Process for sealing pressure zones in a paper-making machine

Information

  • Patent Grant
  • 6551460
  • Patent Number
    6,551,460
  • Date Filed
    Monday, October 22, 2001
    23 years ago
  • Date Issued
    Tuesday, April 22, 2003
    21 years ago
Abstract
Process for laterally sealing at least one excess pressure or vacuum zone adjoining a moving surface in a paper-making machine by way of a sealing device that includes at least one sealing element, the process comprising arranging the sealing device in a receptacle area of a holder, placing the sealing device relative to the holder against the moving surface, wherein the receptacle area is designed as a clamping receptacle, and acting on the sealing element with a clamping force through clamping surfaces of the clamping receptacle during its movement relative to the holder and in its applied state.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




The invention relates to a sealing device for laterally sealing at least one excess pressure or vacuum zone adjoining a moving surface in a paper machine having at least one sealing element that is arranged at least locally in a receptacle area of a holder and is movable relative to the holder for placement against the moving surface.




The invention also relates to a process for laterally sealing at least one excess pressure or vacuum zone adjoining a moving surface in a paper making machine by way of a sealing device that includes at least one sealing element that is arranged at least locally in a receptacle area of a holder and is moved relative to the holder for placement against the moving surface.




Such sealing devices and processes are used, for example, to seal off from the environment the interior, which is under negative pressure, of a suction box whose lateral walls are provided with the sealing device by pressing the sealing elements against the rotating jacket of a suction roll over which the paper web to be dewatered is guided such that the sealing element sits optimally against the jacket and a good sealing effect is achieved.




2. Discussion of Background Information




There is disclosed in U.S. Pat. No. 5,580,424 a sealing element arranged in a holder and clamped to the holder, such a sealing element having a separate piston that is pressed against the sealing element by means of a spring. The spring is designed in such a way that a movement of the sealing element in the direction of a roll jacket is not prevented, but the sealing element is held when the pressure in an application pressure tube is eliminated.




In a device as disclosed in German Patent DE-AS 1 135 745, legs of a sealing strip are respectively arranged in a space between walls of a guide for the sealing strips, with the thickness of the respective legs being somewhat less than the width of the space between the walls. To reduce the penetration of air, a small pneumatic seal in the form of a rubber tube, which is connected to a pressurized air source and sits against the sealing strips in order to provide a seal, is provided between each sealing strip and the exterior walls of the guide.




Forming grooves for a sealing strip in the lateral walls of a holder and placing sealing tubes in those grooves that can unroll in the groove in the application pressure direction is known from U.S. Pat. No. 2,649,719. The sealing strip can move freely due to the unrolling tubes inside the slit formed by the lateral walls of the holder.




In a device as disclosed in German Patent DE-AS 1 146 350, sealing strips that can be pressed against the inner surface of a roll jacket are loosely guided in the body of a suction chamber and supported inside the suction chamber by pressure chambers and outside by ribs.




SUMMARY OF THE INVENTION




The invention resides in a sealing device and a process of the type described above that will provide uniformly good sealing of the pressure zone during operation in the simplest possible manner while avoiding application of excessive pressure.




This is achieved by having the receptacle area designed as a clamping receptacle and the sealing element being acted upon by a clamping force through clamping surfaces of the clamping receptacle.




This produces a frictionally-engaged connection between the holder and the sealing element which can hold the sealing element securely in the respective position in relation to the moving surface while simultaneously ensuring a seal between the holder and the sealing element.




Moreover, this allows the clamping force to be applied in such a way that the sealing element initially sits against the moving surface with an application force sufficient to overcome the clamping force and the application pressure can subsequently be reduced, whereupon the sealing element is held in its set sealing position by the clamping force exercised on the sealing element by the holder through its clamping surfaces.




According to an embodiment of the invention, at least one clamping surface is partially formed by a clamping body.




Such clamping body can be deliberately adjusted to the respective conditions of use. For example, if vibrations of the moving surface, particularly a rotating jacket of a suction roll or a ventilation roll, are anticipated which will affect the position of the sealing element, the clamping body that will contribute to the frictionally-engaged connection between the holder and the sealing element may be elastically ductile so that the vibrations transferred to the sealing element can be absorbed. The occurrence of a so-called “slip-stick” effect can be effectively prevented in this manner, so that the sealing element remains in its set position in relation to the roll jacket, in spite of the vibrations. An excess application pressure or surface pressure between the sealing element and the roll jacket is thus avoided, thereby reducing wear on the sealing element.




In contrast, the clamping body may be made of a less elastic material if no disruptive vibrations are expected and if the “slip-stick” effect, which is specifically desirable in the case of suction rolls with poor concentricity, is to be promoted.




According to the invention, a sealing device for laterally sealing at least one excess pressure or vacuum zone adjoins a moving surface in a paper-making machine, the sealing device comprising a holder, a receptacle area in the holder and at least one sealing element in the receptacle area. The sealing element is movable relative to the holder for placement against the moving surface. The receptacle area is designed as a clamping receptacle having clamping surfaces thereon. The sealing element is acted upon with a clamping force through the clamping surfaces of the clamping receptacle.




The sealing element substantially completely fills the receptacle area in at least one plane perpendicular to the direction of movement of the sealing element. The receptacle area is designed as a receptacle channel open to the moving surface, which channel has one of, a square or rectangular inner cross-sectional area, and the lateral surfaces delimiting the receptacle channel are designed as clamping surfaces. At least one clamping surface is partially formed by a clamping body, arranged in a groove that is formed in a lateral wall of the holder and is open to the sealing element.




In one embodiment of the invention, the clamping body comprises a seal element which is elastically ductile.




According to another embodiment of the invention, the clamping body includes a clamping pressure tube arranged between the sealing element and a lateral wall delimiting the receptacle area.




The sealing element is placed against the moving surface by way of at least one application pressure tube arranged between the sealing element and a delimiting surface of the receptacle area facing away from the moving surface. The pressures present in the application pressure tube and in the clamping pressure tube are at about the same level at least during placement or application of the sealing element against the moving surface. The application pressure tube and the clamping pressure tube are connected to a joint pressure circuit. The clamping pressure tube is arranged in a groove formed in the surface of the lateral wall.




According to another aspect of the invention, a piston is movable in the groove and arranged between the clamping pressure tube and the sealing element. The piston is made of a material having a low degree of elasticity.




According to the invention, the sealing element includes a wear section cooperating with the moving surface and a clamping section cooperating with the holder, wherein the wear section and the clamping section are made of two different materials. The holder is movable relative to the moving surface with a component that is parallel to the direction of placement. The holder is movably mounted, particularly spring mounted on one of, a suction or ventilation box.




The sealing device is used for laterally sealing at least one pressure zone adjoining the interior or exterior wall of a rotating jacket of one of, a suction roll, or a ventilation roll, or a moving belt. The device may be mounted between one of, a suction or ventilation box and a rotating jacket of one of, a suction roll, or a ventilation roll, or a moving belt.




The sealing element is designed as a sealing strip extending at least substantially over the entire roll length. The sealing element is acted upon by a clamping force through clamping surfaces of the holder. At least one clamping surface is formed at least partially by a clamping body arranged in a channel formed in a lateral wall of the holder and open to the sealing element, and that includes a clamping pressure tube arranged between the sealing element and a lateral wall delimiting the receptacle area. The sealing element can be placed against the moving surface by way of at least one application pressure tube, arranged between the sealing element and a delimiting surface of the receptacle area facing away from the moving surface. The pressures present in the application pressure tube and in the clamping pressure tube are at about the same level at least during placement or application of the sealing element against the moving surface. The application pressure tube and the clamping pressure tube are connected to a joint pressure circuit.




According to the invention, the sealing device is used for laterally sealing at least one of, excess pressure zone or vacuum zone adjoining a moving surface in a paper-making machine. The sealing device comprises a holder, lateral walls defined in said holder and at least one sealing element positioned inside said holder and movable relative thereto for placement against the moving surface. The sealing element has lateral walls in sliding contact and frictional engagement with the lateral walls on the holder. A clamping force is exerted by the lateral walls in said holder on the lateral walls of the sealing element to inhibit movement of the sealing element away from the moving surface.




The sealing device further comprises a groove formed in at least one of the lateral walls of the holder, the groove being open to the sealing element. A clamping body is arranged in the groove for inhibiting movement of the sealing element relative to the holder. The width of the seal element exceeds the width of the holder by about 0.05 mm, and preferably by about 0.1 mm.




The clamping body comprises a clamping pressure tube located in the groove and a piston arranged between the sealing element and the clamping pressure tube. The piston is made of a material selected from among rubber or plastic, such as polytetrafluoroethylene. The sealing element wear section is made of a material having good lubricating properties, such as a plastic material with high content graphite.




The holder is made of a different material than the clamping section. The material selected could be a mettalic material, e.g., special steel, brass, or bronze.




At least one application pressure tube is provided for moving the sealing element against the moving surface, the application pressure tube being arranged in the groove between the sealing element and a delimiting surface of the groove facing away from the moving surface.




A fluid pressure circuit supplies to the application pressure tube and to the clamping pressure tube about the same pressure level at least during application of the sealing element against the moving surface. The fluid pressure circuit comprises a common pressure circuit for the application pressure tube and the clamping pressure tube.




The sealing element comprises a wear section cooperating with the moving surface and a clamping section cooperating with the holder, the wear section and the clamping section being made of two different materials.




The holder is movable relative to the moving surface in a direction parallel to the direction of movement of the seal element. Additionally, the holder is spring mounted on one of, a suction or a ventilation box.




A chamber disposed between the bottom of the holder and the suction box. The chamber is open to ambient and further comprises a first seal disposed between the holder and the suction box. Alternatively, the chamber is open to the suction box and further comprises a second seal disposed between the holder and the suction box.




The sealing element comprises a wear section cooperating with the moving surface and a clamping section cooperating with the holder, the wear section being provided with a slope on one side thereof.




The invention contemplates a paper-making machine comprising a moving surface. An excess pressure zone or vacuum zone adjoins the moving surface. A sealing device for laterally sealing the zone comprises a holder, at least one sealing element positioned inside the holder and movable relative thereto for placement against the moving surface. The sealing element has lateral walls in sliding contact and frictional engagement with the lateral walls on the holder. A clamping force is exerted by the lateral walls in the holder on the lateral walls of the sealing element to inhibit movement of the sealing element away from the moving surface. A clamping body inhibits movement of the sealing element relative to the holder. The clamping body comprises a clamping pressure tube and a piston arranged between the sealing element and the clamping pressure tube. At least one application pressure tube moves the sealing element against the moving surface. A fluid pressure circuit supplies pressure to the application pressure tube and to the clamping pressure tube.




The invention is also attained by way of a process for applying a clamping force, through clamping surfaces of a clamping receptacle during its movement relative to the holder and in its applied state, on a sealing element in the clamping receptacle.




The process for laterally sealing at least one excess pressure or vacuum zone adjoining a moving surface in a paper-making machine by way of a sealing device that includes at least one sealing element, comprises arranging the sealing device in a receptacle area of a holder and placing the sealing device relative to the holder against the moving surface. The receptacle area is designed as a clamping receptacle. The process further comprises acting on the sealing element with a clamping force through clamping surfaces of the clamping receptacle during its movement relative to the holder and in its applied state.




Additionally, the process further comprises clamping the sealing element with a clamping force that is at least substantially constant over time. Further, the process comprises varying the clamping force as a function of at least one of, the distance of the sealing element from the moving surface or as a function of an application force that acts upon the sealing element for placement onto the moving surface.




The process further entails setting an application force as a function of the ratio between the clamping force and a bending force necessary for adjustment of the sealing element to the contour of the moving surface, once the sealing element has been placed against the moving surface. Additionally, the process entails reducing the application force, once the sealing element has been placed against the moving surface.




The process further comprises selecting the clamping force to be greater than a bending force and reducing the application force to approximately zero, once the sealing element has been placed against the contour of the moving surface.




According to another aspect of the invention, the process comprises selecting the clamping force to be less than a bending force and reducing the application force to approximately the difference between the bending force and the clamping force, once the sealing element has been placed against the contour of the moving surface.




Preferred embodiments of both the sealing device according to the invention and the sealing process according to the invention are further described in relation to the description and the drawings.




Other exemplary embodiments and advantages of the present invention may be ascertained by reviewing the present disclosure and the accompanying drawing.











BRIEF DESCRIPTION OF THE DRAWINGS




The present invention is further described in the detailed description which follows, in reference to the noted plurality of drawings by way of non-limiting exemplary embodiments of the present invention, in which like reference numerals represent similar parts throughout the several views of the drawings, and wherein:





FIG. 1



a


shows a lateral view of a sealing device according to a first embodiment of the invention;





FIG. 1



b


shows a detail enlarged in relation to

FIG. 1



a


of a sealing device according to the invention which has been modified from the embodiment of

FIG. 1



a;







FIG. 2

shows an additional embodiment of a sealing device according to the invention;





FIG. 3



a


shows a diagram to explain the principles of the forces acting on a sealing element of the sealing device according to the invention;





FIG. 3



b


shows possible time curves of the pressure level in an application pressure tube of the sealing device according to the invention;





FIG. 4

shows a lateral view of a further embodiment of the sealing device according to the invention; and





FIG. 5

shows a lateral view of an embodiment of a sealing device according to the invention which has been modified from the embodiment shown in FIG.


4


.











DETAILED DESCRIPTION OF THE PRESENT INVENTION




The particulars shown herein are by way of example and for purposes of illustrative discussion of the embodiments of the present invention only and are presented in the cause of providing what is believed to be the most useful and readily understood description of the principles and conceptual aspects of the present invention. In this regard, no attempt is made to show structural details of the present invention in more detail than is necessary for the fundamental understanding of the present invention, the description taken with the drawings making apparent to those skilled in the art how the several forms of the present invention may be embodied in practice.




The sealing device according to the invention shown in

FIG. 1



a


is used to separate two pressure zones P


1


, P


2


, which adjoin the interior wall of a jacket


20


that rotates relative to the sealing device in the direction of the arrow during operation, which jacket is an integral part of a suction roll of a paper making machine (not shown), and a moving surface. The jacket


20


is provided with holes


21


through which moisture can be drawn from a paper web to be dewatered.




The sealing device is mounted in a suction box (not shown), in whose interior pressure P


1


, which is less than ambient pressure P


2


, is present during suction operation. An additional sealing device designed according to the invention which seals the interior of the suction box toward the other side, is provided in the circumferential direction at a distance from the sealing device shown in

FIG. 1



a.






The sealing device includes a holder


10


that has a U-shaped cross section in a plane perpendicular to the rotational axis of the suction roll and preferably extends substantially over the entire roll length. A sealing element


15


, which is designed as a sealing strip also extending approximately over the entire roll length, is wedged tightly into the holder


10


in such a way that the lateral walls


11


,


12


of the holder


10


, which laterally delimit the sides of a channel-like receptacle area


17


for the sealing element


15


, sit flat against the outer walls of the sealing element


15


.




The width of the receptacle channel


17


of the holder


10


is dimensioned as a function of the width of the sealing element


15


and the material characteristics of the sealing element


15


in such a way that the sealing element


15


sits tightly in the holder


10


and is not freely movable in either the axial or radial direction.




In that manner, the receptacle area


17


forms a clamping receptacle for the sealing element


15


. The surfaces of the lateral walls


11


,


12


of the holder


10


that face the sealing element


15


form clamping surfaces of the clamping receptacle which provide a frictionally-engaged connection between the sealing element


15


and the holder


10


and act with a static friction force or clamping force on the sealing element


15


.




As shown by the broken line in

FIG. 1



a,


the sealing element


15


can include two different sections


15




a,




15




b.


A wear section


15




a


that cooperates with the jacket


20


may be of a different material than clamping section


15




b


with which the sealing element


15


is clamped into the holder


10


. The material selected for wear section


15




a


may be a plastic material with high content graphite, or another material with good lubricating properties. The holder


10


may be made of a metal, such as special steel, brass, or bronze, and is made of a material different than clamping section


15




b.


In that way, the material of both sections


15




a,




15




b


of the sealing element


15


can be optimally adapted to the respective function to be fulfilled. The wear section


15




a


is provided with a slope


16


on one side.




Between the bottom of the receptacle channel


17


and the sealing element


15


is arranged an application pressure tube


55


that also extends approximately over the entire length of the roll and is connected to a fluid pressure source


70


that is connected to a fluid reservoir (not shown). The flow connection between the fluid pressure source


70


and the application pressure tube


55


can be interrupted using a valve


75


.




When pressure PF inside the application pressure tube


55


is increased, the application pressure tube


55


expands so that the sealing element


15


can be slid out of the holder


10


against the clamping force exercised by the lateral walls


11


,


12


of the holder


10


on the sealing element


15


and placed against the jacket


20


. Application force F exercised by the application pressure tube


55


on the sealing element


15


is shown by an arrow in

FIG. 1



a.






The sealing element


15


is preferably placed against the jacket


20


in such a way that a minimal sealing gap that ensures sufficient tightness is present.




According to the modification shown in

FIG. 1



b,


at least one groove


40


extending in the longitudinal direction of the holder


10


can be provided in at least one of the lateral walls


11


,


12


of the holder


10


, in which groove a seal element


30


with a circular cross-section, for example, in the form of an O-ring, is arranged.




The side of the seal element


30


facing the sealing element


15


forms a part of the clamping surface, thereby contributing to the frictionally-engaged connection between the holder


10


and the sealing element


15


. The seal element


30


can therefore be described as a clamping body.




A movement of the seal element


30


in the direction of movement of the sealing element


15


is prevented, since in that direction the width of groove


40


corresponds to the dimension of the seal element


30


, i.e., the diameter of the seal element


30


. The width of seal element


30


exceeds the width of the holder by about 0.05 mm, and preferably by about 0.1 mm.




The embodiment of the sealing device according to the invention shown in

FIG. 2

differs from the embodiment shown in

FIG. 1



a


in that the holder


10


is arranged in a receptacle channel of a suction box


65


(only partially shown) and is movable relative to the suction box


65


, as shown by the double arrows.




That design allows presetting of the distance between the holder


10


and the jacket


20


of the suction roll, so that a comparatively low pressure increase in the application pressure tube


55


is sufficient to apply the sealing element


15


against the jacket


20


.




Another advantage is that the application pressure tube


55


need only change its volume due to the slight pressure increase, without having to be extended, in order to cause the necessary lifting movement of the sealing element


15


. That creates a linear connection between the pressure P


F


and the application pressure between the sealing element


15


and the jacket


20


independent of the application path.




Just as the holder


10


forms a clamping receptacle for the sealing element


15


, the suction box


65


can also be constructed as a clamping receptacle in the spirit of the invention for the holder


10


. The space between the bottom of holder


10


and suction box


65


could be open to ambient (pressure P


2


), in which case seal B is necessary, or to the suction box (pressure P


1


), in which case seal A is necessary.




The holders


10


of the other described embodiments of the sealing device according to the invention can also be constructed to be adjustable for the purpose of a rough adjustment in relation to the jacket


20


.





FIG. 3



a


explains the forces acting on the sealing element


15


; in the diagram the forces are applied through the extension of the sealing element


15


along the axis of rotation of the suction roll, i.e., over roll width B


W


.




F


P


refers to the force applied downwardly as a bending force, which is necessary to adjust the sealing element


15


to the contour of the roll jacket


20


which, for example, can deviate from a linear course due to deflection of the roll. Whereas in

FIG. 3



a


bending force F


P


is shown to be approximately constant over the length of the sealing element


15


, a different curve for bending force F


P


may occur in practice.




The static friction force acting between the sealing element


15


and the holder


10


due to the clamping of the sealing element


15


in the holder


10


is referred to as F


R


in

FIG. 3



a;


in this case it can be assumed that static friction force F


R


is greater than bending force F


P


. Static friction force F


R


is also applied downwardly as a clamping force.




To be able to press the sealing element


15


against the jacket


20


in such a way that the sealing element


15


sits against the jacket


20


along the entire length of the suction roll such that it forms a seal, pressure P


F


in the application pressure tube


55


must be raised to such an extent that application force F is greater than the sum F


R


+F


P


and therefore lies in the shaded area of

FIG. 3



a.







FIG. 3



b,


which shows the pressure P


F


inside the application pressure tube


55


over time t, uses a broken line to show an example of the case in which F


R


>F


P


.




After the sealing element


15


has been adjusted to the contour of the jacket


20


under the effect of a constant high pressure P


F


, pressure P


F


(and therefore application force F) is reduced between times t


1


and t


2


to a constant low value, preferably slightly above zero. Because static friction force or clamping force F


R


is greater than bending force F


P


, the sealing element


15


cannot independently move out of its optimum applied state, i.e., out of its desired sealing position. That means that merely clamping the sealing element


15


between the lateral walls


11


,


12


of the holder


10


maintains the state of optimum sealing between the sealing element


15


and the jacket


20


.




The broken line in

FIG. 3



b


shows the case in which F


R


<F


P


, in which the clamping force F


R


is not sufficient to maintain the sealing element


15


in its position adjusted to the contour of the jacket


20


. In this case, the pressure P


F


in the application pressure tube


55


is only reduced at most to the extent that the application force F corresponds at least approximately to the difference between the bending force and the clamping force, i.e., where F≈F


p


−F


R


.




The static friction force F


R


between the holder


10


and the sealing element


15


is supported in this case to some extent by the application force F exercised by the application pressure tube


55


on the sealing element


15


, in order to overcome bending force F


P


and press the sealing element


15


over the entire length of the suction roll on its jacket


20


such that it forms a seal.




If, in a case not shown in

FIG. 3



b


, vibrations of the jacket


20


occur and are transferred to the sealing element


15


, that can lead to a time variation in the bending force F


P


to be provided by the sealing device. To maintain the state of optimum sealing in such a case as well, the fluid pressure P


F


in the application pressure tube


55


is set in such a way that the application force is at all times at least as great as the bending force, i.e., F≧F


P


.





FIG. 4

shows an embodiment of the sealing device according to the invention in which, in contrast to the embodiments described above, a respective arrangement of a clamping pressure tube


50


and a piston


60


that can be acted upon by the clamping pressure tube


50


is provided as clamping bodies


130


.




The clamping pressure tubes


50


and the pistons


60


each extend in the axial direction over the entire length of the roll inside the grooves


45


that are formed in the lateral walls


11


,


12


of the holder


10


and are open to the sealing element


15


.




The sides of the pistons


60


facing the sealing element


15


each form one part of the clamping surface for the sealing element


15


, thereby contributing to the frictionally-engaged connection between the holder


10


and the sealing element


15


.




The application pressure tube


55


, provided for placement of the sealing element


15


against the jacket


20


of the suction roll, and the two clamping pressure tubes


50


are connected to a joint pressure circuit in which the pressure can be controlled using a fluid pressure source


70


and a valve


75


. Consequently, the same fluid pressure P


F


is present in the application pressure tube


55


and in the clamping pressure tubes


50


when the sealing element


15


is placed or applied against the moving surface


20


.




When the sealing element


15


has reached the desired sealing position after being placed or applied and the pressure P


F


is reduced, the return fittings


85


prevent the pressure in clamping pressure tubes


50


from falling. The clamping force exercised by the clamping bodies


130


is therefore maintained. The valves


90


are used to let off pressure from the clamping pressure tubes


50


and thus to reduce or increase that clamping force.





FIG. 4

also shows, in an area of the valve


75


connected to the pressure circuit and communicating with the application pressure tube


55


, a pressure regulation or control device


80


that is designed to regulate or control the valve position as a function of fluid pressure P


F


measured by it in the application pressure tube


55


. Such a pressure regulation device can also be used in the other described embodiments of the sealing device according to the invention.




With the embodiment shown in

FIG. 4

, it is possible to change the static friction force or the clamping force F


R


on the clamping surface provided by the piston


60


as a function of the respective conditions of use, without the need for a separate fluid pressure circuit. In that regard, the geometric conditions and properties of the clamping pressure tubes


50


, the pistons


60


, and the application pressure tube


55


can be selected according to the respective purpose and in particular can be coordinated with each other.




The embodiment shown in

FIG. 4

makes it possible initially to operate with a comparatively high pressure P


F


, which is necessary to shift the sealing element


15


in relation to the holder


10


and (once the desired sealing position of the sealing element


15


is reached) to reduce the pressure P


F


. Because a pressure drop in the clamping pressure tubes


50


is prevented by the return fittings


85


, the clamping force exercised by the clamping bodies


130


on the sealing element


15


is maintained, so that the sealing element


15


continues to be secured in its sealing position.




The pistons


60


can be elastically ductile and made of a material having the desired elasticity. A high elasticity of the pistons


60


is advantageous if vibrations of the roll jacket


20


are anticipated, which will be transferred to the sealing element


15


. Such vibrations can be absorbed by the pistons


60


, so that no “slip-stick” effect occurs and the sealing element


15


remains in the optimum sealing position in relation to the jacket


20


. Some examples of materials selected for pistons


60


are rubber or plastic, such as polytetrafluoroethylene (teflon)™.




On the other hand, a slight elasticity of the pistons is advantageous if no vibrations are anticipated from the roll jacket


20


and the sealing device is used on a suction roll with poor concentricity, because the “slip-stick” effect that is desired in such cases is promoted.




The embodiment of a sealing device according to the invention shown in

FIG. 5

is distinguished from the embodiment shown in

FIG. 4

in that only one clamping body


130


including a clamping pressure tube


50


and a piston


60


is provided in one lateral wall


11


of the holder


10


, and the same pressure P


F


as in the application pressure tube


55


is present in the clamping pressure tube


50


during placement or application of the sealing element


15


against the moving surface


20


.




It is noted that the foregoing examples have been provided merely for the purpose of explanation and are in no way to be construed as limiting of the present invention. While the present invention has been described with reference to an exemplary embodiment, it is understood that the words which have been used herein are words of description and illustration, rather than words of limitation. Changes may be made, within the purview of the appended claims, as presently stated and as amended, without departing from the scope and spirit of the present invention in its aspects. Although the present invention has been described herein with reference to particular means, materials and embodiments, the present invention is not intended to be limited to the particulars disclosed herein; rather, the present invention extends to all functionally equivalent structures, methods and uses, such as are within the scope of the appended claims.




LIST OF REFERENCE CHARACTERS






10


Holder






11


,


12


Lateral wall






15


Sealing element






15




a


Wear section






15




b


Clamping section






16


Slope






17


Receptacle area, receptacle channel






20


Moving surface, jacket






21


Holes






30


Clamping body, seal element






130


Clamping body






40


,


45


Groove






50


Clamping pressure tube






55


Application pressure tube






60


Piston






65


Suction box






70


Fluid pressure source






75


Valve






80


Pressure regulation or control device






85


Return fitting






90


Valve




P


1


P


2


Pressure zones




P


F


Fluid Pressure




F Application force




F


R


Clamping force, static friction force




F


P


Bending force




B


W


Roll width




A, B Seals



Claims
  • 1. A process for laterally sealing at least one excess pressure or vacuum zone adjoining a moving surface in a paper-making machine by way of a sealing device that includes at least one sealing element, the process comprising:arranging the at least one sealing element in a receptacle area of a holder; placing the at least one sealing element relative to the holder against the moving surface, wherein the receptacle area is designed as a clamping receptacle; and acting on the at least one sealing element with a clamping force through clamping surfaces of the clamping receptacle during its movement relative to the holder and in its applied state, wherein the clamping force is greater than a bending force applied by the moving surface to the at least one sealing element.
  • 2. The process according to claim 1, wherein the clamping force is at least substantially constant over time.
  • 3. A process for laterally sealing at least one excess pressure or vacuum zone adjoining a moving surface in a paper-making machine by way of a sealing device that includes at least one sealing element, the process comprising:arranging the at least one sealing element in a receptacle area of a holder; placing the at least one sealing element relative to the holder against the moving surface, wherein the receptacle area is designed as a clamping receptacle; acting on the at least one sealing element with a clamping force through clamping surfaces of the clamping receptacle during its movement relative to the holder and in its applied state, and varying the clamping force as a function of at least one of, the distance of the at least one sealing element from the moving surface and an application force that acts upon the at least one sealing element for placement onto the moving surface.
  • 4. The process according to claim 3, further comprising setting an application force as a function of the ratio between the clamping force and a bending force necessary for adjustment of the at least one sealing element to the contour of the moving surface, once the at least one sealing element has been placed against the moving surface.
  • 5. The process according to claim 3, further comprising reducing the application force, once the at least one sealing element has been placed against the moving surface.
  • 6. The process according to claim 3, further comprising:selecting the clamping force to be greater than a bending force; and reducing the application force to approximately zero, once the at least one sealing element has been placed against the contour of the moving surface.
  • 7. The process according to claim 3, further comprising:selecting the clamping force to be less than a bending force; and reducing the application force to approximately the difference between the bending force and the clamping force, once the at least one sealing element has been placed against the contour of the moving surface.
  • 8. A process for laterally sealing at least one excess pressure or vacuum zone adjoining a moving surface in a paper-making machine by way of a sealing device that includes at least one sealing element that is arranged in a receptacle of a holder, the process comprising:subjecting the at least one sealing element to a first force, wherein the first force is sufficient to cause the at least one sealing element to engage an entire contour of the moving surface; and subjecting the at least one sealing element to a second force, wherein the second force is one of a clamping force and a static friction force, wherein the second force is caused by engagement between surfaces of the at least one sealing element and clamping surfaces of the holder, wherein the second force is greater than the first force.
  • 9. The process according to claim 8, wherein the moving surface is arranged on a roll jacket.
  • 10. The process according to claim 8, wherein the at least one sealing element comprises a wear section and a clamping section made of a different material than the wear section.
  • 11. The process according to claim 10, wherein the wear section comprises a slope.
  • 12. The process according to claim 8, wherein the at least one sealing element comprises a slope.
  • 13. The process according to claim 8, wherein the receptacle contains a pressure tube, the pressure tube being arranged to apply the first force to the at least one sealing element.
  • 14. The process according to claim 13, wherein the receptacle contains a pressure tube, the pressure tube being arranged to apply a third force to the at least one sealing element, wherein the third force is greater than the second force.
  • 15. The process according to claim 8, wherein the receptacle contains a pressure tube, the pressure tube being arranged to apply a third force to the at least one sealing element, wherein the third force is equal to or greater than the first force.
  • 16. The process according to claim 8, further comprising varying the second force.
  • 17. The process according to claim 8, further comprising maintaining the second force substantially constant over time.
  • 18. The process according to claim 8, further comprising absorbing vibrations of the moving surface while maintaining optimum sealing between the at least one sealing element and the moving surface, whereby a slip-stick effect is thereby prevented.
Priority Claims (1)
Number Date Country Kind
198 42 838 Sep 1998 DE
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application is a division of application 09/398,139, filed on Sep. 17, 1999, now U.S. Pat. No. 6,334,934, the disclosure of which is expressly incorporated by reference herein in its entirety. Additionally, this application claims priority under 35 U.S.C. §119 of German Patent Application No.198 42 838.3, filed Sep. 18, 1998, the disclosure of which is expressly incorporated by reference herein in its entirety.

US Referenced Citations (11)
Number Name Date Kind
2274641 Abbott et al. Mar 1942 A
2649719 Hornbostel Aug 1953 A
2900024 Hornbostel Aug 1959 A
4714523 Sawyer, Jr. et al. Dec 1987 A
4915787 Branyon et al. Apr 1990 A
4957598 Corbellini Sep 1990 A
5262010 Bubik et al. Nov 1993 A
5580424 Snellman Dec 1996 A
5746891 Withers May 1998 A
5935386 Somervuori Aug 1999 A
5975532 Karttunen Nov 1999 A
Foreign Referenced Citations (3)
Number Date Country
1135745 Aug 1962 DE
1146350 Mar 1963 DE
9717490 May 1997 WO