Claims
- 1. A process for manufacturing a high performance gun propellant containing at least one energetic thermoplastic elastomeric binder and at least one high-energy oxidizer comprising:(a) obtaining a plurality of molding powder compositions comprising particles of said at least one high-energy oxidizer coated with said at least one energetic thermoplastic elastomeric binder, wherein said at least one high-energy oxidizer has a concentration in a range from 70% to 85%, by weight, and said at least one energetic thermoplastic elastomeric binder has a concentration in a range from 15% to 30%, by weight, wherein each molding powder composition of said plurality of molding powder compositions has a particle size in a range from 200 μm to 2000 μm and comprises varying amounts, by weight, of said at least one high-energy oxidizer and said at least one thermoplastic elastomeric binder; (b) extruding separately at least a first and a second molding powder composition of said plurality of molding powder compositions with an extruder having a barrel and a die to form at least a first extruded gun propellant and a second extruded gun propellant, respectively; (c) rolling separately at least the first and the second extruded gun propellants into at least a first plurality and a second plurality of gun propellant sheets, respectively; and (d) forming a layered gun propellant sheet from at least said first and said second pluralities of gun propellant sheets, wherein (i) said first and said second plurality of gun propellant sheets contain different high-energy oxidizers, (ii) said first and said second plurality of gun propellant sheets contain different thermoplastic elastomeric binders, or (iii) said first and said second plurality of gun propellant sheets contain different high-energy oxidizers and contain different thermoplastic elastomeric binders.
- 2. A process for manufacturing a high performance gun propellant as defined in claim 1, wherein the molding powder has a particle size in the range from 200 μm to 1000 μm.
- 3. A process for manufacturing a high performance gun propellant as defined in claim 1, wherein the molding powder has a particle size in the range from 500 μm to 1000 μm.
- 4. A process for manufacturing a high performance gun propellant as defined in claim 1, further comprising the step of cutting the extruded gun propellant to a desired configuration.
- 5. A process for manufacturing a high performance gun propellant as defined in claim 1, wherein the energetic thermoplastic elastomeric binder is selected from PGN (polyglycidyl nitrate), poly-NMMO (nitratomethyl-methyloxetane), GAP (polyglycidyl azide), 9DT-NIDA (diethyleneglycol-triethyleneglycol-nitraminodiacetic acid terpolymer), poly-BAMO (poly(bis(azidomethyl)oxetane)), poly-AMMO (poly(azidomethyl-methyloxetane)), poly-NAMMO (poly(nitraminomethyl-methyloxetane)), poly-BFMO (poly(bis(difluoroaminomethyl)oxetane)), poly-DFMO (poly(difluoroaminomethylmethyloxetane)), and copolymers and mixtures thereof.
- 6. A process for manufacturing a high performance gun propellant as defined in claim 1, wherein the high energy oxidizer is selected from CL-20 (2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazatetracyclo[5.5.0.05,9.03,11]-dodecane), RDX (1,3,5-trinitro-1,3,5-triazacyclohexane), HMX (1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane), TEX (4,10-dinitro-2,6,8,12-tetraoxa-4,10-diazatetracyclo[5.5.0.05,9.03,11]dodecane), NTO (3-nitro-1,2,4-triazol-5-one), NQ (nitroguanidine), TATB (1,3,5-triamino-2,4,6-trinitrobenzene), TNAZ (1,3,3-trinitroazetidine), ADN (ammonium dinitramide), DADNE (1,1-diamino-2,2-dinitro ethane), and mixtures thereof.
- 7. A process for manufacturing a high performance gun propellant as defined in claim 1, further comprising the step of maintaining the temperature of the extruder die at a temperature in the range from 60° C. to 75° C.
- 8. A process for manufacturing a high performance gun propellant as defined in claim 1, further comprising the step of maintaining the temperature of the extruder barrel at a temperature in the range from 40° C. to 120° C.
- 9. A process for manufacturing a high performance gun propellant as defined in claim 1, further comprising the step of maintaining the temperature of the extruder barrel at a temperature in the range from 60° C. to 85° C.
- 10. A process for manufacturing a high performance gun propellant as defined in claim 1, wherein the extruder die is perforated.
- 11. A process for manufacturing a high performance gun propellant as defined in claim 10, wherein the extruder die has a diameter in the range from 0.125 inch to 0.5 inch.
- 12. A process for manufacturing a high performance gun propellant as defined in claim 1, wherein the extruder die produces a solid strand.
- 13. A process for manufacturing a high performance gun propellant as defined in claim 12, wherein the extruder die has a diameter in the range from 0.125 inch to 0.5 inch.
- 14. A process for manufacturing a high performance gun propellant as defined in claim 1, wherein the gun propellant is extruded through the die at a pressure in the range from 600 to 2500 psi.
- 15. A process for manufacturing a high performance gun propellant as defined in claim 1, wherein the high energy oxidizer is CL-20 (2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazatetracyclo[5.5.0.05,9.03,11]-dodecane) and wherein the energetic thermoplastic elastomeric binder is copoly BAMO/AMMO (copoly(bis(azidomethyl)oxetane)/(azidomethyl-methyloxetane)).
- 16. A process for manufacturing a high performance gun propellant as defined in claim 1, wherein the molding powder is prepared by combining an aqueous slurry of high-energy oxidizer particles with an ethyl acetate solution of the energetic thermoplastic elastomeric binder.
- 17. Process for manufacturing a high performance gun propellant as defined in claim 1, wherein the concentration of the high-energy oxidizer is in the range of 76% to 82%.
- 18. A process for manufacturing a high performance gun propellant according to claim 1, wherein said method further comprises thermal soaking the molding powder before conducting step (b).
- 19. A process for manufacturing a high performance gun propellant containing at least one energetic thermoplastic elastomeric binder and at least one high-energy oxidizer comprising:(a) obtaining a plurality of molding powder compositions comprising particles of said at least one high-energy oxidizer coated with said at least one energetic thermoplastic elastomeric binder, wherein said at least one high-energy oxidizer has a concentration in a range from 70% to 85%, by weight, and said at least one energetic thermoplastic elastomeric binder has a concentration in a range from 15% to 30%, by weight, wherein each molding powder composition of said plurality of molding powder compositions has a particle size in a range from 200 μm to 2000 μm, wherein said at least one energetic thermoplastic elastomeric binder is at least one selected from the group consisting of poly-NMMO (nitratomethyl-methyloxetane), GAP (polyglycidyl azide), poly-BAMO (poly(bis(azidomethyl)oxetane)), poly-AMMO (poly(azidomethyl-methyl-oxetane)), poly-NAMMO (poly(nitraminomethyl-methyloxetane)), poly-BFMO (poly(bis(difluoroaminomethyl)oxetane)), poly-DFMO (poly(difluoroaminomethylmethyl-oxetane)), and copolymers and mixtures thereof, wherein said at least one high energy oxidizer is at least one selected from CL-20 (2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazatetracyclo[5.5.0.05,9.03,11]-dodecane), RDX (1,3,5-trinitro-1,3,5-triazacyclohexane), HMX (1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane), TEX (4,10-dinitro-2,6,8,12-tetraoxa-4, 10-diazatetracyclo[5.5.0.05,9.03,11]dodecane), NTO (3-nitro-1,2,4-triazol-5-one), NQ (nitroguanidine), TATB (1,3,5-triamino-2,4,6-trinitrobenzene), TNAZ (1,3,3-trinitroazetidine), ADN (ammonium dinitramide), and DADNE (1,1-diamino-2,2-dinitro ethane); and wherein each of said plurality of molding powder compositions comprises varying amounts, by weight, of said at least one high-energy oxidizer and said at least one thermoplastic elastomeric binder; (b) extruding separately at least a first and a second molding powder composition of said plurality of molding powder compositions with an extruder having a barrel and a die to form at least a first extruded gun propellant and a second extruded gun propellant, respectively; (c) rolling separately at least the first and the second extruded gun propellants into at least a first plurality and a second plurality of gun propellant sheets, respectively; and (d) forming a layered gun propellant sheet from at least said first and said second pluralities of gun propellant sheets, wherein (i) said first and said second plurality of gun propellant sheets contain different high-energy oxidizers, (ii) said first and said second plurality of gun propellant sheets contain different thermoplastic elastomeric binders, or (iii) said first and said second plurality of gun propellant sheets contain different high-energy oxidizers and contain different thermoplastic elastomeric binders.
- 20. A process for manufacturing a high performance gun propellant as defined in claim 19, further comprising the step of cutting the extruded gun propellant to a desired configuration.
- 21. A process for manufacturing a high performance gun propellant as defined in claim 19, wherein in said process a temperature of the extruder barrel is in the range of 40° C. to 120° C.; and during the extruding step the gun propellant is extruded through the die at a pressure in the range of from 600 to 2500 psi.
- 22. A process for manufacturing a high performance gun propellant according to claim 19, wherein said method further comprises thermal soaking the molding powder before conducting step (b).
- 23. A process for manufacturing a high performance gun propellant comprising a plurality of gun propellant sheets, at least a first and a second of said gun propellant sheets being respectively formed from a first extrudable composition and a second extrudable composition, the first extrudable composition being different than the second extrudable composition, said process comprising:(a) separately extruding said first extrudable composition and said second extrudable composition in an extruder having a barrel and a die to form respectively a first extruded gun propellant and a second extruded gun propellant, the first extrudable composition and the second extrudable composition each respectively comprising a separate plurality of coated particles having particle sizes in a range of from 200 μm to 2000 μm, said coated particles containing 70 wt % to 85 wt % of a high energy oxidizer and 15 wt % to 30 wt % of an energetic thermoplastic elastomeric binder, the energetic thermoplastic elastomeric binder being coated on the high energy oxidizer, wherein each respective plurality of coated particles comprises varying amounts, by weight, of energetic thermoplastic elastomeric binder and high energy oxidizer; (b) rolling separately at least said first extruded gun propellant and said second extruded gun propellant to form the first gun propellant sheet and the second gun propellant sheet, respectively; (c) layering at least the first and second gun propellant sheets to form a high performance gun propellant, wherein at least one of the following conditions is met: (i) the high energy oxidizer of the first extrudable composition differs from the high energy oxidizer of the second extrudable composition, and (ii) the energetic thermoplastic elastomeric binder of the first extrudable composition differs from the energetic thermoplastic elastomeric binder of the second extrudable composition.
Parent Case Info
This is a division of application Ser. No. 08/687,887, filed Jul. 26, 1996 now U.S. Pat. No. 5,759,458.
US Referenced Citations (13)
Non-Patent Literature Citations (1)
Entry |
L.E. Harris et al., “Plasma Ignition of Advanced Solid Propellants ”, JANNAF Propulsion Meeting (Dec. 8, 1995). |