1. Field of the Invention
The present invention relates to a process for the cremation of animal remains.
2. Description of the Related Art
The cremation of human and/or animal remains is a method for final disposition of a body which has been known for thousands of years. More specifically, cremation is the use of high-temperature burning, vaporization and oxidation to reduce dead animal bodies, including humans, to basic chemical compounds, such as gases and mineral fragments. With the passage of time, primitive methods have evolved with the development of modern technology. A modern crematory utilizes an industrial furnace capable of generating temperatures sufficient to ensure disintegration of a corpse. Cremation devices or cremators are known in the art which utilize a process dependent upon temperature alone to control the combustion of remains. Processes that utilize monitoring of temperature alone are not fuel efficient as there is no mechanism for detecting volatilization or combustion of the remains. Accordingly, the principal burner in such a device continues to operate after combustion of the remains has begun.
What is needed in the art is a more efficient process for effectively and substantially completely cremating animal remains.
The present invention provides a process for the cremation of an animal remains. For purposes of the present invention, the phrase “animal remains” or the word “remains” shall include the remains of any animal as well as human remains and, for example, human tissue such as an amputated limb. The process according to the present invention includes the steps of inserting the animal remains into a primary combustion chamber of a cremation device and igniting a primary burner, for example positioned directly over the body, in the primary combustion chamber. An oxygen content of a gas leaving the primary combustion chamber is measured, for example using a zirconia oxygen sensor, the oxygen content being represented by an oxygen level information signal which is input into a control system. The temperature of the primary combustion chamber is measured, for example utilizing a thermocouple positioned in the primary combustion chamber. The temperature measured is represented by a primary temperature signal which is input into the control system. Volatilization of the animal remains is determined based on at least one of the passage of a predetermined amount of time, the differential of the oxygen level information signal from a starting or set point and the primary temperature signal. If volatilization of the animal remains has occurred, then the primary burner is adjusted, for example diminished or extinguished entirely. A continued burn of the animal remains is ensured by adjustment of a quantity of air being introduced through an air input valve in the primary combustion chamber which is differentially controlled by a cascade control loop circuit, which is for example part of a proportional-integral-derivative (PID) control system.
According to an additional embodiment, the process according to the present invention includes the steps of inserting animal remains into a primary combustion chamber of a cremation device, igniting a primary burner in the primary combustion chamber, and sensing volatilization of the animal remains using a sensor. After sensing volatilization of the remains, the volumetric flow rate of a gas or fuel to the primary burner is reduced and a volumetric flow rate of air into the primary combustion chamber is adjusted.
Advantageously, the process of the present invention allows for effective management of the cremation of larger, more volatile animal remains. For such larger, more difficult cases, a much higher level of available fuel in the form of tissue and fatty materials can, without operator interface, get out of control when the cremation device is operated based on temperature alone. By reducing the air input in such cases, in reaction to the higher temperatures, the control loop will automatically allow the air flow (and thus available oxygen) to be reduced, thus starving the burning remains (or corpse) of necessary oxygen and, in doing so, reduce the volatilization.
Another advantage of the present invention is that the amount of fuel utilized by the furnace, for example in the form of fossil fuels, propane, natural gas or wood, is reduced since the fuel provided to the primary burner upon sensing volatilization of the remains is reduced, if not completely cut off.
The above-mentioned and other features and advantages of this invention, and the manner of attaining them, will become more apparent and the invention will be better understood by reference to the following description of an embodiment of the invention taken in conjunction with the accompanying drawings, wherein:
Corresponding reference characters indicate corresponding parts throughout the several views. The exemplification set out herein illustrates one embodiment of the invention and such exemplification is not to be construed as limiting the scope of the invention in any manner.
Referring now to the drawings, and more particularly to
Cremator 10 which is utilized in association with the process 34 of the present invention, includes an opacity sensor 36 connected to controller 24 (shown in
Now additionally,
At the same time sensor 20 is measuring the oxygen content of gas exiting primary combustion chamber 12, temperature sensor 28 measures the temperature of primary combustion chamber 12 at step 52, the temperature measured being submitted to controller 24 in the form of a primary temperature signal. This signal will also be periodically sampled and input into the PID algorithm for effective and efficient control of process 40. If the temperature measured is not within the predefined range, then a determination is made as to whether the air flow to primary combustion chamber 12 and/or the fuel flow to primary burner 16 should be adjusted, as illustrated at step 56. Subsequently, the fuel flow to primary burner 16 may be adjusted at step 58. Controller 24 is also configured to adjust air flow into primary combustion chamber 12, dependent upon a predetermined temperature. At step 56, the determination to adjust air flow to primary combustion chamber 12 and/or fuel flow rate to primary burner 16, such considerations as the passage of a predetermined period of time, weight of animal remains 18 prior to insertion into primary combustion chamber 12, and a maximum predetermined temperature will be factored into the decision undertaken at step 56. Generally, the temperature of primary combustion chamber 12 should be maintained between approximately 1400 and 1600 degrees Fahrenheit. If at step 54, the measured temperature is within the predefined temperature range, for example between approximately 1400 and 1650 degrees Fahrenheit, then process 34 returns to step 52.
Controller 24 is also configured to factor variations of the temperature of primary combustion chamber 12 into the PID algorithm in adjusting the quantity of air flow into primary combustion chamber 12. For example, if the temperature of primary combustion chamber 12 were to exceed a certain predetermined maximum temperature, then controller 24 will adjust both the flow rate of fuel to primary burner 16 and the quantity of air flow into primary combustion chamber 12. Likewise, controller 24 can also factor into the PID algorithm variations of the oxygen content of gas exiting primary combustion chamber 12 in adjusting both the flow rate of fuel to primary burner 16 and the quantity of air flow into primary combustion chamber 12. For example, if the oxygen content of the gas exiting primary combustion chamber 12 exceeds a certain predetermined value, this is a sign that the combustion of remains 18 is slowing or stopped. In such a case, it may be necessary for the fuel to primary burner 16 to be increased or, if primary burner 16 was previously extinguished, to re-light primary burner 16, dependent upon how long the remains have been combusting. If the oxygen content of the gas exiting primary combustion chamber 12 exceeds that predetermined value and remains 18 have been combusting for a predetermined period of time, it is a sign that the combustion of remains 18 is complete or nearing completion, in which case, primary burner 16 may be extinguished if it has not already been extinguished. Accordingly, process 34 further includes the step of detecting an end of process 34 after the expiration of a predetermined period of time and the occurrence of an elevation of the oxygen content, for example above approximately 12%. In this case, the predetermined period of time would be determined dependent upon the weight of animal remains 18 prior to insertion into primary combustion chamber 12, the type of container in which they are enclosed or contained and an anticipated burn temperature range.
Now additionally,
While this invention has been described with respect to at least one embodiment, the present invention can be further modified within the spirit and scope of this disclosure. This application is therefore intended to cover any variations, uses, or adaptations of the invention using its general principles. Further, this application is intended to cover such departures from the present disclosure as come within known or customary practice in the art to which this invention pertains and which fall within the limits of the appended claims.