The present invention relates to the field of processes for the hydrotreatment of hydrocarbon-containing feedstock, preferably of the gas oil type. The objective of the process is the production of a desulphurized hydrocarbon-containing flow, preferably of gas oil.
Generally, the purpose of the hydrotreatment process is to manufacture a hydrocarbon feedstock, in particular a gas oil cut, with the aim of improving its characteristics with regard to the presence of sulphur or other heteroatoms such as nitrogen, but also reducing the aromatic hydrocarbon compounds content by hydrogenation and thus improving the cetane number. In particular, the purpose of the process for the hydrotreatment of hydrocarbon-containing cuts is to remove the sulphur-or nitrogen-containing compounds contained therein in order for example to bring a petroleum product up to the specifications (sulphur content, aromatics content etc.) required for a given use (vehicle fuel, gasoline or gas oil, domestic fuel oil, jet fuel). Stricter vehicle pollution standards in the European Community have compelled refiners to dramatically reduce the sulphur content of diesel fuels and gasolines (to a maximum of 10 parts per million by weight (ppm) of sulphur on 1 Jan. 2009, as against 50 ppm on 1 Jan. 2005).
As shown by
The document U.S. Pat. No. 5,409,599 describes an improved hydrodesulphurization process, similar to the diagram shown by
The present invention proposes to optimize the process described by the document U.S. Pat. No. 5,409,599 in order in particular to reduce the sulphur and nitrogen content of the feedstock treated.
The present invention proposes to extract H2S and NH3 contained in the effluent originating from the first reactor and to maximize the flow rate of pure hydrogen introduced into the second reactor in order to improve the hydrodesulphurization performances in the second reactor.
The invention generally describes a process for the hydrotreatment of a hydrocarbon feedstock comprising sulphur- and nitrogen-containing compounds, in which the following stages are carried out:
a) the hydrocarbon-containing feedstock is separated into a fraction rich in heavy hydrocarbon compounds and a fraction rich in light hydrocarbon compounds,
b) a first stage of hydrotreatment is carried out by bringing the fraction rich in heavy hydrocarbon compounds and a gas flow comprising hydrogen into contact with a first hydrotreatment catalyst in a first reaction zone in order to produce a first desulphurized effluent comprising hydrogen, H2S and NH3,
c) the first effluent is separated into a first gaseous fraction comprising hydrogen, H2S and NH3, and a first liquid fraction,
d) the first gaseous fraction is purified in order to produce a hydrogen-rich flow,
e) the fraction rich in light hydrocarbon compounds is mixed with the first liquid fraction obtained in stage c) in order to produce a mixture,
f) a second stage of hydrotreatment is carried out by bringing the mixture obtained in stage e) and at least part of the hydrogen-rich flow produced in stage d) into contact with a second hydrotreatment catalyst in a second reaction zone Z2 in order to produce a second desulphurized effluent comprising hydrogen, NH3 and H2S,
g) the second effluent is separated into a second gaseous fraction comprising hydrogen, H2S and NH3 and a second liquid fraction,
h) at least part of the second gaseous fraction comprising hydrogen, H2S and NH3 is recycled in stage b) as a gas flow comprising hydrogen.
According to the invention, stages b) f) g) and h) can be carried out in a reactor, the first reaction zone and the second reaction zone being arranged in said reactor, the reaction zone being separated from the reaction zone by a liquid-tight, gas-permeable plate, the second liquid fraction being collected by said plate, the second gaseous fraction flowing from the first zone to the second zone through said plate.
A make-up of hydrogen can be added so as to carry out the second stage of hydrotreatment in the presence of said make-up of hydrogen, said make-up of hydrogen comprising at least 95% hydrogen by volume.
The first reaction zone can be utilized under the following conditions:
and the second reaction zone can be utilized under the following conditions:
Stage d) can implement a stage of washing with amines in order to produce said hydrogen-rich flow.
In stage c), the first effluent can be separated into a first liquid flow and a first gas flow; partial condensation can be carried out by cooling said first gas flow and the first partially condensed flow can be separated into a second liquid flow and a second gas flow, and in stage d) the first and the second gas flow can be brought into contact with an absorbent solution comprising amines in order to produce said hydrogen-rich flow.
Before carrying out stage e) said hydrogen-rich flow can be brought into contact with a recovery material in order to reduce the water content of said hydrogen-rich flow.
Stage a) can be carried out in a distillation column.
A hydrogen flow can be introduced into the column and the fraction rich in light hydrocarbon-containing compounds and comprising hydrogen can be removed at the top of the column, the hydrogen flow being selected from said hydrogen-rich flow and said make-up of hydrogen.
The first catalyst and the second catalyst can be independently selected from the catalysts composed of a porous mineral support, at least one metallic element selected from Group VI B and one metallic element selected from Group VIII.
The first and the second catalysts can be independently selected from a catalyst comprised of cobalt and molybdenum deposited on an alumina-based porous support and a catalyst composed of nickel and molybdenum deposited on an alumina-based porous support.
The hydrocarbon feedstock can be composed of a cut the initial boiling point of which is comprised between 100° C. and 250° C. and the final boiling point is comprised between 300° C. and 450° C.
Other features and advantages of the invention will be better understood and will become clearly apparent on reading the following description with reference to the drawings in which:
With reference to
The feedstock is fractionated into two cuts in the unit SEP in order to produce a light fraction removed via the conduit 2 and a heavy fraction removed via the conduit 3. The unit SEP can utilize a distillation column, a fractionation flask between a gaseous phase and a liquid phase, a stripping column. The heavy fraction has a higher boiling point than the light fraction.
The separation can be carried out in the unit SEP in order to produce a cut at a cut point comprised between 260° C. and 350° C., i.e. the light fraction comprises the compounds that vaporize at a temperature lower than the cut point temperature, and the heavy fraction comprises the compounds that vaporize at a temperature above the cut point temperature. Preferably, the unit SEP is operated so that the standardized volume flow rate (i.e. the volume flow rate at T=15° C. and P=1 bar) of the heavy fraction flowing in the conduit 3 is comprised between 30% and 80% of the standardized volume flow rate of the feedstock arriving via the conduit 1.
The heavy fraction arriving via the conduit 3 is mixed with a flow comprising hydrogen arriving via the conduit 8. The heavy fraction can optionally be heated before being introduced into the reaction zone Z1. Then the mixture is introduced into the reactor zone Z1. The reaction zone Z1 comprises at least one hydrotreatment catalyst. If necessary, before being introduced into Z1, the mixture can be heated and/or expanded.
The mixture of the heavy fraction and hydrogen is introduced into the reaction zone Z1 in order to be brought into contact with a hydrotreatment catalyst. The hydrotreatment reaction makes it possible to break down the impurities, in particular the impurities comprising sulphur or nitrogen and optionally to partially remove the aromatic hydrocarbon compounds and more particularly the polyaromatic hydrocarbon compounds. The destruction of the impurities leads to the production of a hydrorefined hydrocarbon-containing product and an acidic gas rich in H2S and in NH3, gases known to be hydrotreatment catalyst inhibitors and even, in certain cases, poisons. This hydrotreatment reaction also makes it possible to hydrogenate the olefins partially or totally, and the aromatic rings partially. This makes it possible to achieve a low polyaromatic hydrocarbon compounds content, for example a content less than 8% by weight in the gas oil treated.
The reaction zone Z1 can operate under the following operating conditions:
Hourly Space Velocity HSV (i.e. the ratio of the volume flow rate of the feedstock liquid to the volume of catalyst) comprised between 0.5 and 2 h−1
The operating conditions of the reaction zone Z1 and the catalyst contained in the zone Z1 can be selected in order to reduce the sulphur content so that the sulphur content in the effluent originating from the zone Z1 is reduced to a level comprised between 50 and 500 ppm by weight. Thus, the hydrogenation reactions of the sulphur-containing compounds that are easiest to carry out take place in the zone Z1.
The effluent originating from the reaction zone Z1 is introduced via the conduit 4 into the separation device D1 in order to separate a liquid fraction comprising the hydrocarbons of the heavy fraction and a gaseous fraction rich in hydrogen, into H2S and NH3. For example, the separation device D1 can utilize one or more gas and liquid separating flasks, optionally with heat exchangers in order to partially condense the gas flows. The liquid fraction is removed from D1 via the conduit 6. The gaseous fraction is removed from D1 via the conduit 5. Furthermore, in order to improve the extraction of the NH3, at least part of the effluent originating from the zone Z1 can be brought into contact with water injected via the conduit 26 into the device D1. In this case, an aqueous liquid fraction comprising NH3 is removed from the device D1 via the conduit 6b.
In the process according to the invention, the hydrocarbon liquid fraction removed from D1 comprises the sulphur-containing compounds of the heavy fraction that are most resistant to the hydrogenation reactions. According to the invention, the hydrocarbon liquid fraction is sent via the conduit 6 into the zone Z2 in order to hydrogenate the sulphur-containing compounds that are most resistant to the hydrogenation reactions.
In detail, the gaseous fraction rich in H2S and NH3 flowing in the conduit 5 is introduced into an amine-washing unit LA. In the unit LA, the gaseous fraction rich in H2S and NH3 and containing hydrogen is brought into contact with an absorbent solution containing amines. When brought into contact, the acidic gases are absorbed by the amines, which makes it possible to produce a hydrogen-rich flow. The documents FR2907024 and FR2897066 describe amine-washing processes which can be implemented in the amine-washing unit LA. The hydrogen-rich flow can optionally be brought into contact with adsorbents in order to remove water in particular. The hydrogen-rich gas can comprise at least 95% by volume, or even more than 99% by volume, or even more than 99.5% by volume of hydrogen. The hydrogen-rich gas is removed from the unit LA via the conduit 10, optionally compressed by a compressor and recycled to the reaction zone Z2 while being mixed with the light fraction arriving via the conduit 2. Alternatively, the hydrogen and the light fraction arriving via the conduit 2 can be mixed in the reaction zone Z2.
According to a variant, the hydrogen-rich gas removed from the unit LA via the conduit 10a is recycled in the separation unit SEP in order to promote separation by stripping: the hydrogen flow carries away the light compounds from the feedstock 1. In this embodiment, a significant portion, more than 70% or even more than 95% by volume, of the hydrogen arriving via the conduit 10a is to be found in the light fraction flowing in the conduit 2.
Furthermore an added portion of fresh hydrogen can be supplied via the conduit 11. The conduit 11 makes it possible to introduce hydrogen into the light fraction flowing in the conduit 2. The hydrogen flow arriving via the conduit 11 can be produced by a process commonly referred to as “steam reforming of natural gas” or “steam methane reforming” in order to produce a hydrogen flow from steam and natural gas. The hydrogen flow 11 can contain at least 95%, or even more than 98% by volume, or even more than 99% by volume, of hydrogen. The hydrogen flow can be compressed in order to be at the operating pressure of the reaction zone Z2. Preferably, according to the invention, the hydrogen flow 11 originates from a source external to the process, i.e. it is not made up of part of an effluent produced by the process.
According to a variant, the added portion of fresh hydrogen can be supplied via the conduit 11a into the separation unit SEP in order to promote separation by stripping: the hydrogen flow carries away the light compounds from the feedstock 1. In this embodiment, a significant portion, more than 70% or even more than 95% by volume, of the hydrogen arriving via the conduit 11a is to be found in the light fraction flowing in the conduit 2.
The light fraction comprising hydrogen arriving via the conduit 2 is optionally heated then mixed with the hydrocarbon liquid fraction arriving via the conduit 6. The pressure of the hydrocarbon liquid fraction removed from Z1 via the conduit 6 can be raised by means of the pump P1 in order to be at the operating pressure of the reaction zone Z2. Then the mixture is introduced into the reaction zone Z2. The reaction zone Z2 comprises at least one hydrotreatment catalyst. If necessary, before being introduced into the reaction zone Z2, the mixture can be heated and/or expanded.
The mixture of the light fraction and the hydrocarbon liquid fraction is introduced into the reaction zone Z2 in order to be brought into contact with a hydrotreatment catalyst. The hydrotreatment reaction makes it possible to break down the impurities, in particular the impurities comprising sulphur or nitrogen and optionally to partially remove the aromatic hydrocarbon compounds and more particularly the polyaromatic hydrocarbon compounds. The destruction of the impurities leads in particular to the production of a hydrorefined hydrocarbon-containing product and an acidic gas rich in H2S and NH3. Sending the purified hydrogen, i.e. without or almost without inhibiting compounds, in particular H2S and NH3, from the hydrogenation reaction into the zone Z2 makes it possible to maximize the partial pressure of hydrogen in the zone Z2 in order to carry out the most difficult hydrogenation reactions there. The purified hydrogen flow originates from the amine-washing unit LA and optionally from the make-up of hydrogen arriving via the conduit 11. Preferably, according to the invention, the whole of the flow originating from the amine-washing unit LA is introduced into the zone Z2. Preferably according to the invention, the hydrogen present in the zone Z2 originates solely and directly from the hydrogen-rich flow originating from the unit LA and from the added portion of hydrogen arriving via the conduit 11.
The reaction zone Z2 can operate under the following operating conditions:
The effluent originating from the reaction zone Z2 via the conduit 7 is introduced into the separation device D2 in order to separate a liquid fraction comprising the hydrocarbons and a gaseous fraction rich in hydrogen and in H2S and in NH3. For example, the separation device D2 can utilize one or more separating flasks, optionally with heat exchangers for condensing the gas flows. The liquid fraction is removed from D2 via the conduit 9. This liquid fraction constitutes the product of the process according to the invention, for example the gas oil depleted of sulphur-containing, nitrogen-containing and aromatic compounds. The gaseous fraction is removed from D2 via the conduit 8. The gaseous fraction is recycled via the conduit 8 in order to be mixed with the heavy fraction flowing in the conduit 3.
Preferably, according to the invention, the separation device D2 carries out one stage of separation between gas and liquid from the effluent arriving via the conduit 7. In other words, D2 utilizes only one separation device between gas and liquid. Then the gaseous fraction originating from the separation in D2 is sent directly into the zone Z1, preferably without undergoing purification treatment and without cooling. Thus the gaseous fraction originating from D2 contains hydrogen but also H2S and NH3. However, sending these compounds H2S and NH3 into the zone Z1 does not adversely affect the process according to the invention as the easiest hydrogenation reactions take place in the zone Z1. Preferably, the whole of the gaseous fraction originating from the separation device D2 is directly introduced into the zone Z1.
The process according to the invention has the advantage of being able to incorporate the reaction zones Z1 and Z2, as well as the separation device D2, in one and the same reactor as described with reference to
Furthermore, the process according to the invention makes it possible to adapt the stage of separation in the unit SEP, for example the cut point in the case of distillation, during the cycle and thus to reduce the liquid fraction treated in the reaction zone Z1 whilst using the same hydrogen flow rates, which will have a beneficial effect on the hydrogenation reactions. This flexibility makes it possible to adapt the treated flow rate between the reaction zone Z1 and the reaction zone Z2 as a function of the ageing of the catalyst and therefore the reduction in performance of the catalyst. Furthermore, it is possible to select the operating temperature of the reaction zone Z1 independently of the operating temperature of the reaction zone Z2. Furthermore, the pressure in the reaction zone Z2 can be greater than that in the reaction zone Z1, which is favourable to the hydrotreatment reactions and therefore positive, as it is in this zone Z2 that the compounds most resistant to the hydrotreatment reactions are treated.
The reaction zones Z1 and Z2 can contain catalysts with identical compositions or catalysts with different compositions. Furthermore in a reaction zone, it is possible to arrange one or more catalyst beds of identical composition, or several catalyst beds, the composition of the catalysts being different from one bed to the other. Furthermore, a catalytic bed can optionally be made up of layers of different catalysts.
The catalysts utilized in the reaction zones Z1 and Z2 can generally comprise a porous mineral support, at least one metal or metal compound of Group VIII of the periodic table of the elements (this group comprising in particular cobalt, nickel, iron, etc.) and at least one metal or metal compound of Group VIB of said periodic table (this group comprising in particular molybdenum, tungsten, etc.).
The sum of the metals or metallic compounds, expressed in weight of metal with respect to the total weight of the finished catalyst is often comprised between 0.5 and 50% by weight. The sum of the metals or compounds of metals of Group VIII, expressed in weight of metal with respect to the weight of the finished catalyst is often comprised between 0.5 and 15% by weight, preferably between 1 and 10% by weight. The sum of the metals or compounds of metals of Group VIB, expressed in weight of metal with respect to the weight of the finished catalyst is often comprised between 2 and 50% by weight, preferably between 5 and 40% by weight.
The porous mineral support can comprise, non-limitatively, one of the following compounds: alumina, silica, zirconium oxide, titanium oxide, magnesia, or two compounds selected from the above compounds, for example silica-alumina or alumina-zirconium oxide, or alumina-titanium oxide, or alumina-magnesia, or three compounds or more selected from the above compounds, for example silica-alumina-zirconium oxide or silica-alumina-magnesia. The support can also comprise, in whole or in part, a zeolite. Preferably the catalyst comprises a support composed of alumina, or a support composed mainly of alumina (for example from 80 to 99.99% by weight of alumina). The porous support can also comprise one or more other promoter elements or compounds, for example based on phosphorus, magnesium, boron, silicon, or comprising a halogen. The support can for example comprise from 0.01 to 20% by weight of B2O3, or SiO2, or P2O5, or a halogen (for example chlorine or fluorine), or 0.01 to 20% by weight of a combination of several of these promoters. Common catalysts are for example catalysts based on cobalt and molybdenum, or on nickel and molybdenum, or on nickel and tungsten, on an alumina support, this support being able to comprise one or more promoters as mentioned previously.
The catalyst can be in oxide form, i.e. it has undergone a calcination stage after impregnation of the metals on the support. Alternatively, the catalyst can be in dried form containing additives, i.e. the catalyst has not undergone a calcination stage after impregnation of the metals and of an organic compound on the support.
With reference to
Thus the distillation column C makes it possible to produce a light fraction removed via the conduit 2 and a heavy fraction removed via the conduit 3. The distillation column C can be operated in order to make a cut at a cut point comprised between 260° C. and 350° C., i.e. the light fraction comprises the compounds that vaporize at a temperature below the cut point temperature and the heavy fraction comprises the compounds that vaporize at a temperature above the cut point temperature. Preferably, the distillation column is operated so that the standardized volume flow rate (i.e. the volume flow rate at T=15° C. and P=1 bar) of the heavy fraction flowing in the conduit 3 is comprised between 30% and 80% of the standardized volume flow rate of the feedstock arriving via the conduit 1. In order to modify the operating conditions of the column C, it is possible in particular to modify the flow rate and/or the temperature of the reboiling flow produced by the reboiler R, and/or it is possible to modify the flow rate and/or the temperature of the reflux arriving via the conduit 22.
The heavy fraction arriving via the conduit 3 is introduced into the bottom part of the reactor R comprising the reaction zone Z1 after being optionally heated in an exchanger or in a furnace. The heavy fraction is introduced into the reactor R between the plate P and the zone Z1. In the space between the plate P and the zone Z1, the heavy fraction is mixed with a flow of hydrogen, H2S and NH3 arriving from the zone Z2 via the separator plate P. Then the mixture passes through the reaction zone Z1.
The effluent originating from the zone Z1 is removed from the reactor via the conduit 4 in order to be introduced into the separating flask B1. The flask B1 makes it possible to separate a first hydrocarbon-containing liquid fraction removed via the conduit 23 and a first gaseous fraction removed via the conduit 24. The first gaseous fraction flowing in the conduit 24 is cooled by the heat exchanger E2 in order to be partially condensed. Preferably, the exchanger E2 condenses the majority of the hydrocarbons contained in the effluent 24 and retains the majority of the hydrogen, NH3 and H2S in gaseous form. The partially condensed flow originating from E2 is introduced into the separating flask B2 in order to separate a second liquid fraction comprising the hydrocarbons and a second gaseous fraction rich in hydrogen, NH3 and H2S. The hydrocarbon-containing liquid fraction is removed from B2 via the conduit 25. The gaseous fraction is removed from B2 via the conduit 5. The liquid fractions rich in hydrocarbons removed via the conduits 23 and 25 are combined, pumped by the pump
P1 in order to be sent via the conduit 6 to the zone Z2. Optionally, a flow of water can be added via the conduit 26 to the gaseous fraction flowing in the conduit 24 in order to allow the NH3 present in the gaseous fraction to dissolve in an aqueous fraction. In this case, the aqueous fraction containing the dissolved NH3 is also separated in the flask B2, the aqueous fraction being removed via the conduit 6b.
Optionally, part or all of the hydrocarbon-containing liquid fraction originating from B2 via the conduit 25 is removed from the process via the conduit 25b as a desulphurized cut, for example as a desulphurized gas oil cut. In fact, depending on the operating conditions of the zone Z1, this hydrocarbon-containing liquid fraction can meet specifications in terms of sulphur, nitrogen and content of aromatic hydrocarbon compounds.
The flow of hydrogen and acidic gas flowing in the conduit 5 is introduced into the amine-washing unit LA. The hydrogen-rich flow removed from the LA via the conduit 10 is compressed by the compressor K1 in order to be introduced into the reactor R at the top of the reaction zone Z2. A make-up of hydrogen can be supplied to the process via the conduit 11 in order to improve the reaction in the zone Z2. With reference to
The light fraction arriving via the conduit 2 is mixed with the hydrocarbon flow arriving via the conduit 6 after being optionally heated in a heat exchanger and/or in a furnace. The mixture is introduced into the reactor R at the top of the reaction zone Z2. In the space situated above the reaction zone Z2, the hydrocarbons arriving via the conduit 6 mix with the hydrogen arriving via the conduit 10. The mixture of hydrocarbons and hydrogen passes through the reaction zone Z2. The gas and the liquid comprising the effluent leaving the reaction zone Z2 are separated by the plate P: the gas passes through the plate P in order to arrive in the reaction zone Z1, the liquid collected by the plate P is removed from the reactor R via the conduit 9. For example, it is possible to utilize a separator plate provided with openings which are extended upwards by portions of tube. The top parts of the portions of tube are capped. Thus, the descending liquid is collected by the plate, the tubular portion preventing the liquid from passing through the holes. A conduit passing through the wall of the reactor R1 makes it possible to remove the liquid collected on the plate. The descending gas passes through the tubes and openings from the zone Z2 to the zone Z1.
The diagram in
With reference to
The diagram in
With reference to
The remainder of the process of
The examples presented below illustrate the operation of the process according to the invention and show its advantages. In the examples presented, the cetane numbers are determined according to the method described by the standard ASTM D976.
The process of
The reactor R101 operates with a CoMo catalyst on an alumina support with the commercial reference HR626 from the company Axens.
The operating conditions of the reactor R101 are as follows:
The diagram in
The feedstock treated by the two processes comprises 80% by weight of GOSR (i.e. a gas oil originating from atmospheric distillation) and 20% by weight of LCO (i.e. a cut originating from catalytic cracking). The feedstock is characterized by a density of 865 kg/m3 at 15° C. and contains 9000 ppm by weight of sulphur and 300 ppm by weight of nitrogen.
The table below presents the main results of operation of the two processes:
This comparative table shows the advantages identified for the process according to the invention:
The process represented diagrammatically by
With reference to
The diagram in
The feedstock treated by the two processes comprises 80% by weight of GOSR (i.e. a gas oil originating from atmospheric distillation) and 20% by weight of LCO (i.e. a cut originating from catalytic cracking). The feedstock is characterized by a density of 865 kg/m3 at 15° C. and contains 9000 ppm by weight of sulphur and 300 ppm by weight of nitrogen.
This comparative table shows that the process of
Number | Date | Country | Kind |
---|---|---|---|
1361803 | Nov 2013 | FR | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2014/073907 | 11/6/2014 | WO | 00 |