PROCESS FOR REDUCING THE VISCOSITY OF HEAVY RESIDUAL CRUDE OIL DURING REFINING

Abstract
Additives may be used to decrease the viscosity of heavy residual hydrocarbons. The additives are prepared using a formulation comprising: a first component selected from the group consisting of (alkoxylated)-(di or tri)-alkyl phenol-aldehyde (amine) resins; α-Olefin-maleic anhydride co-polymers and grafted polymers including half ester/amide and full ester/amide derivatives; and combinations thereof; and a second component which is a synergist and selected from the group consisting of polyamines, amidoamines, imidazolines, and combinations thereof.
Description
BACKGROUND OF THE APPLICATION

1. FIELD OF THE INVENTION


This invention relates to refining crude oil. This invention particularly relates to improving processing of heavy residual crude oil during refining.


2. BACKGROUND OF THE PRIOR ART


Refining is the process of treating raw hydrocarbon and its conversion into lighter, higher octane number components. The development of the internal combustion engine led to the production of gasoline and diesel fuels. While simple gasoline was sufficient for automobiles, it was the airplane that created a need for high-octane aviation gasoline and then for jet fuels. In addition to fuels, refineries now produce a variety of products such as lubricants but also including many required as initial feed-stocks for the petrochemical industry.


During the course of refining crude oil, the crude oil and resultant process streams may be subjected to distillation, thermal cracking, catalytic conversion, and various other treatments. Cracking is the process whereby complex organic molecules such as kerogens or heavy hydrocarbons are broken down into simpler molecules (e.g. light hydrocarbons) by the breaking of carbon-carbon bonds in the precursors.


During distillation, the higher boiling compounds are separated from compounds often having a higher molecular weight and greater viscosity. After removal of the distillate, the resulting bottoms may be subjected to further cracking until, finally, all that is left is bitumen or coke. Even these compounds have value in today's markets, but most often it would be desirable to produce more rather than less of the comparatively low boiling and more valuable distillates.


Unfortunately, as the viscosity of the heavy distillation bottoms increases, there is a corresponding increase in the difficulty of handling (moving and further refining) such heavy hydrocarbons. In some circumstances, the bottoms can even solidify thereby blocking fluid movement. It would be desirable in the art of refining hydrocarbons to be able to reduce the viscosity of heavy residual crude oil economically and without introducing materials which could complicate further processing.


SUMMARY OF THE INVENTION

In one aspect, the invention is a process for modifying heavy residual hydrocarbons to reduce viscosity comprising admixing the heavy residual hydrocarbons with an additive comprising a first component selected from the group consisting of (alkoxylated)-(di or tri)-alkyl phenol-aldehyde (amine) resins; α-olefin-maleic anhydride co-polymers and grafted polymers including half ester/amide and full ester/amide derivatives; and combinations thereof; and a second component which is a synergist and selected from the group consisting of polyamines, amidoamines, imidazolines, and combinations thereof.


In still another aspect, the invention is a process for modifying heavy residual hydrocarbons to reduce viscosity comprising admixing the heavy residual hydrocarbons with an additive comprising a first component selected from the group consisting of (alkoxylated)-(di or tri)-alkyl phenol-aldehyde (amine) resins; α-olefin-maleic anhydride co-polymers and grafted polymers including half ester/amide and full ester/amide derivatives; and combinations thereof.







DETAILED DESCRIPTION OF THE INVENTION

In one aspect, the invention is a process for modifying heavy residual hydrocarbons comprising admixing the heavy residual hydrocarbons with an additive. The additive is prepared from a formulation including: a first component selected from the group consisting of (alkoxylated)-(di or tri)-alkyl phenol-aldehyde (amine) resins; α-Olefin-maleic anhydride co-polymers and grafted polymers including half ester/amide and full ester/amide derivatives; and combinations thereof. The formulation also includes a second component which is a synergist and selected from the group consisting of polyamines, amidoamines, imidazolines, and combinations thereof.


For the purposes of this application, the term “heavy residual hydrocarbon” means a hydrocarbon having carbon chain length of from about C20 to about C70. When derived during refining, this material is often referred to as a “resid.” Also, for the purposes of this application, the term “heavy residual hydrocarbon” can include hydrocarbons having the same chain length but derived from processes other than normal refining.


As noted in the background of the application, it is often desirable to produce as much lower molecular weight hydrocarbon from crude oil as possible. One problem in doing so is that resid crude oil increases in viscosity as the resid crude oil is subject to more and more extractions of lower molecular weight hydrocarbons. If too much lower molecular weight hydrocarbons are removed from crude oil resid, then it may become too viscous at a point in the process where the process cannot further transport the resulting material for further processing. When this occurs, then expensive and time consuming efforts may have to be employed.


In some embodiments of the method of the application, the additive is prepared from a formulation comprising: a first component selected from the group consisting of (alkoxylated)-(di or tri)-alkyl phenol-aldehyde (amine) resins; α-olefin-maleic anhydride co-polymers and grafted polymers including half ester/amide and full ester/amide derivatives; and combinations thereof; and a second component which is a synergist and selected from the group consisting of polyamines, amidoamines, imidazolines, and combinations thereof. Alkylphenol-formaldehyde resins are typically prepared by the acid or base catalyzed condensation of an alkylphenol with formaldehyde. Alkyl groups are straight or branched and contain about 3 to about 18, preferably about 4 to about 12 carbon atoms. Representative acid catalysts include dodecylbenzenesulfonic acid (DDBSA), toluene sulfonic acid, boron trifluoride, oxalic acid, and the like. Representative base catalysts include potassium hydroxide, sodium methoxide, sodium hydroxide, and the like. In an embodiment, the alkylphenol-formaldehyde resins have a molecular weight (Mn) of about 1,000 to about 50,000. In another embodiment, the alkylphenol-formaldehyde resins have a molecular weight of about 1,000 to about 10,000.


Alkylphenol-formaldehyde resins may be oxyalkylated by contacting the alkylphenol-formaldehyde resins with an epoxide such as ethylene oxide in the presence of a basic catalyst. For example, such resins may be prepared using sodium hydroxide or potassium hydroxide. The molar ratio of epoxide to OH group on the resin may be from about 1 to about 50. In some embodiments, the molar ratio is from about 2 to about 8. In still other embodiments, the molar ratio is from about 3 to about 7. The alkylphenol formaldehyde resins and oxyalkylated alkylphenol formaldehyde resins may be prepared using any method known to be useful to those of ordinary skill in the art of preparing such resins.


The resins, in some embodiments, may be prepared with ethylene oxide and/or propylene oxide. The alkyl groups may have from about 1 to about 30 carbons. Phenols that are useful include, but are not limited to phenol, cresol, and resorcinol. Aldehydes include but are not limited to formaldehyde, acetaldehyde, propylaldehyde, and butyraldehyde and mixtures thereof. Amines, useful for Mannich resins may be selected from the any amine, but in some embodiments they may be selected from the group consisting of ethylene diamine, triethylene tetra-amine, tributyl tetra-amine, tetraethyl penta-amine, pentaethyl hexa-amine, hexaethyl hepta-amine, heptaethyl octa-amine, bis-hexamethytriamine, and mixtures thereof.


When the additive includes an α-olefin-maleic anhydride co-polymer and/or grafted polymer including half ester/amide and full ester/amide derivatives, they may be prepared admixing the monomers and using a catalyst or even heat to polymerize the monomers. Catalysts useful with the method of the application include, but are not limited to free radical initiator, organic peroxides, chromium catalysts, Ziegler-Natta catalysts and metallocene catalysts.


The additives useful with some embodiments of the invention may include other organic compounds and organic solvents. Organic compounds useful with some embodiments of the additives include, but are not limited to amines and esters. For example, a method of the invention may be practiced using additives including triethyl tetra-amine, tributyl tetra-amine, ethylene diamine, tetraethyl penta-amine, ethyl acetate, propyl acetate, ethyl butyrate, and the like and combinations thereof.


The synergists include polyamines, amidoamines, imidazolines, and combinations thereof. When the synergist is a polyamine, in some embodiments is may be selected from polymers of ethylene diamine, triethylene tetra-amine, tributyl tetra-amine, tetraethyl penta-amine, pentaethyl hexa-amine, hexaethyl hepta-amine, heptaethyl octa-amine, bis-hexamethytriamine, and mixtures thereof. The synergists may also be the quaternary ammonium salts of these compounds.


When the synergist is an amidoamines, in some embodiments, it may be a tall oil fatty acid amide prepared using one of ethylene diamine, triethylene tetra-amine, tributyl tetra-amine, tetraethyl penta-amine, pentaethyl hexa-amine, hexaethyl hepta-amine, heptaethyl octa-amine, bis-hexamethytriamine, and mixtures thereof. The synergists may also be the quaternary ammonium salts of these compounds.


When the synergist is an imidazoline, it may be prepared using a tall oil fatty acid-amidoamine and a polyamine as detailed above. It may be further substituted by forming alkyl esters, phosphate esters, thiophosphate esters, Tetra-propenyl succinic anhydride (TPSA), dodecylsuccinic anhydride, amides/esters alkylphosphate esters, arylphosphate esters along the backbone. The synergists may also be the quaternary ammonium salts of these compounds.


In employing the additives of the application, their concentration in heavy resid hydrocarbons may be from about 0.1 to about 10% by weight. In other embodiments, the concentration may be from about 0.1 to about 0.5 weight %.


The organic solvents useful with some embodiments of the invention may include but are not limited to: ethyl benzene, xylene, toluene, and the like. When a solvent is present in the additive, it may be present at a concentration of from about 5 w/v percent to about 95 w/v percent. In other embodiments, the solvent if present at all is present at a concentration of from about 10 to 90 percent. In still other embodiments, the solvent may be present at a concentration of from about 15 to about 85 percent.


The additives of the application are effective at reducing the viscosity of resids. When used at a concentration of 2500 ppm the additives may reduce resid viscosity by from 20 to 70 percent (Viscosity, cP@ 50° C.). In some embodiments, the reduction could be from about 35 to about 60%. In other embodiments, the reduction could be from about 40 to 60%.


In one embodiment, the invention is a process for modifying heavy residual hydrocarbons to reduce viscosity comprising admixing the heavy residual hydrocarbons with an additive comprising a first component selected from the group consisting of (alkoxylated)-(di or tri)-alkyl phenol-aldehyde (amine) resins; α-olefin-maleic anhydride co-polymers and grafted polymers including half ester/amide and full ester/amide derivatives; and combinations thereof. While not as effective as a blend of the resin and a synergist, the resin, by itself can lower resid viscosity.


Some of the components of the additives of the application may have boiling points or vapor pressures that would cause those components to vaporize and be wasted if heated too quickly or under conditions that would not favor incorporation of those components into the heavy resid hydrocarbon. It follows then that when the resid is to be heated to a point near or above the boiling point of the additive component, the resid and additive are to be admixed first and then gradually heated to allow all, or as much as possible, of the additive component to be incorporated into the resid. The additives of the application may be Incorporated into the resids being treated in any way known to be useful to those of ordinary skill in the art


The additives of the application advantageously exhibit a synergism. The two components of the additive formulations coming together have a substantially greater impact on improving the physical properties of the modified resid than either component does when acting alone.


Embodiments of the methods of the application may be employed in any application where a resid is being refined, transported, or moved and it would be desirable to avoid having to reheat the resid. In another application, an additive of the invention is employed within a refinery to allow a resid that, unmodified, would be too viscous to move through a unit without the use of a cutter stock or a solvent. In still another embodiment, the additive is used to reduce the amount of energy necessary to pump a resid.


EXAMPLES

The following examples are provided to illustrate the present invention. The examples are not intended to limit the scope of the present invention and they should not be so interpreted. Amounts are in w/v parts or w/v percentages unless otherwise indicated.


Examples 1-3 and Comparative Example A

A sample of a very heavy resid hydrocarbon (BP: 750° F. to about 1300+° F.) is tested for pour point according to ASTM D5950 and viscosity at 50° C. using a scanning Brookfield viscometer. Results are recorded below in Table 1 as Comparative Example A. The same material is then treated with an additive which is a blend of an alkoxylated phenol resin (80%) and imidazoline (20%) at the dosages shown below in Table 1 where the results are also recorded.














TABLE 1










Viscosity, cP



Example No.
Dosage (ppm)
Pour Point
@ 50° C.





















Comparative

95° F.
222,000



Example A






Ex. 1
5,000
65° F.
19,056



Ex. 2
7,500
60° F.
18,796



Ex. 3
10,000
60° F.
17,676










Examples 4-9 and Comparative Examples B-D

A sample of vacuum towers bottoms from a refining process, a common form of resid (BP750° F. to about 1300° F.), is tested for viscosity improvements using the additive of example 1 and a cutter stock. The cutter stock is a middle distillate hydrocarbon (BP: 350° F. to about 700° F.). The dosages and physical testing results are shown below in Table 2.














TABLE 2










Percent




% Cutter
Additive
Viscosity
Viscosity


Sample No.
% Resid
Stock
Dosage
cP @ 50° C.
Reduction




















Comparative
100
0

15,357



Example B







Example 4
100
0
1000
10,228
33%


Example 5
100
0
2500
6209
60%


Comparative
95
5

5004
67%


Example C







Example 6
95
5
1000
3099
80%


Example 7
95
5
2500
2360
85%


Comparative
80
20

840
95%


Example D







Example 8
80
20
1000
595
96%


Example 9
80
20
2500
418
97%









Example 10 and Comparative Example E

A sample of virgin uncracked residue from a first distillation from a refining process (BP: 500° F. to about 1200° F.), is tested for viscosity improvements using the additive of Example 1. The dosages and physical testing results are shown below in Table 3.














TABLE 3










Percent




Additive
Viscosity
Viscosity



Sample No.
Dosage
cP
Reduction





















Comparative

956,000




Example E






Example 10
2500
215,000
78%









Claims
  • 1. A process for modifying heavy residual hydrocarbons to reduce viscosity comprising admixing the heavy residual hydrocarbons with an additive comprising: a first component selected from the group consisting of (alkoxylated)-(di or tri)-alkyl phenol-aldehyde (amine) resins; α-olefin-maleic anhydride co-polymers and grafted polymers including half ester/amide and full ester/amide derivatives; andcombinations thereof; anda second component which is a synergist and selected from the group consisting of polyamines, amidoamines, imidazolines, and combinations thereof.
  • 2. The process of claim 1 wherein the (alkoxylated)-(di or tri)-alkyl phenol-aldehyde (amine) resins are prepared by the acid or base catalyzed condensation of an alkylphenol with an aldehyde.
  • 3. The process of claim 2 wherein alkyl groups of the alkylphenol are straight or branched and contain from about 3 to about 18 carbon atoms.
  • 4. The process of claim 3 wherein the alkyl group have from about 4 to about 12 carbon atoms.
  • 5. The process of claim 2 wherein the (alkoxylated) alkylphenol-formaldehyde resins have a molecular weight (Mn) of from about 1,000 to about 50,000.
  • 6. The process of claim 5 wherein the (alkoxylated) alkylphenol-formaldehyde resins have a molecular weight (Mn) of from about 1,000 to about 10,000.
  • 7. The process of claim 2 wherein the (alkoxylated)-(di or tri)-alkyl phenol-aldehyde (amine) resins are oxyalkylated by contacting the alkylphenol-formaldehyde resins with an epoxide.
  • 8. The process of claim 7 wherein the epoxide is selected from the group consisting of ethylene oxide, propylene oxide and combinations thereof.
  • 9. The process of claim 7 wherein the molar ratio of epoxide to OH group on the resin is from about 1 to about 50.
  • 10. The process of claim 9 wherein the molar ratio of epoxide to OH group on the resin is from about 2 to about 8.
  • 11. The process of claim 10 wherein the molar ratio of epoxide to OH group on the resin is from about 3 to about 7.
  • 12. The process of claim 2 wherein the alkylphenol is prepared using components selected from the group consisting of phenol, cresol, resorcinol, and combinations thereof.
  • 13. The process of claim 2 wherein the aldehyde is selected from the group consisting of formaldehyde, acetaldehyde, propylaldehyde, and butyraldehyde and combinations thereof.
  • 14. The process of claim 1 wherein the additive includes an α-olefin-maleic anhydride co-polymer and/or grafted polymer including half ester/amide and full ester/amide derivatives which is prepared by admixing monomers and using a catalyst or heat to polymerize the monomers.
  • 15. The process of claim 14 wherein the catalysts are selected from the group consisting of free radical initiators, organic peroxides, chromium catalysts, Ziegler-Natta catalysts and metallocene catalysts.
  • 16. The process of claim 1 wherein the synergist is a polyamine selected from the group consisting of polymers of ethylene diamine, triethylene tetra-amine, tributyl tetra-amine, tetraethyl penta-amine, pentaethyl hexa-amine, hexaethyl hepta-amine, heptaethyl octa-amine, bis-hexamethytriamine, and mixtures thereof.
  • 17. The process of claim 16 wherein the synergist is a quaternary ammonium salts of the compounds of claim 16.
  • 18. The process of claim 1 wherein the synergist is an imidazoline prepared using a tall oil fatty acid-amidoamine and a polyamine.
  • 19. The process of claim 18 wherein the imidazoline is further substituted by forming alkyl esters, phosphate esters, thiophosphate esters, Tetra-propenyl succinic anhydride (TPSA), dodecylsuccinic anhydride, amides/esters alkylphosphate esters, arylphosphate esters along the backbone.
  • 20. The process of claim 18 wherein the synergists is a quaternary ammonium salts of an imidazoline prepared using a tall oil fatty acid-amidoamine and a polyamine.
  • 21. The process of claim 19 wherein the sysnergist is a quaternary ammonium salts of the imidazoline is further substituted by forming alkyl esters, phosphate esters, thiophosphate esters, Tetra-propenyl succinic anhydride (TPSA), dodecylsuccinic anhydride, amides/esters alkylphosphate esters, arylphosphate esters along the backbone.
  • 22. The process of claim 1 wherein the concentration of the additive in heavy resid hydrocarbons may be from about 0.1 to about 10% by weight.
  • 23. The process of claim 22 wherein the concentration may be from about 0.1 to about 0.5 weight %.
  • 24. The process of claim 1 wherein the additives are effective at reducing the viscosity of resids; when used at a concentration of 2500 ppm; reduces resid viscosity by from 20 to 70 percent (Viscosity, cP@ 50° C.).
  • 25. The process of claim 24 wherein the reduction in viscosity is from about 35 to about 60%.
  • 26. The process of claim 25 wherein the reduction in viscosity is from about 40 to 60%.
  • 27. A process for modifying heavy residual hydrocarbons to reduce viscosity comprising admixing the heavy residual hydrocarbons with an additive comprising a component selected from the group consisting of (alkoxylated)-(di or tri)-alkyl phenol-aldehyde (amine) resins; α-olefin-maleic anhydride co-polymers and grafted polymers including half ester/amide and full ester/amide derivatives; and combinations thereof.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority from U.S. Provisional Application Ser. No. 61/720,806, filed Oct. 31, 2012, the disclosure of which is fully incorporated herein by reference.

Provisional Applications (1)
Number Date Country
61720806 Oct 2012 US