Process for the preparation of 3-(3-CHLORO-1H-pyrazol-1-yl)pyridine

Information

  • Patent Grant
  • 9896430
  • Patent Number
    9,896,430
  • Date Filed
    Wednesday, April 12, 2017
    7 years ago
  • Date Issued
    Tuesday, February 20, 2018
    6 years ago
Abstract
This disclosure relates to the field of preparation of 3-(3-chloro-1H-pyrazol-1-yl)pyridine and intermediates therefrom. These intermediates are useful in the preparation of certain pesticides.
Description
TECHNICAL FIELD

This disclosure relates to the field of preparation of 3-(3-chloro-1H-pyrazol-1-yl)pyridine and intermediates therefrom. These intermediates are useful in the preparation of certain pesticides.


BACKGROUND

US 20130288893(A1) describes certain (3-halo-1-(pyridin-3-yl)-1H-pyrazol-4-yl)amides and carbamates and their use as pesticides. The processes therein to prepare these amides and carbamates result in low yields, rely on a starting material that is difficult to prepare (3-chloropyrazole), and provide a product that is difficult to isolate in a pure form. It would be desirable to have a process for preparing 3-(3-chloro-1H-pyrazol-1-yl)pyridine that avoids these problems.







DETAILED DESCRIPTION

The following definitions apply to the terms as used throughout this specification, unless otherwise limited in specific instances.


As used herein, the term “alkyl” denotes branched or unbranched hydrocarbon chains.


As used herein, the term “alkoxide” means an alkyl further consisting of a carbon-oxygen single bond, for example, methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, and tert-butoxy.


The present disclosure provides an alternative process for preparing 3-(3-chloro-1H-pyrazol-1-yl)pyridine (5b) by cyclizing 3-hydrazinopyridine.dihydrochloride with an alkyl methacrylate to provide 4-methyl-1-(pyridin-3-yl)pyrazolidin-3-one (1), by chlorinating (1) to provide 3-(3-chloro-4-methyl-4,5-dihydro-1H-pyrazol-1-yl)pyridine (2), by oxidizing (2) to provide 3-(3-chloro-4-methyl-1H-pyrazol-1-yl)pyridine (3), by further oxidizing (3) to provide 3-chloro-1-(pyridin-3-yl)-1H-pyrazole-4-carboxylic acid (4), and by decarboxylating (4) to provide 3-(3-chloro-1H-pyrazol-1-yl)pyridine (5b).


Thus, the present disclosure concerns a process for preparing 3-(3-chloro-1H-pyrazol-1-yl)pyridine (5b)




embedded image



which comprises


a) cyclizing 3-hydrazinopyridine.dihydrochloride




embedded image


with alkyl methacrylate,




embedded image


wherein R represents (C1-C4) alkyl,


in a (C1-C4) alkyl alcohol at a temperature of about 25° C. to about 80° C. in the presence of an alkali metal (C1-C4) alkoxide to provide 4-methyl-1-(pyridin-3-yl)pyrazolidin-3-one (1)




embedded image


b) chlorinating 4-methyl-1-(pyridin-3-yl)pyrazolidin-3-one (1) with a chlorinating reagent in an organic solvent at a temperature of about 25° C. to about 100° C. to provide 3-(3-chloro-4-methyl-4,5-dihydro-1H-pyrazol-1-yl)pyridine (2)




embedded image


c) oxidizing 3-(3-chloro-4-methyl-4,5-dihydro-1H-pyrazol-1-yl)pyridine (2) with an oxidant in a solvent at a temperature of about 25° C. to about 100° C. to provide 3-(3-chloro-4-methyl-1H-pyrazol-1-yl)pyridine (3)




embedded image


d) further oxidizing 3-(3-chloro-4-methyl-1H-pyrazol-1-yl)pyridine (3) with an oxidant in a polar protic solvent at a temperature of about 50° C. to about 100° C. to provide 3-chloro-1-(pyridin-3-yl)-1H-pyrazole-4-carboxylic acid (4)




embedded image



and


e) decarboxylating 3-chloro-1-(pyridin-3-yl)-1H-pyrazole-4-carboxylic acid (4) with copper oxide in a polar aprotic solvent at a temperature of about 80° C. to about 180° C. to provide 3-(3-chloro-1H-pyrazol-1-yl)pyridine (5b).


Scheme 1 outlines this process for preparing 3-(3-chloro-1H-pyrazol-1-yl)pyridine (5b).




embedded image


In step 1a, 3-hydrazinopyridine.dihydrochloride is cyclized with a (C1-C4) alkyl methacrylate, in a solution further comprising a (C1-C4) alkyl alcohol and an alkali metal (C1-C4) alkoxide, to provide 4-methyl-1-(pyridin-3-yl)pyrazolidin-3-one (1). Step a is conducted at a temperature from about 25° C. to about 80° C. While stoichiometric amounts of 3-hydrazinopyridine.dihydrochloride and (C1-C4) alkyl methacrylate may be used, it is often convenient to use about a 1.5 fold to about a 2 fold excess of (C1-C4) alkyl methacrylate compared to 3-hydrazinopyridine.dihydrochloride. The (C1-C4) alkyl alcohol is preferably selected from methanol, ethanol, propanol, butanol, and mixtures thereof. The alkali metal (C1-C4) alkoxide is preferably selected from sodium methoxide, sodium ethoxide, and mixtures thereof. It is often convenient to use about a 2 fold to about a 3 fold excess of alkali metal (C1-C4) alkoxide compared to 3-hydrazinopyridine.dihydrochloride. Furthermore, it is most preferred if sodium ethoxide and ethanol is used.


In another embodiment, 3-hydrazinopyridine.dihydrochloride is cyclized with methyl methacrylate in the presence of sodium ethoxide and ethanol and this mixture is heated at about 50° C. The crude 4-methyl-1-(pyridin-3-yl)pyrazolidin-3-one (1) is used as is without further purification or isolation.


In step 1b, 4-methyl-1-(pyridin-3-yl)pyrazolidin-3-one (1) is chlorinated with a chlorinating reagent in an organic solvent at a temperature from about 25° C. to about 100° C. to provide 3-(3-chloro-4-methyl-4,5-dihydro-1H-pyrazol-1-yl)pyridine (2). Suitable chlorinating reagents include phosphoryl chloride (phosphorous oxychloride), phosphorus pentachloride, and mixtures thereof. Phosphoryl chloride is currently preferred. It is often convenient to use about a 1.1 fold to about a 10 fold excess of the chlorinating reagent compared to 4-methyl-1-(pyridin-3-yl)pyrazolidin-3-one (1). The chlorination is performed in an organic solvent that does not substantially react with the chlorinating reagent. Suitable solvents include nitriles such as acetonitrile. It is currently preferred to use phosphoryl chloride as the chlorinating reagent and acetonitrile as the solvent.


In another embodiment, 4-methyl-1-(pyridin-3-yl)pyrazolidin-3-one (1) in acetonitrile is chlorinated with phosphoryl chloride and the mixture is heated to about 75° C. The 3-(3-chloro-4-methyl-4,5-dihydro-1H-pyrazol-1-yl)pyridine (2) can be isolated and purified by standard techniques.


In step 1c, 3-(3-chloro-4-methyl-4,5-dihydro-1H-pyrazol-1-yl)pyridine (2) is oxidized with an oxidant in an organic solvent at a temperature of about 25° C. to about 100° C. to provide 3-(3-chloro-4-methyl-1H-pyrazol-1-yl)pyridine (3). Suitable oxidants include copper(I) chloride in the presence of oxygen, potassium ferricyanide, and manganese(IV) oxide. It is often convenient to use about a 1.5 fold to about a 15 fold excess of oxidant compared to 3-(3-chloro-4-methyl-4,5-dihydro-1H-pyrazol-1-yl)pyridine (2). The oxidation is performed in a solvent that does not substantially react with the oxidant. Suitable solvents include water, N,N-dimethylformamide, N-methylpyrrolidinone, dichloromethane, tert-butanol, nitriles such as acetonitrile, aromatic hydrocarbons such as toluene, and mixtures thereof. It is currently preferred to use copper(I) chloride in the presence of oxygen as the oxidant, with N,N-dimethylformamide, N-methylpyrolidinone, and mixtures thereof as the solvent. It is also preferred to use potassium-ferricyanide as the oxidant, with water as the solvent. It is also preferred to use manganese(IV) oxide as the oxidant, with dichloromethane, tert-butanol, acetonitrile, toluene, and mixtures thereof as the solvent. It is also preferred to use manganese(IV) oxide as the oxidant, with acetonitrile as the solvent.


In another embodiment, 3-(3-chloro-4-methyl-4,5-dihydro-1H-pyrazol-1-yl)pyridine (2) in acetonitrile is oxidized with manganese(IV) oxide and the mixture is heated at about 40° C. The 3-(3-chloro-4-methyl-1H-pyrazol-1-yl)pyridine (3) can be isolated and purified by standard techniques.


In step 1d, 3-(3-chloro-4-methyl-1H-pyrazol-1-yl)pyridine (3) is further oxidized with an oxidant in a protic solvent at a temperature of about 50° C. to about 100° C. to provide 3-chloro-1-(pyridin-3-yl)-1H-pyrazole-4-carboxylic acid (4). Suitable oxidants include potassium permanganate and sodium permanganate. It is often convenient to use about a 2.5 fold to about a 4.5 fold, preferably about a 3.0 fold excess of oxidant compared to 3-(3-chloro-4-methyl-1H-pyrazol-1-yl)pyridine (3). The oxidation is performed in a protic solvent that does not substantially react with the oxidant. Suitable solvents include water, tert-butanol, tert-amyl alcohol, and mixtures thereof.


In another embodiment, 3-(3-chloro-4-methyl-1H-pyrazol-1-yl)pyridine (3) is further oxidized by sodium permanganate in water and tert-butanol and heated at about 80° C. The 3-chloro-1-(pyridin-3-yl)-1H-pyrazole-4-carboxylic acid (4) can be isolated and purified by standard techniques.


In step 1e, 3-chloro-1-(pyridin-3-yl)-1H-pyrazole-4-carboxylic acid (4) is decarboxylated in the presence of copper oxide which may optionally be ligated with a bidentate ligand such as tetramethyl ethylenediamine in a polar aprotic solvent at a temperature from about 80° C. to about 180° C. to provide 3-(3-chloro-1H-pyrazol-1-yl)pyridine (5b). Suitable copper oxide sources include copper(I) oxide and copper(II) oxide as well as mixtures thereof. It is convenient to use about 5 wt % to about 20 wt % of copper oxide based on 3-chloro-1-(pyridin-3-yl)-1H-pyrazole-4-carboxylic acid (4). Suitable solvents include N,N-dimethylformamide, N,N-dimethylacetamide, N-methylpyrrolidinone, and mixtures thereof.


In another embodiment, 3-chloro-1-(pyridin-3-yl)-1H-pyrazole-4-carboxylic acid (4) and copper(I) oxide are mixed with N,N-dimethylacetamide and heated to about 125° C. The 3-(3-chloro-1H-pyrazol-1-yl)pyridine (5b) can be isolated and purified by standard techniques.


An illustrative example of how 3-(3-chloro-1H-pyrazol-1-yl)pyridine (5b) may be used for preparing certain pesticidal (3-halo-1-(pyridin-3-yl)-1H-pyrazol-4-yl)amides is outlined in Scheme 2.




embedded image


In step 2a, 3-(3-chloro-1H-pyrazol-1-yl)pyridine (5b) is nitrated with nitric acid (HNO3), preferably in the presence of sulfuric acid (H2SO4) to yield 3-(3-chloro-4-nitro-1H-pyrazol-1-yl)pyridine (2-6). The nitration may be conducted at temperatures from about −10° C. to about 30° C.


In step 2b, 3-(3-chloro-4-nitro-1H-pyrazol-1-yl)pyridine (2-6) is reduced to yield 3-chloro-1-(pyridin-3-yl)-1H-pyrazol-4-amine (2-7). For example, 3-(3-chloro-4-nitro-1H-pyrazol-1-yl)pyridine (2-6) may be reduced with iron in acetic acid (AcOH). 3-(3-Chloro-4-nitro-1H-pyrazol-1-yl)pyridine (2-6) may also be reduced with iron and ammonium chloride (NH4Cl). Alternatively, this reduction may be carried out using other techniques in the art, for example, 3-(3-chloro-4-nitro-1H-pyrazol-1-yl)pyridine (2-6) may be reduced using palladium on carbon in the presence of hydrogen (H2). This reaction may be conducted at temperatures from about −10° C. to about 30° C.


In step 2c, 3-chloro-1-(pyridin-3-yl)-1H-pyrazol-4-amine (2-7) is acylated with acetylating agents such as acetyl chloride or acetic anhydride, preferably acetic anhydride (Ac2O) to yield N-(3-chloro-1-(pyridin-3-yl)-1H-pyrazol-4-yl)acetamide (2-8). The acylation is conducted in the presence of a base, preferably an inorganic base, such as, sodium bicarbonate (NaHCO3), and preferably, a polar solvent, such as ethyl acetate and/or tetrahydrofuran. This reaction may be conducted at temperatures from about −10° C. to about 30° C.


In step 2d, N-(3-chloro-1-(pyridin-3-yl)-1H-pyrazol-4-yl)acetamide (2-8) is alkylated with ethyl bromide (EtBr) in the presence of a base, such as sodium hydride (NaH) or sodium tert-butoxide (NaOt-Bu), in a polar aprotic solvent, such as tetrahydrofuran, at temperatures from about 20° C. to about 40° C., over a period of time of about 60 hours to about 168 hours, to yield N-(3-chloro-1-(pyridin-3-yl)-1H-pyrazol-4-yl)-N-ethylacetamide (2-9). It has been discovered that use of an iodide additive, such as potassium iodide (KI) or tetrabutylammonium iodide (TBAI) can decrease the time necessary for the reaction to occur to about 24 hours. It has also been discovered that heating the reaction at about 50° C. to about 70° C. in a sealed reactor (to prevent loss of ethyl bromide) also decreases the reaction time to about 24 hours.


In step 2e, N-(3-chloro-1-(pyridin-3-yl)-1H-pyrazol-4-yl)-N-ethylacetamide (2-9) is treated with hydrochloric acid in water at temperatures from about 50° C. to about 90° C., to yield 3-chloro-N-ethyl-1-(pyridin-3-yl)-1H-pyrazol-amine (2-10). Steps d and e of Scheme 2 may also be performed without the isolation of N-(3-chloro-1-(pyridin-3-yl)-1H-pyrazol-4-yl)-N-ethylacetamide (2-8).


In step 2f, 3-chloro-N-ethyl-1-(pyridin-3-yl)-1H-pyrazol-amine (2-10) is acylated with 3((3,3,3-trifluoropropyl)thio)propanoyl chloride in the presence of a base preferably, sodium bicarbonate to yield pesticidal (3-halo-1-(pyridin-3-yl)-1H-pyrazol-4-yl)amide (2-11). The reaction may also be conducted in the absence of a base to yield pesticidal (3-halo-1-(pyridin-3-yl)-1H-pyrazol-4-yl)amide (2-11).


In step 2g, pesticidal (3-halo-1-(pyridin-3-yl)-1H-pyrazol-4-yl)amide (2-11) is oxidized with hydrogen peroxide (H2O2) in methanol to yield pesticidal (3-halo-1-(pyridin-3-yl)-1H-pyrazol-4-yl)amide (2-12).


EXAMPLES

These examples are for illustration purposes and are not to be construed as limiting the disclosure to only the embodiments disclosed in these examples.


Starting materials, reagents, and solvents that were obtained from commercial sources were used without further purification. Anhydrous solvents were purchased as Sure/Seal™ from Aldrich and were used as received. Melting points were obtained on a Thomas Hoover Unimelt capillary melting point apparatus or an OptiMelt Automated Melting Point System from Stanford Research Systems and are uncorrected. Examples using “room temperature” were conducted in climate controlled laboratories with temperatures ranging from about 20° C. to about 24° C. Molecules are given their known names, named according to naming programs within ISIS Draw, ChemDraw or ACD Name Pro. If such programs are unable to name a molecule, the molecule is named using conventional naming rules. 1H NMR spectral data are in ppm (δ) and were recorded at 300, 400 or 600 MHz; 13C NMR spectral data are in ppm (δ) and were recorded at 75, 100 or 150 MHz, and 19F NMR spectral data are in ppm (δ) and were recorded at 376 MHz, unless otherwise stated.


1. Preparation of 4-methyl-1-(pyridin-3-yl)pyrazolidin-3-one (1)



embedded image


To a 250 mL three-neck round bottom flask equipped with a reflux condenser was introduced 3-hydrazinopyridine.dihydrochloride (15.0 g, 82.4 mmol). Sodium ethoxide (21 wt % in ethanol, 92.3 mL, 247 mmol) was added over 5 minutes and the pot temperature increased from 23° C. to 38° C. The resultant light brown-slurry was stirred for 10 minutes. Methyl methacrylate (17.7 mL, 165 mmol) was added slowly over 15 minutes and the pot temperature remained at 38° C. The yellow mixture was stirred at 50° C. under nitrogen for 4 hours. The mixture was then cooled down to 10° C. and hydrochloric acid (4 M in 1,4-dioxane, 20.6 mL) was added slowly to quench excess base leading to a light brown suspension. The mixture was concentrated under reduced pressure to afford the title compound as a brown solid as a mixture with sodium chloride (35.2 g, 241%): EIMS m/z 177 ([M]+). The crude material was used directly in the next step.


2. Preparation of 3-(3-chloro-4-methyl-4,5-dihydro-1H-pyrazol-1-yl)pyridine (2)



embedded image


Crude 4-methyl-1-(pyridin-3-yl)pyrazolidin-3-one (35.2 g, ˜82.4 mmol) was introduced into a 250 mL three-neck round bottom flask equipped with a reflux condenser. Acetonitrile (100 mL) was then added. To this yellow mixture was added phosphoryl chloride (11.56 mL, 124 mmol) slowly. The yellow slurry was stirred at 75° C. for 1 hour. The mixture was cooled down and concentrated to remove volatiles. The brown residue was carefully quenched with water (120 mL), and basified with NaOH (50 wt % in water) to pH 10 while keeping the temperature below 60° C. The mixture was then extracted with ethyl acetate (3×150 mL). The combined organic extracts were washed with water (80 mL) and concentrated under reduced pressure to afford the crude product as dark purple oil. The crude product was purified by flash column chromatography using 0-70% ethyl acetate/hexanes as eluent to provide the title compound as a brown oil (12.3 g, 76% over two steps): 1H NMR (400 MHz, CDCl3) δ 8.27 (dd, J=2.8, 0.7 Hz, 1H), 8.15 (dd, J=4.6, 1.4 Hz, 1H), 7.38 (ddd, J=8.4, 2.9, 1.4 Hz, 1H), 7.18 (ddd, J=8.4, 4.7, 0.7 Hz, 1H), 4.17−4.06 (m, 1H), 3.47 (t, J=8.9 Hz, 1H), 3.44−3.34 (m, 1H), 1.37 (d, J=6.8 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ 148.17, 142.07, 141.10, 134.74, 123.39, 119.92, 56.62, 43.62, 16.16; EIMS m/z 195 ([M]+).


3. Preparation of 3-(3-chloro-4-methyl-1H-pyrazol-1-yl)pyridine (3)



embedded image


To a solution of 3-(3-chloro-4-methyl-4,5-dihydro-1H-pyrazol-1-yl)pyridine (1.0 g, 5.0 mol) in acetonitrile (10.0 mL) at 0° C. was added manganese(IV) oxide (1.3 g, 15 mmol) portionwise over 10 minutes. The mixture was slowly warmed to 22° C. over 40 minutes and then heated to 40° C. overnight. After 20 hours, additional manganese(IV) oxide (0.44 g, 5.0 mmol) was added in one portion and the mixture was stirred for 1 hour. The mixture was cooled down and filtered. The filter cake was washed with acetonitrile (3×15 mL). The organic filtrate was dried and concentrated to afford the title compound as a light yellow solid (0.92 g, 95%): 1H NMR (400 MHz, CDCl3) δ 8.90 (dd, J=2.6, 0.8 Hz, 1H), 8.52 (dd, J=4.8, 1.5 Hz, 1H), 7.99 (ddd, J=8.3, 2.7, 1.4 Hz, 1H), 7.74 (q, J=0.9 Hz, 1H), 7.39 (ddd, J=8.3, 4.8, 0.8 Hz, 1H), 2.13 (d, J=0.9 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ 147.26, 142.87, 139.53, 135.90, 126.53, 125.69, 123.84, 116.86, 22.47; EIMS m/z 193 ([M]+).


4. Preparation of 3-chloro-1-(pyridin-3-yl)-1H-pyrazole-4-carboxylic acid (4)



embedded image


To a mixture of 3-(3-chloro-4-methyl-4,5-dihydro-1H-pyrazol-1-yl)pyridine (2.0 g, 10 mmol) in water (10.0 mL) and tert-butanol (5.0 mL) was added a solution of sodium permanganate (NaMnO4) (5.0 g, 35 mmol) in water (15 mL) over 20 minutes. The mixture was heated to 80° C. and stirred overnight. Additional sodium permanganate (0.711 g, 5.0 mmol) in water (2.0 mL) was added after 16 hours and the mixture was stirred for another 4 hours. The dark mixture was filtered through Celite®, washed with water (5.0 mL) and ethyl acetate (3×15 mL). The aqueous layer was extracted with ethyl acetate (25 mL) and acidified with concentrated hydrochloric acid to pH 5 leading to white precipitate which was collected by filtration. The filtrate was concentrated leading to white precipitate which was collected by filtration and washed with water (2.0 mL). The solid products were combined and dried under high vacuum to afford the title compound as a white solid (1.0 g, 46%): 1H NMR (400 MHz, DMSO-d6) δ 9.11 (s, 2H), 8.59 (d, J=4.7, 1H), 8.28 (ddd, J=8.4, 2.7, 1.4 Hz, 1H), 7.58 (dd, J=8.0, 4.4 Hz, 1H); 13C NMR (101 MHz, DMSO-d6) δ 162.24, 148.35, 141.46, 140.21, 135.01, 134.01, 126.45, 124.23, 115.34; ESIMS m/z 224 ([M+H]+).


5. Preparation of 3-(3-chloro-1H-pyrazol-1-yl)pyridine (5b)



embedded image


To a mixture of 3-chloro-1-(pyridin-3-yl)-1H-pyrazole-4-carboxylic acid (0.223 g, 1.0 mmol) in N,N-dimethylacetamide (3.0 mL) was added copper(I) oxide (0.022 g, 10 wt %). The mixture was heated to 125° C. and stirred for 6 hours. The brown mixture was filtered and washed with N,N-dimethylacetamide (1.0 mL) and acetonitrile (2×2 mL). The light yellow filtrate was analyzed by LC using di-n-propyl phthalate as internal standard (0.124 g, 69% in-pot yield); mp 66-68° C.; 1H NMR (400 MHz, CDCl3) δ 8.93 (d, J=27 Hz, 1H), 8.57 (dd, J=4.8, 1.4 Hz, 1H), 8.02 (ddd, J=8.3, 2.7, 1.5 Hz, 1H), 7.91 (d, J=2.6 Hz, 1H), 7.47−7.34 (m, 1H), 6.45 (d, J=2.6 Hz, 1H); 13C NMR (101 MHz, CDCl3) δ 148.01, 142.72, 140.12, 135.99, 128.64, 126.41, 124.01, 108.0; ESIMS m/z 180 ([M+H]+).


6. Preparation of 3-(3-chloro-4-nitro-1H-pyrazol-1-yl)pyridine (2-6)



embedded image


To a 100 mL, round bottom flask was charged 3-(3-chloro-1H-pyrazol-1-yl)pyridine (2.00 g, 11.1 mmol) and concentrated sulfuric acid (4 mL). This suspension was cooled to 5° C. and 2:1 concentrated nitric acid/sulfuric acid (3 mL, prepared by adding the concentrated sulfuric acid to a stirring and cooling solution of the nitric acid) was added dropwise at a rate such that the internal temperature was maintained <15° C. The reaction was allowed to warm to 20° C. and stirred for 18 hours. A sample of the reaction mixture was carefully diluted into water, basified with sodium hydroxide (50 wt % in water) and extracted with ethyl acetate. Analysis of the organic layer indicated that the reaction was essentially complete. The reaction mixture was carefully added to ice cold water (100 mL) at <20° C. It was basified with sodium hydroxide (50 wt % in water) at <20° C. The resulting light yellow suspension was stirred for 2 hours and filtered. The filter cake was rinsed with water (3×20 mL) and dried to afford an off-white solid (2.5 g, quantitative): mp 141-143° C.; 1H NMR (400 MHz, DMSO-d6) δ 9.86 (s, 1H), 9.23−9.06 (m, 1H), 8.75−8.60 (m, 1H), 8.33 (ddd, J=8.4, 2.8, 1.4 Hz, 1H), 7.64 (ddd, J=8.5, 4.7, 0.7 Hz, 1H); 13C NMR (101 MHz, DMSO-d6) δ 149.49, 140.75, 136.02, 134.43, 132.14, 131.76, 127.22, 124.31; EIMS m/z 224 ([M]+).


7. Preparation of 3-(3-chloro-4-amino-1H-pyrazol-1-yl)pyridine (2-7)



embedded image


To a 100 mL, 3-neck round bottom flask was charged 3-(3-chloro-4-nitro-1H-pyrazol-1-yl)pyridine (2.40 g, 10.7 mmol), acetic acid (4 mL), ethanol (4.8 mL) and water (4.8 mL). The mixture was cooled to 5° C. and iron powder (2.98 g, 53.4 mmol) was added portionwise over ˜15 minutes. The reaction was allowed to stir at 20° C. for 18 hours and diluted to 50 mL with water. It was filtered through Celite® and the filtrate was carefully basified with a sodium hydroxide solution (50 wt % in water). The resulting suspension was filtered through Celite® and the filtrate was extracted with ethyl acetate (3×20 mL). The organic layers were combined, dried over sodium sulfate and concentrated to dryness to afford a tan colored solid, which was further dried under vacuum for 18 hours (2.20 g, quantitative): mp 145-147° C.; 1H NMR (400 MHz, DMSO-d6) δ 8.95 (dd, J=2.6, 0.8 Hz, 1H), 8.45 (dd, J=4.7, 1.4 Hz, 1H), 8.08 (ddd, J=8.4, 2.7, 1.4 Hz, 1H), 7.91 (s, 1H), 7.49 (ddd, J=8.3, 4.7, 0.8 Hz, 1H), 4.43 (s, 2H); 13C NMR (101 MHz, DMSO-d6) δ 146.35, 138.53, 135.72, 132.09, 130.09, 124.29, 124.11, 114.09; EIMS m/z 194 ([M]+).


Alternate synthetic route to 3-(3-chloro-4-amino-1H-pyrazol-1-yl)pyridine (2-7): In a 250 mL 3-neck round bottom flask was added 3-(3-chloro-4-nitro-1H-pyrazol-1-yl)pyridine (5.00 g, 21.8 mmol), ethanol (80 mL), water (40 mL), and ammonium chloride (5.84 g, 109 mmol). The suspension was stirred under nitrogen stream for 5 minutes then iron powder (4.87 g, 87.2 mmol) was added. The reaction mixture was heated to reflux (˜80° C.) and held there for 4 hours. After 4 hours a reaction aliquot taken and the reaction had gone to full conversion as shown by HPLC analysis. Ethyl acetate (120 mL) and Celite® (10 g) were added to the reaction mixture and the mixture was let stir for 10 minutes. The black colored suspension was then filtered via a Celite® pad and rinsed with ethyl acetate (80 mL) The filtrate was washed with saturated sodium bicarbonate solution in water (30 mL) and the organic layer was assayed. The assay gave 4.19 g (99% yield) of product. The organic solvent was removed in vacuo to give a brown colored crude solid that was used without further purification.


8. N-(3-Chloro-1-(pyridin-3-yl)-1H-pyrazol-4-yl)acetamide (2-8)



embedded image


A 100 mL three-neck round bottom flask was charged with 3-chloro-1(pyridin-3-yl)-1H-pyrazol-4-amine (1.00 g, 5.14 mmol) and ethyl acetate (10 mL). Sodium bicarbonate (1.08 g, 12.9 mmol) was added, followed by dropwise addition of acetic anhydride (0.629 g, 6.17 mmol) at <20° C. The reaction was stirred at 20° C. for 2 hours to afford a suspension, at which point thin layer chromatography analysis [Eluent: ethyl acetate] indicated that the reaction was complete. The reaction was diluted with water (50 mL) and the resulting suspension was filtered. The solid was rinsed with water (10 mL) followed by methanol (5 mL). The solid was further dried under vacuum at 20° C. to afford the desired product as a white solid (0.804 g, 66%): mp 169-172° C.; 1H NMR (400 MHz, DMSO-d6) δ 9.84 (s, 1H), 9.05 (dd, J=2.8, 0.8 Hz, 1H), 8.82 (s, 1H), 8.54 (dd, J=4.7, 1.4 Hz, 1H), 8.20 (ddd, J=8.4, 2.8, 1.4 Hz, 1H), 7.54, (ddd, J=8.3, 4.7, 0.8 Hz, 1H), 2.11 (s, 3H); 13C NMR (101 MHz, DMSO-d6) δ 168.12, 147.46, 139.42, 135.46, 133.60, 125.47, 124.21, 122.21, 120.16, 22.62; EIMS m/z 236 ([M]+).


9. Preparation of N-(3-chloro-1-(pyridin-3-yl)-1H-pyrazol-4-yl)-N-ethylacetamide (2-9)



embedded image


In 125 mL 3-neck round-bottomed flask was added N-(3-chloro-1-(pyridin-3-yl)-1H-pyrazol-4-yl)acetamide (2.57 g, 9.44 mmol), tetrahydrofuran (55 mL), and sodium tert-butoxide (1.81 g, 18.9 mmol). The suspension was stirred for 5 minutes then ethyl bromide (1.41 mL, 18.9 mmol), and tetrabutylammonium iodide (67 mg, 0.2 mmol) were added. The resulting gray colored suspension was then heated to 38° C. The reaction was analyzed after 3 hours and found to have gone to 81% completion, after 24 hours the reaction was found to have gone to completion. The reaction mixture was allowed to cool to ambient temperature and quenched with ammonium hydroxide/formic acid (HCO2H) buffer (10 mL). The mixture was then diluted with tetrahydrofuran (40 mL), ethyl acetate (120 mL), and saturated sodium bicarbonate solution in water (30 mL). The layers were separated and the aqueous layer was extracted with ethyl acetate (2×30 mL). The organic layers were combined and silica gel (37 g) was added. The solvent was removed in vacuo to give a solid that was purified using semi-automated silica gel chromatography (RediSep Silica 220 g column; Hexanes (0.2% triethylamine)/ethyl acetate, 40/60 to 0/100 gradient elution system, flow rate 150 mL/minute) to give, after concentration, an orange solid (2.19 g, 88%).


10. Preparation of 3-chloro-N-ethyl-1-(pyridin-3-yl)-1H-pyrazol-4-amine (2-10)



embedded image


A solution of N-(3-chloro-1-(pyridin-3-yl)-1H-pyrazol-4-yl)-N-ethylacetamide (1.8 g, 6.80 mmol) in 1 N hydrochloric acid (34 mL) was heated at 80° C. for 18 hours, at which point HPLC analysis indicated that only 1.1% starting material remained. The reaction mixture was cooled to 20° C. and basified with sodium hydroxide (50 wt % in water) to pH>9. The resulting suspension was stirred at 20° C. for 2 hours and filtered. The filter cake was rinsed with water (2×5 mL), conditioned for 30 minutes, and air-dried to afford an off-white solid (1.48 g, 95%): 1H NMR (400 MHz, DMSO-d6) δ 9.00 (dd, J=2.8, 0.8 Hz, 1H), 8.45 (dd, J=4.7, 1.4 Hz, 1H), 8.11 (ddd, J=8.4, 2.8, 1.4 Hz, 1H), 8.06 (d, J=0.6 Hz, 1H), 7.49 (ddd, J=8.4, 4.7, 0.8 Hz, 1H), 4.63 (t, J=6.0 Hz, 1H), 3.00 (qd, J=7.1, 5.8 Hz, 2H), 1.19 (t, J=7.1 Hz, 3H); 13C NMR (101 MHz, DMSO-d6) δ 146.18, 138.31, 135.78, 132.82, 130.84, 124.08, 123.97, 112.23, 40.51, 14.28; ESIMS m/z 223 ([M+H]+).


Alternate synthetic route to 3-chloro-N-ethyl-1-(pyridin-3-yl)-1H-pyrazol-amine (2-10):


To a 3-neck, 100-mL round bottom flask was charged N-(3-chloro-1-(pyridin-3-yl)-1H-pyrazol-4-yl)acetamide (5 g, 21.13 mmol) and tetrahydrofuran (50 mL). Sodium tert-butoxide (4.06 g, 42.3 mmol) was added (causing a temperature rise from 22° C. to 27.6° C.), followed by ethyl bromide (6.26 mL, 85 mmol). The reaction was stirred at 35° C. for 144 h at which point only 3.2% (AUC) starting material remained. The reaction mixture was concentrated to give a brown residue, which was dissolved in 1 N hydrochloric acid (106 mL, 106 mmol) and heated at 80° C. for 24 hours, at which point HPLC analysis indicated that the starting material had been consumed. The reaction was cooled to 20° C. and basified with sodium hydroxide (50 wt % in water) to pH>9. The resulting suspension was stirred at 20° C. for 1 hour and filtered. The filter cake was rinsed with water (25 mL) to afford a brown solid (5.18 g). The resulting crude product was dissolved in ethyl acetate and passed through a silica gel plug (50 g) using ethyl acetate (500 mL) as eluent. The filtrate was concentrated to dryness to afford a white solid (3.8 g, 80%).


11. Preparation of N-(3-chloro-1-(pyridin-3-yl)-1H-pyrazol-4-yl)-N-ethyl-3-(3,3,3-trifluoropropyl)thio)propanamide (2-11)



embedded image


A 100 mL three neck round bottom flask was charged with 3-chloro-N-ethyl-1-(pyridine-3-yl)-1H-pyrazol-4-amine (5.00 g, 22.5 mmol) and ethyl acetate (50 mL). Sodium bicarbonate (4.72 g, 56.1 mmol) was added, followed by dropwise addition of 3-((3,3,3-trifluoropropyl)thio)propanoyl chloride (5.95 g, 26.9 mmol) at <20° C. for 2 hours, at which point HPLC analysis indicated that the reaction was complete. The reaction was diluted with water (50 mL) (off-gassing) and the layers were separated. The aqueous layer was extracted with ethyl acetate (20 mL) and the combined organic layers were concentrated to dryness to afford a light brown solid (10.1 g, quantitative). A small sample of crude product was purified by flash column chromatography using ethyl acetate as eluent to obtain an analytical sample: mp 79-81° C.; 1H NMR (400 MHz, DMSO-d6) δ 9.11 (d, J=2.7 Hz, 1H), 8.97 (s, 1H), 8.60 (dd, J=4.8, 1.4 Hz, 1H), 8.24 (ddd, J=8.4, 2.8, 1.4 Hz, 1H), 7.60 (ddd, J=8.4, 4.7, 0.8 Hz, 1H), 3.62 (q, J=7.2 Hz, 2H), 2.75 (t, J=7.0 Hz, 2H), 2.66−2.57 (m 2H), 2.57−2.44 (m, 2H), 2.41 (t, J=7.0 Hz, 2H), 1.08 (t, J=7.1 Hz, 3H). EIMS m/z 406 ([M]+).


12. Preparation of N-(3-chloro-1-(pyridin-3-yl)-1H-pyrazol-4-yl)-N-ethyl-3-((3,3,3-trifluoropropyl)sulfoxo)propanamide (2-12)



embedded image


N-(3-Chloro-1-(pyridin-3-yl)-1H-pyrazol-4-yl)-N-ethyl-3-(3,3,3-trifluoropropyl)thio) propanamide (57.4 g, 141 mmol) was stirred in methanol (180 mL). To the resulting solution was added hydrogen peroxide (43.2 mL, 423 mmol) dropwise using a syringe. The solution was stirred at room temperature for 6 hours, at which point LCMS analysis indicated that the starting material was consumed. The mixture was poured into dichloromethane (360 mL) and washed with aqueous sodium carbonate (Na2CO3). The organic layer was dried over sodium sulfate and concentrated under reduced pressure to provide a thick yellow oil. The crude product was purified by flash column chromatography using 0-10% methanol/ethyl acetate as eluent. The pure fractions were combined and concentrated to afford the desired product as an oil (42.6 g, 68%): 1H NMR (400 MHz, DMSO-d6) δ 9.09 (dd, J=2.8, 0.7 Hz, 1H), 8.98 (s, 1H), 8.60 (dd, J=4.7, 1.4 Hz, 1H), 8.24 (ddd, J=8.4, 2.7, 1.4 Hz, 1H), 7.60 (ddd, J=8.4, 4.7, 0.8 Hz, 1H), 3.61 (q, J=7.4, 7.0 Hz, 2H), 3.20−2.97 (m, 2H), 2.95−2.78 (m, 2H), 2.76−2.57 (m, 2H), 2.58−2.45 (m, 2H), 1.09 (t, J=7.1 Hz, 3H); ESIMS m/z 423 ([M+H]+).


Example A Bioassays on Green Peach Aphid (“GPA”) (Myzus persicae) (MYZUPE.)

GPA is the most significant aphid pest of peach trees, causing decreased growth, shriveling of leaves, and the death of various tissues. It is also hazardous because it acts as a vector for the transport of plant viruses, such as potato virus Y and potato leafroll virus to members of the nightshade/potato family Solanaceae, and various mosaic viruses to many other food crops. GPA attacks such plants as broccoli, burdock, cabbage, carrot, cauliflower, daikon, eggplant, green beans, lettuce, macadamia, papaya, peppers, sweet potatoes, tomatoes, watercress and zucchini among other plants. GPA also attacks many ornamental crops such as carnations, chrysanthemum, flowering white cabbage, poinsettia and roses. GPA has developed resistance to many pesticides.


Several molecules disclosed herein were tested against GPA using procedures described below.


Cabbage seedling grown in 3-in pots, with 2-3 small (3-5 cm) true leaves, were used as test substrate. The seedlings were infested with 20-5-GPA (wingless adult and nymph stages) one day prior to chemical application. Four posts with individual seedlings were used for each treatment. Test compounds (2 mg) were dissolved in 2 mL of acetone/methanol (1:1) solvent, forming stock solutions of 1000 ppm test compound. The stock solutions were diluted 5× with 0.025% Tween 20 in water to obtain the solution at 200 ppm test compound. A hand-held aspirator-type sprayer was used for spraying a solution to both sides of the cabbage leaves until runoff. Reference plants (solvent check) were sprayed with the diluent only containing 20% by volume acetone/methanol (1:1) solvent. Treated plants were held in a holding room for three days at approximately 25° C. and ambient relative humidity (RH) prior to grading. Evaluation was conducted by counting the number of live aphids per plant under a microscope. Percent Control was measured by using Abbott's correction formula (W. S. Abbott, “A Method of Computing the Effectiveness of an Insecticide” J. Econ. Entomol 18 (1925), pp. 265-267) as follows.

Corrected % Control=100*(X−Y)/X

    • where
    • X=No. of live aphids on solvent check plants and
    • Y=No. of live aphids on treated plants


The results are indicated in the table entitled “Table 1: GPA (MYZUPE) and sweetpotato whitefly-crawler (BEMITA) Rating Table”.


Example B Bioassays on Sweetpotato Whitefly Crawler (Bemisia tabaci) (BEMITA.)

The sweetpotato whitefly, Bemisia tabaci (Gennadius), has been recorded in the United States since the late 1800s. In 1986 in Florida, Bemisia tabaci became an extreme economic pest. Whiteflies usually feed on the lower surface of their host plant leaves. From the egg hatches a minute crawler stage that moves about the leaf until it inserts its microscopic, threadlike mouthparts to feed by sucking sap from the phloem. Adults and nymphs excrete honeydew (largely plant sugars from feeding on phloem), a sticky, viscous liquid in which dark sooty molds grow. Heavy infestations of adults and their progeny can cause seedling death, or reduction in vigor and yield of older plants, due simply to sap removal. The honeydew can stick cotton lint together, making it more difficult to gin and therefore reducing its value. Sooty mold grows on honeydew-covered substrates, obscuring the leaf and reducing photosynthesis, and reducing fruit quality grade. It transmitted plant-pathogenic viruses that had never affected cultivated crops and induced plant physiological disorders, such as tomato irregular ripening and squash silverleaf disorder. Whiteflies are resistant to many formerly effective pesticides.


Cotton plants grown in 3-inch pots, with 1 small (3-5 cm) true leaf, were used at test substrate. The plants were placed in a room with whitefly adults. Adults were allowed to deposit eggs for 2-3 days. After a 2-3 day egg-laying period, plants were taken from the adult whitefly room. Adults were blown off leaves using a hand-held Devilbliss sprayer (23 psi). Plants with egg infestation (100-300 eggs per plant) were placed in a holding room for 5-6 days at 82° F. and 50% RH for egg hatch and crawler stage to develop. Four cotton plants were used for each treatment. Compounds (2 mg) were dissolved in 1 mL of acetone solvent, forming stock solutions of 2000 ppm. The stock solutions were diluted 10× with 0.025% Tween 20 in water to obtain a test solution at 200 ppm. A hand-held Devilbliss sprayer was used for spraying a solution to both sides of cotton leaf until runoff. Reference plants (solvent check) were sprayed with the diluent only. Treated plants were held in a holding room for 8-9 days at approximately 82° F. and 50% RH prior to grading. Evaluation was conducted by counting the number of live nymphs per plant under a microscope. Pesticidal activity was measured by using Abbott's correction formula (see above) and presented in Table 1.









TABLE 1





GPA (MYZUPE) and sweetpotato whitefly-crawler (BEMITA)


Rating Table



















Example Compound
BEMITA
MYZUPE







Compound 2
C
C



Compound 3
C
C



Compound 2-11
A
A



Compound 2-12
A
A














% Control of Mortality
Rating







80-100
A



More than 0-Less than 80
B



Not Tested
C



No activity noticed in this bioassay
D









Claims
  • 1. A process for preparing 3-(3-chloro-4-methyl-4,5-dihydro-1H-pyrazol-1-yl)pyridine (2)
  • 2. The process of claim 1, wherein the chlorinating agent is selected from the group consisting of phosphoryl chloride, phosphorus pentachloride, and mixtures thereof.
  • 3. The process of claim 2, wherein the chlorinating agent is phosphoryl chloride.
  • 4. The process of claim 1, wherein the chlorinating agent is used in about a 1.1 fold to about a 10 fold excess compared to 4-methyl-1-(pyridin-3-yl)pyrazolidin-3-one.
  • 5. The process of claim 1, wherein the organic solvent does not substantially react with the chlorinating reagent.
  • 6. The process of claim 2, wherein the organic solvent does not substantially react with the chlorinating reagent.
  • 7. The process of claim 3, wherein the organic solvent does not substantially react with the chlorinating reagent.
  • 8. The process of claim 4, wherein the organic solvent does not substantially react with the chlorinating reagent.
  • 9. The process of claim 1, wherein the organic solvent is a nitrile solvent.
  • 10. The process of claim 2, wherein the organic solvent is a nitrile solvent.
  • 11. The process of claim 3, wherein the organic solvent is a nitrile solvent.
  • 12. The process of claim 4, wherein the organic solvent is a nitrile solvent.
  • 13. The process of claim 1, wherein the organic solvent is acetonitrile.
  • 14. The process of claim 2, wherein the organic solvent is acetonitrile.
  • 15. The process of claim 3, wherein the organic solvent is acetonitrile.
  • 16. The process of claim 4, wherein the organic solvent is acetonitrile.
  • 17. The process of claim 1, wherein the temperature is about 75° C.
  • 18. The process of claim 3, wherein the temperature is about 75° C.
  • 19. The process of claim 11, wherein the temperature is about 75° C.
  • 20. The process of claim 15, wherein the temperature is about 75° C.
CROSS REFERENCE TO RELATED APPLICATIONS

This Application is a divisional of U.S. application Ser. No. 15/222,473 filed on Jul. 28, 2016, which is a divisional of U.S. application Ser. No. 14/830,266 filed on Aug. 19, 2015, which is a continuation of U.S. application Ser. No. 14/718,806 filed on May 21, 2015, which is a divisional of U.S. application Ser. No. 14/517,361 filed on Oct. 17, 2014, which claims the benefit of U.S. Provisional Patent Application Ser. No. 62/049,537, filed Sep. 12, 2014, the entire disclosures of which are hereby expressly incorporated by reference into this Application.

US Referenced Citations (141)
Number Name Date Kind
3597341 Oswald Aug 1971 A
4080457 Harrison et al. Mar 1978 A
4260765 Harrison et al. Apr 1981 A
4407803 Haviv et al. Oct 1983 A
4536506 Marcoux et al. Aug 1985 A
4556671 Copp et al. Dec 1985 A
4734125 Gehring et al. Mar 1988 A
4810719 Appleton et al. Mar 1989 A
4824953 Bronn Apr 1989 A
5220028 Iwasawa et al. Jun 1993 A
5625074 Daum et al. Apr 1997 A
5631380 Haas et al. May 1997 A
5652372 Muller et al. Jul 1997 A
5693657 Lee et al. Dec 1997 A
5750718 Muller et al. May 1998 A
5817677 Linz et al. Oct 1998 A
5854264 Anthony et al. Dec 1998 A
5854265 Anthony et al. Dec 1998 A
5869681 Muller et al. Feb 1999 A
6040331 Yamamoto et al. Mar 2000 A
6218418 Pevarello et al. Apr 2001 B1
6413984 Philippo et al. Jul 2002 B1
6506747 Betageri et al. Jan 2003 B1
6548525 Galemmo, Jr. et al. Apr 2003 B2
6720427 Sanner et al. Apr 2004 B2
6878196 Harada et al. Apr 2005 B2
6916927 Bunnage et al. Jul 2005 B2
6965032 Freudenberger et al. Nov 2005 B2
7192906 Hirohara et al. Mar 2007 B2
7196104 Askew, Jr. et al. Mar 2007 B2
7319108 Scwink et al. Jan 2008 B2
7774978 Ding et al. Aug 2010 B2
7803832 Critcher et al. Sep 2010 B2
7910606 Nazare et al. Mar 2011 B2
7923573 Tamaki et al. Apr 2011 B2
8163756 Flynn et al. Apr 2012 B2
8222280 Liu et al. Jul 2012 B2
8901153 Buysse et al. Dec 2014 B2
9024031 Yang et al. May 2015 B1
9029554 Yang et al. May 2015 B1
9029555 Li et al. May 2015 B1
9029556 Yang et al. May 2015 B1
9044017 Yang et al. Jun 2015 B2
9085552 Li et al. Jul 2015 B1
9085564 Yang et al. Jul 2015 B2
9102654 Yang et al. Aug 2015 B2
9102655 Yang et al. Aug 2015 B2
9108932 Ross et al. Aug 2015 B2
9108946 Yang et al. Aug 2015 B2
9115115 Yang et al. Aug 2015 B1
9126974 Yang et al. Sep 2015 B2
9156813 Li et al. Oct 2015 B1
9174962 Yang et al. Nov 2015 B2
9199942 Yang et al. Dec 2015 B2
9199964 Yang et al. Dec 2015 B1
9249122 Yang et al. Feb 2016 B1
9255081 Li et al. Feb 2016 B1
9255082 Yang et al. Feb 2016 B2
9255083 Yang et al. Feb 2016 B2
9260396 Yang et al. Feb 2016 B2
9371310 Yang et al. Jun 2016 B2
9414594 Yang et al. Aug 2016 B2
9422265 Li et al. Aug 2016 B2
9433215 Yang et al. Sep 2016 B2
9434712 Yang et al. Sep 2016 B2
9447048 Yang et al. Sep 2016 B2
9522900 Yang et al. Dec 2016 B2
9540342 Yang et al. Jan 2017 B2
9550751 Yang et al. Jan 2017 B2
9573931 Yang et al. Feb 2017 B2
9580403 Li et al. Feb 2017 B2
9580405 Yang et al. Feb 2017 B2
9604942 Ross et al. Mar 2017 B2
9611247 Yang et al. Apr 2017 B2
9661849 Yang et al. May 2017 B2
9663489 Li et al. May 2017 B2
9670164 Yang et al. Jun 2017 B2
9670178 Yang et al. Jun 2017 B2
20020013326 Tiebes et al. Jan 2002 A1
20030153464 Nakamura et al. Aug 2003 A1
20030213405 Harada et al. Nov 2003 A1
20040043904 Yamaguchi et al. Mar 2004 A1
20040082629 Iwataki et al. Apr 2004 A1
20050038059 Mueller et al. Feb 2005 A1
20050176710 Schwink et al. Aug 2005 A1
20060135778 Schnatterer et al. Jun 2006 A1
20060160857 Buettelmann et al. Jul 2006 A1
20060160875 Gaines et al. Jul 2006 A1
20060167020 Dickerson et al. Jul 2006 A1
20060287365 Billen et al. Dec 2006 A1
20060287541 Nishino et al. Dec 2006 A1
20070049604 Nam et al. Mar 2007 A1
20070167426 Siddiqui et al. Jul 2007 A1
20080004301 Tamaki et al. Jan 2008 A1
20080027046 Annan et al. Jan 2008 A1
20090023709 Gillespie et al. Jan 2009 A1
20090069288 Breinlinger et al. Mar 2009 A1
20090137524 Billen et al. May 2009 A1
20090275592 Zeng et al. Nov 2009 A1
20090325956 Taniguchi et al. Dec 2009 A1
20100130474 Bothmann et al. May 2010 A1
20100204164 Crouse et al. Aug 2010 A1
20100286169 Guiles et al. Nov 2010 A1
20100292253 Trullinger et al. Nov 2010 A1
20100305200 Velicelebi et al. Dec 2010 A1
20110021771 Mallais et al. Jan 2011 A1
20110048261 Shimura Mar 2011 A1
20110098287 Bretschneider et al. Apr 2011 A1
20110118290 Bretschneider et al. May 2011 A1
20110166129 Machacek et al. Jul 2011 A1
20110166143 Bretschneider et al. Jul 2011 A1
20110184188 Wada et al. Jul 2011 A1
20110201649 Matsuzaki et al. Aug 2011 A1
20110212949 Bretschneider et al. Sep 2011 A1
20110275583 Bretschneider et al. Nov 2011 A1
20110319428 Fuβlein et al. Dec 2011 A1
20120053146 Parker et al. Mar 2012 A1
20120094837 Muhlthau et al. Apr 2012 A1
20120095023 Bretschneider et al. Apr 2012 A1
20120101294 Hirota et al. Apr 2012 A1
20120110701 Garizi et al. May 2012 A1
20120110702 Yap et al. May 2012 A1
20120115811 Du et al. May 2012 A1
20120165345 Bretschneider et al. Jun 2012 A1
20120172218 Crouse et al. Jul 2012 A1
20120220453 Lowe et al. Aug 2012 A1
20120252770 Berger et al. Oct 2012 A1
20130019348 Crouse et al. Jan 2013 A1
20130072382 Trullinger et al. Mar 2013 A1
20130089622 Trullinger et al. Apr 2013 A1
20130109566 Niyaz et al. May 2013 A1
20130261141 Bretschneider et al. Oct 2013 A1
20130288893 Buysse et al. Oct 2013 A1
20130291227 Buysse et al. Oct 2013 A1
20130324736 Ross, Jr. et al. Dec 2013 A1
20130324737 Ross, Jr. et al. Dec 2013 A1
20130338367 Numata et al. Dec 2013 A1
20140162874 Yap et al. Jun 2014 A1
20150112076 Yang et al. Apr 2015 A1
20150252016 Yang et al. Sep 2015 A1
20160152593 Li et al. Jun 2016 A1
Foreign Referenced Citations (100)
Number Date Country
87107798 May 1988 CN
1339027 Mar 2002 CN
1373662 Oct 2002 CN
1852885 Oct 2006 CN
1307161 Mar 2007 CN
0097323 Jan 1984 EP
0190457 Aug 1986 EP
0205024 Dec 1986 EP
0232538 Aug 1987 EP
0248315 Dec 1987 EP
0425948 May 1991 EP
0273549 Jan 1992 EP
1273582 Jan 2003 EP
1321463 Jun 2003 EP
1329160 Jul 2003 EP
1757590 Feb 2007 EP
1987-153273 Jul 1987 JP
1988-174905 Jul 1988 JP
1989-226815 Sep 1989 JP
2003-212864 Jul 2003 JP
2004-051628 Feb 2004 JP
2004-292703 Oct 2004 JP
2012-188418 Oct 2012 JP
2013-075871 Apr 2013 JP
2013-082699 May 2013 JP
2013-082704 May 2013 JP
2013-107867 Jun 2013 JP
2013-129651 Jul 2013 JP
2013-129653 Jul 2013 JP
9413644 Jun 1994 WO
9736897 Oct 1997 WO
9849166 Nov 1998 WO
0035919 Jun 2000 WO
0112189 Feb 2001 WO
0134127 May 2001 WO
0190078 Nov 2001 WO
02083111 Oct 2002 WO
03008405 Jan 2003 WO
03072102 Sep 2003 WO
2004041813 May 2004 WO
2005070925 Aug 2005 WO
2005074875 Aug 2005 WO
2006023462 Mar 2006 WO
2006033005 Mar 2006 WO
2006046593 May 2006 WO
2006103045 Oct 2006 WO
2007005838 Jan 2007 WO
2008090382 Jul 2007 WO
2007087427 Aug 2007 WO
2007098826 Sep 2007 WO
2008005457 Jan 2008 WO
2008079277 Jul 2008 WO
2009149858 Dec 2009 WO
2010006713 Jan 2010 WO
2010009290 Jan 2010 WO
2010012442 Feb 2010 WO
2010033360 Mar 2010 WO
2010048207 Apr 2010 WO
2010060379 Jun 2010 WO
2010075376 Jul 2010 WO
2010129497 Nov 2010 WO
2010133336 Nov 2010 WO
2010146236 Dec 2010 WO
2011003065 Jan 2011 WO
2011043371 Apr 2011 WO
2011045224 Apr 2011 WO
2011045240 Apr 2011 WO
2011091153 Jul 2011 WO
2011101229 Aug 2011 WO
2011126903 Oct 2011 WO
2011128304 Oct 2011 WO
2011134964 Nov 2011 WO
2011138285 Nov 2011 WO
2011163518 Dec 2011 WO
2012000896 Jan 2012 WO
2012004217 Jan 2012 WO
2012007500 Jan 2012 WO
2010035011 Mar 2012 WO
2012052412 Apr 2012 WO
2012061290 May 2012 WO
2012070114 May 2012 WO
2012102387 Aug 2012 WO
2012108511 Aug 2012 WO
2012147107 Nov 2012 WO
2012168361 Dec 2012 WO
2013000931 Jan 2013 WO
2013010946 Jan 2013 WO
2013010947 Jan 2013 WO
2013062980 May 2013 WO
2013062981 May 2013 WO
2013064324 May 2013 WO
2013156431 Oct 2013 WO
2013156433 Oct 2013 WO
2013162716 Oct 2013 WO
2015058020 Apr 2015 WO
2015058022 Apr 2015 WO
2015058023 Apr 2015 WO
2015058024 Apr 2015 WO
2015058026 Apr 2015 WO
2015058028 Apr 2015 WO
Non-Patent Literature Citations (26)
Entry
Kempe et al., “Responsive Glyco-poly(2-oxaoline)s: Synthesis, Cloud Point Tuning, and Lectin Binding,” Biomacromolecules 2011, vol. 12, pp. 2591-2600.
Fields et al., “Preparation of Trifluoromethyl-Pyrazoles and -Pyrazolines by the Reaction of 2,2,2-Trifluorodiazoethane with Carbon-Carbon Multiple Bonds,” Journal of Fluorine Chemistry, 1979, vol. 13, pp. 147-158.
Bradbury et al., “Enzyme-catalysed peptide amidation,” Eur. J. Biochem. 1987, vol. 169, pp. 579-584.
International Search Report and Written Opinion for PCT/US2014/061005 dated Dec. 16, 2014.
International Search Report and Written Opinion for PCT/US2014/061006 dated Dec. 8, 2014.
International Search Report and Written Opinion for PCT/US2014/061007 dated Dec. 31, 2014.
International Search Report and Written Opinion for PCT/US2014/061009 dated Dec. 8, 2014.
International Search Report and Written Opinion for PCT/US2014/061010 dated Dec. 15, 2014.
International Search Report and Written Opinion for PCT/US2014/061012 dated Dec. 15, 2014.
International Search Report and Written Opinion for PCT/US2014/061014 dated Dec. 15, 2014.
International Search Report and Written Opinion for PCT/US2014/061016 dated Dec. 15, 2014.
International Search Report and Written Opinion for PCT/US2014/061022 dated Dec. 29, 2014.
International Search Report and Written Opinion for PCT/US2014/061023 dated Dec. 15, 2014.
International Search Report and Written Opinion for PCT/US2014/061024 dated Dec. 15, 2014.
International Search Report and Written Opinion for PCT/US2014/061027 dated Dec. 15, 2014.
International Search Report and Written Opinion for PCT/US2014/061029 dated Dec. 15, 2014.
International Search Report and Written Opinion for PCT/US2014/061030 dated Dec. 15, 2014.
International Search Report and Written Opinion for PCT/US2013/029615 dated May 8, 2013.
Ameduri, B. et al., “Synthesis and polymerization of fluorinated monomers bearing a reactive lateral group Part 4. Preparation of functional perfluorovinyl monomers by radical addition of functional mercaptans to 1,1,2-trifluoro-1,4-pentadiene.” J. Fluorine Chemistry, 92, 77-84 (1998).
International Preliminary Report on Patentability for PCT/US2011/058578 dated Dec. 21, 2012.
International Search Report and Written Opinion for PCT/US2011/058578 dated Apr. 5, 2012.
Kadam, S.S. et al., “Synthesis and Tautomerism of Substituted Pyrazolo[4,3-c]pyrazoles.” Eur. J. Chem., 6811-6822 (2013).
Gorelik; Zhumai Organicheskol khimi, 1980 (16), 1322, Abstract, Chemical Abstracts, Accession Number.
National Center for Biotechnology Information, PubChem Compound Database; CID=17132489,https://pubchem.ncbi.nlm.nih.gov/compound/17132489, create date Nov. 13, 2007.
Frigola; European Journal of Medicinal Chemistry 1989, 435-445.
Binz et al. “Derivatives of pyridine, etc.,” CA 25:30083 (1931).
Related Publications (1)
Number Date Country
20170217924 A1 Aug 2017 US
Provisional Applications (1)
Number Date Country
62049537 Sep 2014 US
Divisions (3)
Number Date Country
Parent 15222473 Jul 2016 US
Child 15485771 US
Parent 14830266 Aug 2015 US
Child 15222473 US
Parent 14517361 Oct 2014 US
Child 14718806 US
Continuations (1)
Number Date Country
Parent 14718806 May 2015 US
Child 14830266 US