Not Applicable
Not Applicable
Not Applicable
1. Field of the Invention
The present invention relates to a process for the dissolution of copper metal. More particularly, the invention relates to a process for producing a copper-containing aqueous solution by dissolving copper in the presence of an oxidant in an aqueous leach liquor containing monoethanolamine and (monoethanolammonium)2 carbonate (HMEA)2CO3.
2. Description of the Prior Art
It is known to employ copper-containing aqueous solutions as biocidal fluids, for example, for the pressure treatment of lumber and for water purification. Examples of such fluids and uses thereof may be found, for example, in U.S. Pat. No. 4,929,454 and U.S. Pat. No. 6,294,071. The copper-containing solutions may be formulated, for example, by dissolving copper in aqueous solutions containing alkyl amines or alkyl hydroxy amines, such as 2-hydroxyethylamine.
Alternatively, copper-containing solutions may be produced by reacting copper oxide with chromic acid and arsenous acid to produce a solution of the copper with chrome and arsenic. The solution is subsequently diluted with water and the resulting aqueous solution may be injected into wood under pressure.
This chromated copper arsenate (“CCA”) is the primary additive used in the treatment of wood against termite and other biological infestation. Although the CCA is very effective, it has come under increased pressure because of the environmental concerns associated with chromium and arsenic.
A new generation of pesticide is now emerging that appears to be efficacious, and which relies on the use of copper (in larger quantities than in the CCA) in combination with other pesticidal components, such as quaternary amines and triazoles. The copper is typically applied as a solution of the monoethanolamine complex of copper carbonate or borate. The commercial form of the copper concentrate usually contains about 100 to 130 g/l copper which is diluted with water prior to injection into the wood.
The copper complex is typically produced commercially by the dissolution of basic copper carbonate in a solution of monoethanolamine (MEA), followed by further carbonation or addition of boric acid. The reactions can be approximately represented by the following equations:
CuCO3Cu(OH)2+7MEA→Cu(MEA)3.5CO3+Cu(MEA)3.5(OH)2
Cu(MEA)3.5(OH)2+CO2(or Boric acid)→Cu(MEA)3.5CO3+H2O
The production of the copper carbonate precursor has its own production and raw material costs, and a brine waste is generated which gives rise to environmental concerns. A more efficient process might be to produce the complex without the aid of an isolated precursor. It is known from the prior art that ammonia and carbon dioxide in water can be used to dissolve copper metal with oxygen from air as the oxidant. This is represented by the following equation:
Cu+2NH3+(NH4)2CO3+1/2O2→Cu(NH3)4CO3+H2O
The reaction proceeds well and has been the basis for copper dissolution in several commercial facilities. However, if the ammonia is not initially carbonated, the kinetics are very poor which makes the process unattractive from a commercial standpoint.
A need exists for a more efficient process for producing copper-containing aqueous solutions, suitable for use in the wood-treatment industry. The present invention seeks to fill that need.
It has been discovered, according to the present invention, that it is possible to efficiently produce copper-containing solutions directly without initially producing or isolating a precursor such as copper carbonate. The present invention accordingly provides a process for producing a copper-containing aqueous solution, wherein a copper mass is dissolved in the presence of an oxidant in an aqueous leach liquor containing monoethanolamine and (monoethanolammonium)2 carbonate (HMEA)2CO3, the leach liquor being produced by partially carbonating the monoethanolamine. According to the process, copper-containing solution may be produced in 8-12 hours or less, more usually within about 8 hours or less.
The present invention will now be described in more detail with reference to the accompanying drawings, in which:
Referring to
The term “copper” as used herein means copper metal, including scrap copper, such as for example copper wire, copper clippings, copper tubing, copper cabling and/or copper plate, compounds of copper, such as copper oxide, and/or mixtures of copper metal and copper compounds.
The term “copper mass” as used herein refers to copper metal in a form which, when present in the chamber, is permeable to the leach liquor and which presents high surface area for contact with the leach liquor to thereby expedite dissolution of the copper. The copper mass may be present for example as a three-dimensional open permeable network, such as a bale of scrap copper comprised of copper wire, copper tubing, copper cabling, copper plates, providing voids between the copper pieces to allow free flow and maximum contact of the leach liquor with the copper. A bale may have a volume of for example about 25-100 cubic feet. Alternatively, the copper mass may be present in the chamber as smaller irregular shaped pieces resembling “popcorn” (“blister shot”) having an average dimension of about 1-3″, which allow for good permeation of the leach liquor between and around the copper pieces to expedite dissolution thereof. Typically, the ratio of copper surface area to volume of leach liquor for this process versus a standard agitated reactor is about 10-20:1, for example about 15:1.
Advantageously, the dissolution process is done at a temperature between 40° C. and 80° C., for example between 45° C. and 55° C.
According to the process, the copper mass is dissolved in the presence of an oxidant in an aqueous leach liquor containing monoethanolamine and (HMEA)2CO3. Typically, for a 1 liter chamber, the air flow SCFH ranges from about 2-20, for example 3-10. The air flow SCFH will increase as the volume of the chamber increases.
The leach liquor is produced by partially carbonating the monoethanolamine and may be generated externally of the dissolver or in situ in the chamber through addition of carbon dioxide to the monoethanolamine/water solution by sparging or bubbling into the chamber. Usually, the leach liquor is produced externally of the chamber and introduced into the chamber into contact with the copper as required, or recirculated as necessary.
The equation that represents the overall reaction is as follows:
Cu+1.5MEA+(HMEA)2CO3+1/2O2→Cu(MEA)3.5CO3+H2O
The equation that represents the in situ or external partial carbonation of the monoethanolamine is as follows:
3.5MEA+CO2+H2O→1.5MEA+(HMEA)2CO3.
The amount of carbon dioxide introduced during the process is controlled such that partial carbonation occurs to form (HMEA)2CO3. Typically, the carbon dioxide is present in an amount of about 5-30% by weight, for example about 8-12% by weight.
The MEA is usually present in an amount of about 30-40 wt %, more usually 35-38 wt %. A typical aqueous leach solution of comprises about 36 wt % MEA and about 10% by weight carbon dioxide.
The monoethanolamine complex of copper carbonate solutions are typically prepared by dissolving the copper mass in a monothanolamine/CO2/H2O solution. The dissolution may be carried out in a batch dissolver (see FIG. 1), or may be performed as a continuous process in towers packed with copper (see FIG. 4). Typically, the copper and MEA/CO2/H2O solution are charged into the dissolver, and the circulation pump, air-flow and temperature controller are actuated. Examples of conditions are given in Table 3 below.
The present inventors have discovered that it is not necessary to utilize precursors, such as copper carbonate which is expensive. The dissolution of the copper metal may be achieved in the presence of MEA, (HMEA)2CO3 and an oxidant at elevated temperature, without the need for the addition of ammonium compounds such as ammonium hydroxide, fungicidal anions, polyamines, carboxylic acids, alkali metal hydroxides such as sodium hydroxide, and/or alcohol-based solvents.
The dissolution of the copper metal is performed in the presence of an oxidant. Typically the oxidant is an air and/or oxygen, most usually air sparging.
The leach solution is typically re-circulated in the reactor. Most typically, the re-circulation is carried out at a constant rate, and may be, for example, a constant rate of about one-tenth of the leach solution volume per minute.
The process may be carried out at atmospheric pressure and at a temperature of 25-100° C., for example 45-65° C. Typically, the temperature is maintained at 45-55° C.
The pH is typically maintained in the basic region, i.e. greater than 7, and is usually from about 8.0-11.3, more usually 9-10. The pH is usually maintained by addition of carbon dioxide as acid, or MEA as base.
The reaction proceeds slowly where there is a small surface area of copper available to contact the leach solution. For example, if the contact area of the copper metal to leach solution is doubled, the rate of the process doubles assuming adequate air-distribution.
It has been found that an aerated packed tower containing copper metal and circulating leach liquor is the most preferred method for commercial purposes. The advantage of using a packed tower is that it maintains a relatively high surface area to solution volume of copper metal.
According to another embodiment of the present invention, it is possible to utilize a reactor that contains a bed of copper and can be rotated while being heated and aerated.
Dissolving studies were conducted either batch-wise or continuously.
The leach solutions are typically re-circulated in the reactor. Most typically, the re-circulation is earned out at a constant rate of about one-tenth of the leach solution volume per minute. The solution concentration of copper (g/l) as a function of dissolution time is shown in Table 2:
In experiments 1 and 2 reported above, average copper dissolution rates of about 17 g/l-hr were achieved over the course of the experiments. At those rates, the process is viable commercially. Raw material costs, processing costs and waste are significantly reduced over the conventional process using copper carbonate.
Examples of the process according to the present invention will now be described.
Batch Preparation of Monoethanolamine Complex of Copper Carbonate
Monoethanolamine complex of copper carbonate solutions were prepared by dissolving a copper metal mass in monothanolamine/CO2/H2O solution in the batch dissolver in the presence of air sparging and at an elevated temperature.
Three experiments were conducted using the batch dissolver shown in FIG. 1. In each experiment, about 1200 g copper and 1 liter MEA-CO2—H2O solution were charged into the dissolver. The circulation pump, airflow and temperature controller were then started. The experimental conditions are given in Table 3.
1Weight ratio
When temperature reached the target temperature, the first sample of each batch was taken for analysis, and the timer was started. Complete results of these three dissolving batches are shown below, and are presented in
A continuous dissolver assembly (see
While the invention has been described in connection with what is presently considered to be the most practical and preferred embodiment, it is to be understood that the invention is not to be limited to the disclosed embodiment, but on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims.
This application is a continuation of application Ser. No. 10/074,251 filed on Feb. 14, 2002, now U.S. Pat. No. 6,646,147 B2, the entire content of which is hereby incorporated by reference in this application.
Number | Name | Date | Kind |
---|---|---|---|
2377966 | Reed et al. | Jun 1945 | A |
3375713 | Edelstein | Apr 1968 | A |
3929598 | Stern et al. | Dec 1975 | A |
3930834 | Schulteis et al. | Jan 1976 | A |
3936294 | Childress | Feb 1976 | A |
4324578 | Seymour et al. | Apr 1982 | A |
4578162 | McIntyre et al. | Mar 1986 | A |
4622248 | Leach et al. | Nov 1986 | A |
4808407 | Hein et al. | Feb 1989 | A |
4929454 | Findlay et al. | May 1990 | A |
5078912 | Goettsche et al. | Jan 1992 | A |
5084201 | Greco | Jan 1992 | A |
5186947 | Goettsche et al. | Feb 1993 | A |
5304666 | McLain | Apr 1994 | A |
5431776 | Richardson et al. | Jul 1995 | A |
6294071 | Miller et al. | Sep 2001 | B1 |
6484883 | Edelstein | Nov 2002 | B1 |
6646147 | Richardson et al. | Nov 2003 | B2 |
20040016909 | Zhang et al. | Jan 2004 | A1 |
Number | Date | Country |
---|---|---|
2262186 | Sep 1999 | CA |
334310 | Jan 2001 | NZ |
Number | Date | Country | |
---|---|---|---|
20050034563 A1 | Feb 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10074251 | Feb 2002 | US |
Child | 10660795 | US |