Process for the preparation of benzothioxanthene dyestuffs

Information

  • Patent Grant
  • 5280128
  • Patent Number
    5,280,128
  • Date Filed
    Thursday, December 12, 1991
    32 years ago
  • Date Issued
    Tuesday, January 18, 1994
    30 years ago
Abstract
The present invention relates to a process for the preparation of benzothioxanthene dyestuffs and cyclisation of 3-(2'-aminophenylthio)-benzanathrones wherein the diazotisation and cyclisation are carried out simultaneously in polar, aprotic solvent in the presence of water.
Description

The present invention relates to a process for the preparation of benzothioxanthene dyestuffs by diazotisation and cyclisation of 3-(2'-aminophenylthio)-benzanthrones.
Various processes of this type are already known. DE-PS No. 1,293,939 thus describes the diazotisation of 3-(2'-aminophenylthio)-benzanthrones in acetic or mineral acid solution and the cyclisation of the resulting diazonium salt in the presence of cooper salts or copper powder. This process has a poor space yield and leads to high pollution of the effluent with copper salts. The products are furthermore obtained in heavily contaminated form in this process, so that they have to be purified in an expensive manner by treatment with organic solvents. This is associated with further ecological and economical disadvantages.
According to DE-PS No. 2,134,517, 3-(2'-aminophenylthio)benzanthrones are converted into tertiary amines at temperatures of -10.degree. C. to 0.degree. C. using compounds which split off nitrosyl groups, for example nitrosyl sulphuric acid, and the diazonium compounds thus obtained are heated to 100.degree. C. to 115.degree. C. This process has disadvantages because of the high toxicity of the solvents of pyridine or pyridine based mixtures, so that high industrial expenditure i-s necessary in respect of solvent regeneration and keeping the waste air and effluent pure.
DE-PS No. 2,134,518 describes the reaction of 3-(2'-aminophenylthio)-benzanthrones with compounds which split off nitrosyl groups in N,N-dialkylated acid amides at temperatures of -10.degree. C. to 5.degree. C. to give diazonium compounds, and subsequent cyclisation thereof in the presence of copper, copper salts or acid-binding agents at 115.degree. C. According to this process, the products are obtained with a high degree of purity, but the yields are not more than 58% of theory, based on the amino compounds employed. The process is accordingly uneconomical because of the high proportion of by-by-products which pollute the effluent or have to be disposed of. This process moreover raises safety problems. For example, on heating the diazonium salt obtained according to Example 2 of DE-PS No. 2,134,518, the heat flow of the reaction from 60.degree. C. determined by heat balance calorimetry rises exponentially, so that it can no longer be guaranteed that the reaction is controlled from the safety aspects. An adiabatic increase in temperature of 106.2.degree. C. has been determined here for the overall reaction.
The object of the present invention is to prepare benzothioxanthene dyestuffs in an ecologically and economically optimum manner, that is to say in a high yield and purity with the minimum possible pollution of the environment.
The object is achieved by a process for the reparation of benzothioxanthene dyestuffs of the general formula I ##STR1## wherein R.sup.1 and R.sup.2 independently of one another denote hydrogen, (C.sub.1 -C.sub.2)-alkyl, (C.sub.1 -C.sub.2)-alkoxy or chlorine and
R.sup.3 and R.sup.4 independently of one another denote hydrogen or bromine, by diazotisation and cyclisation of 3-(2'-aminophenylthio)-benzanthrones of the general formula II ##STR2## wherein R.sup.1 to R.sup.4 are defined as mentioned above, characterised in that the diazotisation and cyclisation are carried out simultaneously in polar, aprotic solvents in the presence of water.
In the general formula I, R.sup.1 to R.sup.4 preferably denote hydrogen.
Examples of preferred polar, aprotic solvents are dialkylated acid amides, such as dimethylformamide, dimethylacetamide, N-methylpyrrolid-2-one, N-methylpiperid-2-one and N-formylmorpholine, urea derivatives, such as tetramethylurea, tetraethylurea, 1,3-dimethylimidazolin-2-one and 1,3-dimethyl-3,4,5,6-tetrahydro- 2(1H)-pyrimidone, sulphoxides, such as dimethylsulphoxide, sulphones, such as sulpholane, and alkylnitriles, such as acetonitrile and propionitrile. N-Methylpyrrolid-2-one and dimethyl sulphoxide are particularly preferred.
Water is preferably employed in amounts of 0.5 to 15% by weight, preferably 2 to 10% by weight, based on the solvent.
The diazotisation of the compounds of the general formula II is effected in a manner which is known per se, for example with an alkali metal nitrite, in particular sodium nitrite, in the presence of mineral, alkanesulphonic or arenesulphonic acids, or with nitrosylsulphuric acid, nitrosyl chloride or nitrous acid esters, such as, for example, isoamylnitrite or nitrous acid monoglycol ester as compounds which supply nitrosyl groups.
The compounds which supply nitrosyl groups are advantageously employed in an excess of 5 to 70 mol %, preferably 10 to 50 mol %, based on the compound of the general formula II.
Examples of mineral acids required when an alkali metal nitrite is used are hydrochloric acid, sulphuric acid and phosphoric acid. Examples of alkane- and arenesulphonic acids are methanesulphonic acid, ethanesulphonic acid, butanesulphonic acid, trifluoromethanesulphonic acid, benzenesulphonic acid and 4-methylbenzenesulphonic acid.
The reaction according to the invention is preferably carried out at temperatures of 20.degree. to 120.degree. C., particularly preferably 40.degree. to 80.degree. C.
In one embodiment of the process according to the invention, the compound of the general formula II is initially introduced into the reaction vessel in the solvent, together with water and if appropriate an acid, and the compound which supplies nitrosyl groups is added. In another embodiment, the compound of the general formula II is initially introduced into the reaction vessel in the solvent, together with water and an alkali metal nitrite, and an acid-is added.
In another preferred embodiment of the process according to the invention, the compounds of the general formula II are first prepared by reaction of 2-aminothiophenols of the general formula III ##STR3## wherein R.sup.1 and R.sup.2 are as defined above, with 3-halogenobenzanthrones of the general formula IV ##STR4## wherein X denotes chlorine or bromine and R.sup.3 and R.sup.4 are as defined above, in polar, aprotic solvents and these products arediazotised and cyclised according to the invention without intermediate isolation.
The compounds of the general formulae III and IV are known and can be prepared by known methods.
The process according to the invention, in which, surprisingly, the addition of copper, copper salts or acid-binding agents can be dispensed with, provides the benzothioxanthene dyestuffs of the general formula I in a surprisingly high yield of up to 95% of theory, based on the compound of the general formula II, and with a very good purity. A high purity is absolutely essential for use as fluorescence dyestuffs for synthetic fibres and plastics. The process according to the invention thus offers clear ecological and economic advantages in comparison with the processes known to date.
Furthermore, there are also considerable advantages from safety aspects. The heat flow of the reaction is considerably easier to control than in the known reactions. The adiabatic increase in temperature for the overall reaction is only 61.3.degree. C.
Furthermore, it could not be predicted that the intermediately formed diazonium salts of the compound of the general formula II produce better yields of cyclisation product of the general formula I in the presence of water than in an anhydrous medium according to the known processes. On the basis of the prior art, it would in fact have been expected that phenols are formed by boiling of the diazonium salts (see, for example, Houben-Weyl, Methoden der Organischen Chemie (Methods of Organic Chemistry), Volume VI/1c page 247 (1976); Ullmann's Enzyklopadie der Technischen Chemie (Ullmann's Encyclopedia of Industrial Chemistry), Volume V, page 812 (1954).





EXAMPLE 1
70.6 g of 3-(2'-aminophenylthio)-benzanthrone are introduced into 700 g of 99% pure N-methylpyrrolidone, and 20.7 g of sodium nitrite and 32.0 g of water are added at 25.degree. C. The mixture is subsequently heated to 45.degree. C., and 25.0 g of methanesulphonic acid are added in the course of 3 hours. The reaction is brought to completion by subsequent stirring at 70.degree. C. until the evolution of nitrogen has ended.
The mixture is cooled to 100 and filtered, and the filter cake is rinsed with 150 g of N-methylpyrrolidone and 400 g of water. After drying at 110.degree. C., 59.7 g (87% of theory) of the red dyestuff of the formula I (R.sup.1 to R.sup.4 =H) are obtained with a purity of 98% (extinction measurement at .lambda.max: 510 .mu.m).
EXAMPLE 2
A solution of 21.6 g of sodium nitrite in 35 g of water is added to a mixture of 70.6 g of 3-(2'-aminophenylthio)-benzanthrone, 25.0 g of methanesulphonic acid, 20 g of water and 700 g of 99% pure N-methylpyrrolidone at 45.degree. in the course of 3 hours, and the mixture is then heated to 90.degree.. After cooling to 10.degree. C. and working up analogously to Example 1, 58.3 g (84% of theory) of the dyestuff of the formula 1 (R.sup.1 to R.sup.4 =H) are obtained with a purity of 97% (.lambda.max: 510 .mu.m).
If the procedure is carried out according to the instructions in Example 1, but methanesulphonic acid is replaced by the acids shown in column 2 of Table 1 and N-methylpyrrolidone is replaced by the solvent shown in column 3, the dyestuff of the formula I (R.sup.1 to R.sup.4 =H) is likewise obtained in a high yield and with a purity of 95%-100%.
TABLE 1__________________________________________________________________________ Polar, aprotic YieldExample Acid solvent (% of theory)__________________________________________________________________________3 25.0 g of 96% strength sulphuric acid N-methylpyrrolid-2-one 834 29.6 g of 85% strength phosphoric acid N-methylpyrrolidone 805 48.2 g of 4-methylbenzenesulphonic acid N-methylpyrrolidone 796 30.2 g of 32% strength hydrochloric acid 1,3-dimethylimidazolin-2-one 767 30.2 g of 32% strength hydrochloric acid Sulpholane 758 25.0 g of methanesulphonic acid Dimethylformamide 779 25.0 g of methanesulphonic acid Dimethylacetamide 7910 25.0 g of methanesulphonic acid Tetramethylurea 8411 30.2 g of 32% strength hydrochloric acid Acetonitrile 7712 25.0 g of methanesulphonic acid Tetraethylurea 8113 25.0 g of methanesulphonic acid 1,3-dimethyl-3,4,5,6-tetrahydro- 75 2-(1H)-pyrimidone14 30.2 g of 32% strength hydrochloric acid Dimethylsulphoxide 95__________________________________________________________________________
EXAMPLE 15
20.5 g of ground sodium hydroxide are added to a solution of 63.2 g of 2-aminothiophenol in 400 g of 99% pure N-methylpyrrolid-2-one and the mixture is stirred at 60.degree. C. for 1 hour under a nitrogen atmosphere. A solution of 154.6 g of 3-bromobenzanthrone in 850 g of 99% pure N-methylpyrrolidone is then added and the condensation reaction is brought to completion by subsequent stirring at 80.degree. C.
58.0 g of water and 51.75 g of sodium nitrite are then added, and 75.4 g of 32% strength hydrochloric acid are slowly metered in at 50.degree. C. To bring the cyclisation reaction to completion, the mixture is subsequently stirred at 70.degree. for 3 hours, cooled to 5.degree. C. and filtered and the press cake is rinsed with 700 g of N-methylpyrrolid-2-one and 2.0 1 of water. The dyestuff paste is dried at 110.degree. C.
Yield: 135.9 g (80% of theory) of a red powder of the dyestuff of the formula I (R.sup.1 to R.sup.4 =H)
Purity: 99% (extinction measurement at .lambda.max: 510 .mu.m).
The adiabatic increase in temperature of the reaction is determined by heat balance calorimetry (Mettler RC-1 calorimeter). The following values result for the mean of the reaction steps:
______________________________________ adiabatic increase in temperature (.degree.C.)______________________________________Hydrochloric acid addition 41.4Heating to 70.degree. 21.8and subsequent stirring at 70.degree.Overall reaction 61.3______________________________________
COMPARISON EXAMPLE
(Corresponding to Example 2 of DE-PS No. 2,134,518)
106.0 g of 3-(2'-aminophenylthio)-benzanthrone are introduced into 720 g of 99% pure N-methylpyrrolidone at 25.degree. C., the mixture is cooled to -5.degree., and 114.9 g of 40.5% strength nitrosylsulphuric acid are added at -5.degree. to 0.degree. C. in the course of 1 hour.
The cooling is then removed and the mixture is warmed to 23.degree. C. in the course of 30 minutes and subsequently stirred at 23.degree. C. for 3 hours. The mixture is then heated to 110.degree. C. in the course of 1 hour and subsequently stirred at 110.degree. C. for 3 hours. It is then cooled to 5.degree. C. and filtered, and the filter cake is rinsed with 420 g of N-methylpyrrolid-2-one and 1.4 1 of water. After drying at 110.degree. C., 57.6 g (56% of theory) of the dyestuff of the formula I (R.sup.1 to R.sup.2 =H) are obtained with a purity of 98% (extinction measurement at .lambda.max: 510 .mu.m).
The adiabatic increase in temperature of the reaction is measured by heat balance calorimetry (Mettler RC 1 calorimeter). The following values result for the individual reaction steps:
______________________________________ adiabatic increase in temperature (.degree.C.)______________________________________Addition of nitrosylsulphuric acid 22.2Subsequent stirring at 23.degree. C. 44.3Heating to 110.degree. C. and subsequent 57.9stirring (3 hours) at 110.degree. C.Overall reaction 106.2______________________________________
An exponential rise in the heat flow is to be found at 60.degree. C.
If the procedure is carried out according to the instructions of Example 16, but instead of 2-aminothiophenol the substituted 2-aminothiophenols shown in Table 2, column 2 are employed and the benzanthrone derivative shown in column 3 is employed, the substituted dyestuffs of the formula I shown in column 4 are obtained in a yield of 75%-80% of theory and with a high purity of >95%.
TABLE 2__________________________________________________________________________Ex- 2-Aminothiophenol Benzanthrone of Benzothioxanthene dyestuffample of the formula III the formula IV of the formula I__________________________________________________________________________16 2-Aminothiophenol 3,9-Dibromobenzanthrone ##STR5##17 2-Amino-5-ethoxy- thiophenol 3-Bromobenzanthrone ##STR6##18 2-Amino-5-chloro- 3-methylthiophenol 3-Bromobenzanthrone ##STR7##__________________________________________________________________________
Claims
  • 1. Process for the preparation of benzothioxanthene dyestuffs of the general formula I ##STR8## wherein R.sup.1 and R.sup.2 independently of one another denote hydrogen, (C.sub.1 -C.sub.2)-alkyl, (C.sub.1 -C.sub.2)-alkoxy or chlorine and
  • R.sup.3 and R.sup.4 independently of one another denote hydrogen or bromine, by diazotisation and cyclisation of 3-(2'-aminophenyl-thio)-benzanthrones of the general formula II ##STR9## wherein R.sup.1 to R.sup.4 are defined as mentioned above, comprising the diazotisation and cyclisation are carried out simultaneously in polar, aprotic solvents in the present of water in amounts of 2% to 10% weight, based on the solvent.
  • 2. Process according to claim 1 characterized in that R.sup.1 to R.sup.4 in the general formula I denote hydrogen.
  • 3. Process according to claim 1 characterized in that the dialkylated acid amides, urea derivatives, sulphoxides, sulphones or alkylnitriles are employed as the polar, aprotic solvent.
  • 4. Process according to claim 1 characterized in that N-methylpyrrolid-2-one is employed as the polar, aprotic solvent.
  • 5. Process according to claim 1 characterized in that dimethylsulphoxide is employed as the polar, aprotic solvent.
  • 6. Process according to claim 1 characterized in that the reaction is carried out at temperatures from 20.degree. to 120.degree. C.
  • 7. Process according to claim 6 characterised in that the reaction is carried out at temperatures from 40.degree. to 80.degree. C.
  • 8. Process according to claim 1 characterized in that the compound of the general formula II is initially introduced into the reaction vessel in the solvent, together with water and optionally acid, and the compound which supplies nitrosyl groups is added.
  • 9. Process according to claim 1 characterized in that the compound of the general formula II is initially introduced into the reaction vessel in the solvent, together with water and an alkali metal nitrite, and an acid is added.
  • 10. Process according to claim 1 characterized in that the compounds of the general formula II are first prepared by reaction of 2-aminothiophenols of the general formula III ##STR10## wherein R.sup.1 and R.sup.2 are as defined in claim 1, with 3-halogenobenzanthrones of the general formula IV ##STR11## wherein X denotes chlorine or bromine and R.sup.3 and R.sup.4 are as defined in claim 1, in polar, aprotic solvents, and these products are diazotised and cyclised without intermediate isolation.
Priority Claims (1)
Number Date Country Kind
4041853 Dec 1990 DEX
US Referenced Citations (4)
Number Name Date Kind
3828072 Spietschka et al. Aug 1974
3829434 Spietschka et al. Aug 1974
4740604 Weis et al. Apr 1988
4863482 Junino et al. Sep 1989
Foreign Referenced Citations (3)
Number Date Country
1293939 Apr 1969 DEX
2134517 Dec 1972 DEX
2145992 Feb 1973 FRX
Non-Patent Literature Citations (5)
Entry
Patent Abstracts of Japan, vol. 10, No. 355 of JP-A-61 155 465, "Benzo(Thio)Xanthene Compound and Liquid Crystal Compound Containing Same", Nov. 29, 1986.
Carlini et al., Dyes and Pigments, vol. 3, No. 1, "New Daylight Fluorescent Pigments", pp. 59-69 (1982).
Houben-Weyl, "Methoden der Organischen Chemie", vol. VI/1c, p. 247 (1976).
"Ullmann's Encyclopedia of Industrial Chemistry", vol. V, p. 812 (1954).
Hoechst, "Din-Sicherhertsdolenblatt", (Jun. 1, 1989).