Not applicable.
The embodiments described herein relate to reducing the time required to age a raw, from the still, distilled spirit mixture, into a desirable product. The embodiments described herein additionally relate to further enhancing the desirability of the product by additionally exposing the desirable product to music.
Embodiments of the desirable product obtained from expedited aging have taste and aroma characteristics comparable to a relatively higher price point commercially available aged distilled spirits, for example Pappy Van Winkle brand. Such desirable product characteristics further include comparable water, alcohol, sugar and color to relatively higher price point commercially available distilled spirits; achieved in less time than has historically been used to produce relatively higher price point commercially available aged distilled spirits.
Relatively higher price point commercially available distilled spirits have been historically desirable, in large part, because of taste, color and aroma characteristics. These characteristics have traditionally been developed relatively slowly over time. Time can include years, a decade, and multiples of decades. These relatively slow methods generally include contacting a raw distillate (generally considered lacking desirable taste and aroma characteristics) with wood known to impart desirable characteristic to a raw distillate. The undesirably slow method also includes a sufficient passage of time (years, a decade and multiples of decades by example) and under carefully controlled environmental conditions, including temperature, pressure and humidity.
The combination of time, physical storage space and controlled environmental conditions required to produce relatively higher price point commercially available distilled spirits on a commercial scale is costly. Such scale and cost limits the commercial availability of the types of distillates considered historically desirable. There is yet a need to reduce the time, scale and cost of aging a raw distillate into a product comparable to relatively higher price point commercially available distilled spirit.
Disclosed herein are embodiments of systems and processes for reducing the time for aging distillates (expedited aging) to produce a desirable product comparable to a relatively higher price point commercially-available aged spirits. The desirable product may be additionally be exposed to music further enhancing desirability. One embodiment of a system is comprised of (1) a feed section, (2) one or more treatment sections, (3) a circulating section, and (3) one or more aging sections. One or more treatment sections are comprised of treatment cartridges, usually filled with wood pieces. In some embodiments, one or more treatment cartridges may be changed during operation of systems and processes without stopping an entire process. In some embodiments, one or more treatment cartridges or pressure vessels may be subjected to various patterns of pressure and vacuum application, with or without fluid present. Other embodiments include a circulating tank for fluid. Still other embodiments include a music treatment system and process.
An embodiment of an expediting aging process is comprised of the steps of (1) feeding, (2) circulating through at least one treatment section comprised of one or more repeating units, (3) monitoring, and (4) aging. The circulating step may employ any one of three circulating embodiments. Another embodiment adds the step of applying and holding a vacuum or pressure on one or more treatment cartridges in the system. Another embodiment may further include repeating the steps of circulating and applying and holding the vacuum or pressure multiple times. In some embodiments, holding the vacuum or pressure in a treatment cartridge may be when the treatment cartridge contains fluid. In other embodiments, there may be little or no fluid present in the treatment cartridge. In some embodiments, treatment cartridges may be changed without stopping the entire process. Another embodiment adds the step of exposing the product of one of the embodiments of the process to music and wood.
For the purpose of illustrating various embodiments, the drawings depict one or more embodiments that are exemplary; it being understood, however, that this disclosure is not intended to be limited to the precise arrangements and instrumentalities shown.
This patent document contains material which is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the Patent and Trademark Office patent file or records, but otherwise reserves all copyright rights whatsoever.
The embodiment of a system for expedited spirits aging depicted in
The first manifold line 24 is additionally in removable communication with treatment cartridge 14 through lines 9 and 11. Line 9 removably connects to treatment cartridge 14 through line 11 and valve 12. Port 13 provides optional sampling access or may be equipped with one or more sensor arrays.
The second manifold line 21 is additionally in removable communication with treatment cartridge 14 through line 20 and connector 19. Line 20 is further equipped with valve 18 and port 17. Port 17 provides for optional sampling access or may be equipped with one or more sensor arrays.
Valve 40 and connector 39 are the last elements of a treatment section having one repeating unit (X=1). The treatment section may be isolated from the first manifold line 24 by closing valves 16 and 12. The treatment section may be isolated from the second manifold line by closing valve 18. Treatment cartridge 14 may be removed from the treatment section by releasing connectors 26, 10 and 19. Additional repeating units of a treatment section (X>1) may be added to the system as shown by repeating the treatment section as depicted in
Referring to
Still referring to
In some embodiments, additional flavor development can be achieved by filling tank 41 with flavoring pieces. In some embodiments, the flavoring pieces are plain or flavored French charred oak wood pieces. In some embodiments, the flavored French charred oak pieces are flavored with any one or more of vanilla, coffee, port, and cola flavored soda. In some embodiments, the cola flavored soda is Coca Cola® brand cola flavored soda. A flavored French charred oak piece may be prepared by soaking the wood piece in the desired flavoring agent for at least a week, or until the wood becomes saturated with the flavoring and no additional absorption of the flavoring the flavoring agent occurs. This can be determined by increases in the weight a wood piece over time. Occasionally, the flavoring process may be carried out under positive pressure.
Referring now to
The embodiment in
Still referring to
Still referring to vessel 77, sealed opening 86 is fitted with a dip tube 85 that extends to within about 95 percent of the height of vessel 77. Dip tube 85 is in removable communication with valve 87 and also line 89 and valve 90.
As previously mentioned, additional repeating units (Z=1 or greater) may be added to accommodate additional desired throughput. The terminal unit is unit Z+1 in
Dip tube 85 extends through sealed opening 86 into vessel 77. Dip tube 85 extends to within about 95 percent of the height of vessel 77. Dip tube 85 is in removable communication with line 95 through valve 87. Line 95 leads back to pump inlet 73. Port 86 is in communication with line 89, valve 90, and vacuum pump 91. The line from valve 92 can be used to deliver one or more fluids to any one or more of (a) the atmosphere, or (b) a holding tank (not shown), or (c) from the holding tank, then to pump inlet 73, or alternatively (d) directly to pump inlet 73.
The embodiment depicted in
Considering “2(a)” in
Consider next
The third mode of operating the embodiment in
In some embodiments of a system for expediting aging of a raw distillate, any one or more of the at least three modes of operation depicted in
The embodiment of the system depicted in
The embodiment depicted in
The second mode of operation has two alternatives. Consider
Consider “2(b)” in
When the vessels in
The third mode of operation is depicted
Referring to the modes of operation in
In some embodiments of operating a system, for example as depicted in any of
Referring to, for example, the embodiment of
In some embodiments, the flavored French charred oak pieces are flavored with any one or more of vanilla, coffee, port, and cola flavored soda. In some embodiments, the cola flavored soda is Coca Cola® brand cola flavored soda. A flavored charred French Oak wood piece may be prepared by soaking the wood piece in the desired flavoring agent for at least a week, preferably until the wood becomes saturated with the flavoring and no additional absorption of the flavoring the flavoring agent occurs. This can be determined by increases in the weight a wood piece over time. Occasionally, the flavoring process may be carried out under positive pressure.
In some embodiments of additional flavor development, a particular cut of wood spiral is employed. For example, a majority of the open cells of the wood structure in the spiral are oriented with the longest axis of a majority of the cells in the wood structure aligned in the same direction as the fluid flow path in a circulating embodiment.
Referring now to
Still referring to
In some embodiments, blankets are employed to insulate the system from the external environment and to insulate the external environment from sound waves. Cask 100, speakers 101 and 102 are surrounded by one or more blankets inside the plastic storage bin 103. In some embodiments, one or more additional blankets for sound insulation are added to cover the top of cask 100, speakers 101 and 102. In some embodiments, a lid is placed over the top of the additional blankets. In some embodiments, the lid is comprised of plastic.
In some embodiments of music treatment, loudness levels in the range of 60 dB and 120 dB are employed. In some embodiments of music treatment, music with frequencies in the range of about 55 Hz and about 2200 Hz, or in the range of about 55 Hz and about 66 Hz, or in the range of about 1760 Hz and about 2200 Hz, or any combination of one or more of the aforementioned range or sub-ranges of frequencies. In some embodiments, a quiet period between the combinations of frequencies and loudness levels, including all ranges and sub-ranges, may be employed. A quiet period, is a period wherein one or more speakers do not transmit sound waves. In some embodiments, the quiet period for any one speaker is not longer than five seconds in duration. All individual values and subranges from equal to or greater than the foregoing and equal to or less than foregoing (in this paragraph) are included herein and disclosed herein. In yet other embodiments of music treatment, one or more microphones for transmitting sound may be included in a treatment cartridge.
The percentage by volume ethanol content of the distillates to be used are generally in the range of 60 and 80, 80 and 90, 80 and 87, and 80 and 84. All individual values and subranges from equal to or greater than 60 percentage by volume ethanol and equal to or less than 90 percentage by volume ethanol are included herein and disclosed herein. In the prophetic and working examples described below, the distillate is simply referred to as fluid.
The valves used in the embodiments depicted by any one or more of
Unless otherwise stated, the system and process are operated in the temperature range of 50 degrees F. and 90 degrees F., or 70 degrees F. and 85 degrees F., or 75 degrees F. and 80 degrees F. Unless otherwise stated, the system and process operate within the following pressure ranges: about −14.7 psig to about 400 psig, about −14.7 psig to about 300 psig, about −10 psig to about 250 psig, about −8 psig to about 220 psig, about −5 psig to about 210 psig, about 0 psig to about 200 psig.
The ports referred to herein may be for providing for sampling access. Alternatively, ports may be used to house one or more in-line sensors for monitoring any one or more of temperature, pressure, colorimetric attributes (including light transmission), density, density by gravimetry or hydrometry, infrared (IR) spectrum, refractive index (RI), ultraviolet (UV), gas chromatography (GC) analysis (including thermal or flame ionization detectors), gas chromatographic mass spectrometry (GCMS), liquid chromatography (LC), liquid chromatography/mass spectrometry (LCMS), sugar content analysis and alcohol content analysis. Chromatographic characterization of samples taken before, during and after use of the system and processes described below may be carried out as described in U.S. Pat. No. 6,132,788, titled Oak Aged Alcoholic Extract, by Zimlich, (issued Oct. 17, 2000), hereby incorporated by reference in its entirety.
In-line monitoring of alcohol content may be made with an Anton Parr L-Sonic 5100 analyzer. Colorimetric analysis may be made with any of a Portable Color Analyzer Digital Precise Colorimeter Color Difference Meter Tester 8 mm CIELAB CIELCH Display Mode DE Lab Formula, FRU brand WR series colorimeter available from www.wavegd.com, or a Hunter Labs SpectraTrend HT, with a an online cPAT type system with Hunter Lab's Easy Match QC process and software.
Process endpoints may be determined by any one or more of the following methods: (1) taste and aroma characteristics by any one or more of subjective methods such as one or more humans, for example a human flavor panel, or more objectively with electronic nose and electronic tongue type sensor arrays, each available from Alpha MOS at www.alpha-mos.com (Heracles smell analysis, https://www.alpha-mos.com/heracles-smell-analysis), and electronic tongue sensors (Astree taste analysis, https://www.alpha-mos.com/astree-taste-analysis), (2) measuring one or more properties of a desirable aged distillate, for example Pappy Van Winkle brand distilled spirits or other higher price point commercially-available aged spirits (a reference sample property or properties) and operating an embodiment of a system or process herein, while monitoring one or more of the same properties as the reference sample, until the same or substantially similar properties are obtained when starting from a raw distillate, or (3) monitoring over time the changes in one or more properties of a raw distillate treated using the systems and embodiments herein and stopping the process when a selected property value does not change further with additional cycles through a process or system.
As an example of monitoring for an endpoint in the third option above, a selected property may not change by more than 4% from the same property measurement made one step prior in a system or process, alternatively may not change by more than 3%, alternatively may not change by more than 2%, alternatively may not change by more than 1.9%, alternatively may not change by more than 1.8%, alternatively may not change by more than 1.7%, alternatively may not change by more than 1.6%, alternatively may not change by more than 1.5%, alternatively may not change by more than 1.4%, alternatively may not change by more than 1.3%, alternatively may not change by more than 1.2%, alternatively may not change by more than 1.1%, alternatively may not change by more than 1.0%. In still other embodiments, the measured property may not change by more than 0.9% than that same measurement made one step prior in a system or process, or alternatively may not change by more than 0.8%, or alternatively by more than 0.7%, or alternatively by more than 0.6%, or alternatively by more than 0.5%, all relative to that same measurement made one step prior in a system or process. All individual values and subranges of any one or more of end point desirable product characteristics including water, alcohol, sugar and color (including light transmission) stated in this disclosure are included herein and disclosed herein.
Connectors may be quick disconnects, or other simple threaded types of arrangement. Quick connections are preferred for the expeditious isolation and changing of treatment cartridges during operation of the embodiments of the system disclosed herein, including those of the treatment section during one or more circulating steps or holding vacuum or pressure steps. The quick connects are one way of providing removable communication for the systems and processes described herein.
Wood swelling analysis may be conducted according to the procedure stated in any of (1) P. Ho{umlaut over ( )} hneland K. Tauer in Studies On Swelling of Wood With Water and Ionic Liquids, Wood Sci Technol (2016) 50:245-258, and (2) G. I. Mantanis, R. A. Young and R. M. Rowell in Swelling of Wood Part 1. Swelling In Water, Wood Sci. Technol. 28: 119-134 (Springer Verlag 1994). The moisture content of wood or of wood pieces may be determined by the methods disclosed by Carl A. Eckelman in The Shrinking and Swelling of Wood and Its Effect on Furniture, Purdue University—Forestry & Natural Resources Cooperative Extension Service West Lafayette, Ind. available at https://www.extension.purdue.edu/extmedia/FNR/FNR-163.pdf. Wood piece analysis may be made by microscopic analysis. Char may be estimated using computer image analysis or by visual estimation. Alternatively, custom wood pieces may be ordered from Seguin Moreau Napa Cooperage, 151 Camino Dorado, Napa Calif. 94558, United States.
The wood pieces may be any one or more of baked wood, freeze-dried wood, charred wood, oven-roasted wood, flame-roasted wood, burned wood, dehydrated wood, dried wood, raw wood (see, e.g., col. 8 in international patent application number PCT/US/2009/059984 by Daniel Martin Watson filed on Oct. 8, 2009), pulverized wood, boiled wood, supercritical fluid extracted wood, burned wood, hydrolyzed wood, enzyme-treated wood, lignin enzyme treated wood, genetically modified wood, selectively bred wood, and combinations thereof. The prior mentioned PCT/US/2009/059984 is hereby incorporated by reference in its entirety.
The wood pieces are comprised of white oak, French oak, flavored white oak, flavored French oak, and combinations thereof.
For music treatments, sound wave frequency is expressed herein in Hertz (Hz). Sound loudness is expressed in decibels (dB). The decibel (dB) levels were measured with a new BAFX3370 decibel meter available from Amazon and BAFX Industries.
The embodiment of the system depicted in
The feeding section was comprised of pump 72, pump outlet 74 and valve 75 as shown in
Vessels 76 and 77 were made of stainless steel and had a volume capacity of about 2500 ml. The approximate volume of fluid filled into each vessel was 2500 ml for a total fluid volume in the system of about 5,000 ml.
Each vessel was charged with wood pieces. The wood pieces were charred oak staves. The approximate weight of the wood pieces used was 453 grams. The dimensions of the wood pieces were about 4 in. long, and 0.75 in diameter. The percentage char of the wood pieces was about 80 percent. An amount of uncharred wood is needed to prevent the wood pieces from crumbling during the process.
The process was performed as follows: Valves 75 and 87 were opened with valve 83 partially open. Valve 90 was closed. Pump 72, an air pressure pump, was activated to allow circulation of the fluid through the system under positive pressure. Pressure was maintained at approximately 60 psig when circulating the fluid in a loop through the system by partially closing valve 83. Valves 75 and 83 regulated pressure in vessel 76. By closing both valves, pressure can be held in vessel 76. By opening valve 90 and 92, both vessels 76 and 77 could be exposed to atmosphere. Although neither were done in this experiment.
Samples were taken from the system periodically as shown in Table 1. Pump 72 was turned off. The samples were taken by removing the top of one of the vessels and withdrawing a portion of the liquid. The top was then replaced and the system returned to circulating mode under pressure (about 60 psig) until the next sample was taken from the system in like manner.
Table 1 below shows the changes in the light transmission and color characteristics of the samples taken at the time taken from the system.
In Table 1 above, light transmission is expressed in lumens in the first column. The second and third columns provide light transmission in limited sections of the color spectrum according to the following: (1) In the second column, “a” is the difference between red and green (numbers on the plus side are more red, minus side more green), and (2) In the third column, “b” is the difference between blue and yellow. numbers on the plus side are more blue, minus side more yellow. The lower values of light (lumens) over time show that as the liquid became darker, it transmitted less light resulting in a lower lumen value. Table 1 shows the lumen value at hour 15 was 3.41. This is substantially similar to the value of the reference sample, measured as 3.4. This shows that one way of measuring and monitoring for process end points is by measuring the property of the raw distillate being treated in the process as compared to a property measured from a reference sample that represents a desirable relatively higher price point commercially available aged distillate (aged by traditional slow methods).
As to monitoring color, taste and aroma of the treated fluid, visual inspection of the sample at hour 15 showed a pleasing clear brown liquid. The aroma and taste of the sample was comparable to bourbon or dark rum and was considered comparable to higher price point aged spirits that are commercially available.
Blind taste and aroma tests were conducted to determine if others could tell the difference between the reference sample and the test sample. Five individuals were selected at random from a group of ten individuals total. In a blind taste test, eighty (80) percent of the individuals could not correctly indicate which sample was the commercially available reference sample and which was the test sample.
After hour 16, the circulating step under pressure was stopped. Instead, negative pressure was applied to both vessels, 76 and 77 using vacuum pump 91. The process was to close valves 75 and 94, completely opening valve 83 and 90 and then engaging the vacuum pump 91 to pull −3 to −4 psig of negative pressure of vacuum. The entire system was allowed to reside in the mode of vacuum without circulating for 8 hours. However, no additional measurements were available to report.
Working Example B. Embodiment of a Feed Section & Circulating Section Employing Circulating Under Pressure Step and Vacuum Hold Step
This Working Example B used the same apparatus, amount of raw distillate fluid, amount and type of wood as in Working Example A above. The fluid was a sugar-derived raw distillate obtained from the Telluride Distilling Company located at 152B Society Drive, Telluride Colo. 81435. The fluid was approximately 80 proof. The reference sample was Makers Mark Bourbon and had a total lumen value (not shown in the table) of 60.11 as measured with a FRU brand WR series colorimeter.
The fluid was circulated under 60 psig of pressure. Samples were taken from the apparatus as in Working Example A at hours 1, 2, 3, and 4 during circulation. During the sampling process, the system was at atmospheric pressure for usually 6-8 minutes. The amount of light transmission of each sample taken, expressed in lumens, was measured and recorded. The light transmission values did not continue declining after this period of circulation, as demonstrated in Table 2 and as depicted graphically in
After the circulating step above (in hours 1-4 above), a vacuum was applied to the system (with the containing the liquid and wood inside) for nine consecutive hours. The vacuum was approximately −3 to −4 psig. A sample was taken and its light transmission value measured. The light transmission value did decline further as indicated in Table 2 and
The system, still with the same fluid and wood pieces inside, was returned to the circulating mode for approximately an additional thirteen hours under 60 psig pressure. An additional decline in light transmission, of approximately 4% over the prior value was measured. The process was stopped when the total transmission value of the fluid in the system was measured to be 60.18, which was considered substantially similar to the reference value of 60.11.
The taste of the fluid from this working example was strong in alcohol.
In this working example, a blend of bourbons was employed. The blend was made from the constituents and amounts shown in Table 3 below.
The fluids in Table 3 were blended together using the proportions indicated. The resulting blend will be referred to as “bourbon” in this working example. The proof of the bourbon was measured and determined to be 85 proof. A control sample not exposed to music (“NME”, no music exposure) was retained in a glass bottle for use in a blind taste test detailed further below.
The bourbon to be exposed to music (“ME”, music exposure) was placed into an older washed 2-liter cask made of Charred American Oak filling the cask about ⅞ths full. The cask had been previously dried out, then reconditioned for 36 hours in a hot water soak at about eighty-five degrees F. The soak removed some of the charred layering in the cask.
The cask was placed in the center of a large plastic storage bin with an HDX27 gallon storage tote available commercially model #5/205978361 Each speaker was placed ¾ inches away from the cask with the output side of the speaker facing the cask and each speaker opposing the other with the cask between. The cask-and-speakers assembly was covered with two layers of folded blankets. The plastic bin was covered with its lid. The lid was then covered with an additional blanket.
The bourbon in the cask was exposed to various types of music as detailed in Table 4 below. Music with alternating series of frequencies was employed. In particular, the music employed had a wide range of frequencies. For example, music with frequencies in the range of 220 Hz and 2200 Hz was employed. As another example, music in the range of 220 HZ and 2200 HZ wherein there is no more than 0.5 seconds of quiet time (no music) can be employed. As yet another example, music in the 220 and 2200 Hz frequency range can be employed wherein the frequencies at the lowest 20% and highest 20% of the frequency range. This range is preferable. All individual values and subranges from equal to or greater than the foregoing and equal to or less than foregoing (in this paragraph) are included herein and disclosed herein. The decibel (dB) levels were measured, from time to time, with a new BAFX3370 decibel meter available from Amazon and BAFX Industries. The range of observed db levels was 78 db and 110. For example, a Samantha Fish CD produced approximately 110 db.
A blind tasting of the NME and ME samples of bourbon was conducted. About 12 ml of each of the ME and NME bourbon was poured into a separate glass. The taster was not allowed to know which sample was NME and which was ME.
The ME bourbon sample was dark and rich in color and not cloudy. It had a warm aroma with spice on the back end. Vanilla and caramel dominated. There was some sediment. On the tongue: Fire with a touch of bitterness on the front end. The bitterness was not noticeable on the first taste.
A few drops of water were added to the ME bourbon sample described above and the sample was tasted again. The drops of water released tastes of vanilla. The sample was described as warm, well-rounded alcohol considered very nice.
The NME bourbon sample was moderately dark and rich in color. Slight charred aroma of a small piece of sediment. Moderate alcohol aroma, not unpleasant, mostly like ethyl acetate and perhaps vanilla. Warm taste. Well rounded.
The blind taste test results overall indicated that the ME sample (the one exposed to music with the alternating ranges of high and low frequencies) applied at a range of about 78 and 110 dB was much preferred over NME bourbon, which was not exposed to music.
This working example on a Scotch Blend used the same type of charred American Oak cask (except 5 L volume), used only once, as in the Example C above.
About 150 L of the blend in the table above was drained out and held as the control NME sample. The cask was allowed to stand about one week. Then, the cask was exposed to music using the same procedure and apparatus as described above in the working Example B. The total time exposed to music was 78 hours at 100 dB, followed by 36 hours of resting.
As in Working Example C above, a blind tasting was conducted. The NME sample was very smooth in aroma and taste. Warm fire in mouth. With water add, took on a little bitterness. The ME sample was “YUM!”. Butterscotch and caramel, warm heat, but no detectable burn. With water add, a little more fire, but still the sweet ends were tasted.
Prophetic Example One described below is comprised of the steps of (1) feeding, (2) circulating through at least one treatment section comprised of one or more repeating units, (3) monitoring, and (4) aging. The circulating step may employ any one of four circulating system embodiments. For example, in
Feeding Step. Referring to
The treatment cartridge 14 contains American Oak wood pieces. Some wood pieces are charred and some are not charred. The ratio of charred to uncharred wood pieces is in the range of 4 (charred) to 1 (uncharred) and 8 (charred) to 1 (uncharred). The range of sizes of the wood pieces is 0.75 cubic inches and 3 cubic inches. Within the size range, relatively larger wood pieces are not charred, or are relatively less charred compared to smaller pieces.
The fluid flows through treatment cartridge 14 thereby exposing the fluid to the contents of treatment cartridge 14. The fluid is circulated through port 17, open valve 18, and through connector 19 into the second manifold line 21. Valve 8 is then changed from the open position to the closed position.
Valve 22 is closed and valve 23 is open. Pump 29 operates to apply a vacuum to cartridge 14 pulling fluid from cartridge 14 and into the second manifold 21. Pump 29 conducts fluid into line 28 and forces the fluid through line 30, open valve 31, port 32, open valve 33, and connector 34.
Circulating Step. Various embodiments for the circulating step of the process are described below.
Circulation Embodiment 1 (as shown in
Circulation Embodiment 2 (as shown in
Valve 23 is changed from the open to the closed position. Valve 8 is changed to open from the closed position. Pump 5 continues the process of circulating the fluid through the system by pumping fluid through line 2, open valve 3, port 4, out of pump 5, into line 6, through open valve 7 and open valve 8 into the first manifold line 24. Valve 27 is in the closed position again forcing the circulated fluid into at least one repeating unit of the treatment section, for example, treatment cartridge 14.
Circulation Embodiment 3. This embodiment is depicted in
Pump 29 recirculates the circulated fluid out of tank 41, through open valve 42 and connector 44 through line 35. Valve 31 is open forcing the fluid into line 11, through connector 39, open valve 40, open valve 12, through port 13. Valves 8, 27 and 16 are closed forcing the flow pathway back through treatment cartridge 14.
Circulation Embodiment Number 4. The same process as in Circulation Embodiment Number 3 (first paragraph) is employed except that pump 29 is configured to apply vacuum across treatment cartridge 14. Valve 23 is closed and the wood pieces are held in treatment cartridge 14 under vacuum for a period of time while the fluid is in tank 41. Then, pump 29 recirculates the circulated fluid out of tank 41, through open valve 42 and connector 44 through line 35. Valve 31 is closed forcing the fluid into line 11, through connector 39, open valve 40, open valve 12, through port 13. Valves 8, 27 and 16 are closed forcing the flow pathway back through treatment cartridge 14.
Any of the circulating embodiments described above may be repeated as many times as necessary in accord with the process monitoring described below to reach the desired analytical results as described below. The process monitoring may be by sampling through a port, or by in-line monitoring of the process through a port.
Monitoring. The chosen circulation embodiment is repeated under the specified conditions while monitoring by any one or more of ports 13, 15, 17 and 32 for a desirable flavor profile, a desirable aroma profile, density, alcohol content, and color by spectrophotometry or by colorimetry (for example, light transmission value/lumen value). The chosen circulation embodiment is continuously repeated until at least: (a) the flavor profile, aroma profile is acceptable whether measured subjectively or objectively against a reference, (b) the fluid in the system attains at least one property that is the same or substantially similar to a desirable higher price point commercially available aged distillate, or (c) the fluid in the system does not change more than 2% relative to that same measurement made in the immediately prior measurement in the immediately prior trip circulating through the system. For example, as to this last option (c), the color or brown color (or light transmission measured with a colorimeter) of the fluid does not darken more than an additional 2% after repeating one additional circulating step through the system (for example, the system depicted in
Aging Step. From the chosen circulating option, valve 23 is changed from the open position (used when circulating) to a closed position. Valve 22 (in the second manifold line 21) is changed from the closed position to an open position. Pump 5 pumps the circulated fluid out of manifold line 21 into one or more repeating units in an aging section (for example, as shown in
Pump 5 pushes the circulated fluid through line 50, open valve 56, port 57, connector 58 and open valve 59 into aging cask 60. (In the case of Y=3 as shown in
Aging cask 60 is made of American Oak. The aging process is monitored as described above in the “Monitoring Step.” The aging step is ended and the final product is packaged or blended then packaged, based upon achieving the desired test results
Prophetic Example Two described below is comprised of the steps of (1) feeding, (2) circulating through at least one treatment section comprised of one or more repeating units, (3) monitoring, (4) applying and holding any one or more of vacuum or pressure on any one or more of the repeating units in the treatment section, (5) repeating one or more of the steps (i) circulating, (ii) monitoring, (iii) applying and holding the pressure or vacuum, and (6) aging in one or more repeating units in one or more aging sections.
Feeding Step. Referring to
Circulating Step. In this example, and except for the modifications described in this section, the procedure to be employed is the same as that previously described above in Prophetic Example One, Embodiment 3 of the Circulating Step. Assume, as described above, that there are two repeating units in the treatment section as depicted in
Valve 8 (for example, as shown in
Still referring to
Still referring to
Monitoring While Circulating. Still referring to
The chosen circulation embodiment is continuously repeated until at least: (a) the flavor profile, aroma profile is acceptable whether measured subjectively or objectively against a reference, (b) the fluid in the system attains at least one property that is the same or substantially similar to a desirable higher price point commercially available aged distillate, or (c) the fluid in the system does not change more than 2% relative to that same measurement made in the immediately prior measurement in the immediately prior trip circulating through the system. For example, as to this last option (c), the brown color (or light transmission measured with a colorimeter) of the fluid does not darken more than an additional 2% after repeating one additional circulating step through the system (for example, the system depicted in
Applying and Holding Vacuum Step. Referring to
One or more additional circulating steps and applying and holding vacuum steps are repeated in an alternating fashion while monitoring as previously described in Prophetic Example 1. These alternating steps, with accompanying monitoring, are repeated until the color of the fluid or light transmission value of the fluid does not darken more (decline more) than an additional 2% after at least one, or alternatively any one or more of one, two or three additional trips through the circulating step.
Aging Step. Referring to
Pump 5 pumps the circulated fluid into manifold line 51 (
Monitoring. The aging step is monitored as previously described in Prophetic Example 1.
The process of Prophetic Example 2 will be followed using a raw distillate taken from a still head (bourbon mash) or a sugar-derived raw distillate obtained from the Telluride Distilling Company. The starting proof of the raw distillate is in the range of 80 proof to 94 proof. The feeding, treating, circulating, and applying and holding vacuum steps as described in Prophetic Example 2 will be followed. The monitoring step will be employed to measure the color, particularly brown color (or light transmission by colorimeter), and alcohol content of distillate. The steps of circulating and of applying and holding vacuum in an alternating fashion as described in Prophetic Example Two will be repeated until any one or more of the following occur:
The chosen circulation embodiment is continuously repeated until at least: (a) the flavor profile, aroma profile is acceptable whether measured subjectively or objectively against a reference, (b) the fluid in the system attains at least one property that is the same or substantially similar to a desirable higher price point commercially available aged distillate, or (c) the fluid in the system does not change more than 2% relative to that same measurement made in the immediately prior measurement in the immediately prior trip circulating through the system. For example, as to this last option (c), the brown color (or light transmission measured with a colorimeter) of the fluid does not darken more than an additional 2% after repeating one additional circulating step through the system (for example, the system depicted in
The aging step of Prophetic Example 2 will then be followed. The aging will be monitored by tracking the percentage change to darker color (measured by declining colorimeter light transmission values), an acceptable flavor profile or aroma profile. The fluid produced from the process steps described above will then be exposed to music according to the procedures described above in the working examples of exposure to music.
Any type of ethanol containing raw distillate may be used in the processes and systems described herein. Exemplary raw distillates being created from 70% Corn, 16% Wheat and 14% Barley. Raw distillates are available from, for example, from Bend Spirits https://www.bendspiritsdistillery.com, 19330 Pinehurst Rd, Bend, Oreg. 97701 ((541) 318-0200 ext. 6)).
This application claims the benefit of prior U.S. provisional patent application Ser. No. 62/647,763 filed Mar. 25, 2018 entitled, “System and Process for Reducing The Time Required to Age a Raw Distillate By Expedited Aging”, herein incorporated by reference in its entirety; prior U.S. provisional patent application Ser. No. 62/781,580 filed Dec. 18, 2018 entitled, “System and Process for Reducing The Time to Age a Raw Distillate By Expedited Aging (Second Provisional Application)” herein incorporated by reference in its entirety; and utility patent application Ser. No. 16/359,877 filed Mar. 20, 2019 entitled, “System and Process for Reducing The Time Required to Age a Raw Distillate By Expedited Aging”, herein incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
62781580 | Dec 2018 | US | |
62647763 | Mar 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16359877 | Mar 2019 | US |
Child | 17989434 | US |