.S. Pat. No. 5,693,156 to Berczik et al. and U.S. Pat. No. 5,595,616 to Berczik et al., and an oxidation resistant molybdenum alloy disclosed in U.S. Pat. No. 6,652,674 to Woodard et al. Additional refractory metal alloys that may be manufactured in a powder form may include, but are not limited to Nb, Ta and W.
Referring to
The starting powder(s) may be sufficiently fine to allow for the desired alloy content in each of the resulting individual agglomerates. Suitable starting powder(s) may have a particle size distribution ranging from at least about 0.1 μm to at least about 10 μm. Suitable starting powders should be selected to minimize any deleterious chemical contaminants that are not desired in the final alloy composition. The oxygen content of the final alloy composition may be controlled and possess a range of at least about 0.01 weight % to no more than about 1.5 weight % of oxygen. The carbon content of the final alloy composition may be controlled and possess a range of at least about 0.05 weight % to no more than about 0.5 weight % of carbon.
Once selected, the starting powders may then be blended at step 12 of
The binder selection may be predicated upon the compatibility of all the starting powders and selected binder, and the need for the powder agglomerates to hold their spherical shape during the plasma densification process that follows. Through experimentation, suitable binders have been identified as being a mixture of ammonium molybdate and polyvinyl alcohol; polyvinyl alcohol alone; a nonionic water soluble cellulose ether, such as hydroxypropylcellulose, commercially available as Klucel® from Aqualon a subsidiary of Hercules Inc., Wilmington, Del., and combinations comprising at least one of the foregoing, and the like. These binders strengthen the powder agglomerates and burn off easily without causing the agglomerate particles to fracture during decomposition and while also leaving little carbon residue in the final powder.
After blending the starting powders with water or a suitable solvent and binder material(s) to form a slurry, the slurry may be spray dried to form a plurality of agglomerates using any one of a number of techniques known to one of ordinary skill in the art at step 14. For example, suitable spray drying processes may include rotary atomization, nozzle atomization, and the like. The spray drying process may be optimized to produce agglomerate sizes that are amenable to being fully melted. Generally, the agglomerates may exhibit a binder concentration of about 0.1% to about 1% by weight of agglomerate, an oxygen content of about 0.1% to about 2.5% by weight of agglomerate, and a carbon content of about 0.05% to about 0.5% by weight of agglomerate. The resulting as-spray dried agglomerates may then be screened at step 16 to carefully select agglomerates having optimal particle size distribution commensurate with the starting powder particle size(s) and to ensure complete melting will be achieved. Any one of a number of screening processes, e.g., manual and automated, may be utilized as known to one of ordinary skill in the art.
Once screened, the as-spray dried agglomerates may be sintered at step 18 of
Referring now to
In order to ensure the sintered agglomerates melt completely, the sintered agglomerates may be fed into the plasma flame at a location below the anode, rather than fed into the anode, and at a gas feed rate to ensure the sintered agglomerates spend a suitable amount of time within the plasma flame as known to one of ordinary skill in the art. In addition, the type of nozzle may also ensure the agglomerates melt completely as known to one of ordinary skill in the art. In addition, other suitable heat sources may include drop-tube furnaces where the agglomerates melt during free fall through a hot zone of the furnace and solidify after passing through the hot zone. The sintered agglomerates may be in-situ melted and alloyed in the plasma flame or heat source. During the plasma densification process, the agglomerates may become a homogeneous liquid of the desired alloy composition. The liquid agglomerates rapidly solidify as the agglomerates exit the plasma flame or heat source, forming homogeneous, fully dense, fully alloyed powder particles with a rapidly solidified microstructure.
A multi-component compound powder Mo-2.6Si-1.4B wt % (Lot ID: MSB007; See Table 1 below) made from Mo, Si and B powders was blended and mixed with a polyvinyl alcohol binder to form a slurry. The slurry was spray dried to form as-sprayed agglomerates (See microphotographs of
A multi-component compound powder Mo-2.6Si-1.4B-0.3Fe wt % (Lot ID: MSB014; See Table 3 below) made from Mo, Si, MoSi2, B and Fe powders was blended and mixed with a Klucel® binder to form a slurry. The slurry was spray dried to form as-sprayed agglomerates (See microphotographs of
The exemplary process described herein illustrates a process for producing homogeneous, fully-melted, fully-alloyed and rapidly solidified refractory metal powders. The process is capable of producing powder from metal alloys containing constituents with a wide-range of melting points. The process is capable of producing molybdenum alloy powders with the desired microstructure described herein. Furthermore, the process is capable of producing low oxygen content powders of alloys containing silicon.
One or more embodiments of the present invention have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the invention. Accordingly, other embodiments are within the scope of the following claims.
The United States Government may have certain rights in the invention pursuant to contract number F33615-98-C-2874 awarded by the United States Air Force.