Process for producing taurine

Information

  • Patent Grant
  • RE48369
  • Patent Number
    RE48,369
  • Date Filed
    Tuesday, April 7, 2020
    4 years ago
  • Date Issued
    Tuesday, December 29, 2020
    4 years ago
Abstract
There is disclosed a process for producing taurine by the ammonolysis of alkali isethionate in the presence of alkali ditaurinate or alkali tritaurinate, or their mixture, to inhibit the formation of byproducts and to continuously convert the byproducts of the ammonolysis reaction to alkali taurinate. The production yield is increased to from 90% to nearly quantitative. The ammonolysis reaction is catalyzed by alkali salts of hydroxide, sulfate, sulfite, phosphate, or carbonate.
Description
TECHNICAL FIELD

The present invention relates to a process for the production of taurine from alkali isethionate in a high overall yield (i.e., greater than 90% to nearly quantitative) by carrying out the ammonolysis reaction of alkali isethionate to alkali taurinate in the presence of alkali ditaurinate or alkali tritaurinate, or their mixture.


BACKGROUND OF THE INVENTION

Taurine can be referred to as 2-aminoethanesulfonic acid and is one of the amino sulfonic acids found in the tissues of many animals. Taurine is an extremely useful compound with beneficial pharmacological effects, such as detoxification, fatigue-relief, and nourishing and tonifying effects. As a result, taurine finds wide applications as an essential ingredient for human and animal nutrition.


Taurine is currently produced in an amount of over 50,000 tons per year from either ethylene oxide or monoethanolamine. At the present time, most taurine is produced from ethylene oxide, following a three-step process: (1) the addition reaction of ethylene oxide with sodium bisulfite to yield sodium isethionate; (2) the ammonolysis of sodium isethionate to yield sodium taurinate; (3) the neutralization with an acid, i.e., hydrochloric acid and, preferably, sulfuric acid, to generate taurine and inorganic salts.


Although the ethylene oxide process is well established and widely practiced in commercial production, the overall yield is not very high, less than 80%. Moreover, the process generates a large waste stream that is increasingly difficult to dispose of.


The first stage of the ethylene oxide process, the addition reaction of ethylene oxide with sodium bisulfite, is known to yield sodium isethionate in high yield, practically quantitative, as disclosed in U.S. Pat. No. 2,820,818 under described conditions.


Therefore, the problems encountered in the production of taurine from the ethylene oxide process arise from the ammonolysis of sodium isethionate and from the separation of taurine from sodium sulfate.


U.S. Pat. No. 1,932,907 discloses that sodium taurinate is obtained in a yield of 80%, when sodium isethionate undergoes ammonolysis reaction in a molar ratio of 1:6.8 for 2 hrs at 240 to 250° C. U.S. Pat. No. 1,999,614 describes the use of catalysts, i.e., sodium sulfate, sodium sulfite, and sodium carbonate, in the ammonolysis reaction. A mixture of sodium taurinate and sodium ditaurinate is obtained in a yield as high as 97%. However, the percentage for sodium taurinate and sodium ditaurinate in the mixture is not specified.


DD219023 describes detailed results on the product distribution of the ammonolysis reaction of sodium isethionate. When sodium isethionate undergoes the ammonolysis reaction with 25% aqueous ammonia in a molar ratio of 1:9 at about 280° C. for 45 minutes in the presence of sodium sulfate and sodium hydroxide as catalyst, the reaction products comprise 71% of sodium taurinate and 29% of sodium di- and tri-taurinate.


WO01/77071 is directed to a process for the preparation of ditaurine by heating an aqueous solution of sodium taurinate at a temperature of 210° C. in the presence of a reaction medium. A mixture of sodium taurinate and sodium ditaurinate is obtained.


It is therefore concluded from the foregoing references that the ammonolysis of sodium isethionate invariably yields a mixture of sodium taurinate, sodium ditaurinate, and sodium tritaurinate. The percentage yield of sodium taurinate has not been more than 80%.


In order to obtain taurine from sodium taurinate, U.S. Pat. No. 2,693,488 discloses a method of using ion exchange resins involving a strongly acid ion exchange resin in hydrogen form, and then an anion exchange resin in basic form. This process is complicated and requires the use of a large quantity of acid and base to regenerate the ion exchange resins in each production cycle.


On the other hand, CN101508657, CN101508658, CN101508659, and CN101486669 describe a method of using sulfuric acid to neutralize sodium taurinate to obtain a solution of taurine and sodium sulfate. Crude taurine is easily obtained by filtration from a crystalline suspension of taurine after cooling. However, the waste mother liquor still contains taurine, sodium sulfate, and other unspecified organic impurities, which are identified as a mixture of sodium ditaurinate and sodium tritaurinate.


In the co-pending application Ser. No. 14/120,046, a novel process is disclosed for converting alkali ditaurinate or alkali tritaurinate, or their mixture, to alkali taurinate.


It is, therefore, an object of the present invention to disclose a process for the production of taurine from alkali isethionate in a high overall yield (i.e., greater than 90% to nearly quantitative). According to the process of the present invention, a solution of alkali ditaurinate or alkali tritaurinate, or their mixture, is mixed with alkali isethionate to increase the yield of the ammonolysis reaction by inhibiting the formation of alkali ditaurinate and tritaurinate byproducts and by converting the byproducts to alkali taurinate in the presence of one or more catalysts.







DESCRIPTION OF THE INVENTION

The present invention relates to a process for the production of taurine by the ammonolysis reaction of alkali isethionate in the presence of alkali ditaurinate or alkali tritaurinate, or their mixture, to inhibit the formation of byproducts, to increase the production yield, and to greatly reduce the waste discharge from the production process.


The process according to the present invention starts with mixing a solution of alkali ditaurinate or alkali tritaurinate, or their mixture, with alkali isethionate, followed by addition of an excess of ammonia. The ammonolysis is carried out at a temperature from 160° C. to 260° C. under the pressure from autogenous to 260 bars for 1 to 6 hours.


After the ammonolysis reaction, excess ammonia is dispelled from the reaction solution and reclaimed for reuse. A solution of alkali taurinate is obtained, along with alkali ditaurinate, alkali tritaurinate, and a trace amount of unreacted alkali isethionate.


The strongly basic solution is neutralized with an acid to pH 5-9 to yield a crystalline suspension of taurine in a solution of alkali salt, alkali ditaurinate, alkali tritaurinate, and a small amount of unreacted alkali isethionate. The initial suspension is optionally concentrated, then cooled to 28 to 35° C., to crystallize taurine. Taurine is obtained by means of solid-liquid separation.


The ratio of alkali ditaurinate, alkali tritaurinate, or their mixture, in relation to alkali isethionate can be varied from 0.01 to 10 by weight, preferably 0.1 to 1, more preferably 0.2-0.5, most preferably 0.3-0.4.


When the ratio is low, i.e., <0.1, a large amount of alkali isethionate is converted to alkali ditaurinate, instead of desired alkali taurinate, thus lowering the production yield and efficiency. When the ratio is too large, i.e., >1.0, the amount of the recycling byproducts becomes excessively large and the production capacity is lowered. Moreover, the cyclic process is not steady as the byproduct is indeed converted alkali taurinate.


Useful and effective catalysts are found among the alkali salts of hydroxide, carbonate, bicarbonate, hydrogen sulfate, sulfate, bisulfite, sulfite, nitrate, phosphate, chlorate, and perchlorate. Such salts are sodium hydroxide, lithium hydroxide, potassium hydroxide, lithium carbonate, lithium bicarbonate, sodium bicarbonate, sodium bicarbonate, potassium bicarbonate, lithium carbonate, sodium carbonate, potassium carbonate, lithium sulfate, sodium sulfate, potassium sulfate, lithium phosphate, sodium phosphate, potassium phosphate, lithium sulfite, sodium sulfite, and potassium sulfite.


The catalyst for the ammonolysis reaction of alkali isethionate can be one component or a combination of two or more components. Catalysts exogenous to the reaction system can be used, but catalysts inherently present in the production process are preferred. When sulfuric acid is used as a neutralizing acid, alkali salts of sulfate are preferred. Alkali salts of sulfite are preferred in the sulfur dioxide process.


Preferable catalysts are alkali hydroxide and the most preferable catalyst is sodium hydroxide.


The amount of the catalyst used is not limited, but is usually from 0.01 to 10 in molar ratio of the catalyst to alkali isethionate. The ratio is preferably in the range of 0.01 to 1, more preferably 0.1 to 0.5, most preferably 0.2 to 0.3. A suitable amount of catalyst can be selected by those skilled in the art for the ammonolysis reaction to complete in desired time.


The acid used in the neutralization process is selected from hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid, and organic carboxylic acids containing one to six carbons. Sulfuric acid is most preferably used.


Tables I to III demonstrate the effectiveness of the presence of alkali ditaurinate or alkali tritaurinate, or their mixture, on the ammonolysis of alkali isethionate to alkali taurinate, respectively. It becomes apparent that the conversion of alkali isethionate to alkali taurinate can reach nearly quantitative yield under disclosed conditions.


Table IV shows the effect of a different catalyst on the ammonolysis of alkali isethionate to alkali taurinate. When no catalyst is added to the ammonolysis reaction, low conversion of alkali isethionate is observed.


The process according to the present invention can be carried out discontinuously, semi-continuously, and continuously.


EXAMPLES

The following examples illustrate the practice of this invention but are not intended to limit its scope.


Example 1

This set of examples relates to the ammonolysis of sodium isethionate in the presence of sodium ditaurinate and in the presence of sodium hydroxide.


All examples are for 0.05 mole of sodium isethionate, dissolved in 35 mL of 20% aqueous ammonia solution in a molar ratio of 1:8 for sodium isethionate to ammonia. Calculated amount of sodium ditaurinate and sodium hydroxide is then added to the solution. The ammonolysis reaction is carried out in an 100 mL autoclave at 220° C. under autogenous pressure for two hours. The content of taurine, ditaurine, and tritaurine is assayed by HPLC analysis. The yields are calculated according to the following formula:

Taurinate Yield (%)=[Taurine]/[Sodium Isethionate]
Di+Tritaurinate Yield (%)=[Di+Tritaurine−Added Ditaurine]/[Sodium Isethionate]









TABLE I







Ammonolysis of Sodium Isethionate in


the Presence of Sodium Ditaurinate














Ditaurinate/
NaOH/

Di +




Isethionate
Isethionate
Taurinate
Tritaurinate




(ratio by
(ratio by
(molar
(molar



Ex
weight)
weight)
yield %)
yield %)
















1
0
0.01
75
24



2
0.1
0.01
84
15



3
0.2
0.01
86
14



4
0.3
0.01
87
13



5
0.3
0.02
91
9



6
0.3
0.03
93
7



7
0.3
0.04
95
5



8
0.3
0.05
98
2



9
0.5
0.15
112
−12



10 
1.0
0.20
145
−45









Example 2

This set of examples relates to the ammonolysis of sodium isethionate in the presence of sodium tritaurinate and in the presence of sodium hydroxide.


All examples are for 0.05 mole of sodium isethionate, dissolved in 35 mL of 20% aqueous ammonia solution in a molar ratio of 1:8 for sodium isethionate to ammonia. Calculated amount of sodium tritaurinate and sodium hydroxide is then added to the solution. The ammonolysis reaction is carried out in an 100 mL autoclave at 220° C. under autogenous pressure for two hours. The content of taurine, ditaurine, and tritaurine is assayed by HPLC analysis. The yields are calculated according to the following formula:

Taurinate Yield (%)=[Taurine]/[Sodium Isethionate]
Di+Tritaurinate Yield (%)=[Di+Tritaurine−Added Tritaurine]/[Sodium Isethionate]









TABLE II







Ammonolysis of Sodium Isethionate in


the Presence of Sodium Tritaurinate














Tritaurinate/
NaOH/

Di +




Isethionate
Isethionate
Taurinate
Tritaurinate




(ratio by
(ratio by
(molar
(molar



Ex
weight)
weight)
yield %)
yield %)
















11
0
0.01
76
24



12
0.1
0.01
83
16



13
0.2
0.01
86
14



14
0.3
0.01
87
13



15
0.3
0.02
88
11



16
0.3
0.03
94
6



17
0.3
0.04
94
5



18
0.3
0.05
98
2



19
0.5
0.15
121
−20



20
1.0
0.20
151
−49









Example 3

This set of examples relates to the ammonolysis of sodium isethionate in the presence of a mixture of sodium ditaurinate and sodium tritaurinate obtained from the mother liquor of taurine crystallization and in the presence of sodium hydroxide and sodium sulfate.


All examples are for 0.05 mole of sodium isethionate, dissolved in 35 mL of 20% aqueous ammonia solution in a molar ratio of 1:8 for sodium isethionate to ammonia. Calculated amount sodium hydroxide is then added to the solution. A mixture of sodium ditaurinate and sodium tritaurinate, obtained from the crystallization mother liquor described as in application Ser. No. 14/120,046 is used. The ammonolysis reaction is carried out in an 100 mL autoclave at 220° C. under autogenous pressure for two hours. The content of taurine, ditaurine, and tritaurine is assayed by HPLC analysis. The yields are calculated according to the following formula:

Taurinate Yield (%)=[Taurine]/[Sodium Isethionate]
Di+Tritaurinate Yield (%)=[Di+Tritaurine−(Added Di+Tritaurine)]/[Sodium Isethionate]









TABLE III







Ammonolysis of Sodium Isethionate in the Presence of a


Mixture of Sodium Ditaurinate and Sodium Tritaurinate












(Di +






Tritaurinate)/
NaOH/

Di +



Isethionate
Isethionate
Taurinate
Tritaurinate



(ratio by
(ratio by
(molar
(molar


Ex
weight)
weight)
yield %)
yield %)














21
0
0.01
81
19


22
0.1
0.01
84
16


23
0.2
0.01
87
12


24
0.3
0.01
87
13


25
0.3
0.02
88
11


26
0.3
0.03
95
4


27
0.3
0.04
96
4


28
0.3
0.05
98
2


29
0.5
0.15
126
−26


30
1.0
0.20
154
−53









Example 4

This set of examples shows the effect of a different catalyst on the ammonolysis of sodium isethionate in the presence of a mixture of sodium ditaurinate and sodium tritaurinate obtained from the mother liquor of taurine crystallization.


All examples are for 0.05 mole of sodium isethionate, dissolved in 35 mL of 20% aqueous ammonia solution in a molar ratio of 1:8 for sodium isethionate to ammonia. Calculated amount catalyst and a mixture of sodium ditaurinate and sodium tritaurinate, obtained from the crystallization mother liquor described as in application Ser. No. 14/120,046, are added to the solution. The ratio of (di+tritaurinate)/isethionate by weight is fixed at 0.3. The ammonolysis reaction is carried out in an 100 mL autoclave at 220° C. under autogenous pressure for two hours. The content of taurine, ditaurine, and tritaurine is assayed by HPLC analysis. The yields are calculated according to the following formula:

Taurinate Yield (%)=[Taurine]/[Sodium Isethionate]
Di+Tritaurinate Yield (%)=[Di+Tritaurine−(Added Di+Tritaurine)]/[Sodium Isethionate]









TABLE IV







Effect of Catalyst on Ammonolysis of Sodium Isethionate


in the Presence of a Mixture of Sodium Ditaurinate and


Sodium Tritaurinate













Catalyst/

Di +




Isethionate
Taurinate
Tritaurinate




(ratio by
(molar
(molar


Ex
Catalyst
weight)
yield %)
yield %)














31
None
0
55
12


32
Sodium carbonate
0.15
96
4


33
Sodium sulfite
0.15
95
4


34
Potassium hydroxide
0.10
97
3


35
Potassium carbonate
0.15
94
6


36
Potassium sulfite
0.10
94
6


37
Lithium hydroxide
0.03
95
4


38
Lithium carbonate
0.10
93
7


39
Sodium phosphate
0.15
97
3


40
Potassium phosphate
0.15
96
4


41
Potassium acetate
0.20
96
4


42
Sodium acetate
0.20
96
4









It will be understood that the foregoing examples and explanation are for illustrative purposes only and that various modifications of the present invention will be self-evident to those skilled in the art. Such modifications are to be included within the spirit and purview of this application and the scope of the appended claims.

Claims
  • 1. A process for producing taurine from alkali isethionate, comprising: (a) mixing alkali isethionate with a solution of alkali ditaurinate, alkali tritaurinate, or their mixture in the presence of one or more catalysts;(b) adding an excess of ammonia to the (a) and subjecting the solution to ammonolysis reaction to yield a mixture of alkali taurinate, alkali ditaurinate, and alkali tritaurinate;(c) removing excess ammonia and neutralizing with an acid to obtain a crystalline suspension of taurine; and(d) separating taurine by means of solid-liquid separation.
  • 2. The process according to claim 1, wherein alkali taurinate and alkali tritaurinate are produced from diethanolamine and triethanolamine, respectively.
  • 3. The process according to claim 1, wherein a mixture of alkali ditaurinate and alkali tritaurinate is the byproduct of the ammonolysis reaction of alkali isethionate.
  • 4. The process according to claim 1, wherein an acid is selected from hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, and organic carboxylic acids.
  • 5. The process according to claim 1, wherein the mother liquor after separating taurine and alkali salt is continuously recycled and mixed with a new batch of alkali isethionate for the ammonolysis reaction.
  • 6. The process according to claim 1, one or a combination of two or more catalysts for the ammonolysis reaction is selected from alkali salts of hydroxide, carbonate, sulfate, sulfite, phosphate, and nitrate.
  • 7. The process according to claim 1, wherein the production yield of taurine is greater than 95%, to nearly quantitative.
  • 8. The process according to claim 1, wherein the alkali metals are lithium, sodium, or potassium.
  • 9. The process according to claim 1, wherein the production yield of taurine is greater than 85%.
  • 10. The process according to claim 1, wherein the production yield of taurine is greater than 90%.
  • 11. A process for producing taurine from alkali isethionate in an overall molar yield of at least 85% on the basis of alkali isethionate, comprising: (a) mixing alkali isethionate with a solution comprised of alkali ditaurinate, or with a solution comprised of alkali tritaurinate, or with a solution comprised of alkali ditaurinate and alkali tritaurinate, in the presence of at least one catalyst, and adding an alkali hydroxide to the solution wherein the molar amount of the alkali hydroxide is at least equal to the molar amount of total taurinates in the solution;(b) adding excess ammonia to the solution of step (a) and subjecting the solution to ammonolysis to yield a mixture of alkali taurinate, alkali ditaurinate and alkali tritaurinate;(c) removing excess ammonia and neutralizing the mixture of step (b) with an acid to obtain a crystalline suspension of taurine;(d) recovering taurine by means of solid-liquid separation to obtain a mother liquor solution comprised of alkali ditaurinate and alkali tritaurinate; and(e) returning the mother liquor solution of step (d) to step (a) and performing steps (a), (b), (c), and (d).
  • 12. The process according to claim 11, wherein for step (a) the solution comprised of the alkali ditaurinate and the solution comprised of the alkali tritaurinate are produced from diethanolamine and triethanolamine, respectively.
  • 13. The process according to claim 11, wherein the solution comprised of the alkali ditaurinate and alkali tritaurinate for step (a) is produced from alkali isethionate by a process comprising the steps of: (1) adding excess ammonia and optionally a catalyst to a solution comprised of alkali isethionate and subjecting the solution to ammonolysis;(2) removing excess ammonia from the solution of step (1) and neutralizing the solution with an acid to form a crystalline taurine suspension; and(3) recovering taurine to obtain a solution comprised of alkali ditaurinate and alkali tritaurinate.
  • 14. The process according to claim 11, wherein the acid is selected from the group consisting of hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, and organic carboxylic acids.
  • 15. The process according to claim 11, wherein the catalyst is selected from the group consisting of alkali salts of hydroxide, carbonate, sulfate, sulfite, phosphate, and nitrate.
  • 16. The process according to claim 11, wherein the alkali is lithium, sodium, or potassium.
  • 17. The process according to claim 11, wherein the overall molar production yield of taurine from the alkali isethionate is greater than 85%.
  • 18. The process according to claim 11, wherein the overall molar production yield of taurine from the alkali isethionate is greater than 90%.
  • 19. The process according to claim 11, wherein the overall molar production yield of taurine from the alkali isethionate is greater than 95%, to nearly quantitative.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation-in-part of application Ser. No. 14/120,651, filed on Jun. 12, 2014, which is a continuation-in-part of application Ser. No. 14/120,046, filed on Apr. 18, 2014, both of which are incorporated here by reference.

US Referenced Citations (38)
Number Name Date Kind
1932907 Nicodermus Oct 1933 A
1999614 Ossenbeck Apr 1935 A
2109401 Nicodemus Feb 1938 A
2693488 Sexton Nov 1954 A
2820818 Sexton Jan 1958 A
2850818 Sexton Jan 1958 A
8609890 Hu Dec 2013 B1
9061976 Hu Jun 2015 B1
9108907 Hu Aug 2015 B1
9428450 Hu Aug 2016 B2
9428451 Hu Aug 2016 B2
9573890 Hu Feb 2017 B2
9593076 Hu Mar 2017 B2
9598357 Hu Mar 2017 B1
9598360 Hu Mar 2017 B2
9745258 Hu Aug 2017 B1
9815778 Hu Nov 2017 B1
9850200 Hu Dec 2017 B1
9926265 Hu Mar 2018 B1
9994517 Hu Jun 2018 B1
10040755 Hu Aug 2018 B2
10071955 Chen et al. Sep 2018 B1
10112894 Hu Oct 2018 B2
10131621 Hu Nov 2018 B2
20140121405 Chen May 2014 A1
20150210633 Hu Jul 2015 A1
20150299113 Hu Oct 2015 A1
20160340300 Hu Nov 2016 A1
20160355470 Hu Dec 2016 A1
20180093946 Hu Apr 2018 A1
20180141899 Hu May 2018 A1
20180155278 Hu Jun 2018 A1
20180162806 Hu Jun 2018 A1
20180312464 Hu Nov 2018 A1
20190112260 Hu Apr 2019 A1
20190112261 Hu Apr 2019 A1
20190112262 Hu Apr 2019 A1
20190135739 Hu May 2019 A1
Foreign Referenced Citations (12)
Number Date Country
101486669 Jul 2009 CN
101508657 Aug 2009 CN
101508658 Aug 2009 CN
101508659 Aug 2009 CN
101717353 Jun 2010 CN
104945289 Sep 2015 CN
105693559 Jun 2016 CN
105732440 Jul 2016 CN
106008280 Oct 2016 CN
107056659 Aug 2017 CN
219023 Feb 1985 DE
0177071 Oct 2001 WO
Non-Patent Literature Citations (87)
Entry
Liu Fuming Process Design of the Ammonolysis Reaction of Taurine, China Chemical Trade, 2013, No. 8, pp. 120. (Original article is published in China in Chinese, an English translation by the Applicant is included).
Liu Fuming, Xie Liming Study on the Ammonolysis Reaction for Taurine, Shandong Chemical Industry, 2015, 44(5), pp. 27-28,30. (Origianl article is published in Chinese. An English translation by the Applicant is included).
International Search Report for corresponding International Application No. PCT/CN2015/000232, dated Jul. 1, 2015.
Extended European Search Report and the European Search Opinion completed Apr. 5, 2017 for corresponding European Application No. 17157022.9.
International Search Report and Written Opinion for corresponding International Application No. PCT/US2017/018527, dated Jun. 8, 2017.
Japanese Notice of Reasons for Rejection, dated Jun. 13, 2017 with English machine translation, for corresponding Japan application No. 2017-033759.
USPTO Non-Final Office Action for corresponding U.S. Appl. No. 15/228,539 dated Oct. 17, 2016.
USPTO Non-Final Office Action for corresponding U.S. Appl. No. 14/120,046 dated Aug. 26, 2015.
Canadian First Office Action, dated Nov. 2, 2017 for corresponding Canada Application No. 2,946,181.
Hubei Grand Life Science and Technology Co., Ltd v. Vitaworks IP, LLC, Case No. IPR2018-01766, Petition for Inter Parte Review of U.S. Pat. No. 9,428,450 Under 37 C.F.R. § 42.100, Sep. 28, 2018, pp. 80, Alexandria, Virginia.
Hubei Grand Life Science and Technology Co., Ltd v. Vitaworks IP, LLC, Case No. IPR2018-01767, Petition for Inter Parte Review of U.S. Pat. No. 9,428,451 Under 37 C.F.R. § 42.100, Sep. 28, 2018, pp. 88, Alexandria, Virginia.
Hubei Grand Life Science and Technology Co., Ltd v. Vitaworks IP, LLC, Case No. IPR2018-01768 Petition for Inter Parte Review of U.S. Pat. No. 9,573,890 Under 37 C.F.R. § 42.100, Sep. 28, 2018, pp. 82, Alexandria, Virginia.
Declaration of Mark A. Lipton in Support of Petition for Inter Partes Review of U.S. Pat. No. 9,428,450 Under 37 C.F.R. § 42.100, Sep. 28, 2018, pp. 65.
Declaration of Mark A. Lipton in Support of Petition for Inter Partes Review of U.S. Pat. No. 9,428,451 Under 37 C.F.R. § 42.100, Sep. 28, 2018, pp. 69.
Declaration of Mark A. Lipton in Support of Petition for Inter Partes Review of U.S. Pat. No. 9,573,890 Under 37 C.F.R. § 42.100, Sep. 28, 2018, pp. 66.
Bondavera et al., Pharmaceutical Chemistry Journal, Synthesis of Taurine, Mar. 2008, pp. 142-144, vol. 42, No. 3, Springer Science+Business Media, Inc, Secaucus, New Jersey.
Liu Fuming, China Chemical Trade, Process Design of Taurine, Year 2013, p. 120, vol. 5, No. 6, China National Chemical Center, Beijing City, China http://chemmedia.com.cn/GotoBin/Select.DLL.
Journal of Hubei Institute of Technology, Opimization on Ammonolysis in Manufacturing Method of Taurine,Year 2004, pp. 23-26, vol. 19, No. 1, Sum No. 66, Editorial Department of Journal of Hubei Polytechnic University, Wuhan, China.
Patent Owner's Preliminary Response for Inter Partes Review of U.S. Pat. No. 9,428,450 IPR2018-01766, dated Jan. 11, 2019, 50 pages.
Patent Owner's Preliminary Response for Inter Partes Review of U.S. Pat. No. 9,428,451 IPR2018-01767, dated Jan. 14, 2019, 62 pages.
Patent Owner's Preliminary Response for Inter Partes Review of U.S. Pat. No. 9,573,890 IPR2018-01768, dated Jan. 16, 2019, 54 pages.
Robert E. Maleczka's Declaration in Support of Patent Owner's Preliminary Response for Inter Partes Review of U.S. Pat. No. 9,428,450 IPR2018-01766, dated Jan. 11, 2019, 60 pages.
Robert E. Maleczka's Declaration in Support of Patent Owner's Preliminary Response for Inter Partes Review of U.S. Pat. No. 9,428,451 IPR2018-01767, dated Jan. 14, 2019, 75 pages.
Robert E. Maleczka's Declaration in Support of Patent Owner's Preliminary Response for Inter Partes Review of U.S. Pat. No. 9,573,890 IPR2018-01768, dated Jan. 16, 2019, 67 pages.
Decision re Institution of Inter Partes Review issued for Case IPR2018-01766 for corresponding U.S. Pat. No. 9,428,450, Dated Apr. 9, 2019, 45 pages.
Decision re Institution of Inter Partes Review issued for Case IPR2018-01767 for corresponding U.S. Pat. No. 9,428,451, dated Apr. 10, 2019, 25 pages.
Decision re Institution of Inter Partes Review issued for Case IPR2018-01768 for corresponding U.S. Pat. No. 9,573,890, dated Apr. 10, 2019, 23 pages.
Patent Owner's Response for Inter Partes Review of U.S. Pat. No. 9,428,450 IPR2018-01766, dated Jul. 12, 2019, 66 pages.
Protest Under 37 C.F.R. 1.291(a) against Reissue U.S. Appl. No. 16/843,272, Jul. 17, 2020, 14 pages.
Protest Under 37 C.F.R. 1.291(a) against Reissue U.S. Appl. No. 16/854,395, Jul. 17, 2020, 14 pages.
Protest Under 37 C.F.R. 1.291(a) against Reissue U.S. Appl. No. 16/854,406, Jul. 17, 2020, 14 pages.
Protest Under 37 C.F.R. 1.291(a) against Reissue U.S. Appl. No. 16/842,389, Jul. 28, 2020, 20 pages.
Stipulation of Dismissal 2:17-cv-12358, Jun. 12, 2020, 1 page.
Letter to Judge Cecchi of NJ District Court regarding reissue office actions and protests filed in NJ District Court, Jul. 30, 2020, 3 pages.
Maleczka, R. E., Supplemental Declaration of Robert E. Maleczka, Jr., Ph.D., IPR2018-01766, Exhibit 2006, 9 pages, dated May 7, 2019.
Protest Under 37 C.F.R. 1.291(a) against Reissue U.S. Appl. No. 16/863,384, dated Aug. 3, 2020, 26 pages.
Robert E. Maleczka's 2nd Declaration in Support of Patent Owner's Response for Inter Partes Review of U.S. Pat. No. 9,428,450, IPR2018-01766, dated Jul. 12, 2019, 81 pages, Vitaworks Exhibit 2007.
Petitioner's Reply to Patent Owner's Response for Inter Partes Review of U.S. Pat. No. 9,428,450, IPR2018-01766, dated Oct. 7, 2019, 38 pages.
Declaration of Mark A. Lipton in Support of Peitioner's Reply to Patent Owner's Response dated Oct. 7, 2019, 33 pages.
Declaration of Joe P. Foley, Ph.D. In Support of Peitioner's Reply to Patent Owner's Response, dated Oct. 7, 2019, 34 pages.
Patent Owner's Surreply for Inter Partes Review of U.S. Pat. No. 9,428,450, IPR2018-01766, dated Nov. 15, 2019, 33 pages.
Final Written Decision for Inter Partes Review of U.S. Pat. No. 9,428,450, IPR2018-01766, dated Apr. 2, 2020, 65 pages.
Objective Indicia Exhibit A: Excerpt from “Bulletin of Ministry of Environment Protection of China”, Jan. 27, 2015, with English summary, and excerpt from “Environment Impact Assessment Report of 25,000/Year Taurine Plant of Hubei Grand Life Science and Technology Co. Ltd.”, dated Jul. 24, 2017, with English summary.
Objective Indicia Exhibit B: “Production Flowchart of Taurine in Environmental Impact Assessment Report of Jiangying Huachang Food Additive Company”, 2005, with English translation of flowchart.
Objective Indicia Exhibit C: “Production Flowchart of Taurine in Amended Environmental Impact Assessment Report of Jiangying Huachang Food Additive Company”, 2017, with English translation of flowchart.
Objective Indicia Exhibit D: Selected Pages from Qiangjiang Yongan Pharmaceutical Co. Annual Reports 2012-2015, with partial English translations.
Objective Indicia Exhibit G: “Study of the Ammonolysis Reaction for Taurine” Liu 2015; Liu Fuming & Xie Liming, Shandong Chemical Industry, May 2015, vol. 44, No. 5, pp. 27-28, 30, with English translations.
Objective Indicia Exhibit H: Liu 2013, Liu Fuming, China Chemical Trade Monthly Journal, Aug. 2013, vol. 5, Issue. 8, HGL Exhibit 1019.
Objective Indicia Exhibit I: Wu 2004, Wu Jiang & Guan Zailin J. , Journal of Hubei Polytechnic University, Feb. 2004, vol. 19, No. 1, pp. 23-26, HGL Exhibit 1016.
Office Action issued by the Canadian Intellectual Property Office for corresponding Canadian Patent Application No. 2,946,181, dated Mar. 26, 2018.
Notification of Reasons for Rejection issued by the Japan Patent Office for corresponding Japanese Patent Application No. 2017-505693, dated Mar. 27, 2018, with an English translation.
Extended European Search Report issued by the European Patent Office for corresponding European Patent Application No. EP181547902, dated Jun. 25, 2018.
USPTO Non-Final Office Action for corresponding U.S. Appl. No. 15/870,844 dated May 10, 2018.
USPTO Notice of Allowance for corresponding U.S. Appl. No. 15/870,844 dated Jun. 15, 2018.
Curriculum Vitae (CV) of Robert E Maleczka, as of Jul. 12, 2019, 39 pages, Vitaworks Exhibit 2008.
Objective Indicia filed with Response dated Jul. 25, 2019, 11 pages.
Results for experiments conducted between May 14, 2019 and Jun. 30, 2019, Vitaworks Exhibits 2009-2065.
Notice of Allowance issued by the United States Patent and Trademark Office for corresponding U.S. Appl. No. 14/120,046, electronically dated May 24, 2016.
Notice of Allowance issued by the United States Patent and Trademark Office for corresponding U.S. Appl. No. 14/120,046, electronically dated Jul. 14, 2016.
Notice of Allowance issued by the United States Patent and Trademark Office for corresponding U.S. Appl. No. 15/238,621, electronically dated Oct. 5, 2016.
Non-Final Office Action issued by the United States Patent and Trademark Office for corresponding U.S. Appl. No. 15/228,539, electronically dated Oct. 17, 2016.
Final Office Action issued by the United States Patent and Trademark Office for corresponding U.S. Appl. No. 14/120,046, electronically dated Dec. 8, 2015.
Notice of Allowance issued by the United States Patent and Trademark Office for corresponding U.S. Appl. No. 15/228,539, electronically dated Dec. 23, 2016.
Notice of Allowance issued by the United States Patent and Trademark Office for corresponding U.S. Appl. No. 15/238,621, electronically dated Jan. 4, 2017.
Notice of Allowance issued by the United States Patent and Trademark Office for corresponding U.S. Appl. No. 15/228,568, electronically dated Jan. 17, 2017.
Notice of Allowance issued by the United States Patent and Trademark Office for corresponding U.S. Appl. No. 14/120,651, electronically dated Aug. 2, 2016.
Non-Final Office Action issued by the United States Patent and Trademark Office for corresponding U.S. Appl. No. 16/030,605, electronically dated Aug. 9, 2018.
Final Office Action issued by the United States Patent and Trademark Office for corresponding U.S. Appl. No. 16/030,605, electronically dated Jan. 30, 2019.
Non-Final Office Action issued by the United States Patent and Trademark Office for corresponding U.S. Appl. No. 16/030,605, electronically dated Oct. 28, 2019.
Notice of Allowance, Reissue U.S. Appl. No. 16/843,272, dated Aug. 25, 2020, 12 pages.
Notice of Allowance, Reissue U.S. Appl. No. 16/854,406, dated Aug. 26, 2020, 12 pages.
Petition for inter partes review of U.S. Pat. No. 9,573,890 (IPR2018-01768), filed Sep. 28, 2018.
Decision instituting inter partes review of U.S. Pat. No. 9,573,890 (IPR2018-01768), dated Apr. 10, 2019.
Judgment in inter parties review of U.S. Pat. No. 9,428,451 (IPR2018-01767) and U.S. Pat. No. 9,573,890 (IPR2018-01768), dated Jul. 18, 2019.
Final Written Decision in inter partes review of U.S. Pat. No. 9,428,450 (IPR2018-01766), dated Apr. 2, 2020.
Excerpts of File History of U.S. Appl. No. 15/228,539, which issued as U.S. Pat. No. 9,573,890, on Feb. 21, 2017.
Excerpts of File History of U.S. Appl. No. 14/120,046, which issued as U.S. Pat. No. 9,428,450, on Aug. 30, 2016.
Excerpts of File History of U.S. Appl. No. 14/120,651, which issued as U.S. Pat. No. 9,428,451, on Aug. 30, 2016.
Fuming Liu, “Process Design of Taurine Ammonolysis,” China Chemical Trade, No. 8: 120 (Aug. 2013).
Jiang Wu & Zailin Guan, “Optimization on Ammonolysis in Manufacturing Method of Taurine”, Journal of Hubei Polytechnic University, 19(1): 23-26 (Feb. 2004).
Abstract of CN101508657.
Abstract of CN101508658.
Abstract CN 101508659.
Abstract of CN 101486669.
International Search Report for corresponding International Application No. PCT/CN2015/000232, mailed Jul. 1, 2015.
USPTO Non-Final Office Action for corresponding U.S. Appl. No. 15/228,568 dated Oct. 5, 2016.
USPTO Non-Final Office Action for corresponding U.S. Appl. No. 14/120,651 dated Mar. 15, 2016.
Continuation in Parts (2)
Number Date Country
Parent 14120651 Jun 2014 US
Child 15228539 US
Parent 14120046 Apr 2014 US
Child 14120651 US
Reissues (1)
Number Date Country
Parent 15228539 Aug 2016 US
Child 16842389 US