This invention relates to a process for production of a reinforcement for composite material with a variable resistance profile. The invention also covers the reinforcement obtained and the composite product including at least one reinforcement that is obtained by implementation of the process.
The general principle of composite materials that are used more and more in all fields—products for sports, products in the nautical domain, or vehicles, to cite only some examples—is known.
This general principle consists in including a reinforcement in a polymer matrix.
This reinforcement is used to impart to the composite material what is critical for its mechanical strength. These reinforcements are generally fibers of natural material, but more generally synthetic materials and very commonly glass fibers.
Depending on the diameters of the fibers, their lengths, their nature, depending on the internal arrangements of the layers of woven, non-woven, stitched, glued or bonded fibers, depending on their layouts, the natures of the polymers comprising the matrix, an infinite combination of implementations depending on needs and applications is obtained.
Depending on needs, it may become necessary to reinforce one zone rather than another.
In this case, positioning a reinforcement piece in this zone, if necessary cut depending on the profile of the zone that is superposed on the continuous reinforcement of the piece, is known.
This obviates the necessity of positioning a continuous reinforcement of high resistance on the entire surface, while only one delineated zone requires major resistance.
There is another problem that has not been currently solved and that the process according to this invention proposes to solve.
Actually, one example is the production of a ski or snow board, this being completely illustrative and in no way restrictive as an application; it should generally be noted that there is superposition of the layers of reinforcements embedded in a resin or thermoplastic polymer matrix.
The raw product, once obtained, is cut and then finished.
During the stage of production of the raw board, the reinforcements are superposed and the resistance over the entire length is identical and corresponds at least to the highest necessary resistance, i.e., the most highly stressed zone of said board.
It is possible to position additional layers of reinforcement in the middle of the board in the most highly stressed zone. It is understood that there are several drawbacks to this approach.
First of all, this forms an excess thickness in the zone comprising the reinforcement.
In addition, the board obtained does not have optimum characteristics because the transition from the unreinforced zone to the reinforced zone is not good.
The general strength of the board is likewise disrupted because there is no continuity from one end of the fibers to the other. The progressiveness of deformations under stresses over the length is no longer ensured, and the curvature is no longer uniform.
In economic terms, it should be noted that defects also arise from this. In the case in which the reinforcement is uselessly extended over the entire length, the manufacturer loses not only the unused part of the reinforcement in the finished board, but also the unused reinforcement of the cut part that is considered to be scrap.
The process of the prior art also leads to generating more recycling of the scrap.
The process according to the invention allows these difficulties to be mitigated by suggesting use of continuous fibers in the main direction of stress, but with resistance that has been reinforced in at least one zone by a different distribution.
The invention according to this invention will now be described according to one particular nonrestrictive embodiment, this embodiment being illustrated by one specific nonrestrictive example, said example being the object of the attached drawings that show:
The process according to this invention will now be described in detail first with respect to the figures.
The second layer 14 is composed of continuous filaments 16 oriented in the longitudinal direction, in this case indicated by the arrow F.
The process runs continuously, and it allows reproduction of modules 18, for example for the production of a snow board.
Each module comprises three main zones P1, P2, and P3, not including the transition zones T.
In the first zone P1, for example, the reinforcement filaments 16 are continuous, positioned parallel to the longitudinal direction F, and spaced apart from one another.
Then, the following primary zone P2 is a zone in which the spacing of the reinforcement filaments 16 is modified, and, if necessary, this spacing is reduced.
Between these two zones, there is a transition zone T, since the filaments are continuous.
At the exit from the central zone P2, in this application to a snow board, there is a transition zone T to arrive at spacings of the reinforcement filaments 16 in zone P3 that are identical to those of zone P1.
In the accepted application, the arrangement has complete symmetry without this having to be considered a prerequisite.
These reinforcement filaments that are intended to be inserted into a base, in this case, the layer 12, must be fixed so that the spacings are maintained until the reinforcement is inserted and embedded in the polymer matrix.
For this purpose, it is possible to use any means of fixing such as gluing or stitching, for example.
The cutaway views show the superposition of the two layers 12 and 14.
It should be noted that in the zone P2 shown in
The process leads to obtaining a product that is shown in
It should be noted that once one or more reinforcements are embedded in a polymer resin and that cross-linking has been obtained, the product is generally ready for cutting.
In this case, it is a snow board, and the cut is shown in a broken line in this
It is noted that in the central zone P2, the filaments 16 are densified relative to the narrow and thus reduced surface; this yields major resistance in this zone that is mechanically highly stressed and that must have significant rigidity.
In the end zones P1 and P3, the filaments are spaced apart and the density is lower, imparting weaker mechanical strength of this more weakly stressed zone, but greater flexibility; this is a requirement for imparting good qualities to the board.
The transition zones T can be adapted to be gradual with the desired proportionality.
The resistance of the unit is conversely perfectly preserved by the continuity of the reinforcement filaments. This continuity also allows transmission of forces and joining of the different front, middle and rear parts.
It is also noted that the scraps D are optimized and that the reinforcement filaments are used more or less in their entirety. In this embodiment, calculations have shown that there was a savings of 25% of the raw material used.
The weight of the finished product is also optimized since it was not necessary to densify the reinforcement filaments 16 in the end zones, as in the middle zone.
In the transverse direction, the resistance can be improved or modified, but in the known manner by integration of the reinforcement filaments in the transverse direction, in a regular manner, during manufacture of the first layer 12.
The process can be applied to any product in which it is desirable to modify the mechanical strength of a composite material in a given zone, following a given direction.
It is possible to adapt the process to an unlimited number of variants because the nature of the reinforcement filaments, the diameter, the type of reinforcement filaments, the number, the spacings, the lengths, the number of transition zones, and the angularity are just the parameters that can be modified and adjusted.
The reinforcement 10 obtained by the process according to the invention can also comprise a succession of layers, and
In this case, it is possible to attain a large number of combinations by involving the diameters, the spacings, the superpositions or not of the more densified zones and all of the other aforementioned parameters.
Manufacture of the reinforcements is done continuously so that the modules such as 18 follow one another.
It is thus necessary to use devices that are suitable for obtaining an exact, repetitive result and that can work at elevated speeds.
A first embodiment is illustrated in
This device in the known manner comprises a conveyor 22 on which there is positioned a complex composed of the layer 12 and the layer 20, on which the layer 14 that is composed of filaments 16 is to be placed.
The filaments 16 originating from spools pass through distribution means 24 with variable spacing. These means in the illustrated embodiment comprise a horizontal guide 26 that can assume a position transverse to the longitudinal direction F as shown in
The number and the spacings between the passages are adapted to the desired base spacings for depositing the filaments of the layer 14 when the guide is perpendicular.
When the spacing must be reduced, as shown in
The speed of rotation of the guide for a given advance speed in the direction S dictates the profile of the corresponding transition zone T.
One disadvantage in certain productions that this embodiment engenders is that it leads to depositions of filaments shifted to the ends of the transition zones. It is thus possible to tilt the guide to compensate, but this can complicate the arrangement.
One variant shown in
The means of delivery of the filaments 16 are connected to said guide.
Thus, when the relative position of the guide 26-1 and retaining means is to be varied, the filaments are housed in the upper or lower part. As the walls are tilted, it is thus possible to vary the spacing between the filaments 16.
The relative movement can be produced either by moving the guide or by moving the delivery means, or both.
According to another variant, the guide 26-2 is a support 34 with articulated branches 36 that can assume different positions, causing, as shown in
The figures are schematic, and it is possible to provide other variants and especially to position guide pulleys on a support with variable spacings by means of the cam movements.
Number | Date | Country | Kind |
---|---|---|---|
05 51637 | Jun 2005 | FR | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/FR2006/001356 | 6/15/2006 | WO | 00 | 12/17/2007 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2006/134271 | 12/21/2006 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4790898 | Woods | Dec 1988 | A |
4790900 | Guillon et al. | Dec 1988 | A |
5895622 | Ramani et al. | Apr 1999 | A |
20040241415 | Wadahara et al. | Dec 2004 | A1 |
20060181061 | Bobrowicz | Aug 2006 | A1 |
Number | Date | Country |
---|---|---|
2643783 | Mar 1978 | DE |
2713608 | Oct 1978 | DE |
1 419 875 | May 2004 | EP |
2 238 000 | Feb 1975 | FR |
WO-8100057 | Jan 1981 | WO |
Entry |
---|
Machine translation of DE 2713608, date unknown. |
Number | Date | Country | |
---|---|---|---|
20080196820 A1 | Aug 2008 | US |