Process for the preparation of 3-(3-chloro-1H-pyrazol-1-yl)pyridine

Information

  • Patent Grant
  • 10005758
  • Patent Number
    10,005,758
  • Date Filed
    Friday, October 13, 2017
    6 years ago
  • Date Issued
    Tuesday, June 26, 2018
    5 years ago
Abstract
3-(3-chloro-1H-pyrazol-1-yl)pyridine is prepared by cyclizing 3-hydrazinopyridine-.dihydrochloride with a dialkyl maleate to provide an alkyl 5-oxo-2-(pyridin-3-yl)pyrazolidine-3-carboxylate, by chlorinating to provide an alkyl 3-chloro-1-(pyridin-3-yl)-4,5-dihydro-1H-pyrazole-5-carboxylate, by oxidizing to provide an alkyl 3-chloro-1-(pyridin-3-yl)-1H-pyrazole-5-carboxylate, by converting the ester to the carboxylic acid by hydrolysis to provide 3-chloro-1-(pyridin-3-yl)-1H-pyrazole-5-carboxylic acid hydrochloride, and by removing the carboxylic acid by a decarboxylation reaction.
Description
BACKGROUND

The present invention concerns an improved process for preparing 3-(3-chloro-1H-pyrazol-1-yl)pyridine.


US 20130288893(A1) describes, inter alia, certain (3-halo-1-(pyridin-3-yl)-1H-pyrazol-4-yl)amides and carbamates and their use as pesticides. The route to prepare such compounds involved the preparation of 3-(3-chloro-1H-pyrazol-1-yl)pyridine by the direct coupling of 3-bromopyridine with 3-chloropyrazole. The 3-chloropyrazole was prepared by a) treating 1H-pyrazole with 2 dimethylsulfamoyl chloride and sodium hydride to provide N,N-dimethyl-1H-pyrazole-1-sulfonamide, b) treating the N,N-dimethyl-1H-pyrazole-1-sulfonamide with perchloroethane and n-butyl lithium to provide 3-chloro-N,N-dimethyl-1H-pyrazole-1-sulfonamide, and c) removing the N,N-dimethylsulfonamide from 3-chloro-N,N-dimethyl-1H-pyrazole-1-sulfonamide with trifluoroacetic acid to give the 3-chloropyrazole.


The disclosed process produces low yields, relies on a starting material that is difficult to prepare (3-chloropyrazole) and provides a product that is difficult to isolate in a pure form. It would be desirable to have a process for preparing 3-(3-chloro-1H-pyrazol-1-yl)pyridine that avoids these problems.


SUMMARY

The present invention provides such an alternative by cyclizing 3-hydrazinopyridine-.dihydrochloride with a dialkyl maleate to provide alkyl 5-oxo-2-(pyridin-3-yl)pyrazolidine-3-carboxylate (10a), by chlorinating to provide alkyl 3-chloro-1-(pyridin-3-yl)-4,5-dihydro-1H-pyrazole-5-carboxylate (10b), by oxidizing to provide alkyl 3-chloro-1-(pyridin-3-yl)-1H-pyrazole-5-carboxylate (10c), by converting the ester to the carboxylic acid by hydrolysis to provide 3-chloro-1-(pyridin-3-yl)-1H-pyrazole-5-carboxylic acid hydrochloride (10d), and by removing the carboxylic acid by a decarboxylation reaction. Thus, the present invention concerns a process for preparing 3-(3-chloro-1H-pyrazol-1-yl)pyridine (5b),




embedded image



which comprises


a) treating 3-hydrazinopyridine.dihydrochloride




embedded image



with a dialkyl maleate




embedded image


wherein

    • R represents (C1-C4) alkyl,


      in a (C1-C4) aliphatic alcohol at a temperature of about 25° C. to about 100° C. in the presence of an alkali metal (C1-C4) alkoxide to provide an alkyl 5-oxo-2-(pyridin-3-yl)pyrazolidine-3-carboxylate (10a)




embedded image


wherein R is as previously defined;


b) treating the alkyl 5-oxo-2-(pyridin-3-yl)pyrazolidine-3-carboxylate (10a) with a chlorinating reagent in an inert organic solvent at a temperature of about 25° C. to about 100° C. to provide an alkyl 3-chloro-1-(pyridin-3-yl)-4,5-dihydro-1H-pyrazole-5-carboxylate (10b)




embedded image


wherein R is as previously defined;


c) treating the alkyl 3-chloro-1-(pyridin-3-yl)-4,5-dihydro-1H-pyrazole-5-carboxylate (10b) with an oxidant in an inert organic solvent at a temperature of about 25° C. to about 100° C. to provide an alkyl 3-chloro-1-(pyridin-3-yl)-1H-pyrazole-5-carboxylate (10c)




embedded image


wherein R is as previously defined;


d) treating the alkyl 3-chloro-1-(pyridin-3-yl)-1H-pyrazole-5-carboxylate (10c) with aqueous hydrochloric acid at a temperature of about 25° C. to about 100° C. to provide 3-chloro-1-(pyridin-3-yl)-1H-pyrazole-5-carboxylic acid hydrochloride (10d)




embedded image


and


e) treating 3-chloro-1-(pyridin-3-yl)-1H-pyrazole-5-carboxylic acid hydrochloride with copper(II) oxide in a polar aprotic solvent at a temperature of about 80° C. to about 140° C.







DETAILED DESCRIPTION

The present invention provides an improved process for preparing 3-(3-chloro-1H-pyrazol-1-yl)pyridine (5b), by cyclizing 3-hydrazinopyridine.dihydrochloride with a dialkyl maleate to provide an alkyl 5-oxo-2-(pyridin-3-yl)pyrazolidine-3-carboxylate (10a), by chlorinating to provide an alkyl 3-chloro-1-(pyridin-3-yl)-4,5-dihydro-1H-pyrazole-5-carboxylate (10b), by oxidizing to provide an alkyl 3-chloro-1-(pyridin-3-yl)-1H-pyrazole-5-carboxylate (10c), by converting the ester to the carboxylic acid by hydrolysis to provide 3-chloro-1-(pyridin-3-yl)-1H-pyrazole-5-carboxylic acid hydrochloride (10d), and by removing the carboxylic acid by a decarboxylation reaction.


In the first step, 3-hydrazinopyridine.dihydrochloride is treated with a dialkyl maleate in a (C1-C4) aliphatic alcohol at a temperature of about 25° C. to about 100° C. in the presence of an alkali metal (C1-C4) alkoxide to provide an alkyl 5-oxo-2-(pyridin-3-yl)pyrazolidine-3-carboxylate (10a). While stoichiometric amounts of 3-hydrazinopyridine.dihydrochloride and dialkyl maleate are required, it is often convenient to use about a 1.5 fold to about a 2 fold excess of dialkyl maleate. The cyclization is run in the presence of an alkali metal (C1-C4) alkoxide base. It is often convenient to use about a 2 fold to about a 5 fold excess of base. The cyclization is performed in a (C1-C4) aliphatic alcohol. It is most convenient that the alkoxide base, the alcohol solvent and the ester of the maleate be the same, for example, sodium ethoxide in ethanol with diethyl maleate.


In a preferred reaction, sodium ethoxide in an anhydrous ethanol are introduced into a reaction vessel and 3-hydrazinopyridine.dihydrochloride is added. The mixture is stirred and diethyl maleate is added. The mixture is heated at about 60° C. until most of the 3-hydrazinopyridine has reacted. The mixture is allowed to cool and the excess base is neutralized with acid. The crude ethyl 5-oxo-2-(pyridin-3-yl)pyrazolidine-3-carboxylate (10a) is conveniently isolated and purified by standard techniques.


In the second step, the alkyl 5-oxo-2-(pyridin-3-yl)pyrazolidine-3-carboxylate (10a) is treated with a chlorinating reagent in an inert organic solvent at a temperature of about 25° C. to about 100° C. to provide alkyl 3-chloro-1-(pyridin-3-yl)-4,5-dihydro-1H-pyrazole-5-carboxylate (10b). Suitable chlorinating reagents include phosphoryl chloride (phosphorous oxychloride) and phosphorus pentachloride. Phosphoryl chloride is preferred. It is often convenient to use about a 1.1 fold to about a 10 fold excess of the chlorinating reagent. The chlorination is performed in an organic solvent that is inert to the chlorinating reagent. Suitable solvents include nitriles such as acetonitrile. With phosphoryl chloride as the chlorinating reagent, acetonitrile is a preferred solvent.


In a preferred reaction, ethyl 5-oxo-2-(pyridin-3-yl)pyrazolidine-3-carboxylate (10a) and acetonitrile are mixed with phosphoryl chloride and the mixture is heated to about 60° C. for 2 hours. After the reaction is determined to be complete, the reaction is cooled to room temperature and diluted with water. The reaction mixture is then neutralized with base and extracted. The alkyl 3-chloro-1-(pyridin-3-yl)-4,5-dihydro-1H-pyrazole-5-carboxylate (10b) can be purified by standard techniques.


In the third step, alkyl 3-chloro-1-(pyridin-3-yl)-4,5-dihydro-1H-pyrazole-5-carboxylate (10b) is treated with an oxidant in an organic solvent at a temperature of about 25° C. to about 100° C. to provide alkyl 3-chloro-1-(pyridin-3-yl)-1H-pyrazole-5-carboxylate (10c). Suitable oxidants include manganese (IV) oxide and sodium persulfate/sulfuric acid. It is often convenient to use about a 1.5 fold to about a 15 fold excess of oxidant. The oxidation is performed in an organic solvent that is inert to the oxidant. Suitable solvents include nitriles such as acetonitrile. With manganese (IV) oxide or sodium persulfate/sulfuric acid as the oxidant, acetonitrile is a preferred solvent.


In a preferred reaction, ethyl 3-chloro-1-(pyridin-3-yl)-4,5-dihydro-1H-pyrazole-5-carboxylate (10b) and acetonitrile are mixed with manganese(IV) oxide and the mixture is heated at about 60° C. until the reaction is completed. The ethyl 3-chloro-1-(pyridin-3-yl)-1H-pyrazole-5-carboxylate (10c) is conveniently isolated and purified by standard techniques.


In the fourth step, alkyl 3-chloro-1-(pyridin-3-yl)-1H-pyrazole-5-carboxylate (10c) is then converted to the desired 3-chloro-1-(pyridin-3-yl)-1H-pyrazole-5-carboxylic acid hydrochloride (10d) by treatment in aqueous hydrochloric acid at a temperature of about 25° C. to about 100° C. While stoichiometric amounts of reagents are required, it is often convenient to use an excess of reagent with respect to the alkyl 3-chloro-1-(pyridin-3-yl)-1H-pyrazole-5-carboxylate (10c). Thus, aqueous hydrochloric acid is used in large excess as the reaction medium.


In a preferred reaction, a mixture of ethyl 3-chloro-1-(pyridin-3-yl)-1H-pyrazole-5-carboxylate (10c) and aqueous hydrochloric acid are mixed and heated to about 90° C. After completion of the reaction, the mixture is cooled and diluted with an organic solvent. The resulting solution is concentrated. The 3-chloro-1-(pyridin-3-yl)-1H-pyrazole-5-carboxylic acid hydrochloride (10d) can be purified by standard techniques such as filtration.


3-Chloro-1-(pyridin-3-yl)-1H-pyrazole-5-carboxylic acid hydrochloride (10d) is then converted to the desired 3-(3-chloro-1H-pyrazol-1-yl)pyridine (5b) by decarboxylation in the presence of copper (II) oxide in polar solvents at a temperature from about 80° C. to about 140° C. It was surprisingly discovered that this decarboxylation only occurs in the presence of copper (II) oxide. Several known decarboxylation agents from the literature such as, for example, hydrochloric acid (See Example 4), sulfuric acid (See “CE-5”), and palladium (II) trifluoroacetate/trifluoroacetic acid (See “CE-5”) did not yield the desired product.


In a preferred reaction, a mixture of 3-chloro-1-(pyridin-3-yl)-1H-pyrazole-5-carboxylic acid hydrochloride (10d) and copper(II) oxide are mixed in an organic solvent and heated to about 120° C. It is often convenient to use less than stoichiometric amounts of copper(II) oxide. The decarboxylation is performed in a polar aprotic organic solvent. Suitable solvents include N,N′-dimethylformamide. After completion of the reaction, the mixture is cooled, diluted with ammonium hydroxide, and extracted. The 3-(3-chloro-1H-pyrazol-1-yl)pyridine (5b) can be purified by standard techniques.


The following examples are presented to illustrate the invention.


Examples
1. Preparation of Ethyl 5-oxo-2-(pyridin-3-yl)pyrazolidine-3-carboxylate (10a)



embedded image


A 4-neck round bottomed flask (250 mL) was charged with sodium ethoxide (21 wt % in ethanol, 56 mL, 192 mmol). 3-Hydrazinopyridine.dihydrochloride (10.0 g, 55.0 mmol) was added, causing an exotherm from 20° C. to 32° C. The reaction was allowed to cool to 20° C. and diethyl maleate (13.4 mL, 82.0 mmol) was added, and the reaction was heated at 60° C. for 3 hours (h). The reaction was cooled to 20° C. and quenched with acetic acid. The reaction mixture was diluted with water (100 mL) and extracted with ethyl acetate (3×100 mL). The combined organics were concentrated to dryness and the residue was purified by flash column chromatography using ethyl acetate as eluent to the title compound as a blue oil (6.60 g, 51%): 1H NMR (400 MHz, DMSO-d6) δ 10.40 (s, 1H), 8.40-8.26 (m, 1H), 8.19 (dd, J=4.4, 1.6 Hz, 1H), 7.47-7.21 (m, 2H), 4.77 (dd, J=9.8, 2.1 Hz, 1H), 4.22 (qd, J=7.1, 1.7 Hz, 2H), 3.05 (dd, J=17.0, 9.8 Hz, 1H), 1.99 (s, 1H), 1.25 (t, J=7.1 Hz, 3H); 13C NMR (101 MHz, DMSO-d6) δ 170.37, 146.60, 142.60, 137.28, 123.54, 121.94, 65.49, 61.32, 32.15, 20.72, 13.94; ESIMS m/z 236 ([M+H]+).


2. Preparation of Ethyl 3-chloro-1-(pyridin-3-yl)-4,5-dihydro-1H-pyrazole-5-carboxylate (10b)



embedded image


A 3-neck round bottomed flask (100 mL) was charged with ethyl 5-oxo-2-(pyridin-3-yl)pyrazolidine-3-carboxylate (8.50 g, 36.1 mmol) and acetonitrile (40 mL). Phosphoryl chloride (4.05 mL, 43.4 mmol) was charged and the reaction was heated at 60° C. for 2 h. The reaction was cooled to 20° C. and water (100 mL) was added. Sodium carbonate was added to adjust pH to 8 and the mixture was extracted with ethyl acetate (3×100 mL). The organic layers were concentrated to dryness and the residue was purified by flash column chromatography using 30-80% ethyl acetate/hexanes as eluent to provide the title compound as a yellow oil (7.30 g, 79%): 1H NMR (400 MHz, CDCl3) δ 8.30 (dd, J=2.9, 0.8 Hz, 1H), 8.17 (dd, J=4.7, 1.4 Hz, 1H), 7.38 (ddd, J=8.4, 2.8, 1.4 Hz, 1H), 7.18 (ddd, J=8.4, 4.7, 0.7 Hz, 1H), 4.79 (dd, J=12.4, 6.9 Hz, 1H), 4.24 (qd, J=7.1, 1.1 Hz, 2H), 3.55 (dd, J=17.7, 12.4 Hz, 1H), 3.33 (dd, J=17.8, 6.9 Hz, 1H), 1.25 (t, J=7.1 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ 169.65, 141.90, 141.33, 141.09, 135.13, 123.53, 120.37, 62.89, 62.35, 42.45, 14.03; ESIMS m/z 254 ([M+H]+).


3. Preparation of Ethyl 3-chloro-1-(pyridin-3-yl)-1H-pyrazole-5-carboxylate (10c)



embedded image


A 3-neck round bottomed flask (100 mL) was charged with ethyl 3-chloro-1-(pyridin-3-yl)-1H-dihydropyrazole-5-carboxylate (2.00 g, 7.88 mmol) and acetonitrile (20 mL). Manganese(IV) oxide (3.43 g, 39.4 mmol) was added. The reaction was stirred at 60° C. for 18 h. Additional manganese(IV) oxide (3.43 g, 39.4 mmol) was added and the reaction was stirred at 80° C. for 6 h. The mixture was filtered through a Celite® pad and the pad was rinsed with ethyl acetate (20 mL). The combined filtrates were concentrated to dryness and the residue was purified by flash column chromatography using 10-60% ethyl acetate/hexanes. The pure fractions were concentrated to dryness to afford a white solid after drying (1.84 g, 93%): 1H NMR (400 MHz, CDCl3) δ 8.75-8.64 (m, 2H), 7.79 (ddd, J=8.2, 2.6, 1.5 Hz, 1H), 7.42 (ddd, J=8.2, 4.8, 0.8 Hz, 1H), 6.98 (s, 1H), 4.27 (q, J=7.1 Hz, 2H), 1.27 (t, J=7.1 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ 157.90, 149.88, 147.01, 141.41, 136.24, 135.27, 133.34, 123.11, 111.97, 61.87, 13.98; ESIMS m/z 252 ([M+H]+).


Alternate Synthetic Route to Ethyl 3-chloro-1-(pyridin-3-yl)-1H-pyrazole-5-carboxylate (10c)

A vial (20 mL) was charged with ethyl 3-chloro-1-(pyridin-3-yl)-1H-dihydropyrazole-5-carboxylate (0.500 g, 1.97 mmol) and acetonitrile (5 mL). Sodium persulfate (0.799 g, 2.96 mmol) was added, followed by sulfuric acid (0.733 g, 7.88 mmol) (Exotherm!). The reaction was heated at 60° C. for 18 hours. The reaction was cooled to 20° C. and poured into water (20 mL). The mixture was treated with sodium carbonate to achieve pH 9 and extracted with ethyl acetate (2×20 mL). The organic layers were concentrated to a residue, which was purified by flash column chromatography using 50% ethyl acetate/hexanes as eluent to provide the title compound as a white solid (0.280 g, 56%).


4. Preparation of 3-chloro-1-(pyridin-3-yl)-1H-pyrazole-5-carboxylic Acid Hydrochloride (10d)



embedded image


A 3-neck round bottomed flask (100 mL) was charged with ethyl 3-chloro-1-(pyridin-3-yl)-1H-pyrazole-5-carboxylate (0.200 g, 0.795 mmol) and hydrochloric acid (37%, 4 mL). The reaction was heated at 90° C. for 18 hours and allowed to cool to 20° C. Dioxane (5 mL) was added to the resulting suspension and was concentrated to dryness. Dioxane (5 mL) was added and the suspension was concentrated again to afford a white solid. Dioxane (5 mL) was added and the resulting suspension was stirred for 1 hour at 20° C. The solid was filtered and the solid was rinsed with dioxane (2 mL). The filter cake was dried under vacuum at 20° C. to afford the title compound as a white solid (0.218 g, 100%): 1H NMR (400 MHz, DMSO-d6) δ 9.05 (dd, J=2.5, 0.7 Hz, 1H), 8.84 (dd, J=5.3, 1.4 Hz, 1H), 8.41 (ddd, J=8.3, 2.5, 1.4 Hz, 1H), 7.88 (ddd, J=8.3, 5.2, 0.7 Hz, 1H), 7.26 (s, 1H); 13C NMR (101 MHz, DMSO-d6) δ 158.71, 146.00, 143.44, 140.36, 137.76, 137.00, 136.83, 125.19, 111.71.


4. Preparation of 3-(3-chloro-1H-pyrazol-1-yl)pyridine (5b)



embedded image


3-Chloro-1-(pyridin-3-yl)-1H-pyrazole-5-carboxylic acid hydrochloride (1.00 g, 3.65 mmol) was stirred in N,N′-dimethylformamide (10 mL). Copper (II) oxide (0.0580 mg, 0.730 mmol) was added and the reaction was heated at 120° C. for 16 hours, at which point the reaction was ˜20% complete. Additional copper (II) oxide (0.112 g, 1.46 mmol) was added and the reaction was stirred for 5 hours. The mixture was diluted with ammonium hydroxide and water and extracted with ethyl acetate. The organic layer was washed with lithium chloride (15%) and concentrated to provide an orange solid. The residue was purified by flash column chromatography using ethyl acetate as eluent and the pure fractions were concentrated to afford the desired product as a white solid (0.481 g, 69.7%): mp: 66-68° C.; 1H NMR (400 MHz, CDCl3) δ 8.93 (d, J=27 Hz, 1H), 8.57 (dd, J=4.8, 1.4 Hz, 1H), 8.02 (ddd, J=8.3, 2.7, 1.5 Hz, 1H), 7.91 (d, J=2.6 Hz, 1H), 7.47-7.34 (m, 1H), 6.45 (d, J=2.6 Hz, 1H); 13C NMR (101 MHz, CDCl3) δ 148.01, 142.72, 140.12, 135.99, 128.64, 126.41, 124.01, 108.0.


Comparative Examples
Example CE-5 3-chloro-N-ethyl-1-(pyridin-3-yl)-1H-pyrazol-amine (5b)



embedded image


Attempted decarboxylation with sulfuric acid: 3-Chloro-1-(pyridin-3-yl)-1H-pyrazole-5-carboxylic acid hydrochloride (1.00 g, 2.50 mmol) was dissolved in warm sulfolane (12.5 mL). Sulfuric acid (1.35 mL, 25.0 mmol) was added and the reaction mixture was heated to 100° C. After stirring for 1 hour, LCMS indicated that the reaction did not occur. The reaction was further heated at 130° C. for 2 hours, at which point LCMS indicated no change. Additional sulfuric acid (4 mL) was added and the reaction was heated at 150° C. for 2 hours, at which point LCMS showed a new major peak that did not correspond to desired product.


Attempted decarboxylation with palladium(II) trifluoroacetate/trifluoroacetic acid: 3-Chloro-1-(pyridin-3-yl)-1H-pyrazole-5-carboxylic acid hydrochloride (1.00 g, 2.50 mmol) was dissolved in a mixture of dimethylsulfoxide (0.625 mL) and N,N′-dimethylformamide (11.9 ml). Trifluoroacetic acid (1.93 ml, 25.0 mmol) was added followed by the addition of palladium(II) trifluoroacetate/trifluoroacetic acid (0.332 g, 1.00 mmol). The reaction was heated at 100° C. overnight, at which time LCMS indicated that a reaction had occurred but no desired product had been formed.


Biological Examples
Example A Bioassays on Green Peach Aphid (“GPA”) (Myzus persicae) (MYZUPE.)

GPA is the most significant aphid pest of peach trees, causing decreased growth, shriveling of leaves, and the death of various tissues. It is also hazardous because it acts as a vector for the transport of plant viruses, such as potato virus Y and potato leafroll virus to members of the nightshade/potato family Solanaceae, and various mosaic viruses to many other food crops. GPA attacks such plants as broccoli, burdock, cabbage, carrot, cauliflower, daikon, eggplant, green beans, lettuce, macadamia, papaya, peppers, sweet potatoes, tomatoes, watercress and zucchini among other plants. GPA also attacks many ornamental crops such as carnations, chrysanthemum, flowering white cabbage, poinsettia and roses. GPA has developed resistance to many pesticides.


Several molecules disclosed herein were tested against GPA using procedures described below.


Cabbage seedling grown in 3-in pots, with 2-3 small (3-5 cm) true leaves, were used as test substrate. The seedlings were infested with 20-5-GPA (wingless adult and nymph stages) one day prior to chemical application. Four pots with individual seedlings were used for each treatment. Test compounds (2 mg) were dissolved in 2 mL of acetone/MeOH (1:1) solvent, forming stock solutions of 1000 ppm test compound. The stock solutions were diluted 5× with 0.025% Tween 20 in water to obtain the solution at 200 ppm test compound. A hand-held aspirator-type sprayer was used for spraying a solution to both sides of the cabbage leaves until runoff. Reference plants (solvent check) were sprayed with the diluent only containing 20% by volume acetone/MeOH (1:1) solvent. Treated plants were held in a holding room for three days at approximately 25° C. and ambient relative humidity (RH) prior to grading. Evaluation was conducted by counting the number of live aphids per plant under a microscope. Percent Control was measured by using Abbott's correction formula (W. S. Abbott, “A Method of Computing the Effectiveness of an Insecticide” J. Econ. Entomol 18 (1925), pp. 265-267) as follows.

Corrected % Control=100*(X−Y)/X


where


X=No. of live aphids on solvent check plants and


Y=No. of live aphids on treated plants


The results are indicated in the table entitled “Table 1: GPA (MYZUPE) and sweetpotato whitefly-crawler (BEMITA) Rating Table”.


Example B Bioassays on Sweetpotato Whitefly Crawler (Bemisia tabaci) (BEMITA.)

The sweetpotato whitefly, Bemisia tabaci (Gennadius), has been recorded in the United States since the late 1800s. In 1986 in Florida, Bemisia tabaci became an extreme economic pest. Whiteflies usually feed on the lower surface of their host plant leaves. From the egg hatches a minute crawler stage that moves about the leaf until it inserts its microscopic, threadlike mouthparts to feed by sucking sap from the phloem. Adults and nymphs excrete honeydew (largely plant sugars from feeding on phloem), a sticky, viscous liquid in which dark sooty molds grow. Heavy infestations of adults and their progeny can cause seedling death, or reduction in vigor and yield of older plants, due simply to sap removal. The honeydew can stick cotton lint together, making it more difficult to gin and therefore reducing its value. Sooty mold grows on honeydew-covered substrates, obscuring the leaf and reducing photosynthesis, and reducing fruit quality grade. It transmitted plant-pathogenic viruses that had never affected cultivated crops and induced plant physiological disorders, such as tomato irregular ripening and squash silverleaf disorder. Whiteflies are resistant to many formerly effective insecticides.


Cotton plants grown in 3-inch pots, with 1 small (3-5 cm) true leaf, were used at test substrate. The plants were placed in a room with whitely adults. Adults were allowed to deposit eggs for 2-3 days. After a 2-3 day egg-laying period, plants were taken from the adult whitefly room. Adults were blown off leaves using a hand-held Devilbliss sprayer (23 psi). Plants with egg infestation (100-300 eggs per plant) were placed in a holding room for 5-6 days at 82° F. and 50% RH for egg hatch and crawler stage to develop. Four cotton plants were used for each treatment. Compounds (2 mg) were dissolved in 1 mL of acetone solvent, forming stock solutions of 2000 ppm. The stock solutions were diluted 10× with 0.025% Tween 20 in water to obtain a test solution at 200 ppm. A hand-held Devilbliss sprayer was used for spraying a solution to both sides of cotton leaf until runoff. Reference plants (solvent check) were sprayed with the diluent only. Treated plants were held in a holding room for 8-9 days at approximately 82° F. and 50% RH prior to grading. Evaluation was conducted by counting the number of live nymphs per plant under a microscope. Pesticidal activity was measured by using Abbott's correction formula (see above) and presented in Table 1.









TABLE 1







GPA (MYZUPE) and sweetpotato whitefly-


crawler (BEMITA) Rating Table










% Mortality
Rating







80-100
A



More than 0-Less than 80
B



Not Tested
C



No activity observed in this bioassay
D





















TABLE 2







Example Compound
BEMITA
MYZUPE









10a
B
B



10b
B
B









Claims
  • 1. A process for preparing an alkyl 3-chloro-1-(pyridin-3-yl)-1H-pyrazole-5-carboxylate (10c)
  • 2. The process of claim 1, wherein the oxidant is manganese (IV) oxide or sodium persulfate/sulfuric acid.
  • 3. The process of claim 1, wherein the amount of oxidant is about a 1.5 fold to about a 15 fold excess.
  • 4. The process of claim 1, wherein the step of treating is performed in an organic solvent that is inert to the oxidant.
  • 5. The process of claim 4, wherein the organic solvent is acetonitrile.
  • 6. The process of claim 2, wherein the oxidant is manganese (IV) oxide.
  • 7. The process of claim 2, wherein the oxidant is sodium persulfate/sulfuric acid.
  • 8. The process of claim 7, wherein the organic solvent is acetonitrile.
  • 9. The process of claim 4, wherein the organic solvent is a nitrile solvent.
  • 10. The process of claim 1, wherein the oxidant is manganese (IV) oxide, the organic solvent is acetonitrile, and the reaction is carried out at a temperature of about 60° C.
  • 11. The process of claim 1, wherein the oxidant is sodium persulfate/sulfuric acid, the organic solvent is acetonitrile, and the reaction is carried out at a temperature of about 60° C.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a divisional of U.S. application Ser. No. 15/335,809 filed on Oct. 27, 2016, which is a divisional of U.S. application Ser. No. 14/811,246 filed on Jul. 28, 2015, which is a continuation of U.S. application Ser. No. 14/666,812 filed on Mar. 24, 2015, which is a divisional of U.S. application Ser. No. 14/517,344 filed on Oct. 17, 2014, which claims the benefit of U.S. Provisional Patent Application Ser. No. 62/039,128, filed Aug. 19, 2014, the entire disclosures of which are hereby expressly incorporated by reference in this Application.

US Referenced Citations (157)
Number Name Date Kind
3597341 Oswald Aug 1971 A
4080457 Harrison et al. Mar 1978 A
4260765 Harrison et al. Apr 1981 A
4347251 Joseph et al. Aug 1982 A
4407803 Haviv et al. Oct 1983 A
4536506 Marcoux et al. Aug 1985 A
4556671 Copp et al. Dec 1985 A
4734125 Gehring et al. Mar 1988 A
4810719 Appleton et al. Mar 1989 A
4824953 Bronn Apr 1989 A
5220028 Iwasawa et al. Jun 1993 A
5625074 Daum et al. Apr 1997 A
5631380 Haas et al. May 1997 A
5652372 Muller et al. Jul 1997 A
5693657 Lee et al. Dec 1997 A
5750718 Muller et al. May 1998 A
5817677 Linz et al. Oct 1998 A
5854264 Anthony et al. Dec 1998 A
5854265 Anthony et al. Dec 1998 A
5869681 Muller et al. Feb 1999 A
6040331 Yamamoto et al. Mar 2000 A
6218418 Pevarello et al. Apr 2001 B1
6413984 Philippo et al. Jul 2002 B1
6506747 Betageri et al. Jan 2003 B1
6548525 Galemmo, Jr. et al. Apr 2003 B2
6720427 Sanner et al. Apr 2004 B2
6878196 Harada et al. Apr 2005 B2
6916927 Bunnage et al. Jul 2005 B2
6965032 Freudenberger et al. Nov 2005 B2
7192906 Hirohara et al. Mar 2007 B2
7196104 Askew, Jr. et al. Mar 2007 B2
7319108 Scwink et al. Jan 2008 B2
7774978 Ding et al. Aug 2010 B2
7803832 Critcher et al. Sep 2010 B2
7910606 Nazere et al. Mar 2011 B2
7923573 Tamaki et al. Apr 2011 B2
8163756 Flynn et al. Apr 2012 B2
8222280 Liu et al. Jul 2012 B2
8901153 Buysse et al. Dec 2014 B2
9024031 Yang et al. May 2015 B1
9029554 Yang et al. May 2015 B1
9029555 Li et al. May 2015 B1
9029556 Yang et al. May 2015 B1
9044017 Yang et al. Jun 2015 B2
9085552 Li et al. Jul 2015 B1
9085564 Yang et al. Jul 2015 B2
9102654 Yang et al. Aug 2015 B2
9102655 Yang et al. Aug 2015 B2
9108932 Ross et al. Aug 2015 B2
9108946 Yang et al. Aug 2015 B2
9115115 Yang et al. Aug 2015 B1
9126974 Yang et al. Sep 2015 B2
9156813 Li et al. Oct 2015 B1
9174962 Yang et al. Nov 2015 B2
9199942 Yang et al. Dec 2015 B2
9199964 Yang et al. Dec 2015 B1
9249122 Yang et al. Feb 2016 B1
9255081 Li et al. Feb 2016 B1
9255082 Yang et al. Feb 2016 B2
9255083 Yang et al. Feb 2016 B2
9260396 Yang et al. Feb 2016 B2
9371310 Yang et al. Jun 2016 B2
9414594 Yang et al. Aug 2016 B2
9422265 Li et al. Aug 2016 B2
9433215 Yang et al. Sep 2016 B2
9434712 Yang et al. Sep 2016 B2
9447048 Yang et al. Sep 2016 B2
9522900 Yang et al. Dec 2016 B2
9540342 Yang et al. Jan 2017 B2
9550751 Yang et al. Jan 2017 B2
9573931 Yang et al. Feb 2017 B2
9580403 Li et al. Feb 2017 B2
9580405 Yang et al. Feb 2017 B2
9604942 Ross et al. Mar 2017 B2
9611247 Yang et al. Apr 2017 B2
9661849 Yang et al. May 2017 B2
9663489 Li et al. May 2017 B2
9670164 Yang et al. Jun 2017 B2
9670178 Yang et al. Jun 2017 B2
9723839 Yang et al. Aug 2017 B2
9796682 Yang et al. Oct 2017 B2
9809570 Yang et al. Nov 2017 B2
9840490 Li et al. Dec 2017 B2
9862702 Yang et al. Jan 2018 B2
20020013326 Tiebes et al. Jan 2002 A1
20030153464 Nakamura et al. Aug 2003 A1
20030213405 Harada et al. Nov 2003 A1
20040043904 Yamaguchi et al. Mar 2004 A1
20040082629 Iwataki et al. Apr 2004 A1
20040255397 Fessman et al. Dec 2004 A1
20050038059 Mueller et al. Feb 2005 A1
20050176710 Schwink et al. Aug 2005 A1
20060135778 Schnatterer et al. Jun 2006 A1
20060160857 Buettelmann et al. Jul 2006 A1
20060160875 Gaines et al. Jul 2006 A1
20060167020 Dickerson et al. Jul 2006 A1
20060287365 Billen et al. Dec 2006 A1
20060287541 Nishino et al. Dec 2006 A1
20070049604 Nam et al. Mar 2007 A1
20070167426 Siddiqui et al. Jul 2007 A1
20080004301 Tamaki et al. Jan 2008 A1
20080027046 Annan et al. Jan 2008 A1
20090023709 Gillespie et al. Jan 2009 A1
20090069288 Breinlinger et al. Mar 2009 A1
20090137524 Billen et al. May 2009 A1
20090275592 Zeng et al. Nov 2009 A1
20090325956 Taniguchi et al. Dec 2009 A1
20100130474 Bothmann et al. May 2010 A1
20100204164 Crouse et al. Aug 2010 A1
20100286169 Guiles et al. Nov 2010 A1
20100292253 Trullinger et al. Nov 2010 A1
20100305200 Velicelebi et al. Dec 2010 A1
20110021771 Mallais et al. Jan 2011 A1
20110048261 Shimura Mar 2011 A1
20110098287 Bretschneider et al. Apr 2011 A1
20110118290 Bretschneider et al. May 2011 A1
20110166129 MacHacek et al. Jul 2011 A1
20110166143 Bretschneider et al. Jul 2011 A1
20110184188 Wade et al. Jul 2011 A1
20110201649 Matsuzaki et al. Aug 2011 A1
20110212949 Bretschneider et al. Sep 2011 A1
20110275583 Bretschneider et al. Nov 2011 A1
20110319428 Fuβlein et al. Dec 2011 A1
20120053146 Parker et al. Mar 2012 A1
20120094837 Muhlthau et al. Apr 2012 A1
20120095023 Bretschneider et al. Apr 2012 A1
20120101294 Hirota et al. Apr 2012 A1
20120110701 Garizi et al. May 2012 A1
20120110702 Yap et al. May 2012 A1
20120115811 Du et al. May 2012 A1
20120165345 Bretschneider et al. Jun 2012 A1
20120172218 Crouse et al. Jul 2012 A1
20120220453 Lowe et al. Aug 2012 A1
20120252770 Berger et al. Oct 2012 A1
20130019348 Crouse et al. Jan 2013 A1
20130072382 Trullinger et al. Mar 2013 A1
20130089622 Trullinger et al. Apr 2013 A1
20130109566 Niyaz et al. May 2013 A1
20130261141 Bretschneider et al. Oct 2013 A1
20130288893 Buysse et al. Oct 2013 A1
20130291227 Buysse et al. Oct 2013 A1
20130324736 Ross, Jr. et al. Dec 2013 A1
20130324737 Ross, Jr. et al. Dec 2013 A1
20130338367 Numata et al. Dec 2013 A1
20140162874 Yap et al. Jun 2014 A1
20150112076 Yang et al. Apr 2015 A1
20150252016 Yang et al. Sep 2015 A1
20160152593 Li et al. Jun 2016 A1
20170044134 Yang et al. Feb 2017 A1
20170081288 Yang et al. Mar 2017 A1
20170101392 Yang et al. Apr 2017 A1
20170101393 Li et al. Apr 2017 A1
20170215420 Yang et al. Aug 2017 A1
20170217924 Li et al. Aug 2017 A1
20170226078 Yang et al. Aug 2017 A1
20170233367 Yang et al. Aug 2017 A1
20170295786 Yang et al. Oct 2017 A1
Foreign Referenced Citations (102)
Number Date Country
87107798 May 1988 CN
1339027 Mar 2002 CN
1373662 Oct 2002 CN
1852885 Oct 2006 CN
1307161 Mar 2007 CN
101228134 Jul 2008 CN
0097323 Jan 1984 EP
0190457 Aug 1986 EP
0205024 Dec 1986 EP
0232538 Aug 1987 EP
0248315 Dec 1987 EP
0425948 May 1991 EP
0273549 Jan 1992 EP
0757987 Feb 1997 EP
1273582 Jan 2003 EP
1321463 Jun 2003 EP
1329160 Jul 2003 EP
1757590 Feb 2007 EP
1987-153273 Jul 1987 JP
1988-174905 Jul 1988 JP
1989-226815 Sep 1989 JP
2003-212864 Jul 2003 JP
2004-051628 Feb 2004 JP
2004-292703 Oct 2004 JP
2012-188418 Oct 2012 JP
2013-075871 Apr 2013 JP
2013-082699 May 2013 JP
2013-082704 May 2013 JP
2013-107867 Jun 2013 JP
2013-129651 Jul 2013 JP
2013-129653 Jul 2013 JP
1994013644 Jun 1994 WO
1997036897 Oct 1997 WO
1998049166 Nov 1998 WO
2000035919 Jun 2000 WO
200112189 Feb 2001 WO
2001034127 May 2001 WO
2001090078 Nov 2001 WO
2002083111 Oct 2002 WO
2003008405 Jan 2003 WO
2003072102 Sep 2003 WO
2004041813 May 2004 WO
2005070925 Aug 2005 WO
2005074875 Aug 2005 WO
2006023462 Mar 2006 WO
2006033005 Mar 2006 WO
2006046593 May 2006 WO
2006103045 Oct 2006 WO
2007005838 Jan 2007 WO
2008090382 Jul 2007 WO
2007087427 Aug 2007 WO
2007098826 Sep 2007 WO
2008005457 Jan 2008 WO
2008079277 Jul 2008 WO
2009149858 Dec 2009 WO
2010006713 Jan 2010 WO
2010009290 Jan 2010 WO
2010012442 Feb 2010 WO
2010033360 Mar 2010 WO
2010048207 Apr 2010 WO
2010060379 Jun 2010 WO
2010075376 Jul 2010 WO
2010129497 Nov 2010 WO
2010133336 Nov 2010 WO
2010146236 Dec 2010 WO
2011003065 Jan 2011 WO
2011043371 Apr 2011 WO
2011045224 Apr 2011 WO
2011045240 Apr 2011 WO
2011091153 Jul 2011 WO
2011101229 Aug 2011 WO
2011126903 Oct 2011 WO
2011128304 Oct 2011 WO
2011134964 Nov 2011 WO
2011138285 Nov 2011 WO
2011163518 Dec 2011 WO
2012000896 Jan 2012 WO
2012004217 Jan 2012 WO
2012007500 Jan 2012 WO
2010035011 Mar 2012 WO
2012052412 Apr 2012 WO
2012061290 May 2012 WO
2012070114 May 2012 WO
2012102387 Aug 2012 WO
2012108511 Aug 2012 WO
2012147107 Nov 2012 WO
2012168361 Dec 2012 WO
2013000931 Jan 2013 WO
2013010946 Jan 2013 WO
2013010947 Jan 2013 WO
2013062980 May 2013 WO
2013062981 May 2013 WO
2013064324 May 2013 WO
2013156431 Oct 2013 WO
2013156433 Oct 2013 WO
2013162716 Oct 2013 WO
2015058020 Apr 2015 WO
2015058022 Apr 2015 WO
2015058023 Apr 2015 WO
2015058024 Apr 2015 WO
2015058026 Apr 2015 WO
2015058028 Apr 2015 WO
Non-Patent Literature Citations (31)
Entry
Ross, John R. et al. “Synthesis of 7-Substituted 5,6-Dimethyl-2,4-dioxo-1,2,4,7-tetrahydropyrrolo[2,3-d][1,3]oxazines”, Synthesis, v. 1985, No. 8, Jan. 1, 1985, pp. 796-798.
Lahm et al., “Rynaxypyr™: A new insecticidal anthranilic diamide that acts as a potent and selective ryanodine receptor activator,” Biorg. Med. Chem. Lett., 2007, 17, 6274-6279.
Giornal, F. et al., “A New Synthesis and Process Development of Bis(fluoroalkyl)pyrazoles As Novel Agrophores,” Organic Process Research and Development, 2014, 18, 1002-1009.
Lieser, T. et al., “Artificial organic high polymers, VII, New acrylyl derivatives and their polymerization products,” Chemische Berichte, VCH, DE, 1951, 84, 4-12.
Tanaka, N. et al., “Synthesis of pyrazole carboxylic acid via cobalt-catalyzed phase oxidation,” Chemistry Letters, Chemical Society of Japan, 1991, 4, 585-588.
Kempe et al., “Responsive Glyco-poly(2-oxaoline)s: Synthesis, Cloud Point Tuning, and Lectin Binding,” Biomacromolecules 2011, vol. 12, pp. 2591-2600.
Fields et al., “Preparation of Trifluoromethyl-Pyrazoles and—Pyrazolines by the Reaction of 2,2,2-Trifluorodiazoethane with Carbon-Carbon Multiple Bonds,” Journal of Fluorine Chemistry, 1979, vol. 13, pp. 147-158.
Bradbury et al., “Enzyme-catalysed peptide amidation,” Eur. J. Biochem. 1987, vol. 169, pp. 579-584.
International Search Report and Written Opinion for PCT/US2014/061005 dated Dec. 16, 2014.
International Search Report and Written Opinion for PCT/US2014/061006 dated Dec. 8, 2014.
International Search Report and Written Opinion for PCT/US2014/061007 dated Dec. 31, 2014.
International Search Report and Written Opinion for PCT/US2014/061009 dated Dec. 8, 2014.
International Search Report and Written Opinion for PCT/US2014/061010 dated Dec. 15, 2014.
International Search Report and Written Opinion for PCT/US2014/061012 dated Dec. 15, 2014.
International Search Report and Written Opinion for PCT/US2014/061014 dated Dec. 15, 2014.
International Search Report and Written Opinion for PCT/US2014/061016 dated Dec. 15, 2014.
International Search Report and Written Opinion for PCT/US2014/061022 dated Dec. 29, 2014.
International Search Report and Written Opinion for PCT/US2014/061023 dated Dec. 15, 2014.
International Search Report and Written Opinion for PCT/US2014/061024 dated Dec. 15, 2014.
International Search Report and Written Opinion for PCT/US2014/061027 dated Dec. 15, 2014.
International Search Report and Written Opinion for PCT/US2014/061029 dated Dec. 15, 2014.
International Search Report and Written Opinion for PCT/US2014/061030 dated Dec. 15, 2014.
International Search Report and Written Opinion for PCT/US2013/029615 dated May 8, 2013.
Ameduri, B. et al., “Synthesis and polymerization of fluorinated monomers bearing a reactive lateral group Part 4. Preparation of functional perfluorovinyl monomers by radical addition of functional mercaptans to 1,1,2-trifluoro-1,4-pentadiene.” J. Fluorine Chemistry, 92, 77-84 (1998).
International Preliminary Report on Patentability for PCT/US2011/058578 dated Dec. 21, 2012.
International Search Report and Written Opinion for PCT/US2011/058578 dated Apr. 5, 2012.
Kadam, S.S. et al., “Synthesis and Tautomerism of Substituted Pyrazolo[4,3-c]pyrazoles.” Eur. J. Chem., 6811-6822 (2013).
Gorelik; Zhumai Organicheskol khlml, 1980 (16), 1322, ABSTRACT, Chemical Abstracts, Accession No. 6206562.
National Center for Biotechnology Information, PubChem Compound Database; CID=17132489,https://pubchem.ncbi.nlm.nih.gov/compound/17132489, create date Nov. 13, 2007.
Frigola; European Journal of Medicinal Chemistry 1989, 435-445.
Binz et al. “Derivatives of pyridine, etc.,” CA 25:30083 (1931).
Related Publications (1)
Number Date Country
20180037565 A1 Feb 2018 US
Provisional Applications (1)
Number Date Country
62039128 Aug 2014 US
Divisions (3)
Number Date Country
Parent 15335809 Oct 2016 US
Child 15783108 US
Parent 14811246 Jul 2015 US
Child 15335809 US
Parent 14517344 Oct 2014 US
Child 14666812 US
Continuations (1)
Number Date Country
Parent 14666812 Mar 2015 US
Child 14811246 US