PROCESS FOR THE AROMATIZATION OF DILUTE ETHYLENE

Abstract
Described herein are processes for the conversion of ethylene into CS+ olefins, naphthenics, and aromatics via a dual catalyst reaction utilizing a dearomatization catalyst.
Description
TECHNICAL FIELD

The present disclosure relates to processes for the conversion of ethylene into CS+ olefins, naphthenics, and aromatics. The processes utilize a dehydroaromatization catalyst for the conversion of dilute ethylene and other olefins, such as propylene and butenes, into a polygas material containing aromatics. The resulting polygas product produced is of high octane and may be directly used as a gasoline blendstock or as feed to an extraction process for aromatics production, for example.


SUMMARY

Fluidized catalytic cracking (FCC) has wide applications within refineries for the conversion of heavy gas oils into lighter hydrocarbon. The operations intent is to produce material, which falls within the gasoline and diesel boiling range. A substantial quantity of light end materials, particularly those of C3 and C4 olefins, are produced in the FCC operation. Those light materials are often converted into gasoline boiling range products, using either an alkylation unit or a polygas operation.


Both of those process operations offer operational robustness to handle FCC produced feeds. The main challenge is developing a process solution which can readily handle contaminants produced in the FCC, such as organic sulphur and organic nitrogen, using heavy feeds, such as vacuum gas oil. For alkylation or polygas operations, this challenge is typically met by using relatively inexpensive catalysis.


An even lighter cut of FCC material, FCC off-gas, also presents challenges with potential contaminants present, which can affect heterogeneous catalysts and their use. For instance, FCC off-gas streams contain valuable ethylene and propylene in relatively small quantities, for example, in quantities less than 20%. FCC off-gas may also contain heterogeneous catalyst poisons, such as hydrogen sulfide, carbon monoxide, carbon dioxide, organic nitrogen, and water.


To address those challenges, a common and simple solution is to burn the FCC off-gas in a refinery furnace to produce useful plant heat. Other solutions include its use as co-feed into a stream cracker for petrochemical production or collection of its constituent compounds using more elaborate vapour recovery systems, involving compression, adsorption, and subsequent distillation steps. However, both cracker and vapour recovery options are typically expensive and normally only economically justified, when the FCC unit is either quite large or the refinery FCC is nearby other plants or streams which may be combined, pooled, and more economically recovered. As such, for the smaller refiners, there is a need within the industry for a less expensive option, which offers higher value use for FCC off-gas, verses that of combustion and associated heating.


U.S. Pat. No. 3,960,978 discloses metalized (cation exchanged) zeolytes, such as ZSM-5 & ZSM-11, that comprise metals such as Zn, Cr, Pt, Pd, Ni, and Re, for example, the process technology M-Forming™ (Chen et al., 1986). The general understanding is that the ion exchange adds oligomerization capability to the aromatization functionality within the zeolite matrix that may enable the conversion of low molecular weight olefins, such as propylene, into oligomers and aromatics, via the catalyst's dehydrocyclization functionality. Unfortunately, the U.S. refining industry has lacked wide adoption of this particular technology, either due to economic and/or technical reasons.


U.S. Pat. No. 4,795,844 illustrates a process for the conversion of C3 and C4 olefin containing streams containing at least 50% paraffins using a solid catalyst containing Gallium.


U.S. Pat. No. 7,419,930 shows the utility of MFI & MEL type zeolytes containing Gallium for such conversions. U.S. Pat. No. 7,786,337 provides background on the use of a dual catalyst systems containing both zeolite and solid phosphoric acid catalysts for the production of heavier molecules. U.S. Pat. No. 7,498,473 proposes the use of control water for such systems, and U.S. Pat. No. 8,716,542 illustrates the use of a dual zeolite catalyst system for handling feed streams containing sulphur species.


Other processes allow for the conversion of dilute ethylene into useful fuels and aromatics. For instance, U.S. Pat. No. 4,899,006 provides background in the field of lighter olefin conversion, using operating temperatures between 580° C. and 750° C., over a catalyst also comprising zeolite with Gallium. Similarly, in 2001, Choudhary published results on the aromatization of ethylene to aromatics over Gallium modified ZSM-5. (Choudhary et al., 2001).


Catalyst applications substantially involving crystalline zeolites are also known. For example, U.S. Patent Application Publication Nos. 2010/0247391, 2010/0249474, 2010/0249480, and 2014/0024870, describe processes using amorphous silica alumina materials, containing Group VIII & Group VIB metals for CS+ oligomer production. One challenge has been to find an economic solution, applicable for single site facilities, which can provide for both high conversions of both ethylene and propylene into condensable, liquid materials. This requires both a simple process & robust catalyst solution, which can readily handle impurities common in FCC off-gas feeds.


Accordingly, the present disclosure relates to economic processes of converting FCC off-gas feedstocks into naphtha boiling range components utilizing a robust catalyst under relatively low pressure conditions for small, single refinery sites. The presently disclosed processes allow for the (1) substantial removal of basic nitrogen components from the feedstock to protect the catalyst, (2) use of a robust catalyst which can handle small quantities of sulphur, and (3) economical choice of a fixed bed reactor design containing at least two beds of catalyst.





DESCRIPTION OF DRAWINGS


FIG. 1 is a schematic of an exemplary process for the conversion of methane, ethane, and ethylene using a multibed downflow reactor.



FIG. 2 is a schematic of an exemplary process for the conversion of ethylene in high concentration within a methane and ethane containing feed using a multibed downflow reactor and a diluent



FIG. 3 is a schematic of an exemplary process for the conversion of ethylene in high concentration within a methane and ethane containing feed using a multibed downflow reactor and recycle compression.





DETAILED DESCRIPTION

Before the present embodiments are described, it is to be understood that the present disclosure is not limited to the particular processes, catalysts and systems described, as these may vary. It is also to be understood that the terminology used in the description is for the purpose of describing the particular versions or embodiments only, and is not intended to limit the scope of the present disclosure.


In general, this document provides, according to certain embodiments, for processes for converting ethylene into C5+ olefins, naphthenics, and aromatics. The processes utilize a dehydroaromatization catalyst for the conversion of dilute ethylene and other olefins, such as propylene and butenes, into a polygas material containing aromatics. The resulting polygas product produced is of high octane and may be directly used as a gasoline blendstock or as feed to an extraction process for aromatics production.


In at least one embodiment, the catalyst reactors may be taken off-line from the processing of the FCC-off gas and regenerated periodically using air and nitrogen. One catalyst reactor may be operating while the other reactor is regenerated.


In accordance with the presently disclosed process, the catalyst contains the zeolyte ZSM-5 at concentrations between 20-85% weight, Zinc or Copper at concentrations less than 3% weight, and one element of Group IA or IIA at concentrations less than 3% weight, along with an amorphous binder comprising silica and/or alumina. The catalyst may provide a high conversion of ethylene in the off-gas at conditions between 200-400° C., at operational pressures below 400 ps1g.



FIG. 1 depicts a process diagram for the conversion of dilute ethylene and other light materials (such as methane and ethane) and heavier olefins (such as propylene and butylene) into larger olefinic, naphthenic, and aromatic components, and removes them from the gas stream.


Dilute gas feed containing methane, ethane, and ethylene enters the process as Stream 101 at relatively low temperature (120° F.) and pressure (150 psig). The gas feed contains trace nitrogen compounds (ppm levels), which may include ammonia, amines, and/or nitriles. These nitrogen components are removed using a vessel containing solid adsorbent (21). The remaining stream 102 is substantially free of basic nitrogen and is further split into two streams 103 & 105.


Stream 103 is sent through exchangers and heaters prior to reaction. Cross-exchanger 24, uses the hot reactor effluent to heat the cold inlet feed gas, stream 103. Typical temperatures of approximately 300 to 600° F. are achieved using the cross-exchanger, resulting in stream 104.


Stream 104 is further heated to a reaction temperature of approximately 500 to 700° F. using fired heater 22. Hot gas feed, 106, enters the top of reactor 23. It flows downward and is at least partially reacted over a 1st catalyst bed containing a zeolite catalyst. As the material reacts, it increases in temperature. Cooler feed 105 is then injected into the reactor, reducing the temperature prior to being introduced into the second catalyst bed. The combined effluent, from the 1st catalyst bed and injection 105, are then further reacted over a 2nd catalyst bed. Hot reactor effluent, 107, exits the reactor and is cooled using cross-exchanger 24 and cooler 25. The resulting product stream 109, containing 2-phase liquid and vapour products are separated in vessel 26. The majority of methane and ethane, which enter with the feed, exit the process in Stream 110, and a substantial portion of naphtha boiling range material exits as Stream 111.



FIG. 2 represents a further elaboration of the invention as related to conversion of dilute ethylene. For maintaining the desired temperatures, within the illustrated multibed reactor, FIG. 1 describes the use of cold feed injection. Here, FIG. 2 describes the use of a diluent, in the instance where ethylene is present with a feed at a relatively high concentration. In this case, 20% by weight of ethylene or higher, within a reactor feed stream, would be considered high and a potential diluent solution would be of interest.


For most applications, considered herein, the unreacted material, depicted as Stream 110 in FIG. 1, is utilized as Fuel gas within a refinery complex. Often natural gas or methane is used to supplement this Fuel gas supply need. In such an instance, rather than downstream blending of natural gas or methane for supply, the process itself be better leveraged using this feed, should the feed ethylene concentration be considered high.


In FIG. 2, Stream 101 contains the rich ethylene gas in high concentration, within a methane and ethane containing feed. That stream is further diluted using Natural gas make-up via Stream 100. The diluted feed then processed similarly to that, as described by FIG. 1.


A primary benefit to such a diluent approach, using of methane or Natural Gas, is that the design readily allows for mitigation of unit upset conditions. For this overall process, the reactions are quite exothermic. High heat recovery via cross exchange in a case with relatively high ethylene concentrations can lead to sudden high temperatures within a reactor. To mitigate such temperature excursions, methane or Natural Gas dilution offers a preferred means to the invention. Optionally, the methane or Natural Gas injection can contain water at its saturation level.


In addition to the use of Natural gas for control of the feed composition, an absorber (26) is depicted in FIG. 2. As the feed stream to this system is now more dilute, separation of vapour and liquid can become more difficult, at the operating pressures of interest.


In such a case, it is of benefit to use a heavy absorbent fluid, such as a distillate (or diesel) range material, to achieve high recovery of the heavier naphtha boiling range components within the cooled effluent gas stream 109. Stream 110 represents the heavy absorbent which is sent counter-current to that to the absorber gas feed, 109. Inside the absorber, 26, are sections of packing or trays to allow for efficient gas liquid contact and allow for high recovery of the C5+ materials from the gas stream.


Vapor recovered overhead of the absorber contains the methane present in the feed as well as that of the injection. As mentioned, the vapor product may be used within a plants fuel gas header.


From FIG. 2, absorber bottoms (111) is then sent for stabilization for removal of light ends (such as C2's & C3's) and recovery of the naphtha material (C5-C12) from the heavy absorbent. A portion of the heavy absorbent can be recycled once a significant fraction of the naphtha cut is removed.


For the case where a diluent, such as Natural gas, is not available or feasible, a process, as depicted in FIG. 3, may be used. As illustrated, vapour, 112, recovered from the absorber, which is substantially depleted of ethylene is utilized as the diluent for the feed to the process. Vapor 112 is compressed and a portion of that material is recycled, as Stream 113, and blended with the feed. The other portion, 114, is sent to Fuel gas.


These process flow diagrams are provided herein, as illustrations of the general process. Certain derivations are known to those skilled-in-the-art, such as further integration with conventional FCC light-ends recovery equipment, various heat integration options and product stabilization schemes.


EXAMPLES

An example of a catalyst useful in conjunction with the illustrated process, is provided in Example 1. Process performance of this catalyst, under low operating pressure conditions, is provided by Examples 2, 3, 4 and 5.


Example 1

200 grams of kaolin, previously calcined in air for 3 hours at 1100 C, was ground through a 60 um screen and combined with 200 grams of the molecular sieve ZSM5 possessing a Si/Al ratio of 38.2 ZSM-5, 30 grams of sesbania powder, 120 grams silicon sol gel, 30 grams sodium silicate, and 960 grams distilled water. The combined material was mixed in a high shear twin sigma blade mixer to form a paste of a suitable consistency to extrude through a short LID multiple 3 mm cylinders die plate extruder. The resulting extrudate was calcined in air at 843 C for 3 hours. After calcination, the sodium cations are exchanged and the extrudate is calcined in air resulting in a finished catalyst.


Example 2

10 grams of 16 mesh particle size catalyst from Example 1 was loaded into a 0.500 inch diameter 316 SS reactor tube, equipped with a thermocouple, located in the middle of the catalyst bed. The reactor tube was then placed in an electric tube furnace. The reactor tube was heated to 300° C. under a constant flow of research grade nitrogen, while maintaining a back pressure of 50 psig.


Once the internal catalyst bed temperature stabilized at 300° C., 5 grams of liquid water was injected into the nitrogen stream at the rate of 0.25 grams/min via a feed pre-heater section.


The liquid water was completely vaporized prior to contacting the hot catalyst bed. After steam treating the catalyst, the nitrogen feed was discontinued and 3.0 weight hour space velocity of a 3.0% Hydrogen, 12% Methane, 6.5% ethane, 6.0% ethylene, 72.5% nitrogen (by volume) was introduced to the reactor, while maintaining a backpressure of 50 psig. The catalyst bed temperature of 300° C. was maintained for 24 hours under the constant hydrocarbon feed; after which, it was increased to 315° C. at a rate of 1° C./minute. The entire product stream was analyzed by an Agilent 7890B gas chromatograph. The 12 hour average catalyst performance, from a time on stream of 128-140 hours, is provided in the table below.






















Ethylene
Ethylene
Ethylene
Ethylene
Ethylene


Catalyst Bed

Ethylene
Yield to
Yield to
Yield to C3
Yield to C4
Yield to CS+


Temperature
WHSV
Conversion
Methane
Ethane
hydrocarbon
hydrocarbon
hydrocarbon







315° C.
3.0
92.5%
3.6%
4.6%
5.3%
14.5%
72%









The C5+ Product Composition was measured, on a mass percentage. This GC analysis was as follows:

















C5
C6
C7

Cl0
C12


isomers
isomers
isomers
Aromatics
isomers
isomers







32%
24%
3.5%
31.5%
4.5%
4.5%









Example 3

The reactor start-up procedure of Example #2 was repeated for Example #1 Catalyst. After steaming the catalyst, the reactor temperature was maintained at 300° C. The nitrogen feed was discontinued and 2.6 WHSV of a 15 mole % ethylene in nitrogen feed was introduced at a back pressure of 50 psig. These conditions were held constant for 100 hours. The table below is the 10 hour average catalyst performance from a time on stream of 100-110 hours.






















Ethylene
Ethylene
Ethylene
Ethylene
Ethylene


Catalyst Bed

Ethylene
Yield to
Yield to
Yield to C3
Yield to C4
Yield to C5+


Temperature
WHSV
Conversion
Methane
Ethane
hydrocarbon
hydrocarbon
hydrocarbon







300° C.
2.6
98.6%
0.0%
1.4%
4.3%
12.1%
82.2%









The CS+ Product Composition on a mass percentage basis was as follows:

















cs
C6
C7

Cl0
C12


isomers
isomers
isomers
Aromatics
isomers
isomers







15.8%
15.4%
0.9%
60.5%
7.4%
0.0%









Example 4

The reactor start-up procedure of Example #2 was repeated for Example #1 Catalyst. After steaming the catalyst, the reactor temperature was increased to 325° C. at a rate of 1° C./minute. Once the reactor temperature stabilized, the nitrogen feed was discontinued and 1.0 WHSV of a 7.0% Hydrogen, 30% Methane, 17% ethane, 15% ethylene, 31% nitrogen (by volume) was introduced to the reactor while maintaining a backpressure of 45 psig. After 150 hours at the previously stated conditions, H2S was introduced in the feed at a rate of 200 ppm/hour. After 4 hours, the H2S was removed from the feed. The table below lists the 12 hour average catalyst performance pre and post H2S addition in the feed.





















Ethylene
Ethylene
Ethylene
Ethylene
Ethylene



Ethylene
Yield to
Yield to
Yield to
Yield to
Yield to



Conversion
Methane
Ethane
C3s
C4s
cs+






















Pre H2S Addition
98.7%
8.4%
10.9%
4.1%
16.5%
60.3%


Post H2S Addition
98.6%
6.7%
8.2%
4.2%
16.5%
64.4%









As illustrated in Examples 2-4, the process yields for ethylene conversion into C4+ materials are sufficiently high (>80%) at the low operating pressures of choice. For feeds containing hydrogen (Example 2), a yield of greater than 86% C4+ was obtained. For feeds containing no hydrogen (Example 3), a yield of over 94% C4+ was obtained.


The difference in performance between Example 2 & 3, was identified to be caused by the hydrotreatment activity of the metals associated with the catalyst. The preferred catalyst metals composition, used to maintain catalyst life, was found to allow for some hydrotreating of ethylene to ethane, which lowered the potential C4+ yield for hydrogen containing streams.


Initially, Example 4 was made to determine how much catalyst activity would drop, given an upstream unit upset. For FCC Off-gas operations, Hydrogen sulphide is generally removed down to low levels (typically <10 ppm) so that it may be particularly used as low sulphur fuel gas. Example 4 was made to determine how much activity loss might be associated, should a unit upset occur in an FCC amine treater, causing high hydrogen sulphide to enter the process.


What was surprisingly discovered, rather than direct activity loss, during the Example 4 testing on the catalyst, was that short periods of sulphur additions were useful in improving the catalyst selectivity performance, by selectively reducing the hydrotreating activity and subsequently increasing the C4+ yields. This was surprising in that it occurred without a significant loss in the catalyst's dehydroaromatization activity.


At some point of high sulphur loading, it is rather expected that additional prolonged loading may cause the dehydroaromatization activity to decrease, and regeneration to be necessary in a short period of time. What example 4 illustrates is the potential use of sulphur additives to dampen possible hydrotreating activity, while maintaining dehydroaromatization activity at an acceptable level, when hydrogen is present in a dilute ethylene feed.


Example 5

The reactor start-up procedure of Example #2 was repeated for a y zeolite modified Example #1 Catalyst. The modification of the catalyst was achieved by adding 3% wt y zeolite to the ZSM5 powder prior to the mixing and extrusion step. After steaming the catalyst, the reactor temperature was increased to 345° C. at a rate of 1° C./minute. Once the reactor temperature stabilized, the nitrogen feed was discontinued and 1.0 WHSV of a 20% Hydrogen, 30% Methane, 17% ethane, 15% ethylene, 18% nitrogen (by volume) was introduced to the reactor while maintaining a back pressure of 30 psig. The table below list the 24 hour average catalyst performance for they zeolite modified Example #1 catalyst and the ZSM 5 standard control Experimental #1 catalyst.



















Example # 1









Catalyst

Ethylene
Ethylene
Ethylene
Ethylene
Ethylene
Grams


Zeolite
Ethylene
Yield to
Yield to
Yield to
Yield to
Yield to
CS+/liter


Formula
Conversion
Methane
Ethane
C3s
C4s
C5+
catalyst*hr






















ZSM5
98.1%
11.2%
13.2%
8.8%
27.5%
39.8%
46.6


ZSM5 + 3% Y
 100%

9..%

11.3%
7.9%
27.9%
43.8%
52.3









Under high hydrogen feed content, the addition of y zeolite improves the C5+ product yield by reducing the hydro-treating activity. Y zeolite also improves the catalyst productivity by increasing the single pass ethylene conversion. A 12% C5+ productivity increase (on a mass basis) was achieved with a 3 wt % addition of y zeolite to the experimental Example #1 catalyst formulation.


LITERATURE REFERENCES



  • Chen et al., “M-forming Process”, Ind. Eng. Chem. Res., Vol. 26, 1986, pp. 706-711.

  • Choudhary, V. et al., “Aromatization of dilute ethylene over Ga-modified 7SM-5 type zeolite catalysts”, Microporous and Mesoporous Materials. Vol. 47, 2001, pp. 253-267.



Each and every reference discussed in the present document is herein incorporated by reference in its entirety.

Claims
  • 1. An exothermic process of converting ethylene in a hydrocarbon gas feed, said process comprising: a. contacting a hydrocarbon gas feed or portion thereof comprising ethylene with a nitrogen-adsorbing guard bed;b. introducing the hydrocarbon gas feed into a reactor comprising at least one heterogeneous dehydroaromatization catalyst comprising (i) ZSM-5;(ii) amorphous silica, alumina, or a combination thereof;(iii) Zn and/or Cu; and(iv) at least one exchanged metal of Group IA or IIA or lanthanide series; andc. converting ethylene and propylene in the hydrocarbon gas feed to a naphtha boiling-range product comprising at least one aromatic compound.
  • 2. The process of claim 1, wherein the reactor further comprises at least two beds of catalyst, wherein each bed has an independent hydrocarbon gas feedpoint.
  • 3. The process of claim 2, wherein said reactor further comprises a system for controlling the temperature of the hydrocarbon gas feed, wherein said system is located on at least one of the at least 2 feed points.
  • 4. The process of claim 1, further comprising at least one cross-exchanger to transfer heat from an effluent of the reactor or using at least one cross-exchanger to add heat to the hydrocarbon gas feed.
  • 5. The process of claim 1, wherein said heterogeneous catalyst comprises between about 20% and about 85% ZSM-5 by weight.
  • 6. The process of claim 1, wherein the heterogeneous catalyst comprises a second three-dimensional-framework, crystalline, silica/alumina species in an amount less than about 35% weight.
  • 7. The process of claim 1, wherein a dilution feed comprising hydrocarbons substantially free of ethylene is used to dilute the ethylene concentration in the hydrocarbon gas feed.
  • 8. An exothermic process for the conversion of ethylene in a C2 containing gas feed, said process comprising: a. providing at least one C2 containing gas feed, wherein said C2 containing gas feed comprises ethylene, ethane and/or methane, methanol or dimethylether;b. providing at least one heterogeneous dehydroaromatization catalyst in abed in a reactor, wherein said heterogeneous dehydroaromatization catalyst comprises (i) ZSM-5 in a range between 1-100%;(ii) amorphous silica, alumina, or a combination thereof in a range of 1-99%;(iii) Zn and/or Cu in a range between 0.05-3% weight; and(iv) at least one exchanged metal of Group IA or IIA or lanthanide series in a range of 0.05-3% weight;c. contacting said C2 containing gas feed and said heterogeneous dehydroaromatization catalyst in a bed in a reactor;d. processing, in the reactor, the hydrocarbon gas to form a naphtha boiling range product, comprising at least one aromatic component.e. optionally, stopping the C2 containing gas feed, isolating the reactor from the process, using valves, and performing a periodic regeneration of the heterogeneous catalyst to remove carbon deposits, produced from step d., using air, nitrogen, or mixtures thereof.
  • 9. The process of claim 8, further comprising at least two beds of catalyst, wherein each bed has an independent hydrocarbon gas feed point.
  • 10. The process of claim 8, wherein said reactor further comprises a system for controlling the temperature of the C2 containing gas feed, wherein said system is located on at least one of the at least 2 feed points.
  • 11. The process of claim 8, wherein said heterogeneous catalyst has between 20-85% ZSM-5 by weight.
  • 12. The process of claim 8, wherein the heterogeneous catalyst further comprises a second three-dimensional-framework, crystalline, silica/alumina species having a content of less than 35% weight.
  • 13. The process of claim 8, wherein a dilution feed, comprising hydrocarbons substantially free of ethylene, is used to control the temperatures within the reactor.
  • 14. An exothermic process for the conversion of ethylene in a hydrocarbon gas feed or portion thereof, said process comprising: a. providing at least one hydrocarbon gas feed, wherein said hydrocarbon gas feed comprises ethylene and hydrogen;b. providing at least one heterogeneous dehydroaromatization catalyst in a bed in a reactor, wherein said heterogeneous dehydroaromatization catalyst comprises (i) ZSM-5 in a range between 1-98.9%;(ii) amorphous silica, alumina, or a combination thereof in a range of 1-98.9%;(iii) Zn and/or Cu in a range between 0.05-3% weight; and(iv) at least one exchanged metal of Group IA or IIA or lanthanide series in a range of 0.05-3% weight;c. pretreating the heterogeneous dehydroaromatization catalyst to control its hydrogenation activity, by passing a gas stream containing hydrogen sulphide and or an organic sulfur compound over the catalyst, prior to introduction of the hydrocarbon gas feed; andd. processing, in the reactor, the hydrocarbon gas feed, to form a naphtha boiling-range product, said naphtha boiling-range product comprising at least one aromatic compound.
  • 15. The process according to claim 14, where the organic sulphur compound is a mercaptan, sulphide, or disulphide.
  • 16. The process according to claim 14, where the reactor comprises at least two beds of catalyst, wherein each bed has an independent hydrocarbon gas feedpoint.
  • 17. The process of claim 14, wherein the heterogeneous catalyst further comprises a second three-dimensional-framework, crystalline, silica/alumina species having a content of less than 35% weight.
  • 18. The process of claim 17, wherein the second three-dimensional-framework, crystalline, silica/alumina species is Zeolite Yor Beta zeolite.
INTRODUCTION

This application is a continuation of U.S. Ser. No. 15/913,503, filed Mar. 6, 2018 which is a continuation of U.S. Ser. No. 14/825,815 filed Aug. 13, 2015, teachings of each of which are herein incorporated by reference in their entireties.

Continuations (2)
Number Date Country
Parent 15913503 Mar 2018 US
Child 16440312 US
Parent 14825815 Aug 2015 US
Child 15913503 US