Process for the manufacture of dichloropropanol

Information

  • Patent Grant
  • 8258350
  • Patent Number
    8,258,350
  • Date Filed
    Thursday, March 6, 2008
    16 years ago
  • Date Issued
    Tuesday, September 4, 2012
    12 years ago
Abstract
Process for manufacturing dichloropropanol via reaction between glycerol and/or monochloropropanediol and a chlorinating agent in a reactor which is supplied with one or more liquid streams, in which the sum of the glycerol and monochloropropanediol contents in all the liquid streams introduced into the reactor is less than 50 wt % and in which all the liquid streams introduced into the reactor comprise at least one liquid recycling stream, the recycling stream forming at least 10 wt % of all the liquid streams introduced into the reactor.
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

The present patent application is a U.S. national stage application under 35 U.S.C. §371 of International Application No. PCT/EP2008/052771 filed Mar. 6, 2008, which claims the benefit of the French patent application No. FR 0753689 filed on Mar. 7, 2007, and of the provisional U.S. patent application No. 61/013,680 filed on Dec. 14, 2007, the content of each of these applications being incorporated herein by reference for all purposes.


The present invention relates to a process for manufacturing dichloropropanol. The present invention relates more specifically to a process for manufacturing dichloropropanol via reaction between glycerol and/or monochloropropanediol and a chlorinating agent.


Dichloropropanol is a reaction intermediate in the manufacture of epichlorohydrin and epoxy resins (Kirk-Othmer Encyclopedia of Chemical Technology, Fourth Edition, 1992, Vol. 2, page 156, John Wiley & Sons, Inc.).


According to known processes, dichloropropanol can be obtained in particular by hypochlorination of allyl chloride, by chlorination of allyl alcohol and by hydrochlorination of glycerol. The latter process exhibits the advantage that the dichloropropanol can be obtained starting from fossil raw materials or renewable raw materials and it is known that petrochemical natural resources, from which the fossil materials originate, for example oil, natural gas or coal, available on Earth are limited.


International Application WO 2005/021476 describes a process for manufacturing dichloropropanol via reaction between glycerol and/or monochloropropanediol and gaseous hydrogen chloride in the presence of acetic acid as a catalyst. The glycerol and/or monochloropropanediol content in the entirety of the liquid supply of the reactor is at least 50 wt %. The entirety of the supply comprises a recycling stream. In this process, undesirable products are formed and collected as residues in a tank.


The present invention aims to solve this problem by providing a novel process which limits the formation of undesirable by-products without however decreasing the selectivity of the reaction for dichloropropanol.


The invention hence relates to a process for manufacturing dichloropropanol via reaction between glycerol and/or monochloropropanediol and a chlorinating agent in a reactor which is supplied with one or more liquid streams, in which the sum of the glycerol and monochloropropanediol contents in all the liquid streams introduced into the reactor is less than 50 wt % and in which all the liquid streams introduced into the reactor comprise at least one liquid recycling stream, the recycling stream forming at least 10 wt % of all the liquid streams introduced into the reactor.


One of the main features of the present invention lies in the fact that the sum of the glycerol and monochloropropanediol contents in all the liquid streams that supply the glycerol chlorination reactor is less than 50 wt %. This makes it possible to reduce the amount of undesirable by-products. An additional advantage of this procedure is in tolerating a greater content of by-products in the reactor with, as a result, a concomitant decrease of the purge flow from the reactor and of the concentration of recoverable products in the purge flow, and therefore a reduction in the size of the installations for treating the purges. All these advantages contribute to a reduction in the overall cost of the process. Furthermore, this also makes it possible to reduce the reaction volume. As the reactions are balanced, it is thus possible to increase the rate of dichloropropanol synthesis by ensuring an effective removal of the latter from the reaction medium, in order to maintain a low concentration of dichloropropanol. This requires removing a large amount of the reaction medium, separating the dichloropropanol from the rest of the constituents of the reaction medium and recycling the rest of the reaction medium. These two joint operations, that is to say the removal of dichloropropanol and keeping a greater content of by-products in the reactor may be expressed by the glycerol and monochloropropanediol content of all the liquid streams that supply the glycerol chlorination reactor.


Another of the main features of the present invention lies in the fact all the liquid streams introduced into the reactor comprise at least one liquid recycling stream, the recycling stream forming at least 10 wt % of all the liquid streams introduced into the reactor. Such a recycling stream has several advantages. Firstly, it helps to lower the sum of the glycerol and monochloropropanediol contents in all the liquid streams that supply the glycerol chlorination reactor to less than 50 wt % without introducing external compounds and the need to recycle and dispose of such compounds. External compounds do not comprise the reactants used and the products formed during the chlorination reaction. Solvents are examples of external compounds. Secondly, such a recycling stream allows reducing the purge flow from the reactor, and therefore a reduction in the size of the installations for treating the purges. All these advantages contribute to a reduction in the overall cost of the process.


The expression “liquid stream that supplies the chlorination reactor” is understood to mean any stream of material that is liquid at the temperature for introduction into the reactor, and which is introduced into the reactor. These liquid streams may contain various compounds such as, for example, glycerol, monochloropropanediol and the chlorinating agent, impurities present in the glycerol, monochloropropanediol and chlorinating agent, an organic solvent, water, a catalyst for the reaction, reaction intermediates and products and by-products of the reaction.


The expression “liquid recycling stream” is understood to mean any stream of material derived from at least one step of the dichloropropanol manufacturing process located downstream of the reactor, which is liquid at the temperature for introduction into the reactor, and which is introduced into the reactor.


This step of the process downstream of the reactor may be a physical or chemical treatment step. Among the physical treatment steps, mention may, for example, be made of the operations for separation via stripping, distillation, evaporation, extraction, settling, centrifugation, precipitation, filtration and adsorption. Among the chemical treatment steps, mention may, for example, be made of a hydrolysis treatment intended to recover an optional catalyst and a transesterification treatment intended to recover the dichloropropanol and the catalyst.


The removal of water from the reaction medium via distillation of an azeotropic water/dichloropropanol mixture is an example of a physical treatment step downstream of the reactor. The liquid return stream of the distillation column is considered to be a recycling stream. The distillation system may be located on top of the chlorination reactor or in an external circulation loop of the reaction mixture.


In the process according to the invention, the liquid recycling stream forms at least 10 wt % of all the liquid streams introduced into the reactor, preferably at least 20 wt %, more preferably at least 50 wt %, even more preferably at least 90 wt % and most particularly preferably at least 95 wt %. The recycling stream forms at most 99 wt % of all the liquid streams introduced into the reactor, and particularly preferably at most 97.5%.


The process according to the invention may be carried out in batch, semi-continuous or continuous mode. Continuous mode is preferred.


In the process according to the invention, the liquid recycling stream generally comprises at least one of the following compounds: glycerol, monochloropropanediol, the chlorinating agent, a carboxylic acid, a carboxylic acid salt, an inorganic salt, a glycerol ester, a polyester of glycerol, a monochloropropanediol ester, a poly ester of monochloropropanediol, water, a catalyst, a solvent, dichloropropanol, a dichloropropanol ester, a glycerol oligomer, a partially chlorinated and/or esterified glycerol oligomer.


In the process according to the invention, the liquid recycling stream generally comprises from 0.01 to 25 wt % of glycerol, preferably from 0.1 to 20 wt %, more preferably from 0.2 to 15 wt % and most particularly preferably from 0.3 to 10 wt %.


In the process according to the invention, the liquid recycling stream generally comprises from 0.01 to 40 wt % of glycerol esters, preferably from 0.05 to 30 wt %, more preferably from 0.1 to 20 wt % and most particularly preferably from 0.2 to 15 wt %.


In the process according to the invention, the liquid recycling stream generally comprises from 0.1 to 70 wt % of monochloropropanediol, preferably from 0.5 to 60 wt %, more preferably from 1 to 50 wt % and most particularly preferably from 6 to 49 wt %.


In the process according to the invention, the liquid recycling stream generally comprises from 5 to 90 wt % of monochloropropanediol esters, preferably from 10 to 85 wt %, more preferably from 20 to 82 wt % and most particularly preferably from 25 to 80 wt %.


In the process according to the invention, the liquid recycling stream generally comprises from 0.1 to 60 wt % of partially chlorinated and/or esterified glycerol oligomers, preferably from 0.2 to 50 wt %, more preferably from 1 to 45 wt % and most particularly preferably from 2 to 40 wt %.


The glycerol in the process according to the invention may be obtained starting from fossil raw materials or starting from renewable raw materials, preferably starting from renewable raw materials.


The expression “fossil raw materials” is understood to mean materials derived from the treatment of petrochemical natural resources, for example oil, natural gas and coal. Among these materials, organic compounds that consist of a number of carbon atoms which is a multiple of 3 are preferred. Allyl chloride, allyl alcohol and “synthetic” glycerol are particularly preferred. The term “synthetic” glycerol is understood to mean a glycerol generally obtained from petrochemical resources.


The expression “renewable raw materials” is understood to mean materials derived from the treatment of renewable natural resources. Among these materials, “natural” glycerol is preferred. “Natural” glycerol may, for example, be obtained by conversion of sugars via thermochemical processes, these sugars possibly being obtained starting from biomass, as described in “Industrial Bioproducts: Today and Tomorrow, Energetics, Incorporated for the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Office of the Biomass Program, July 2003, pages 49, 52 to 56”. One of these processes is, for example, catalytic hydrogenolysis of sorbitol obtained by thermochemical conversion of glucose. Another process is, for example, catalytic hydrogenolysis of xylitol obtained by hydrogenation of xylose. Xylose may, for example, be obtained by hydrolysis of hemicellulose contained in maize fibres. The expressions “natural glycerol” or “glycerol obtained from renewable raw materials” are understood to mean, in particular, glycerol obtained during the manufacture of biodiesel or else glycerol obtained during conversions of fats or oils of vegetable or animal origin, in general such as saponification, transesterification or hydrolysis reactions.


Among the oils that can be used to manufacture natural glycerol, mention may be made of all common oils, such as palm, palm kernel, coconut, babassu, old or new rapeseed, sunflower, maize, castor and cottonseed oils, arachis, soybean, linseed and sea kale oils and all the oils derived from, for example, sunflower or rapeseed plants obtained by genetic modification or hybridization.


Use can even be made of used frying oils, various animal oils, such as fish oils, tallow, lard and even abattoir fats.


Among the oils used, mention may also be made of oils partially modified, for example, by polymerization or oligomerization such as, for example, the “stand oils” of linseed and sunflower oils and blown vegetable oils.


A particularly suitable glycerol may be obtained during the conversion of animal fats. Another particularly suitable glycerol may be obtained during the manufacture of biodiesel. Another particularly suitable glycerol may be obtained during the fatty acid manufacture.


In one embodiment of the process according to the invention, a glycerol external to the process according to the invention is used. The term “external” glycerol is understood to mean glycerol which is not recycled in the process according to the invention.


In another embodiment of the process according to the invention, a mixture of glycerol “external” to the process according to the invention and of glycerol “internal” to the process according to the invention is used. The term “internal” glycerol is understood to mean glycerol which has been separated from the reaction products formed in the process according to the invention and which has then been recycled in the process according to the invention.


The monochloropropanediol used in the process according to the invention may be obtained by any route, for example by reaction between glycerol and the chlorinating agent or by hydrolysis of epichlorohydrin.


In a first embodiment variant of the process according to the invention, a monochloropropanediol extrinsic to the process according to the invention is used. The term “extrinsic” monochloropropanediol is understood to mean monochloropropanediol which is not one of the products formed in the process according to the invention.


In a second embodiment variant of the process according to the invention, which is preferred, a monochloropropanediol intrinsic to the process according to the invention is used. The term “intrinsic” monochloropropanediol is understood to mean monochloropropanediol which is one of the products formed in the process according to the invention, which has been separated from the other reaction products and which has then been recycled in the process according to the invention.


In the process according to the invention, the sum of the glycerol and monochloropropanediol contents in all the liquid streams introduced into the reactor is preferably less than or equal to 49 wt %, more preferably less than or equal to 45 wt % and most particularly preferably less than or equal to 40 wt %. This content is generally greater than 1 wt %.


In the process according to the invention, the glycerol content in all the liquid streams introduced into the reactor is preferably less than or equal to 49 wt %, more preferably less than or equal to 30 wt % and most particularly preferably less than or equal to 20 wt %. This content is generally greater than 1 wt %.


When the glycerol and monochloropropanediol are present in all the liquid streams introduced into the reactor, the glycerol content in the mixture of glycerol and monochloropropanediol is generally greater than or equal to 1 wt %, usually greater than or equal to 5 wt %. This content is generally less than or equal to 99.9 wt %, usually less than or equal to 90 wt %.


In the process according to the invention, the chlorinating agent generally comprises hydrogen chloride. The hydrogen chloride may be gaseous hydrogen chloride, an aqueous solution of hydrogen chloride or a mixture of the two, preferably gaseous hydrogen chloride or a mixture of gaseous hydrogen chloride and an aqueous solution of hydrogen chloride.


In the process according to the invention, the reaction between glycerol and/or the chlorinating agent may be carried out in the presence of a catalyst, preferably a carboxylic acid or a carboxylic acid derivative, and most particularly preferably adipic acid or an adipic acid derivative. The expression “carboxylic acid derivatives” is understood to mean carboxylic acid halides, carboxylic acid esters, carboxylic acid anhydrides, carboxylic acid amides and mixtures of at least two of them.


In the process according to the invention, it is possible to use an organic solvent, such as a chlorinated organic solvent, an alcohol, a ketone, an ester or an ether, a non-aqueous solvent that is miscible with glycerol and/or chloropropanediol such as dioxane, phenol, cresol and dichloropropanol, or heavy products from the reaction, such as glycerol oligomers that are at least partially chlorinated and/or esterified.


In the process for manufacturing dichloropropanol according to the invention, the reaction between glycerol and/or chloropropanediol, and the chlorinating agent is preferably carried out in a liquid reaction medium. The liquid reaction medium may be single phase or multiphase.


The liquid reaction medium is formed by all the solid, liquid or gaseous compounds dissolved or dispersed at the reaction temperature.


The reaction medium generally comprises the reactants, catalyst, solvent, impurities present in the reactants, in the solvent and in the catalyst, reaction intermediates and products and by-products of the reaction.


The term “reactants” is understood to mean glycerol and/or monochloropropanediol, and the chlorinating agent. The monochloropropanediol may be 3-chloro-1,2-propanediol or 2-chloro-1,3-propanediol or a mixture of these two isomers.


Among the impurities present in the glycerol, mention may be made of carboxylic acids, carboxylic acid salts, of fatty acids esters such as mono-, di- and triglycerides, fatty acids esters with alcohols used during transesterification, inorganic salts such as alkali and alkaline-earth metal chlorides and sulphates.


Among the reaction intermediates, mention may be made of monochloropropanediol and its esters and/or polyesters, esters and/or polyesters of glycerol and dichloropropanol esters.


The glycerol ester may therefore be, depending on the case, an impurity of the glycerol or a reaction intermediate.


The monochloropropanediol may be, depending on the case, a reactant or a reaction intermediate.


The expression “products of the reaction” is understood to mean dichloropropanol and water.


The dichloropropanediol may be 1,3-dichloro-2-propanol or 2,3-dichloro-1-propanol or a mixture of these two isomers.


The water may be water formed in the chlorination reaction and/or water introduced into the process, for example via the glycerol and/or the chlorinating agent.


Among the by-products, mention may be made, for example, of partially chlorinated and/or esterified glycerol oligomers.


The reaction intermediates and the by-products may be formed in the various steps of the process, such as for example, during the dichloropropanol manufacturing step and during the steps for separating the dichloropropanol.


In the process according to the invention, when the reactor is supplied by a liquid stream, this stream comprises the streams of reactants, catalyst, solvent and the recycling stream or streams.


In the process according to the invention, when the reactor is supplied by several liquid streams, these streams comprise the streams of reactants, catalyst and solvent, and recycling streams and mixtures thereof, and one of the streams is composed solely of a recycling stream.


In the process according to the invention, the reaction between glycerol and/or monochloropropanediol and the chlorinating agent is carried out at a temperature generally greater than or equal to 70° C., preferably greater than or equal to 90° C. and most particularly preferably greater than or equal to 110° C. This reaction temperature is generally less than or equal to 160° C., preferably less than or equal to 150° C. and most particularly preferably less than or equal to 140° C.


In the process according to the invention, the reaction between glycerol and/or monochloropropanediol and the chlorinating agent is carried out at a partial pressure of hydrogen chloride generally greater than or equal to 0.002 bar, preferably greater than or equal to 0.02 bar and most particularly preferably greater than or equal to 0.05 bar. This pressure is generally less than or equal to 50 bar, preferably less than or equal to 30 bar and most particularly preferably less than or equal to 20 bar.


In one embodiment of the process according to the invention, the content of hydrogen chloride in the liquid reaction medium relative to the sum of the water and hydrogen chloride contents in the liquid reaction medium is generally less than or equal to 20 wt %, preferably less than or equal to 17 wt % and more particularly preferably less than or equal to 15 wt %.


In another embodiment of the process according to the invention, the content of hydrogen chloride in the liquid reaction medium relative to the sum of the water and hydrogen chloride contents in the liquid reaction medium is generally greater than or equal to 20 wt %, preferably greater than or equal to 30 wt % and more particularly preferably greater than or equal to 40 wt %.


The invention also relates to a process for manufacturing epichlorohydrin comprising the process for manufacturing dichloropropanol followed by a process for the dehydrochlorination of dichloropropanol.


The epichlorohydrin obtained by dehydrochlorination of dichloropropanol may be used in the manufacture of epoxy resins.


The invention finally relates to a process for manufacturing epoxy resins, in which epichlorohydrin, at least one part of which was obtained in the process for manufacturing epichlorohydrin according to the invention, is subjected to a reaction with at least one compound containing at least two active hydrogen atoms. These compounds comprise polyphenols, monoamines and diamines, aminophenols, heterocyclic imides and amides, diols including ethylene glycol and propylene glycol and aliphatic polyols, and fatty acid dimers. In the process for manufacturing epoxy resins, another part of the epichlorohydrin may be obtained by a process other than the dehydrochlorination of dichloropropanol derived from the chlorination of glycerol, such as a process for dehydrochlorination of dichloropropanol derived from hypochlorination of allyl chloride, a process for dehydrochlorination of dichloropropanol derived from chlorination of allyl alcohol, or an allyl chloride epoxidation process.


The epoxy resins thus obtained may be used in coating applications and in structural applications. The coating applications relate to the fields of maritime transport and of industrial maintenance (anticorrosion primer paints for metal and concrete structures), of coatings for metallic containers (food preserves, cans for drinks, drums, buckets and aerosol bottles) and for windings, of motor vehicle coatings (primers), of inks and masks for electronic circuits. The structural applications relate to the fields of structural composites (epoxy resin composites with glass, boron, carbon and aromatic polyamide fibres), of civil engineering, of floor covering (paints for coating floors, parquet, paving, tiling, self-levelling coatings, roughcast floors, tempered floors, floor coverings for cold rooms), of construction, of electrical equipment (sealing of electrical and electromechanical devices such as battery housings, resistors, fuses, thermal circuit breakers, cable joints, windings) and of electronic equipment (coatings and laminated sheets for printed circuits and encapsulation of printed circuits), of adhesives (bonding of different materials such as metals, glass, ceramics, wood, concrete, plastics) and of tooling (prototypes, master patterns, moulds and other parts) for the aerospace, automotive, foundry and maritime construction industries.


Epoxy resins also find applications in the fields of energy (wind energy), of aeronautics (honeycomb sandwich panels, helicopter rotor blades, cowls and engine nacelles, flaps, ailerons, rudders) and of fluid (gas, oil) transport.


The example below is intended to illustrate the invention without, however, limiting it.







EXAMPLE 1
According to the Invention


FIG. 1 represents one particular scheme of an installation which has been used to apply the dichloropropanol production process according to the invention.


A reactor (4) was continuously supplied, at 130° C. and at atmospheric pressure, with glycerol via the line (1) and a 34 wt % aqueous solution of hydrogen chloride via the line (2). A distillation column (6) was supplied via the line (5) with a gas phase produced by the reactor (4); the residue from the column (6) was recycled via the line (8) to the reactor (4). The production stream (7) contains most of the water produced by the process and a first part of the dichloropropanol production. A liquid purge was drawn off from the reactor (4) via the line (9) and supplied an evaporator (10) where an operation of partial evaporation of the mixture was carried out by heating; the gas phase which contains most of the hydrogen chloride and the water from the stream (9) was recycled via the line (11) to the bottom of the column (6). A stripping column (13) was supplied by the liquid phase coming from the evaporator (10) via the line (12) and by a stream of nitrogen introduced via the line (16); a second part of the dichloropropanol production was collected at the top of the column (13) via the line (14) and the residue from the column (13) was recycled to the reactor (4) via the line (15). A purge of the reaction mixture from the reactor (4), in which the heavy by-products of the reaction, such as chlorinated glycerol oligomers, accumulated, was carried out in batch mode via the line (17). The amount of catalyst removed from the reactor via the purge was compensated for by an addition of catalyst via the line (3). The weight proportions of glycerol introduced into the reactor (4) via the lines (1) and (15) and of glycerol monochlorohydrin introduced via the line (15) were respectively equal to 3.9% and 14.1% of the total of the liquid streams supplying the reactor via the lines (1), (2), (8) and (15). The recycling stream which supplied the reactor (4) via the lines (8) and (15) was 90% of all of the liquid streams introduced into the reactor (4).


EXAMPLE 2
Not According to the Invention

Aqueous hydrochloric acid with a concentration of 4 mol of hydrogen chloride/kg of solution (96.8 g/h), glycerol (22 g/h) and caprylic acid (6.37 g/h) have been introduced at a constant flow rate into a 350 ml glass reactor thermostatted at a temperature of 120° C. The reactor, which functioned at atmospheric pressure, was equipped with an overflow system for maintaining a constant volume of liquid. The reaction mixture fraction that was vaporized was evacuated from the reactor and condensed at ambient temperature. The condensate separated into 2 phases: a dense organic phase containing mainly dichloropropanol and a lighter aqueous phase containing most of the hydrochloric acid which had not reacted. The liquid mixture collected at the overflow outlet contained the remainder of the dichloropropanol production. No flow was recycled to the reactor. The process was operated during 25 h to equilibration. The global dichloropropanol productivity estimated from the flows and the compositions of the condensate and the overflow outlet was 26.4 g dichloropropanol/h/l.


EXAMPLE 3
According to the Invention

Aqueous hydrochloric acid with a concentration of 4 mol of hydrogen chloride/kg of solution (98.7 g/h), glycerol (22 g/h) and caprylic acid (6.21 g/h) have been introduced at a constant flow rate into a 350 ml glass reactor thermostatted at a temperature of 119.4° C. The reactor, which functioned at atmospheric pressure, was equipped with an overflow system for maintaining a constant volume of liquid. The reactor was surmounted by a distillation column for rectifying the reaction medium fraction vaporized. The reflux to the column was adjusted so that a flow of 155 g/h of liquid was returned from the distillation column to the reactor. The mixture exiting the top of the distillation column was condensed at ambient temperature. The condensate separated into 2 phases: a dense organic phase containing mainly dichloropropanol and a lighter aqueous phase containing most of the hydrochloric acid which had not reacted. The liquid mixture collected at the overflow outlet contained the remainder of the dichloropropanol production. The global dichloropropanol productivity estimated from the flows and the compositions of the condensate and the overflow outlet after equilibration was 46 g dichloropropanol/h/l.

Claims
  • 1. A process for manufacturing dichloropropanol comprising a reaction between glycerol and/or monochloropropanediol and a chlorinating agent in a reactor which is supplied with one or more liquid streams, wherein the sum of the glycerol and monochloropropanediol contents in all the liquid streams introduced into the reactor is less than 50 wt %, and wherein all the liquid streams introduced into the reactor comprise at least one liquid recycling stream, the recycling stream forming at least 10 wt % of all the liquid streams introduced into the reactor.
  • 2. The process according to claim 1, wherein the liquid recycling stream forms at least 20 wt % and at most 99 wt % of all the liquid streams introduced into the reactor.
  • 3. The process according to claim 1, wherein the reactor is supplied in continuous mode.
  • 4. The process according to claim 1, wherein the liquid recycling stream comprises at least one of the following compounds selected from the group consisting of glycerol, monochloropropanediol, the chlorinating agent, a salt, a glycerol ester, a monochloropropanediol ester, water, a catalyst, a solvent, dichloropropanol, a dichloropropanol ester, a glycerol oligomer, a chlorinated, and esterified glycerol oligomer.
  • 5. The process according to claim 1, wherein the recycling stream contains from 0.01 to 25 wt % of glycerol.
  • 6. The process according to claim 1, wherein the recycling stream contains from 0.1 to 70 wt % of monochloropropanediol.
  • 7. The process according to claim 1, wherein the sum of the glycerol and monochloropropanediol contents in all the liquid streams introduced into the reactor is less than or equal to 40 wt %.
  • 8. The process according to claim 1, wherein the glycerol is obtained starting from renewable raw materials and wherein the chlorinating agent contains gaseous hydrogen chloride or a mixture of gaseous hydrogen chloride and an aqueous solution of hydrogen chloride.
  • 9. The process according to claim 1, which is followed by dehydrochlorination of the dichloropropanol manufactured by said process to manufacture epichlorohydrin.
  • 10. The process according to claim 9, wherein the epichlorohydrin is utilized in the manufacture of epoxy resins.
Priority Claims (1)
Number Date Country Kind
07 53689 Mar 2007 FR national
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/EP2008/052711 3/6/2008 WO 00 9/3/2009
Publishing Document Publishing Date Country Kind
WO2008/107468 9/12/2008 WO A
US Referenced Citations (111)
Number Name Date Kind
280893 Baujard Jul 1883 A
865727 Queneau Sep 1907 A
2060715 Arvin Nov 1936 A
2063891 Dreyfus Dec 1936 A
2144612 Britton et al. Jan 1939 A
2198600 Britton et al. Apr 1940 A
2248635 Marple et al. Jul 1941 A
2319876 Moss May 1943 A
2444333 Castan Jun 1948 A
2505735 Halbedel Apr 1950 A
2726072 Herman Dec 1955 A
2811227 O'Connor Oct 1957 A
2829124 Napravnik et al. Apr 1958 A
2860146 Furman et al. Nov 1958 A
2876217 Paschall Mar 1959 A
2945004 Greenlee Jul 1960 A
2960447 Anderson et al. Nov 1960 A
3026270 Robinson, Jr. Mar 1962 A
3061615 Viriot et al. Oct 1962 A
3121727 Baliker et al. Feb 1964 A
3135705 Vandenberg Jun 1964 A
3158580 Vandenberg Nov 1964 A
3158581 Vandenberg Nov 1964 A
3247227 White Apr 1966 A
3260059 Rosenberg et al. Jul 1966 A
3341491 Robinson et al. Sep 1967 A
3355511 Schwarzer Nov 1967 A
3385908 Schwarzer May 1968 A
3445197 Resh et al. May 1969 A
3457282 Polak et al. Jul 1969 A
3618295 Geiger et al. Nov 1971 A
3711388 Gritzner Jan 1973 A
3766221 Becker Oct 1973 A
3839169 Moyer Oct 1974 A
3865886 Schindler et al. Feb 1975 A
3867166 Sullivan Feb 1975 A
3954581 Carlin May 1976 A
3968178 Obrecht et al. Jul 1976 A
4003723 Schafer et al. Jan 1977 A
4011251 Tjurin et al. Mar 1977 A
4024301 Witenhafer et al. May 1977 A
4127594 Anderson et al. Nov 1978 A
4173710 Boulet et al. Nov 1979 A
4197399 Noel et al. Apr 1980 A
4220529 Daude-Lagrave Sep 1980 A
4255470 Cohen et al. Mar 1981 A
4294776 Hardy et al. Oct 1981 A
4390680 Nelson Jun 1983 A
4405465 Moore et al. Sep 1983 A
4415460 Suciu et al. Nov 1983 A
4464517 Makino et al. Aug 1984 A
4499255 Wang et al. Feb 1985 A
4595469 Foller Jun 1986 A
4609751 Hajjar Sep 1986 A
4634784 Nagato et al. Jan 1987 A
4655879 Brockmann et al. Apr 1987 A
4935220 Schneider et al. Jun 1990 A
4960953 Jakobson et al. Oct 1990 A
4973763 Jakobson et al. Nov 1990 A
4990695 Buenemann et al. Feb 1991 A
5041688 Jakobson et al. Aug 1991 A
5200163 Henkelmann et al. Apr 1993 A
5278260 Schaffner et al. Jan 1994 A
5286354 Bard et al. Feb 1994 A
5344945 Grunchard Sep 1994 A
5359094 Teles et al. Oct 1994 A
5393428 Dilla et al. Feb 1995 A
5445741 Dilla et al. Aug 1995 A
5478472 Dilla et al. Dec 1995 A
5567359 Cassidy et al. Oct 1996 A
5578740 Au et al. Nov 1996 A
5679839 Armand et al. Oct 1997 A
5710350 Jeromin et al. Jan 1998 A
5731476 Shawl et al. Mar 1998 A
5744655 Thomas et al. Apr 1998 A
5779915 Becker et al. Jul 1998 A
5908946 Stern et al. Jun 1999 A
5993974 Fukushima et al. Nov 1999 A
6024839 Schufeldt Feb 2000 A
6142458 Howk Nov 2000 A
6177599 Cowfer et al. Jan 2001 B1
6270682 Santen et al. Aug 2001 B1
6288248 Strebelle et al. Sep 2001 B1
6288287 Ueoka et al. Sep 2001 B2
6350888 Strebelle et al. Feb 2002 B1
6350922 Vosejpka et al. Feb 2002 B1
6521794 Hirota Feb 2003 B2
6719957 Brady, Jr. et al. Apr 2004 B2
6740633 Norenberg et al. May 2004 B2
6831201 Katsuura et al. Dec 2004 B2
7126032 Aiken Oct 2006 B1
7128890 Ollivier Oct 2006 B2
7584629 Sohn et al. Sep 2009 B2
20010014763 Ueoka et al. Aug 2001 A1
20030209490 Camp et al. Nov 2003 A1
20040016411 Joyce et al. Jan 2004 A1
20040024244 Walsdorff et al. Feb 2004 A1
20040150123 Strofer et al. Aug 2004 A1
20040179987 Oku et al. Sep 2004 A1
20040232007 Carson et al. Nov 2004 A1
20050261509 Delfort et al. Nov 2005 A1
20060052272 Meli et al. Mar 2006 A1
20060079433 Hecht et al. Apr 2006 A1
20060123842 Sohn et al. Jun 2006 A1
20070112224 Krafft et al. May 2007 A1
20070293707 Wolfert et al. Dec 2007 A1
20080146753 Woike et al. Jun 2008 A1
20080214848 Krafft et al. Sep 2008 A1
20090022653 Strebelle et al. Jan 2009 A1
20090198041 Krafft et al. Aug 2009 A1
20100029959 Fan et al. Feb 2010 A1
Foreign Referenced Citations (205)
Number Date Country
1296003 May 2001 CN
101041421 Sep 2007 CN
58396 Aug 1891 DE
180668 Jan 1906 DE
197308 Nov 1906 DE
238341 Mar 1908 DE
197309 Apr 1908 DE
869 193 Mar 1953 DE
1041488 Oct 1958 DE
1075103 Feb 1960 DE
1226554 Oct 1966 DE
2 241 393 Feb 1974 DE
25 21 813 Dec 1975 DE
3003819 Aug 1981 DE
3243617 May 1984 DE
216471 Dec 1984 DE
3721003 Dec 1988 DE
43 02 306 Aug 1994 DE
10203914 Oct 2003 DE
10254709 Jun 2004 DE
0 296 341 Dec 1988 EP
0347618 Dec 1989 EP
0358255 Mar 1990 EP
0421379 Apr 1991 EP
0 452 265 Oct 1991 EP
0518765 Dec 1992 EP
0522382 Jan 1993 EP
0535949 Apr 1993 EP
0561441 Sep 1993 EP
0563720 Oct 1993 EP
0568389 Nov 1993 EP
0582201 Feb 1994 EP
0 618 170 Oct 1994 EP
0 916 624 May 1999 EP
0919551 Jun 1999 EP
0 774 450 Feb 2000 EP
1059278 Dec 2000 EP
1106237 Jun 2001 EP
1153887 Nov 2001 EP
1163946 Dec 2001 EP
1298154 Apr 2003 EP
1411027 Apr 2004 EP
1752435 Feb 2007 EP
1752436 Feb 2007 EP
1760060 Mar 2007 EP
1762556 Mar 2007 EP
1770081 Apr 2007 EP
1772446 Apr 2007 EP
1775278 Apr 2007 EP
2 085 364 Aug 2009 EP
1 306 231 Oct 1961 FR
1 417 388 Oct 1964 FR
1476073 Apr 1967 FR
1 577 792 Aug 1968 FR
2151107 Apr 1973 FR
2180138 May 1973 FR
2 217 372 Feb 1974 FR
2565229 Dec 1985 FR
2752242 Feb 1998 FR
2862644 May 2005 FR
2868419 Oct 2005 FR
2869612 Nov 2005 FR
2869613 Nov 2005 FR
2872504 Jan 2006 FR
2881732 Aug 2006 FR
2885903 Nov 2006 FR
2 912 743 Aug 2008 FR
2 913 683 Sep 2008 FR
2913683 Sep 2008 FR
2 917 411 Dec 2008 FR
2918058 Jan 2009 FR
2925045 Jun 2009 FR
2929611 Oct 2009 FR
2935699 Mar 2010 FR
2935968 Mar 2010 FR
14767 Jan 1914 GB
406345 Aug 1932 GB
404938 Jan 1934 GB
467481 Jun 1937 GB
541357 Nov 1941 GB
679536 Sep 1952 GB
702143 Jan 1954 GB
736641 Sep 1955 GB
799567 Aug 1958 GB
984446 Feb 1965 GB
984633 Mar 1965 GB
1083594 Sep 1967 GB
1286893 Aug 1972 GB
1387668 Mar 1975 GB
1 493 538 Apr 1975 GB
1414976 Nov 1975 GB
2173496 Oct 1986 GB
2336584 Oct 1999 GB
2002-003023 Mar 2004 HU
3927230 Nov 1939 JP
50-062909 May 1975 JP
51021635 Jul 1976 JP
55041858 Mar 1980 JP
5629572 Mar 1981 JP
5699432 Aug 1981 JP
61 112066 May 1986 JP
62242638 Oct 1987 JP
63195288 Aug 1988 JP
2-137704 May 1990 JP
03014527 Jan 1991 JP
03223267 Oct 1991 JP
3223267 Oct 1991 JP
04089440 Mar 1992 JP
04-217637 Aug 1992 JP
625196 Apr 1994 JP
06184024 Jul 1994 JP
6321852 Nov 1994 JP
859593 Mar 1996 JP
09-299953 Nov 1997 JP
10139700 May 1998 JP
1998218810 Aug 1998 JP
2001-037469 Feb 2001 JP
2001-213827 Aug 2001 JP
2001-261308 Sep 2001 JP
2001-1261581 Sep 2001 JP
2002-02033 Jan 2002 JP
20020038195 Feb 2002 JP
2002-363153 Dec 2002 JP
2003-89680 Mar 2003 JP
2003081891 Mar 2003 JP
2005007841 Jan 2005 JP
2005097177 Apr 2005 JP
2007-008898 Jan 2007 JP
2009-263338 Nov 2009 JP
900006513 Nov 1987 KR
1019920003099 Apr 1992 KR
10-514819 Sep 2005 KR
136598 Mar 1986 PL
162910 Jan 1994 PL
123153 Jan 1959 SU
1125226 Nov 1984 SU
1159716 Jun 1985 SU
1685969 Oct 1991 SU
WO 9514639 Jun 1995 WO
WO 9607617 Mar 1996 WO
WO 9615980 May 1996 WO
WO 9748667 Dec 1997 WO
WO 9837024 Aug 1998 WO
WO 9914208 Mar 1999 WO
WO 9932397 Jul 1999 WO
WO 0186220 Nov 2001 WO
WO 0226672 Apr 2002 WO
WO 03064357 Aug 2003 WO
WO 2004056758 Jul 2004 WO
WO 2005021476 Mar 2005 WO
WO 2005054167 Jun 2005 WO
WO 2005097722 Oct 2005 WO
WO 2005115954 Dec 2005 WO
WO 2005116004 Dec 2005 WO
WO 2006020234 Feb 2006 WO
WO 2006100311 Sep 2006 WO
WO 2006100312 Sep 2006 WO
WO 2006100313 Sep 2006 WO
WO 2006100314 Sep 2006 WO
WO 2006100315 Sep 2006 WO
WO 2006100316 Sep 2006 WO
WO 2006100317 Sep 2006 WO
WO 2006100318 Sep 2006 WO
WO 2006100319 Sep 2006 WO
WO 2006100320 Sep 2006 WO
WO 2006100311 Sep 2006 WO
WO 2006100312 Sep 2006 WO
WO 2006100313 Sep 2006 WO
WO 2006100314 Sep 2006 WO
WO 2006100315 Sep 2006 WO
WO 2006100316 Sep 2006 WO
WO 2006100317 Sep 2006 WO
WO 2006100318 Sep 2006 WO
WO 2006100319 Sep 2006 WO
WO 2006100320 Sep 2006 WO
WO 2006106153 Oct 2006 WO
WO 2006106154 Oct 2006 WO
WO 2006106155 Oct 2006 WO
WO 2006106153 Oct 2006 WO
WO 2006106154 Oct 2006 WO
WO 2006106155 Oct 2006 WO
WO 2007054505 May 2007 WO
WO 2007054505 May 2007 WO
WO2007144335 Dec 2007 WO
WO 2007144335 Dec 2007 WO
WO 2008101866 Aug 2008 WO
WO2008110588 Sep 2008 WO
WO2008145729 Dec 2008 WO
WO 2008147473 Dec 2008 WO
WO 2008152043 Dec 2008 WO
WO 2008152044 Dec 2008 WO
WO 2008152045 Dec 2008 WO
WO 2009000773 Dec 2008 WO
WO 2009016149 Feb 2009 WO
WO2009043796 Apr 2009 WO
WO 2009077528 Jun 2009 WO
WO 2009077528 Jun 2009 WO
WO 2009095429 Aug 2009 WO
WO 2009121853 Oct 2009 WO
WO2009121853 Oct 2009 WO
WO 2010029039 Mar 2010 WO
WO 2010029039 Mar 2010 WO
WO 2010029153 Mar 2010 WO
WO 2010029153 Mar 2010 WO
WO 2010066660 Jun 2010 WO
Related Publications (1)
Number Date Country
20100105862 A1 Apr 2010 US
Provisional Applications (1)
Number Date Country
61013680 Dec 2007 US