Process for the preparation of an edible dispersion comprising oil and structuring agent

Information

  • Patent Grant
  • 11278038
  • Patent Number
    11,278,038
  • Date Filed
    Wednesday, December 24, 2014
    9 years ago
  • Date Issued
    Tuesday, March 22, 2022
    2 years ago
Abstract
The invention relates to a process for the preparation of an edible dispersion comprising oil and structuring agent and one or more of an aqueous phase and/or a solid phase, in which the dispersion is formed by mixing oil, solid structuring agent particles and the aqueous phase and/or the solid phase, wherein the solid structuring agent particles have a microporous structure of submicron size particles.
Description
FIELD OF THE INVENTION

The present invention relates to a process for the preparation of an edible dispersion comprising oil and structuring agent, in particular to such dispersions comprising oil and structuring agent as continuous phase and a dispersed phase. The dispersed phase may be an aqueous liquid (thus forming a water-in-oil emulsion) or a solid particulate matter (thus forming a suspension). The invention further relates to the use of micronised fat powder to stabilise oil-containing dispersions.


BACKGROUND OF THE INVENTION

Edible dispersions comprising oil and structuring agent are well known. Examples of well-known products that substantially consist of such edible dispersions are water-in-oil emulsions, such as for instance margarines and spreads. These edible dispersions typically have an oil phase that is a blend of liquid oil and fat that is solid at normal ambient temperature (20° C.). This solid fat, often also designated as hardstock, acts as structuring agent, and its function is to stabilise the dispersion. For a margarine or spread, ideally the structuring agent has such properties that it should have melted or dissolved at mouth temperature, otherwise the product has a heavy, waxy mouthfeel.


Other known dispersions comprising oil and structuring agent are disclosed in EP-A-775444 and WO 98/47386. Herein the dispersed phase is a dry particulate matter, such as e.g. flour, starch, salt, spices, herbs etc.


Generally, the edible dispersions comprising structuring agent are prepared according to prior art processes that encompass the following steps:

    • 1) dispersion of the aqueous phase and/or the solid phase through the oil phase, at a temperature where the oil phase, including the structuring agent is liquid;
    • 2) formation of a fat crystal network to stabilise the resulting dispersion and give the product some degree of firmness;
    • 3) modification of the crystal network to produce the desired firmness and confer plasticity.


These steps are usually conducted in a process that involves apparatus that allow heating, cooling and mechanical working of the ingredients, such as the churn process or the votator process. The churn process and the votator process are described in Ullmanns Encyclopedia, Fifth Edition, Volume A 16 pages 156-158. Using these techniques excellent dispersions (spreads) having high emulsion stability and good melting properties in the mouth can be prepared.


However, a disadvantage of the known processes is that the process involves a heating step and a cooling step and therefore requires a lot of energy. In a dispersion with for instance 4 wt. % structuring agent the whole weight of the dispersion (100 wt. %) needs to be heated and cooled.


Another disadvantage of the known processes is that the choice of fats that can practically be used as structuring agent is rather limited. If the melting point of the structuring agent is too high the melting properties in the mouth are unsatisfactory. If on the other hand, the melting point is too low, the emulsion stability will be negatively affected. Moreover the amount of saturated fatty acids in the structuring agent is usually relatively high. Saturated fatty acids are a known risk factor for cardiovascular health.


Further disadvantage of the known processes is that the product may deteriorate due to the changes in temperature caused by the heating and cooling step and that heat-sensitive ingredients cannot be incorporated.


Powdered fat is well known in the prior art. It may be prepared according to various processes, known in the art. Micronised fat is also known in the prior art. EP-B-744992 describes the preparation of micronised fat particles by dissolution of gas (carbondioxide) in the fat under pressure and decompressing the mixture in such way that the temperature falls below the solidification point of the fat, so that micronised particles are formed.


EP-A-1238589 describes a method for forming a food product, which contains an emulsion in which the food product in liquid form is contacted with a cryogen so as to cool the liquid product and effect a rapid conversion of the liquid to a solid. A disadvantage of this known process is that still the whole emulsion has to be heated above the melting point of the structuring agent.


SUMMARY OF THE INVENTION

It is therefore an object of the invention to provide a process that requires less energy for the preparation of a dispersion comprising the structuring agent. Another object is to provide such a process that allows the use of more types of structuring agent, especially more sorts of hardstock. A further object of the invention is a reduction of the amount of saturated fatty acids in the hardstock. Still a further object of the invention is to provide a process for the preparation of a dispersion that allows the incorporation of heat-sensitive ingredients and/or that avoids deterioration of the emulsion.


One or more of these objects is attained according to the invention that provides a process for the preparation of an edible dispersion comprising oil and structuring agent and one or more of an aqueous phase and/or a solid phase, in which the dispersion is formed by mixing oil, solid structuring agent particles and the aqueous phase and/or the solid phase, wherein the solid structuring agent particles have a macroporous structure of submicron size particles. Preferably, the solid structuring agent particles are at least 50% alpha-polymorph.


According to the invention the heating and cooling step of the emulsion ingredients that is needed in the prior art processes may be omitted or reduced and a stable dispersion can be made.


Preferably, the solid structuring agent particles are at 50% or more alpha-polymorph, more preferably 70% or more alpha-polymorph and most preferably 90% or more alpha-polymorph.


DETAILED DESCRIPTION OF THE INVENTION

The invention relates to a process for the preparation of a dispersion. A dispersion is herein defined as a system in which two or more phases that are insoluble or only slightly soluble are distributed in one another.


The dispersion may be an emulsion, a suspension or foam or any combination thereof, it may be oil continuous, water continuous or bi-continuous. Preferably the dispersion is oil continuous, more preferably an oil continuous emulsion or oil continuous suspension.


Where a solid phase is present in the dispersion according to the invention, it is preferably a solid phase of dry particulate matter.


Where an aqueous phase is present in the dispersion according to the invention, it is preferably a dispersed aqueous phase.


According to the invention, the dispersion is formed by mixing oil, the solid structuring agent particles and the other phase or phases of the dispersion, such as for example an aqueous phase, a solid phase and/or a gas phase. The mixing of the ingredients may be done in any order, i.e. the ingredients/phases may all be mixed in one mixing step or alternatively the mixing may be executed in more than one step. For instance an oil phase with the structuring agent particles may be mixed and a water phase may be prepared separately and later mixed with the oil phase.


According to the invention, the solid structuring agent particles should have a microporous structure of submicron size particles. An example of a microporous structure according to the invention is shown in FIGS. 6 and 7 hereafter. The submicron particles typically have the shape as shown in FIG. 7, and consist of platelets with submicron dimensions. The thickness of the platelets should be submicron, preferably the thickness is on average 0.01-0.5 μm, more preferably 0.03-0.2 μm, even more preferably 0.06-0.12 μm.


Equivalent good results were obtained for a microporous structure of more bubble-like shape, such as shown in FIG. 10, hereafter. In such microporous structure the wall thickness of the bubbles should be submicron, for instance on average 0.01-0.5 μm, more preferably 0.03-0.2 μm, even more preferably 0.06-0.12 μm.


The microporous structure, may, in the course of the preparation of the dispersion, for instance through the force of a mixer, be broken into submicron particles. The resulting submicron particles will form the structuring network of the dispersion.

    • Preferably, the structuring agent is edible fat. Edible fats consist predominantly of triglycerides. Typically such edible fats suitable as structuring agent are mixtures of triglycerides, some of which have a melting point higher than room or ambient temperature and therefore contain solids in the form of crystals.


The solid fat structuring agent, also denoted as hardstock or hardstock fat, serves to structure the fat phase and helps to stabilise the dispersion.


For imparting to common margarine a semi-solid, plastic, spreadable consistency this stabilising and structuring functionality plays an important role. The crystals of the solid fat form a network throughout the liquid oil resulting into a structured fat phase. The aqueous phase droplets are fixed within the spaces of the lattice of solid fat crystals. In this way coalescence of the droplets and separation of the heavier aqueous phase from the fat phase is prevented.


Generally, fats with a high content of HUH triglycerides show good structuring properties. H denotes a C16-C24 saturated fatty acid residue, such as palmitic acid (C16) or stearic acid (C18) and U denotes an unsaturated C18 fatty acid residue, such as oleic acid (C18:1) or linoleic acid (C18:2). Examples of suitable edible fat structuring agents (hardstock fats) are palm oil partially hydrogenated to a melting point of 44° C. or an interesterified mixture of palm oil and a lauric fat.


Further common ingredients of the fat phase are emulsifiers, such as monoglycerides and lecithin, colouring agents and flavours.


The structuring agent should be added to the dispersion in the form of solid structuring agent particles. Preferably the solid structuring agent particles should have an alpha-polymorph.


The following nomenclature of the polymorphic forms of the structuring agent is used herein:


1. α-polymorph (alpha polymorph): a form that gives only one short-spacing line in the X-ray diffraction pattern near 4.15 Å.


2. β′-polymorph (beta-prime polymorph): a form that gives two short spacing lines near 3.80 Å and 4.20 Å in the X-ray diffraction pattern and also shows a doublet in the 720 cm−1 in the infrared absorption spectrum


3. β-polymorph (beta polymorph): a form that does not satisfy criteria 1. or 2.


See for an explanation of polymorphism and the above definition: Gunstone, F. D.; Harwood, J. L.; Padley, F. B.; The Lipid Handbook, second edition, Chapman and Hall, page 405.


The solid structuring agent particles preferably have an average particle size (D3,2) of 60 micrometer or less, more preferably the solid structuring agent particles have an average particle size of 30 micrometer or less. The average particle size (D3,2) is determined as indicated in the examples.


Preferably the solid structuring agent particles are prepared using a micronisation process. In the micronisation process the solid structuring agent particles are prepared by preparing a homogeneous mixture of structuring agent and liquified gas or supercritical gas at a pressure of 5-40 MPa and expanding the mixture through an orifice, under such conditions that a spray jet is applied in which the structuring agent is solidified and micronised. The liquified gas or supercritical gas may be any gas that may be used in the preparation of food products, for example carbondioxide, propane, ethane, xenon or other noble gases. Carbondioxide and propane are preferred. Carbondioxide is most preferred. Advantages of carbondioxide are that it has a mild (31° C.) critical temperature, it is non-flammable, nontoxic, environmentally friendly and it may be obtained from existing industrial processes without further contribution to the greenhouse effect. It is fairly miscible with oil and is readily recovered owing to its high volatility at ambient conditions. Finally liquid CO2 is the second least expensive solvent after water.


The temperature of the mixture of structuring agent and liquified gas or supercritical gas is preferably such that the mixture forms a homogeneous mixture. Advantageously, the temperature of the mixture of structuring agent and liquified gas or supercritical gas is below the slip melting point of the structuring agent at atmospheric pressure and above the temperature at which phase separation of the mixture occurs. Under such conditions the smallest micronised particles may be obtained.


The pressure and temperature of the mixture of structuring agent and liquified or supercritical gas is preferably such that a large amount of the gas may be dissolved in the structuring agent. The amount dissolved will be determined by the phase diagram of the mixture of structuring agent and liquified or supercritical gas. At higher pressures as well as at lower temperatures more gas will dissolve in the structuring agent.


Preferably the temperature and pressure are chosen such that 10 wt. % or more, more preferably 20 wt. % or more or most preferably 30 wt. % or more of gas is dissolved in the liquid phase. The mixture of structuring agent and liquefied or supercritical gas may contain additional substances, such as for instance oil. We have found that the addition of oil may reduce sintering of the micronised particles of the structuring agent.


The mixture containing structuring agent and liquefied or supercritical gas is depressurised over a small orifice or nozzle, to break up the mixture into small droplets. The break-up of the mixture into droplets can be assisted e.g. by internals inside the nozzle before the orifice to generate a whirl, or by passing a gas at a high flow rate near the orifice.


The mixture is depressurised into a volume where the pressure is higher than, equal to or lower than atmospheric pressure.


We have found that sintering, agglomeration and ripening of micronised particles of the structuring agent will lead to a reduced performance of the particles for structuring the dispersion.


To avoid sintering, agglomeration and/or ripening of the micronised particles, preferably a gas jet is applied in addition to the flow of the spray jet. The additional gas jet is most effective when the gas jet is positioned such that recirculation of material expanded through the orifice is reduced or avoided. Especially advantageous is a position wherein the gas from the gas jet flows essentially tangentially to the flow direction of the spray jet. Most advantageously the gas inlet for the gas jet is positioned behind the exit of the nozzle, see FIG. 2. FIG. 2 shows that the additional gas inlet (1) behind the exit of the nozzle (2) creates a gas flow (3) tangentially to the flow of the spray jet (4).


To further avoid agglomeration and ripening, the spray jet is preferably sprayed into a collection chamber, and a flow of gas having a temperature lower than the slip melting point of the structuring agent is fed into the collection chamber.


Preferably the edible dispersion according to the invention is a water and oil containing emulsion, optionally including a solid phase. The emulsions are preferably oil continuous. Examples of suitable emulsions are table spreads, dressings, soups, sauces, shortenings, cooking oils, frying oils, whipping creams and mayonnaises.


A stable dispersion is herein defined as dispersion that shows an oil exudation of less than 5% after storage for 15 weeks at 15° C., measured according to the method described in the examples.


A further preferred edible dispersion according to the invention is a dispersion of a solid matter, preferably a dry particulate matter, dispersed in a continuous phase of oil and structuring agent. Preferred material for the dry particulate matter is one or more of flour, starch, salt, herbs (e.g. dried herbs), spices and mixtures thereof. Preferably in such dispersions, the amount of solid matter is 30-75 wt. %, more preferably 40-65 wt. % based on total weight of the dispersion.


The amount of structuring agent should be such that a suitably stable dispersion is obtained. When the structuring agent is micronised fat, the amount is preferably 1-20 wt. %, more preferably 4-12 wt. % based on total weight of the dispersion.





DESCRIPTION OF THE FIGURES


FIG. 1: Schematic view of the micronisation apparatus used in the examples



FIG. 2: Schematic view of the nozzle configuration with gas inlet for tangential gas-flow.



FIG. 3: SEM Photograph of micronised fat powder prepared in example 1 (magnification 250×)



FIG. 4: SEM Photograph of micronised fat powder prepared in comparative experiment A (magnification 250×)



FIG. 5: SEM Photograph of micronised fat powder prepared in comparative experiment B (magnification 250×)



FIG. 6: SEM Photograph of micronised fat powder prepared in example 1 (magnification 1000×)



FIG. 7: Enlarged SEM photograph of the micronised fat powder of example 1



FIG. 8: Enlarged SEM photograph of the micronised fat powder of example 8



FIG. 9: Enlarged SEM photograph of the micronised fat powder of example 9



FIG. 10 Enlarged SEM photograph of the micronised fat powder of example 10





EXAMPLES
General

Method to Determine Slip Melting Point


The slip melting point of structuring agent is determined in accordance with F. Gunstone et al, The Lipid Handbook, second edition, Chapman and Hall, 1995, page 321, Point 6.2.3, Slip point.


Method to Determine D3,2 of the Particle Size Distribution of Micronised Fat Particles


Low-angle laser light scattering (LALLS, Helos Sympatic) was used to measure the average particle size (D3,2). The fat particles were suspended in water in a quixel flow cuvette with an obscuration factor of 10-20%. The diffraction pattern was measured at 632.8 nm with a lens focus of 100 mm and a measurement range of 0.5-175 μm. Calculations were bases on the Fraunhofer theory.


A full description of the principle of LALLS is given in ISO 13320-1.


Method to Determine D3,3 of Water Droplet Size Distribution in an Emulsion


The water droplet size was measured using a well-known low resolution NMR measurement method. Reference is made to Van den Enden, J. C., Waddington, D., Van Aalst, H., Van Kralingen, C. G., and Packer, K. J., Journal of Colloid and Interface Science 140 (1990) p. 105.


Method to Determine Oil Exudation


Oil exudation is determined by measuring the height of the free oil layer that appears on top of the product. This free oil layer is considered a product defect. In order to measure oil exudation, the product is filled into a scaled glass cylinder of 50 ml. The filling height is 185 mm. The filled cylinder is stored in a cabinet at constant temperature (15° C.). Height measurements are executed every week, by measuring the height of the exuded oil layer in mm with a ruler. Oil exudation is expressed as the height of the exuded oil layer divided by the original filling height and expressed in %. Shaking of the cylinders should be avoided.


Method to Determine Pourability


Pourability for pourable compositions according to the invention is measured according to the standard Bostwick protocol. The Bostwick equipment consists of a 125 ml reservoir provided with a outlet near the bottom of a horizontally placed rectangular tub and closed with a vertical barrier. The tub's bottom is provided with a 25 cm measuring scale, extending from the outlet of the reservoir. When equipment and sample both have a temperature of 15° C., the reservoir is filled halfway with 62.5 ml of the sample after it has been shaken by hand ten times up and down. When the closure of the reservoir is removed the sample flows from the reservoir and spreads over the tub bottom. The path length of the flow is measured after 15 seconds. The value, expressed as cm per 15 seconds is the Bostwick rating, which is used as yardstick for pourability.


Example 1
Fat Micronisation

A set-up was constructed to dissolve carbon dioxide in the melt and expand the mixture over a nozzle to atmospheric pressure. The micronised product was collected in a drum (6) of 250 liters. The set-up is illustrated in FIG. 1.

  • Autoclave The equipment consists of a 1-liter autoclave (2) equipped with a mechanical stirrer (6-blade turbine impeller), a water jacket for heating and a Pt-100 resistance thermometer. The inner diameter of the autoclave is 76 mm. The autoclave has connections at the top and at the bottom.
  • Tubing The bottom connection of the vessel was used to pressurise the system with carbon dioxide or to lead the mixture to the nozzle. A 3-way valve (12) is used to switch between CO2 supply (1) and nozzle (3). To expel the mixture from the vessel the CO2 is supplied to the top of the autoclave via valve (11). The length of tube between the bottom connection and the nozzle (3) is approximately 30 cm. All tubing has an outer diameter of ¼″ (inner diameter approximately ⅛″) and is equipped with electrical tracing. Additional gas, N2 or He, can be supplied through (10) to maintain a constant pressure inside the autoclave during the expansion over the nozzle
  • Nozzle The nozzle (3) can be designed with different orifice diameters (opening outlet) and cores (construction of the supply to the orifice). For this work nozzles were used with an orifice of 0.34 mm and standard core. The nozzle was heated by electrical tracing and its temperature was registered by a thermocouple Pt-100.
  • Collection The nozzle was mounted to a Perspex tube (7) of 30 cm diameter and 20 cm length to allow observation of the jet during expansion. This transparent Perspex tube (7) with the nozzle (3) was mounted on top of an oil-drum (6) (250 liters) with a removable lid, which served as the collection chamber. The lid of the drum has an outlet (8) to allow the expanded CO2 to escape. A separator (9) retains the solid particles in the collection chamber. An additional gas jet (CO2) may be supplied though nozzle (4) connected to a gas supply (CO2 bottle) (5).
  • Loading The equipment was heated to the required temperature. Approximately 300 grams of fat (RP70, rapeseed oil hardened to a slip melting point of 70° C.) was completely melted and heated to 20 degrees above its melting point and charged into the autoclave.
  • Equilibrium The autoclave was pressurised in about 10 minutes through the bottom connection. During pressurisation the CO2 supply to the top was closed. After reaching the final pressure the top valve was opened and the 3-way valve was closed. The melt was allowed to absorb CO2 and equilibrate for 30 minutes, while stirring the mixture and supplying additional CO2. The equilibrium pressure in the autoclave was 15 MPa and the temperature in the autoclave was 60° C.
  • Expansion To expand the melt the stirrer was stopped and the supply of additional gas to the collection chamber was turned on. Next the 3-way valve was switched to supply the mixture to the nozzle. During expansion of the mixture in example 1 the pressure in the autoclave was maintained by the CO2 supply. In examples 2 and 3 the pressure in the autoclave was increased to and maintained at MPa by supplying He to the top of the vessel, after first equilibrating with CO2.
    • A micronised fat powder that was obtained which was a very fine and dry solid powder. The powder was 100% alpha-polymorph. In the X-ray diffractogramme, peaks for the β′ and β-polymorph were totally absent. The micronised fat powder was stored at 5° C. When stored at 5° C. the micronised fat powder stayed 100% alpha-polymorph during more than one month.


The micronisation parameters are given in table 2.


Preparation of an Edible Water-in-Oil Emulsion


A pourable margarine was prepared with the composition shown in table 1:









TABLE 1







Composition of pourable margarine











Amount



Ingredient
(wt. %)














Oil phase




Sunflower oil
79.62



Micronised Rp 70 powder
1.95



Lecithin Bolec MT1
0.18



Fractionated lecithin
0.10



Cetinol2



Beta-carotene (0.4 wt. %
0.15



solution in sunflower oil)



Water phase



Water
16.5



Sodium chloride
1.5










Explanation of table 1:


The balance of all composition to 100% is water


RP 70: Rapeseed oil hardened to a slip melting point of 70° C.


1: Lecithin was hydrolysed soybean lecithin (Bolec MT) obtained from UMZ (Unimills Zwijndrecht, Netherlands)


2: Alcohol-soluble fraction from fractionation of native soybean lecithin with alcohol; Cetinol from UMZ.


The water phase was prepared by adding salt to distilled water and adjusting the pH of distilled water from 7.7 to 4.0 using 5 wt. % citric acid, and heated for 5 minutes in a bath of 60° C. to dissolve the solids. The oil phase was prepared by dissolving the emulsifier ingredients and β-carotene in the total amount of sunflower oil at 15° C. Subsequently the micronised fat powder was added to the oil phase carefully using a spatula and the oil phase was mixed with a Turrax at 22000 rotations per minute (rpm) for 6 minutes. Then the water phase was added to the oil phase and the resulting mixture was mixed with a Turrax for 5 minutes at 23500 rpm in a water bath at having a temperature of 15° C.


The temperature of the mixture in the Turrax increased due to the viscous dissipation. However during the whole experiment the temperature was kept below 20° C. The Turrax (type T50) was delivered by Janke & Kunkel IKA Labortechnik. This type of Turrax is designed to minimise air entrainment.


The emulsion was partly poured into a glass cylinder and partly into a twist off pot of 100 ml and both were containers were stored in a cabinet at 15° C.


Results


The prepared emulsions were tested in accordance with the test methods described herein and the results of the tests are given in table 3. A SEM photograph of the micronised fat powder of example 1 (magnification 250 times) is given in FIG. 3, with magnification of 1000 times in FIG. 6, and with magnification of 2000 times in FIG. 7.


Comparative Experiment A


Comparative experiment A was conducted as example 1, however the fat micronisation step was modified in that the equilibrium pressure in the autoclave was 5 MPa instead of 15 MPa. Before and during depressurisation over the nozzle the mixture in the autoclave was pressurised with Helium to 15 MPa.


The results are shown in table 3. A SEM-photograph of the micronised fat powder is given in FIG. 4.


Comparative Experiment B


Comparative experiment B was conducted as example 1, however the fat micronisation step was modified in that the equilibrium pressure in the autoclave was 10 MPa instead of 15 MPa. Before and during depressurisation over the nozzle the mixture in the autoclave was pressurised with Helium to 15 MPa.


The results are shown in table 2. A SEM-photograph of the micronised fat powder is given in FIG. 5.


All powders of example 1 and comparative experiments A and B showed the presence of 100% alpha-polymorph material. The micronised powder according to example 1 has a low particle size (see table 2) and has a macroporous structure of submicron size particles, as is shown in FIG. 6. In contrast the powders of comparative experiments A and B have a higher particle size and a structure in which submicron size particles are not apparent.









TABLE 2







Micronisation parameters of example 1 and


comparative experiments A and B














Amount of




Equilibrium

CO2



Pressure
Temperature
dissolved
D3,2


Example
(MPa)
(° C.)
(wt. %)
(μm)














1
150
60
19
39


A
50
70
7
72


B
100
60
16
75
















TABLE 3







Oil exudation (%) of the emulsions of example 1


and comparative experiments A and B as


function of the storage time at 15° C.












Storage






time
Example 1
Comp. Ex. A
Comp. Ex. B
















 1 day


35.1



 2 days


40.5



 3 days
0

48.6



 1 week
0
1.1
59.5



 2 weeks
0
16.2
59.5



 3 weeks
0
18.9
62.2



 4 weeks


62.2



 5 weeks



 6 weeks



 7 weeks
0.5
18.9



 8 weeks



 9 weeks


64.9



10 weeks



11 weeks
0.5
18.9



12 weeks



14 weeks


64.9



15 weeks
0.5



16 weeks

21.6










The results show that the emulsion according to example 1 shows a very low oil exudation, which whereas those of comparative experiments A and B have a high oil exudation and therefore the emulsions are not stable.


Examples 2-4

Example 1 was repeated, but now instead of fat a mixture of fat and sunflower oil was micronised. The composition of the mixture of fat and oil is shown in table 3. In the preparation of the emulsion a Turrax speed of 8000 rpm was used and the Turrax time was 4 minutes.









TABLE 4







Micronisation parameters and emulsion properties


of examples 2-4














Fraction
Texture of






sunflower
micronised
Bostwick
D(3,3)



Example
oil (wt. %)
product
(cm)
(μm)

















2
22
Fine dry
14
4.36





powder



3
50
Slightly
14.6
3.06





granular





somewhat





sticky





powder



4
75
Ointment
10






like





structure










All micronised products of examples 2-4 showed the presence of alpha-polymorph material in an amount of 100% and comprised submicron size particles. ‘-’ means not determined. Table 5: Oil exudation (%) of the emulsions of examples 2 to 4 as function of the storage time at 15° C.


















Storage






time
Example 2
Example 3
Example 4





















 1 day
5
0
0



 4 days
18
0
0



 5 days
40
0
0



 1 week
45
0
0



 2 weeks
52
0.5
0



 3 weeks
52
0.5
0



 4 weeks
52
1
0



 6 weeks
52
1.5
0



 8 weeks
55
2
0



10 weeks
55
2
0



12 weeks
55
2
0



14 weeks
55
2
0.5



16 weeks
55
2
0.5










Examples 2-4 show that the addition of oil to the structuring agent prior to micronisation leads to a reduction in oil exudation of the emulsion prepared using the micronised structuring agent. The micronised mixtures have a different appearance depending on the amount of oil added.


Example 5

Micronised fat was prepared according to example 1, fat micronisation using instead as fat rapeseed oil hardened to a slip melting point of 68° C.


A dispersion of solid matter in a fat phase was prepared by first preparing a mixture of 4.6 parts (all parts are weight parts) micronised fat in 4.6 parts sunflower oil and stirring the mixture for 3 minutes at about 18° C. under vacuum. The obtained mixture was added to 49 parts sunflower oil and mixed under vacuum at about 18° C. for 1 minute.


To this mixture was added 41.2 parts flour and 0.6 parts parsley flakes (dried) and the resulting mixture was stirred under vacuum at about 18° C. for 1 minute, 30 seconds. The resulting dispersion was stable for more than one month at room temperature without substantial oil exudation.


Example 6

A dispersion was prepared with the following composition (wt. % on final product):


















Flour
49%



Dried herb pieces
1%



Sunflower oil
45%



Micronised fat powder (see example 5)
5%










The product was prepared by mixing all ingredients at room temperature using an ultraturrax mixing equipment. The product showed no oil exudation for one month.


Example 7

A dispersion was prepared similar to that of example 6, however using 47.5 wt. % sunflower oil and 2.5 wt. % micronised fat prepared in example 1. The processing was the same. When stored at 5° C. for one month, the product showed minimal oil exudation.


Examples 8 to 10

Example 1 was repeated, however instead of Rp70, SF69 (sunflower oil hardened to a slip melting point of 69° C.) was micronised and used as hardstock in the preparation of the emulsion.


To investigate how Ta (Equilibrium autoclave temperature) influences the morphology of the powders after micronisation, three different experiments were performed at Ta=Tm−10° C. (Example 8), Ta=Tm−5° C. (Example 9) and Ta=Tm (Example 10) respectively, with P=180 bar, in which Tm is the melting point of the hardstock, for Rp69 in these example 69° C.


Xray diffraction showed that all micronised powders are in the α polymorph. SEM analysis shows no real differences in morphology within the chosen range of temperatures, although for Tm−10° C. (59° C.) and Tm−5° C. (64° C.) the morphology seems to be a little more brittle than for Tm (69° C.).


Model Emulsions


Model emulsions were prepared using standard conditions and stored at 15° C. and 25° C. In table 6, a summary of the measured oil exudation (O.E.) and Bostwick values (BW) as function of storage time is given.









TABLE 6





Results of Examples 8-10, Oil exudation (O.E. [%])


and Bostwick values (BW [cm]) as function of storage


time and temperature



















Tm
P
Bostwick value [cm]













Example
[° C.]
[MPa]
Start
2 wks
5 wks
9 wks





8
59
18
10
10
10
9


9
64
18
12
11
11
10


10
69
18
10
9
10
10













O.E. at 15° C.
O.E. at 25° C.














2 wks
5 wks
9 wks
2 wks
5 wks
9 wks





8
0
0
0
0.8
1.1
1.5


9
0
0
0
0
1.1
1.5


10
0
0
0
1.5
3.8
5.3









Results show that at Tm of 59° C. and 64° C., good O.E. and BW values after 9 weeks were achieved. At Tm=69° C. the oil exudation at 25° C. is less favourable.


Enlarged SEM photographs (5000× magnification) of the micronised powders of examples 8, 9 and 10 are shown in FIGS. 8, 9 and 10 respectively.

Claims
  • 1. A process for the preparation of an edible dispersion comprising a) oil and structuring agent and b) an aqueous phase, comprising: a) preparing solid structuring agent particles comprising edible fat, and having a microporous structure of submicron size particles, by preparing a homogeneous mixture of A) structuring agent and B) liquefied gas or supercritical gas, at a pressure of 5-40 MPa, andexpanding the mixture through an orifice, in which the structuring agent is solidified; andb) forming the edible dispersion by mixing i) the oil, ii) the solid structuring agent particles, and iii) the aqueous phase,wherein said edible dispersion comprises a water-in-oil emulsion.
  • 2. The process of claim 1, wherein the solid structuring agent particles are at least 50% alpha-polymorph.
  • 3. The process of claim 1, wherein the solid structuring agent particles have an average diameter D3,2 of 60 μm or lower.
  • 4. The process of claim 1, wherein the homogenized mixture comprises oil.
  • 5. The process of claim 1, wherein the temperature of the mixture of structuring agent and liquefied gas or supercritical gas is below the slip melting point of the structuring agent at atmospheric pressure and above the temperature at which phase separation of the mixture occurs.
  • 6. The process of claim 1, wherein the mixture is expanded through the orifice under conditions that a spay jet is applied and wherein a gas jet is applied in addition to the spray jet.
  • 7. The process of claim 1, wherein the gas comprises carbon dioxide.
  • 8. The process of claim 1, wherein the pressure is within the range of 15-40 MPa.
  • 9. The process of claim 1, wherein in the course of preparation of the dispersion the microporous structure is broken into submicron particles.
  • 10. A process for the preparation of an edible dispersion comprising (a) oil and structuring agent and (b) one or more of an aqueous phase and/or a solid phase, comprising: a) preparing solid structuring agent particles having a microporous structure of submicron size particles by preparing a homogeneous mixture of (A) structuring agent and (B) liquefied gas or supercritical gas at a pressure of 5-40 MPa,expanding the mixture through an orifice, in which the structuring agent is solidified; andb) forming the edible dispersion by mixing (i) the oil, (ii) the solid structuring agent particles, and (iii) the aqueous phase and/or the solid phase, wherein the edible dispersion is an emulsion and wherein in the course of preparing the edible dispersion the microporous structure of the solid structuring agent particles is broken into submicron particles.
  • 11. The process of claim 10, wherein the gas comprises carbon dioxide.
  • 12. The process of claim 1, wherein the solid structuring agent particles are at least 90% alpha-polymorph.
  • 13. The process of claim 1, wherein the solid structuring agent particles are 100% alpha-polymorph.
  • 14. The process of claim 1, wherein the solid structuring agent particles are not heated above the melting point of the solid structuring agent during steps a) or b).
Priority Claims (1)
Number Date Country Kind
03077247 Jul 2003 EP regional
Parent Case Info

This application is a continuation of Ser. No. 13/224,550 filed Sep. 2, 2011 now U.S. Pat. No. 8,940,355, which is a continuation of Ser. No. 10/564,944 filed Jun. 20, 2006, now U.S. Pat. No. 8,025,913, which is a 371 of PCT/EP04/06544 filed Jun. 16, 2004.

US Referenced Citations (182)
Number Name Date Kind
2521219 Holman et al. Sep 1950 A
2521242 Mitchell, Jr. Sep 1950 A
2615160 Baur Oct 1952 A
2815286 Andre et al. Dec 1957 A
2892880 McIntire et al. Jun 1959 A
3120438 Dairy Feb 1964 A
3170799 Feuge Feb 1965 A
3270040 Bradshaw Aug 1966 A
3295986 Saslaw Jan 1967 A
3338720 Pichel Aug 1967 A
3425843 Japikse Feb 1969 A
3433650 Block Mar 1969 A
3528823 Rossen Sep 1970 A
3607305 Westenberg Sep 1971 A
3634100 Fondu et al. Jan 1972 A
3881005 Thakkar et al. Apr 1975 A
3892880 Grolitsch Jul 1975 A
4021582 Hsu May 1977 A
4160850 Hallstrom et al. Jul 1979 A
4226894 Gawrilow Oct 1980 A
4232052 Nappen Nov 1980 A
4234577 Zilliken Nov 1980 A
4234606 Gawrilow Nov 1980 A
4288460 Ciliberto et al. Sep 1981 A
4292338 Ainger et al. Sep 1981 A
4294862 Wilke Oct 1981 A
4308288 Hara et al. Dec 1981 A
4341813 Ward Jul 1982 A
4366181 Dijkshoorn et al. Dec 1982 A
4375483 Shuford et al. Mar 1983 A
4385076 Crosby May 1983 A
4388339 Lomneth et al. Jun 1983 A
4390561 Blair et al. Jun 1983 A
4391838 Pate Jul 1983 A
4469710 Rielley et al. Sep 1984 A
4486457 Schijf et al. Dec 1984 A
4501764 Gercama et al. Feb 1985 A
4578274 Sugisawa et al. Mar 1986 A
4591507 Bodor et al. May 1986 A
4826699 Soe May 1989 A
4855157 Tashiro et al. Aug 1989 A
4889740 Price Dec 1989 A
4917915 Cain et al. Apr 1990 A
4933192 Darling et al. Jun 1990 A
4990355 Gupta et al. Feb 1991 A
5127953 Hamaguchi Jul 1992 A
5130156 Bergquist et al. Jul 1992 A
5185173 Bethke et al. Feb 1993 A
5186866 Ryuo et al. Feb 1993 A
5302408 Cain et al. Apr 1994 A
5352475 Tholl Oct 1994 A
5374445 Havenstein et al. Dec 1994 A
5391382 Chappell Feb 1995 A
5429836 Fuisz Jul 1995 A
5447735 Miller Sep 1995 A
5451421 Tanihara et al. Sep 1995 A
5516543 Amankonah et al. May 1996 A
5620734 Wesdorp et al. Apr 1997 A
5707670 Mehansho et al. Jan 1998 A
5858445 Huizinga et al. Jan 1999 A
5866192 Uesugi et al. Feb 1999 A
5904949 Reddy et al. May 1999 A
5916608 Lanting et al. Jun 1999 A
5916808 Kole et al. Jun 1999 A
5972412 Sassen et al. Oct 1999 A
5985350 Gubler et al. Nov 1999 A
6020003 Stroh et al. Feb 2000 A
6031118 van Amerongen et al. Feb 2000 A
6056791 Weidner et al. May 2000 A
6077558 Euber Jun 2000 A
6106885 Huizinga et al. Aug 2000 A
6106886 van Amerongen et al. Aug 2000 A
6117475 van Amerongen et al. Sep 2000 A
6117478 Dubberke Sep 2000 A
6129944 Tiainen et al. Oct 2000 A
6156370 Huizinga et al. Dec 2000 A
6159525 Lievense et al. Dec 2000 A
6171636 Sassen et al. Jan 2001 B1
6187578 Blinkovsky et al. Feb 2001 B1
6190680 Sakurada et al. Feb 2001 B1
6214406 Reimerdes Apr 2001 B1
6217920 van Eendenburg et al. Apr 2001 B1
6238723 Sassen et al. May 2001 B1
6248389 Biller et al. Jun 2001 B1
6284302 Berger et al. Sep 2001 B1
6312752 Lansbergen et al. Nov 2001 B1
6316030 Kropf et al. Nov 2001 B1
6322842 Reddy et al. Nov 2001 B1
6352737 Dolhaine et al. Mar 2002 B1
6395324 Effey et al. May 2002 B1
6403144 El-Khoury et al. Jun 2002 B1
6423326 Shapiro Jul 2002 B1
6423363 Traska et al. Jul 2002 B1
6440336 Weinreich et al. Aug 2002 B1
6468578 Bodor et al. Oct 2002 B1
6531173 Brooker Mar 2003 B2
6533252 Bernard et al. Mar 2003 B1
6582749 Merrick et al. Jun 2003 B2
6616849 Osajima et al. Sep 2003 B1
6743450 Romanczyk, Jr. et al. Jun 2004 B2
6753032 Hirokawa et al. Jun 2004 B1
6800317 Wester et al. Oct 2004 B2
6808737 Ullanoormadam Oct 2004 B2
6827964 Wester et al. Dec 2004 B2
6929816 Wester Aug 2005 B2
6986846 Shekunov et al. Jan 2006 B2
6986886 Hammond et al. Jan 2006 B2
7056949 Koike et al. Jun 2006 B2
7118773 Floeter et al. Oct 2006 B2
7223435 Besselink et al. May 2007 B2
7575768 Perlman et al. Aug 2009 B2
7601184 Tischendorf Oct 2009 B2
7618670 Ullanoormadam Nov 2009 B2
7807208 Ullanoormadam Oct 2010 B2
7862751 Foster et al. Jan 2011 B2
8124152 Janssen et al. Feb 2012 B2
8147895 Barendse et al. Apr 2012 B2
8211470 Kim Jul 2012 B2
8431370 ten Brink et al. Apr 2013 B2
8586122 McNeill et al. Nov 2013 B2
8927045 Barendse et al. Jan 2015 B2
20010029047 Liu et al. Oct 2001 A1
20020034577 Vogensen et al. Mar 2002 A1
20020048606 Zawistowski Apr 2002 A1
20020076476 Kuil et al. Jun 2002 A1
20020132035 Tamarkin et al. Sep 2002 A1
20020168450 Drudis et al. Nov 2002 A1
20030064141 Brooker Apr 2003 A1
20030068425 Khare Apr 2003 A1
20030124228 Goto et al. Jul 2003 A1
20030124288 Merziger et al. Jul 2003 A1
20030165572 Auriou Sep 2003 A1
20030203854 Pischel et al. Oct 2003 A1
20040076732 Valix Apr 2004 A1
20040101601 Loh et al. May 2004 A1
20040105931 Basheer et al. Jun 2004 A1
20040126475 Hashizume et al. Jul 2004 A1
20040166204 Smith et al. Aug 2004 A1
20040197446 Haynes et al. Oct 2004 A1
20050014158 Adam et al. Jan 2005 A1
20050069619 Bot et al. Mar 2005 A1
20050069625 Chimel et al. Mar 2005 A1
20050123667 Sakuma et al. Jun 2005 A1
20050170062 Burling et al. Aug 2005 A1
20050175745 Zawistowski Aug 2005 A1
20050196512 Nakhasi et al. Sep 2005 A1
20050271791 Wright et al. Dec 2005 A1
20060019021 Plank et al. Jan 2006 A1
20060035871 Auweter et al. Feb 2006 A1
20060051479 Chiavazza et al. Mar 2006 A1
20060115553 Gautam et al. Jun 2006 A1
20060280855 Van Den Berg et al. Dec 2006 A1
20070054028 Perlman et al. Mar 2007 A1
20070087085 Sarma et al. Apr 2007 A1
20070154617 Lansbergen Jul 2007 A1
20070254088 Stewart et al. Nov 2007 A1
20070286940 Herzing et al. Dec 2007 A1
20080089978 Grigg et al. Apr 2008 A1
20080187645 Ekblom et al. Aug 2008 A1
20080193628 Garbolino et al. Aug 2008 A1
20080193638 McMaster et al. Aug 2008 A1
20080226786 Ward et al. Sep 2008 A1
20080268130 Bons et al. Oct 2008 A1
20080274175 Schramm et al. Nov 2008 A1
20080317917 Janssen et al. Dec 2008 A1
20090022868 Van Den Bremt et al. Jan 2009 A1
20090029024 McNeill et al. Jan 2009 A1
20090041898 Garbolino et al. Feb 2009 A1
20090123633 Cleenewerck et al. May 2009 A1
20090136645 Garbolino May 2009 A1
20090263559 Van Horsen et al. Oct 2009 A1
20100040737 Radlo et al. Feb 2010 A1
20100159079 Qvyjt Jun 2010 A1
20110070335 Brugger et al. Mar 2011 A1
20110244111 Den Adel et al. Oct 2011 A1
20110287156 Perlman Nov 2011 A1
20110287160 Dobenesque et al. Nov 2011 A1
20110311706 van den Berg et al. Dec 2011 A1
20110311707 Bezemer et al. Dec 2011 A1
20120018535 Wubbolts et al. Jan 2012 A1
20130004522 Dvir et al. Jan 2013 A1
20130115361 Floter et al. May 2013 A1
Foreign Referenced Citations (113)
Number Date Country
10253193 Jun 2004 AR
2004262853 Jun 2008 AU
2253515 May 1974 DE
3220916 Dec 1983 DE
10253111 May 2004 DE
0505007 Sep 1992 EA
0327225 Jul 1993 EA
0021483 Jan 1981 EP
0041299 Jan 1983 EP
0089082 Sep 1983 EP
0063835 Apr 1985 EP
0237120 Sep 1987 EP
0294692 Dec 1988 EP
0327120 Aug 1989 EP
0393963 Oct 1990 EP
0289069 Mar 1993 EP
0572051 Dec 1993 EP
0775444 May 1997 EP
0780058 Jun 1997 EP
0796567 Sep 1997 EP
0744992 Oct 1997 EP
0898896 Mar 1999 EP
0594152 Feb 2000 EP
1238589 Sep 2002 EP
0962150 Aug 2003 EP
1419698 May 2004 EP
1419811 May 2004 EP
1557090 Jul 2005 EP
1795257 Jun 2007 EP
1815752 Aug 2007 EP
1180545 Sep 2007 EP
1114674 Sep 2008 EP
2016834 Jan 2009 EP
1285584 Nov 2009 EP
2123164 Nov 2009 EP
2181604 May 2010 EP
1197153 Mar 2011 EP
1651338 May 2011 EP
0897671 Jul 2011 EP
1865786 Nov 2011 EP
2243653 Apr 1975 FR
2776167 Sep 1999 FR
1114674 May 1968 GB
1537011 Dec 1978 GB
1538958 Jan 1979 GB
2095966 Oct 1982 GB
2095968 Oct 1982 GB
2177283 Jan 1987 GB
2208296 Mar 1989 GB
2208378 Nov 1991 GB
2292949 Mar 1996 GB
2320175 Jun 1998 GB
5951742 Mar 1984 JP
62239949 Oct 1987 JP
2299544 Dec 1990 JP
2003210107 Jul 2003 JP
WO9308699 May 1993 WO
WO9521688 Aug 1995 WO
WO9638047 Dec 1995 WO
WO9614755 May 1996 WO
WO9619115 Jun 1996 WO
WO9742830 Nov 1997 WO
WO9813133 Apr 1998 WO
WO9847386 Oct 1998 WO
WO9956558 Nov 1999 WO
WO0009636 Feb 2000 WO
W00021490 Apr 2000 WO
WO0021490 Apr 2000 WO
WO0045648 Aug 2000 WO
WO0041491 Dec 2000 WO
WO0100046 Jan 2001 WO
WO0132035 May 2001 WO
WO0143559 Jun 2001 WO
WO0166560 Sep 2001 WO
WO0191569 Dec 2001 WO
WO0178529 Mar 2002 WO
WO02100183 Dec 2002 WO
WO03043430 May 2003 WO
WO03084337 Oct 2003 WO
WO03096817 Nov 2003 WO
WO03103633 Dec 2003 WO
WO2004068959 Aug 2004 WO
WO2004093571 Nov 2004 WO
WO2005014158 Feb 2005 WO
WO2005051089 Jun 2005 WO
WO2005071053 Aug 2005 WO
WO2005074717 Aug 2005 WO
WO2005074726 Aug 2005 WO
WO2006005141 Feb 2006 WO
WO2006066979 Jun 2006 WO
WO2006079445 Aug 2006 WO
WO2006087090 Aug 2006 WO
WO2006087091 Aug 2006 WO
WO2006087092 Aug 2006 WO
WO2006087093 Aug 2006 WO
WO2006134152 Dec 2006 WO
WO2007022897 Mar 2007 WO
WO2007024770 Apr 2007 WO
WO2007039020 Apr 2007 WO
WO2007039040 Apr 2007 WO
WO2007096211 Aug 2007 WO
WO2007096243 Aug 2007 WO
WO2008125380 Oct 2008 WO
WO2009068651 Jun 2009 WO
WO2010053360 May 2010 WO
WO2010060713 Jun 2010 WO
WO2010069746 Jun 2010 WO
WO2010069747 Jun 2010 WO
WO2010069750 Jun 2010 WO
WO2010069751 Jun 2010 WO
WO2010069752 Jun 2010 WO
WO2010069753 Jun 2010 WO
WO2011160921 Dec 2011 WO
Non-Patent Literature Citations (144)
Entry
Garti et al. JAOCS, vol. 75, No. 12 (1998) pp. 1825-1831.
Nutrition: Today's challenges and opportunities, Leatherhead Food International, Jun. 2008, pp. 1-6, vol. 42 No. 5, US.
The prilling process with liquid nitrogen, Jet Priller, Jun. 23, 2010, pp. 1-2, ., Linde, US.
Anna Von Bonsdorff-Nikander, Studies on a Cholesterol-Lowering Microcrystalline Phystosterol Suspension in Oil, Division of Pharmaceutical Technology Faculty of Pharmacy, Feb. 12, 2005, 12, 28-30, 35-44.
Anonymous, Particle Sizes of Milk Powders Part I, Dairy Products Technolgoy Center Dairy Ingredients Applications Program, Apr. 2000, pp. 1-2, vol. 2 No. 4.
Belitz et al., Milk and Dairy Products, Food Chemistry, 1999, pp. 470-474 and pp. 497-498XP002264854.
Charteris et al., Edible table (bio) spread containing potentially probiotic Lactobacillus and Bifidobacterium species, International Journal of Dairy Technology, Feb. 2002, pp. 44-56XP002635276, vol. 55 No. 1.
Christiansen et al, Cholesterol-lowering effect of spreads enriched with microcrystalline plant sterols in hypercholesterolemic subject, European Journal of Nutrition, 2001, 66-73, 40.
Christoph et al., Glycerol, Ullmann's Encyclopedia of Industrial Chemistry, 2012, pp. 67-82. NB: only relevant pp. 67-69 and 79., vol. 17, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
D. Chapman, The Polymorphism of Glycerides, University Chemical Laboratory Chemical Reviews, Dec. 2, 1961, pp. 433-456, 62.
De Graaf et al., Consumption of tall oil-derived phytosterols in a chocolate matrix significantly decreases plasma total and low-density lipoprotein-cholesterol levels, British Journal of Nutrition, 2002, pp. 479-488.
Experimental and Analytical Facilities, Delft University of Technology, Dec. 16, 2005, pp. 41-51.
Ferguson et al., The Polymorphic Forms or Phases of Triglyceride Fats, Chemical Reviews, 1941, pp. 355-384.
Fischer, Formulation challenges in Ice Cream Gelling and thickening systems and their applications fruit preparations, Food Ingredients and Analysis International, 2001, pp. 29-31, vol. 23 No. 3.
Fischer, Improved fruit fibres for modern food processing, Food Ingredients and Analysis International, 2001, pp. 29-31, vol. 23 No. 3.
Formo et al., Bailey's Industrial Oil and Fat Products, Bailey's Industiral Oil and Fat Products, 1979, pp. 317, 326, 377, 382, 398, vol. 1 4th Edition.
Formo et al., Composition and Characteristics of Individual Fats and Oils, Bailey's Industrial Oil and Fat Products, 1979, pp. 382-384, vol. 1 4th Edition.
Gerber et al., Effect of Process-Parameters on Particles Obtained by the Rapid Expansion of Supercritical Solutions, World Congress on Oil Particle Technology, 1998, pp. 1-11XP001080632.
Gunstone et al., Analytical Methods Slip Point, The Lipid Handbook, 1994, pp. 321-322, 2nd Edition.
Gunstone et al., Food uses of oils and fats, The Lipid Handbook, 2007, pp. 336-341, 3rd Edition.
Gunstone et al., Occurrence and characterisation of oils and fats, The Lipid Handbook, 2007, pp. 49-53, 3rd Edition.
Gunstone et al., Occurrence and Characterisation of Oils and Fats, The Lipid Handbook, 2007, pp. 51, 55, 63, 66, 67, 3rd Edition.
Gunstone et al., Polymorphism and nomenclature of lipid crystal forms, The Lipid Handbook, 1995, pp. 405, 2nd Edition.
Gunstone, Lipids in Foods, Lipids in Foods Chemistry, Biochemistry and Technology, 1983, pp. 154.
Hasenhuettl et al., Starch, Food Emulsifiers and Their Applications, 2007, pp. 274-275, Second Edition.
Hayes et al, Nonesterified Phytosterols Dissolved and Recrystallized in Oil Reduce Plasma Cholesterol in Gerbils and Humans, The journal of Nutrition, Jun. 1, 2006, 1395-1399, 134 No. 6, US.
Hui, Bailey's Industrial Oil and Fat Products, Bailey's Industrial Oil and Fat Products, 1996, pp. 484-485, 1-5th edition, US.
Hydrogenation, Wikipedia, pp. 1-10.
Interesterified Fat, Wikipedia, pp. 1-4.
IPRP 1 in PCTEP2011071150, dated Feb. 25, 2013.
IPRP in PCTEP2009066104, dated Sep. 28, 2010, WO.
IPRP in PCTEP2009066105, dated Mar. 24, 2011.
IPRP in PCTEP2011071150, dated Apr. 23, 2013.
IPRP1 in PCTEP2009066093, dated Jun. 21, 2011.
IPRP1 in PCTEP2009066098, dated Jun. 21, 2011.
IPRP1 in PCTEP2009066107, dated Jun. 21, 2011.
IPRP1 in PCTEP2011070933, dated Jun. 18, 2013.
IPRP2 in PCTEP2004006544, dated Jan. 3, 2006, WO.
IPRP2 in PCTEP2006000800, dated Jun. 27, 2007, WO.
IPRP2 in PCTEP2006000801, dated Mar. 20, 2007.
IPRP2 in PCTEP2009066095, dated Mar. 24, 2011, WO.
IPRP2 in PCTEP2009066105, dated Mar. 24, 2011.
IPRP2 in PCTEP2011065601, dated Sep. 24, 2012, WO.
IPRP2 in PCTEP2011070948, dated Mar. 11, 2013, WO.
IPRP2in PCTEP2011071168, dated Sep. 5, 2012.
IPRP2 in PCTEP2011071397, dated Mar. 21, 2013.
IRPR2 in PCTEP2011058922, dated Jul. 6, 2012.
Johansson et al., Water-in-Triglyceride Oil Emulsions. Effect of Fat Crystals on Stability, JAOCS Journal of the American Oil Chemists' Society, 1995, pp. 939-950, vol. 72 No. 8.
K. Davidsson, Powdered fats for soups and sauces—and a range of other food products, Food Ingredients and Analysis International, 2001, pp. 29-30, 23 (4).
Lipson et al., Analysis of the Broadening of Powder Lines, Interpretation of X-Ray Powder Diffraction Patterns, 1970, pp. 244-263.
Lopez et al., Milk fat and primary fractions obtained by dry fractionation 1. Chemical composition and crystallisation properties, Chemistry and Physics of Lipids, Oct. 2006, pp. 17-33, vol. 144, Issue 1.
Lowe, Experimental Cookery, Experimental Cookery, 1955, pp. 270-273, 4th edition, ., US.
M. Dervisoglu and F. Yazici, The Effect of Citrus Fibre on the Physical, Chemical and Sensory Properties of Ice Cream, Food Science and Technology International, Apr. 2006, pp. 159-164—with abstract, 12.
Margarines and Shortenings, Ullmanns Encyclopedia of Industrial Chemistry, 1990, pp. 156-158, vol. A16.
Micaleff et al., Beyond blood lipids phytosterols statins and omega-3 polyunsaturated fatty acid therapy for hyperlipidemia, Journal of Nutrional Biochemistry, 2009, pp. 927-939; XP026755870, vol. 20.
Munuklu et al., Particle formation of an edible fat (rapeseed 70) using the supercritical melt micronization (ScMM) process, The Journal of Supercritical Fluids, Apr. 2007, pp. 433-442, vol. 40, Issue 3.
Munuklu et al., Supercritical Melt Micronization Using theParticles from Gas Saturated Solution Process, American Chemical Society Symposium, 2003, pp. 353-369.
Nathalie De Cock, Structure development in confectionery products: importance of triacylglycerol composition, Universiteit Gent Faculteit Bio-ingenieurswetenschappen, 2011, pp. 1-72.
Norizzah et al., Effects of chemical interesterification on physicochemical properties of palm stearin and palm kernel olein blends, Food Chemistry, 2004, pp. 229-235, 86.
Notice of Opposition from Feyecon Development & Implementation BV in EP06706499, Aug. 30, 2012.
Notice of Opposition from Kerry Group Services Intl Ltd in EP06706499, Aug. 30, 2012.
P. Munuklu, Particle formation of edible fats using the supercritical melt micronization process (ScMM), The Journal of Supercritical Fluids, 2007, pp. 181-190, 43.
Pernetti et al., Structuring of edible oils by alternatives to crystalline fat, Current Opinion in Colloid & Interface Science, Oct. 2007, pp. 221-231, vol. 12, Issues 4-5.
Ribeiro et al., Zero trans fats from soybean oil and fully hydrogenated soybean oil: Physico-chemical properties and food applications, Food Research International, 2009, pp. 401-410, vol. 42.
S. P. Kochhar, Influence of Processing on Sterols of Edible Vegetable Oils, Prog Lipid Res, 1983, pp. 161-188, vol. 22.
Search Report in EP03077247, dated Apr. 7, 2004.
Search Report in EP05075384, dated Jul. 5, 2005, EP.
Search Report in EP05075393, dated Jul. 20, 2005.
Search report in EP06122483, dated Jul. 15, 2008, EP.
Search Report in EP08172283, dated Jun. 5, 2009.
Search Report in EP08172284, dated Jun. 4, 2009, EP.
Search Report in EP08172286, dated May 20, 2009, EP.
Search Report in EP08172298, dated Apr. 9, 2009, EP.
Search Report in EP08172300, dated Jun. 5, 2009.
Search Report in EP08172304, dated May 28, 2009.
Search Report in EP10166774, dated Dec. 3, 2010.
Search Report in EP10181979, dated Nov. 17, 2010.
Search Report in EP10195564, dated May 20, 2011, EP.
Search Report in EP10195567, dated May 24, 2011.
Search Report in EP10195650, dated May 4, 2011.
Search Report in EP10195655, dated Jun. 15, 2011, EP.
Search Report in EP10196443, dated May 27, 2011.
Search Report in EP10196444, dated May 25, 2011.
Search Report in PCTEP2004006544, dated Jan. 28, 2005, WO.
Search Report in PCTEP2006000800, dated Aug. 2, 2006, WO.
Search Report in PCTEP2006000801, dated Aug. 11, 2006, WO.
Search Report in PCTEP2009066093, dated Mar. 17, 2010.
Search Report in PCTEP2009066095, dated Mar. 23, 2010, WO.
Search Report in PCTEP2009066098, dated Mar. 17, 2010.
Search Report in PCTEP2009066104, dated Jan. 14, 2010, WO.
Search Report in PCTEP2009066105, dated Jan. 28, 2010.
Search Report in PCTEP2009066107, dated Jan. 12, 2010, WO.
Search Report in PCTEP2011058922, dated Sep. 15, 2011.
Search Report in PCTEP2011065601, dated Oct. 21, 2011.
Search Report in PCTEP2011070933, dated Mar. 21, 2012, WO.
Search Report in PCTEP2011070948, dated Feb. 9, 2012, WO.
Search Report in PCTEP2011071150, dated Jan. 30, 2012.
Search Report in PCTEP2011071168, dated Feb. 9, 2012.
Search Report in PCTEP2011071282, dated Jan. 25, 2012.
Search Report in PCTEP2011071397, dated Feb. 9, 2012.
Shahidi et al., Margarine processing plants and equipment, Edible Oil and Fat Product, Margarine processing plants and equipment, 2005, pp. 502, 518.
Shurtleff et al., History of Soy Oil Hydrogenation and of Research on the Safety of Hydrogenated Vegetable Oils, SoyInfo Center, 2007, pp. 1-9.
Starches, Tate & Lyle Product Brochure, 2009, pp. 1-16.
Strawberry Powder Flavor GA1403, Strawberryflavor.com, 2005, pp. 1.
The American Heritage Dictionary, 1982, pp. 407, 1225, 2nd College Edition.
Turk et al., Micronization of pharmaceutical substances by the Rapid Expansion of Supercritical Solutions (RESS): a promising method to improve bioavailability of poorly soluble pharmaceutical agents, The Journal of Supercritical Fluids, Jan. 2002, pp. 75-84, vol. 22 Issue 1.
Van den Enden et al., A Method for the Determination of the Solid Phase Content of Fats Using Pulse Nuclear Magnetic Resonance, Fette Seifen Anstrichmittel, 1978, pp. 180-186, vol. 80.
Van den Enden et al., Rapid Determination of Water Droplet Size Distributions by PFG-NMR, Journal of Colloid and Interface Science, Nov. 1990, pp. 105-113, vol. 140 No. 1.
Van den Enden, A Method for the Determin of the Solid Phase Content of Fats Using Pulse Nuclear Magnetic Resonance, Fette Seifen Anstrichmittel, 1978, 180, 5, US.
Von Bonsdorff et al., Optimizing the Crystal Size and Habit of β-Sitosterol in Suspension, AAPS PharmSciTech, 2003, pp. 1-8, 4 (3).
Written Opinion in EP03077247, dated Apr. 7, 2004.
Written Opinion in EP05075384, dated Jul. 5, 2005.
Written Opinion in EP05075393, dated Jul. 20, 2005.
Written Opinion in EP06122483, dated Jul. 15, 2008, EP.
Written opinion in EP08172283, dated Jun. 5, 2009.
Written Opinion in EP08172284, dated Jun. 4, 2009, EP.
Written Opinion in EP08172286, dated May 20, 2009, EP.
Written Opinion in EP08172298, dated Apr. 9, 2009, EP.
Written Opinion in EP08172300, dated Jun. 5, 2009.
Written Opinion in EP08172304, dated May 28, 2009.
Written Opinion in EP10166774, dated Dec. 3, 2010.
Written Opinion in EP10181979, dated Nov. 11, 2010.
Written Opinion in EP10195564, dated May 20, 2011, EP.
Written Opinion in EP10195567, dated May 24, 2011.
Written Opinion in EP10195655, dated Jun. 15, 2011.
Written Opinion in EP10196443, dated May 27, 2011.
Written Opinion in EP10196444, dated May 25, 2011, EP.
Written Opinion in PCTEP2004006544, dated Jan. 28, 2005, WO.
Written Opinion in PCTEP2006000800, dated Aug. 2, 2006, WO.
Written Opinion in PCTEP2006000801, dated Aug. 11, 2006.
Written Opinion in PCTEP2009066093, dated Mar. 17, 2010.
Written Opinion in PCTEP2009066095, dated Mar. 23, 2010, WO.
Written Opinion in PCTEP2009066098, dated Mar. 17, 2010.
Written Opinion in PCTEP2009066104, dated Jan. 14, 2010, WO.
Written Opinion in PCTEP2009066105, dated Jan. 28, 2010.
Written Opinion in PCTEP2009066107, dated Jan. 12, 2010, WO.
Written Opinion in PCTEP2011058922, dated Sep. 15, 2011.
Written Opinion in PCTEP2011065601, dated Oct. 21, 2011.
Written Opinion in PCTEP2011070933, dated Mar. 21, 2012, WO.
Written Opinion in PCTEP2011070948, dated Feb. 9, 2012, WO.
Written Opinion in PCTEP2011071150, dated Jan. 30, 2012.
Written Opinion in PCTEP2011071168, dated Feb. 9, 2012.
Written Opinion in PCTEP2011071282, dated Jan. 25, 2012.
Written Opinion in PCTEP2011071397, dated Feb. 9, 2012.
Related Publications (1)
Number Date Country
20150118383 A1 Apr 2015 US
Continuations (2)
Number Date Country
Parent 13224550 Sep 2011 US
Child 14582483 US
Parent 10564944 US
Child 13224550 US