1. Field of the Invention
This invention relates to a slip forming process and to the monolithic, reinforced concrete structures produced in accordance with this slip forming process of this invention. More specifically, this invention relates to a process for slip forming reinforced concrete road structures, wherein the resulting slip formed structures have exposed reinforcing bars (“rebars”), which are partially embedded in and extend from within a slip formed, reinforced concrete structure. in one of the preferred embodiment of this invention, this slip forming process utilizes a “tunnel mold assembly” for forming a coping for bridge construction, wherein the coping is preferably formed concurrent with a slip formed concrete road bed pad. In this preferred embodiment of the invention, this slip formed coping includes both rebars embedded therein and exposed reinforcing bars extending from within the formed/finished coping. These exposed reinforcing bars are suitable for subsequent reinforcement and integration with additional in situ cast concrete structures. so as to further integrate such additional in situ cast concrete structures with the reinforced concrete road structures produced by this process.
2. Description of The Prior Art
Slip forming of concrete structures is a well-known technique for preparation of structural concrete elements for various industrial and public works (road, conduit, etc.) projects. Slip forming is a construction method in which concrete is poured into a continuously moving form. Slip forming is used for tall structures (such as bridges, towers, buildings, and dams), as well as horizontal structures, such as roadways. Slip forming enables continuous, non-interrupted, cast-in-place “flawless”, (i.e. no joints), concrete structures which have superior performance characteristics to piecewise construction, using discretely formed elements. Slip forming relies on the quick-setting properties of concrete, and requires a balance between quick-setting capacity and workability, Concrete needs to be workable enough to be placed into the form and consolidated. (via vibration), yet quick-setting enough to emerge from the form with strength (also “self supporting strength” or “green strength”). This green strength is needed because the freshly set concrete must not only permit the form to “slip” upwards/forward. but also support the freshly poured concrete above it (“vertical slip forming”) and/or the freshly poured concrete in front of it (“horizontal slip forming”).
in vertical slip forming, the concrete on may be surrounded by a platform on which workers stand. placing steel reinforcing rods into the concrete and ensuring a smooth pour. Together. the concrete form and working platform are raised by means of hydraulic jacks. Generally, the slip-form rises at a rate which permits the concrete to harden (develop green strength) by the time it emerges from the bottom of the form. In horizontal slip forming for pavement and traffic separation walls. concrete is laid down, vibrated, worked, and settled in place, while the form itself slowly moves ahead. This method was initially devised and utilized in Interstate Highway construction initiated by the Eisenhower administration during the 1950s.
The following is a representative (and not exhaustive) review of the prior art in this field:
U.S. Pat. No. 3,792,133 (to Goughnour issued Feb. 12, 1974) describes a method and an apparatus for concrete slip forming a highway barrier wall of varying transverse cross-sectional configuration for accommodating different grade levels on opposite sides of the wall, and wherein variations in the wail cross-sectional configuration may be readily accomplished during wail formation without requiring stopping, realignment or other interruptions in the screed movement during wall forming.
U.S. Pat. No. 4,266,917 (to Godbersen issued Mar. 12, 1981) describes a method for the efficient slip forming of highway median barrier wails of differing, size (adjustable height) and shape having any arrangement of linear and curved sections and while the machine is being advanced in a single direction. The lateral adjustability of opposite side walls of the form, relative to the top wall, permits the use of the side walls with top wails of varying widths. The relative vertical adjustment of the top wall and side walls provides for a wide variation in the vertical height of a barrier will particularly where a glare shield is to be formed on the barrier wall top surface. The slip forming of the glare shield takes place simultaneously and continuously with the slip forming of the barrier wall and over any selected portion of the wail while the machine is being advanced in a single direction. At any adjusted position of the slip form, the skirt member associated with each side wall is adjustable to prevent any flow of concrete from between the ground or highway surface and the form.
U.S. Pat. No. 4,084,948 (to Petersik issued Apr. 18, 1978) describes an improved barrier forming apparatus and method whereby a barrier is formed continuously over a surface, the barrier having continuous reinforcing rods extending the length of the barrier and having cagereinforced standard supports at predetermined intervals along the length of the barrier. The Petersik improved barrier forming assembly comprising a concrete forming member having a form cavity extending there through; a concrete passing member having a concrete delivery opening for passing concrete or the like to the fibrin cavity; and a positioning assembly comprising a support shaft and a door Member pivotally supported at a forward end of the concrete forming member, the barrier being extrudable continuously via the form cavity forom a rearward end of the concrete forming member. The door member selectively is positionable to partially seal the form cavity at the forward end of the concrete forming member and has rod clearance channels through which the reinforcing rods pass through the door member into the harm cavity when the door member is so positioned to seal the form cavity. The rod clearance channels permit ie door member to clearingly pass the reinforcing rods to open the form cavity at the forward end of the concrete forming member to allow the free passage of the barrier forming assembly over the cage reinforced standard supports.
U.S. Pat. No. 5,290,492 (to Belarde, issued May 1, 1994) describes a system for continuously forming a concrete Structure (a) having a predetermined cross-sectional configuration, (b) which extends along an elongate path, and (c) includes art outer surface haying a textured pattern comprising concave or convex portions which extend other than just parallel to the elongate path. The system includes a frame, a first form assembly, a second form assembly, a drive system, and a support assembly.
As is evident from the above, there are number of alternatives for the slip forming of structures for use in road and bridge construction, The numerous alternative systems have their proponents and their detractors. In the context of selection of the more appropriate and efficient system, for example, for construction of retainer/barrier walls and/or glare shield concrete structures, time is money and often is reflected in the bidding process. More specifically, the bid letting on highway construction projects routinely include both penalty provisions for tardy completion and/or bonus payments thr early completion. Accordingly, efficiencies Which advance project completion, generally translate into cost saving. Thus, there is continuing efforts to automate, where possible, the fabrication of structural concrete components in highway construction; and, to standardize the process for the fabrication of roadway components and thereby simplify the bid letting on such proiects, particularly federally funded highway construction projects,
As is evident from the foregoing, and need not be belabored, the slip forming of structural concrete structures, including, concrete structures for highway construction, is well-known, Invariably, such slip formed highway structures are integrated into roadbeds, used as dividers for road beds and as components for bridges or overpasses for such road beds. The specifications for these concrete structures have and continue to become more uniform and/or have basic specifications in common, because of the advancements in construction methods, and the use of federal funds for such highway construction projects. For example, the specification for a concrete bridge coping must include exposed rehars for the integration into both the road bed, or with a barrier wall, which is to be erected thereupon, and integrated therewith.
Up to now, the standard or generally accepted techniques for the fabrication of bridge coping for an overpass on the highway, have required either the use of a pre-cast coping element (fabricated off-site),, and/or the manual casting of a coping on-site, utilizing traditional forms and concrete casting techniques. In the case of a pre-cast concrete coping element, the road bed of the overpass requires special preparation since the pre-cast element does not readily conform to the angle of incline or grade of a ramp or overpass and, therefore, imperfectly abut one another upon placement on the incline of the bridge overpass. Accordingly, additional installation expense is required to insure the connection of abutting pre-cast copings to one another to insure the formation of a unitary coherent structure.
Alternatively, the casting of an overpass/bridge coping, using the a manual process for forming the coping, specifically, traditional forms and concrete casting techniques, is preferably to the pre-cast coping, because the resulting coping is structurally continuous, and better conforms to the incline/grade of the ramp or overpass. Notwithstanding, the on-site casting, of a bridge coping, by traditional concrete casting technique, is very labor intensive and does not. without an inordinate amount of man power, lend itself to rapid fabrication and accelerated completion schedules. In each of the foregoing alternatives, the coping is formed with extending rebars for the later integration of the coping into a road bed pad and/or the attachment to a retaining wall. which can be later formed on the top of the coping.
Accordingly, there continues to exist the need to both simplify the on-site fabrication of a bridge coping, minimize the manual labor requirements, permit/accommodate accelerated construction schedules, and yet produces a structure which is both coherent (e.g. monolithic structure), and faithfully conforms to the angle of incline or grade of a road overpass, without additional extensive on-site preparation.
It is the object of this invention to remedy the above, as well as related deficiencies, in the prior art.
More specifically, it is the principle object of this invention to provide a process for slip forming a monolithic, concrete structure having both partially embedded, rebar reinforcement and partially exposed (extending). rebar.
It is another object of this invention to provide a process ter slip forming a monolithic, reinforced concrete structure, which includes a formed. bridge coping, having exposed rebars.
it is yet another object of this invention to provide a process for the slip forming of a monolithic, reinforced concrete structure, which includes a formed road bed pad and a formed bridge coping having exposed rebars
It is still yet another of object of this invention to provide a process, which utilizes a tunnel mold assembly, for slip forming a. monolithic, reinforced concrete structure, which includes a formed bridge coping having both partially embedded and partially exposed (extending) exposed rebars.
Additional objects of this invention include a tunnel mold assembly equipped slip forming machine for slip forming a monolithic concrete structure with exposed rebars; and, a tunnel mold for use in the slip forming of a monolithic concrete structure with exposed rebars.
The above and related objects are achieved by providing a process for the on-site slip forming of a monolithic concrete structure having both partially embedded and partially exposed (extending) rebars. This process is particularly well-suited for the on-site fabrication of a monolithic concrete structure on uneven terrain (ramp) and/or an overpass/bridge grade. This process utilizes an improved slip forming process, in combination with equipment designed specifically for use in this improved slip forming process. In brief, this process combines slip forming with a unique tunnel mold assembly, which is adapted to produce a monolithic, rebar reinforced concrete structure having both partially embedded and partially exposed rebars. These exposed rebars, which extend from within the slip formed, concrete coping, produced in accord with this invention, enable the further integration and union of the slip formed coping, with a concrete retaining wall or other (preferable) concrete structure, or with a guard rail assembly.
The slip forming machinery which is used in the process of the invention includes the traditional concrete handling conveyances, and a unique tunnel mold assembly for forming a reinforced concrete structure with exposed rebars. This tunnel mold assembly includes:
(a) a tunnel mold having at least one channel therein which permits the passage of a rebar through the mold without being encased in concrete.
(b) auger means for essentially uniform distribution of unset concrete within the mold cavity of the tunnel mold and
(c) a plurality of vibration means, strategically positioned within the mold cavity of the tunnel mold, for consolidating the unset concrete within the mold cavity and thereby eliminating any voids or lack of continuity within the resultant slip formed structure.
This tunnel mold of this assembly is unique in that it is provided with one or more passages, or channels, which extend through the mold cavity, from the leading/front mold surface to the trailing/rear mold surface of the mold. The dimensions of these channels within the mold cavity is sufficient to accommodate the width and height of exposed rebars, during the in situ fabrication of a slip formed, reinforced concrete structure, such as a the slip formed bridge coping. More specifically, the dimensions of such channels within the mold cavity mold, permits the slip forming of a rebar, reinforced concrete coping, wherein a only a portion of the reinforcing rebars are partially embedded within a slip formed concrete coping, and a portion of the reinforcing rebars remain exposed, (free of concrete), and extend front the slip formed bridge coping, for later integration into a companion structure. The size and number of passages or channels of this tunnel mold is limited, to some extent, by practical constraints—the shape/dimensions of the coping—and engineering factors which dictate the thickness of the concrete which occupies the formed structure which surrounds these exposed rebars.
In the preferred embodiments of this invention, these passages or channels within the tunnel mold, are open at the base of the mold, and correspond in the placement and the extension of the rebars, which are only partially embedded within the slip formed coping. The relative viscosity/rheological properties of the concrete fed into the mold cavity of the tunnel mold (a) limits the configuration of the channels within the mold cavity, and (b) controls/limits the extent to which the concrete can flow from within the mold cavity into these channels. The tunnel mold of the slip forming assembly effectively restricts the extent to which concrete can flow from the mold cavity into these channels, and thereby such channels are maintained essentially concrete free, to accommodate passa rebars through the tunnel mold and remain concrete free.
In another of the preferred embodiments of this invention, the improved process is suitable for concurrent slip forming of multiple structural concrete components, as a monolithic structure. in this preferred embodiment of this invention, the process can be used to concurrently slip form both a bridge coping and a road bed pad, in a single pass of the slip forming equipment, thus, further minimizing the steps and time required for completion of a highway construction project.
In yet an of the preferred embodiments of this invention, the bridge coping, (which is formed in accordance with invention), is further modified, as appropriate, with additional rebar reinforcement, and a slip formed concrete structure, (e,g. noise wall, visual barrier, wall cap, etc.), formed on the top thereof, so as to integrate a latter formed concrete with the slip formed bridge coping, Insofar as the exposed rehar extending from the coping is also thereby integrated into this latter slip formed concrete structure, this latter concrete structure becomes integral with the bridge coping.
As understood within the context of this invention, the following terms and phrases are intended to have the following meaning unless otherwise indicated.
The phrase “slip forming”, or “horizontal slip forming”, is intended, and used herein, to describe a construction method in which concrete is poured into a continuously moving form. Slip forming is used for tall structures (such as bridges, towers, buildings, and dams), as well as horizontal structures, such as roadways. Slip forming enables continuous, non-interrupted, cast-in-place “flawless” (i.e. no joints) concrete structures, which have superior performance characteristics to piecewise construction using discrete form elements. Slip forming relies on the quick-setting properties of concrete, and requires a balance between quick-setting capacity and workability. Concrete needs to be workable enough to be placed into the form and consolidated (via vibration), yet quick-setting enough to emerge from the form with strength, (also “green strength”), sufficient to be self- supporting because the freshly set concrete must not only permit the form to “slip” forward but also support the freshly poured concrete which now abuts it, as the form continues to move forward.
The term “coping” or “bridge coping” is intended, and used herein, to describe and connote the structural element which is affixed and preferably integral with the top of a retaining wall of an elevated roadway. Within the context of this invention, “coping” and “bridge coping” are fabricated by the improved process of this invention, and have rebars extending from within and partially embedded within the slip formed coping, The slip formed coping prepared in accordance with the process of this invention is thus unique in terms of its fabrication history.
The phrase “road pad” is intended, and used herein, to describe a slip formed concrete slab, which is preferably formed concurrent with the bridge coping. The road pad is used to delineate the lateral margins of the road bed, and is subsequently integral with the road bed. The phrase “tunnel mold” is intended, and used herein, to describe a slip forming compatible assembly, having a one or more channels or passages through the mold cavity and extending from the front (leading edge) to back (trailing edge) of the mold. Each of these channels or passages also have an open end along the base of the mold, which opening extends from the front (leading edge) to back (trailing edge) of the mold, and is of a sufficient height to accommodate the passage of extending rebars, as the they pass through these passages or tunnels, from the front to the back of the tunnel mold, and yet remain concrete-free, as the mold advances forward in the process of slip forming a reinforced concrete structure. The structure which emerges from the tunnel mold has both embedded rebars and concrete free rebars, which extend from rebars embedded in slip formed concrete structure.
The term “rebar” (short for “reinforcing bar”), is intended, and used herein, to describe a steel bar that, is commonly used as a tension device in reinforced concrete, and in reinforced masonry structures, to strengthen and hold the concrete in compression. It is usually in the form of carbon steel bars or wires, and the surfaces may be deformed for a better bond with the concrete.
The abbreviation “MSE” is intended, and used herein, to describe Mechanically Stabilized Earth, constructed with artificial reinforcing MSE walls stabilize unstable slopes and retain the soil on steep slopes and under crest loads. The wall face is often of precast, segmental blocks, panels or geocells, that can tolerate some differential movement. The walls are in-filled with granular soil, with or without reinforcement, while retaining the backfill soil. Reinforced walls utilize horizontal layers typically geogrids The reinforced soil mass, along with the facing, forms the wall. in many types of MSE's, each vertical fascia row is inset, thereby providing individual cells that can be in-filled with topsoil and planted with vegetation to create a green wall.
In the description of the preferred embodiments of this invention, as illustrated in accompanying patent drawings, where an element or feature in one or more Figures is common to more than one of the accompanying patent drawings. it is assigned the same reference numeral for ease of understanding and simplicity of expression.
the foregoing invention has been described m reference to a number of the preferred embodiments of this process for use in the in situ fabrication of concrete structures for highway and bridge construction; and, the resultant concrete structures formed in this process. Both time and space does not permit inclusion all of the potential applications of this process for the formation of monolithic reinforced structures, nor is the invention limited to the concrete and/or rebar reinforcement, Clearly, this process has potential application to the slip formation of reinforced structural shapes having both an embedded reinforcing member and an exposed component Of such reinforcing member. Thus, the scope of this invention is not limited by what has been explicated illustrated and described, but rather defined in the following claims.
Number | Name | Date | Kind |
---|---|---|---|
3792133 | Goughnour | Feb 1974 | A |
4084928 | Petersik | Apr 1978 | A |
4093410 | Miller | Jun 1978 | A |
4266917 | Godbersen | May 1981 | A |
5290492 | Belarde | Mar 1994 | A |
5354189 | McKinnon | Oct 1994 | A |
8573886 | Taylor, Jr. | Nov 2013 | B1 |
20020039519 | Piccoli et al. | Apr 2002 | A1 |
20100129151 | Guntert et al. | May 2010 | A1 |
20120128417 | Zimmermann et al. | May 2012 | A1 |