Process for the preparation of ceramic glass material in the form of sheets, sheets thus obtained and use thereof

Information

  • Patent Grant
  • 9969646
  • Patent Number
    9,969,646
  • Date Filed
    Monday, September 17, 2007
    17 years ago
  • Date Issued
    Tuesday, May 15, 2018
    6 years ago
Abstract
A process allowing to obtain ceramic glass material in the form of sheets of large dimensions usable in constructions for panelling or for flooring is described.
Description
FIELD OF THE INVENTION

The present invention relates to the field of ceramic materials and of the manufacturing processes thereof.


STATE OF THE ART

As it is known, glass is an amorphous material obtained by melting of crystalline compounds, normally oxides, and subsequent cooling of the molten mass.


On the contrary, to obtain ceramic glass materials, appropriate mixtures of oxides are melted, the molten mass thus obtained is subjected to rapid cooling by means of shaping operations (static or roller pressing, centrifugation, injection, blowing, extrusion, hot bending) then the semi-finished product is subjected to appropriate thermal cycles in which (homogeneous or heterogeneous) crystalline nuclei are developed and subsequently grow.


The presence of crystalline phases and the particular microstructure determined by the contemporary presence of these with the amorphous matrix imparts chemical-physical features superior to those of the initial glass to the final material (hardness, gloss, resistance to stresses and to etching, etc.) which make it particularly useful in various fields and that have nothing in common with the analogous properties of glass.


The processing cycles of glass and ceramic glass are obviously entirely different also because it is not possible to continuously process the molten oxide mass which, as mentioned above, constitutes the first step of the preparation and which is rapidly cooled by means of various shaping operations (static or roller pressing). On the other hand, it is apparent how useful it would be to be able to subject the molten mass of ceramic glass material precursors to the normal manufacturing cycles used for manufacturing glass both for process simplicity and because this would allow to obtain the final material with extreme ease and in formats of any desired dimensions.


SUMMARY OF THE INVENTION

The Applicant has now devised a process with which it is possible to process the molten oxide mass for ceramic glass material implementing the same operations and exploiting the same industrial equipment commonly used for processing and manufacturing glass.







DETAILED DESCRIPTION OF THE INVENTION

The present invention consists in overcoming the aforesaid problems in virtue of a process which comprises the melting of an appropriate mixture of oxides, the processing of the molten mass according to the normal glass manufacturing processes (rolling, shaping, blowing, etc.) and the subsequent treatment of the material thus obtained in appropriate crystallisation cycles.


According to the invention, the mixture of initial oxides essentially consists of SiO2, Al2O3 and Li2O possibly in presence of other oxides.


Preferably, according to the invention, the percentages of the three aforesaid components (expressed by weight with respect to the total weight of the final mixture) are:


SiO2: 50% -80%; Al2O3: 5% -30%; Li2O 3% -20%


The other oxides possibly present are chosen from the group consisting of ZnO, P2O5, K2O, Na2O, CaO, MgO, BaO.


More preferably, the aforesaid oxides, if present in the mixture, represents a percentage by weight comprised between respectively:


ZnO: 0.1 -3%; P2O5: 0.1-5%; K2O: 1-5%, Na2O: 0.1-6%, CaO: 0.1-6%; MgO: 0.1-6%, BaO: 0.1-5%; ZrO2: 0.1-4%.


The oxide mixtures as described above present a melting point from 1500 to 1550° C. and may therefore be melted in the normal gas ovens used for melting glass and the molten materials are free from batch stones and bubbles and with a viscosity so as to allow the further forming process thereof.


The forming process and the subsequent annealing is performed in the normal processing conditions used for glass forming.


For example, the molten material is rolled by making it pass through a roller system which at the same time squeezes the laminate to the required thickness and feeds it forward. Subsequently, the continuous sheet thus formed enters in a controlled temperature oven called annealing oven which allows to relieve possible mechanical stresses caused to the glass during the roller forming step. At the exit of the annealing oven, the edges of the sheet are cut, possibly straightened and cut according to appropriate sizes, the process allows, for example, the continuous manufacturing of sheets of large dimensions.


Preferably, the mass is processed at viscosity of about Log η=4.


Normally, the molten mass during the pressing process is subjected to a rapid cooling, to a temperature corresponding to logη=13, at which the accumulated stresses are dissipated in a time of approximately 1 hour.


In addition to the composition of the mixture, the thermal crystallisation cycle is also important for the process according to the invention.


Said thermal cycle must be performed at a temperature from 550° C. to 920° C. and for times from 2 to 6 hours, the overall cycle lasting for 12-25 hours.


By varying the times and the temperature within the aforesaid intervals it is also possible to vary the appearance features of each material.


For example, starting from a temperature of 550° C. and varying it in 20° C. step increases, it is possible to obtain a range which spans from the blue effect due to the Tyndall phenomenon, to semi-transparent up to a perfectly opaque white.


Some examples of preparation of ceramic glass materials according to the invention are shown below.


EXAMPLE 1

A mixture of oxides having the following composition:















Oxides
wt %


















SiO2
78.61



Al2O3
5.35



ZnO
0.52



Li2O
11.23



P2O5
1.95



K2O
2.34










was melted in a gas furnace (oxygen-methane) at the temperature of 1450° C. After approximately 36 hours, the molten material appears perfectly refined, and is thus taken to processing temperature (log η=4) and shaped according to the known technique for glass processing, in the desired shape and dimensions. In this case, the molten mass during the pressing process is subjected to a rapid cooling, to a temperature corresponding to log η=13, and maintained constant so that the accumulated stresses are dissipated in a time of approximately 1 hour.


The crystallisation cycle was performed by maintaining the sheet at 820° C. for 1 hour and then constantly decreasing the temperature to reach the ambient temperature in 12 hours.


Diffraction analysis shows how after crystallisation at 820° C. for 130 minutes the following phases are present: beta-quartz [11-0252] and lithium silicate Li2Si2O5 [40-0376] (JCPDS (Joint Committee on Powder Diffraction Standards) numbering).


Mechanical features:


Microhardness: 740 Hv (charge=100 g)


Other features:















Determination



Test type
method
Minimum values







Water absorption
EN 99
<0.5%


Bending strength
EN 100
>27 N/mm2


Tensile strength

>200-250 Kg


Abrasion resistance
EN 102-EN 154
<205 mm3


Hardness
EN 101-EN 176
>6


Thermal shock resistance
EN 104-EN 176
Must pass test


Frost resistance
EN 102
Must pass test


Resistance to chemicals
EN 106-EN 122
Must pass test









EXAMPLE 2

A mixture of oxides having the following composition:















Oxides
wt %


















SiO2
74.61



Al2O3
9.35



ZnO
0.52



Li2O
11.23



P2O5
1.95



K2O
2.34










was melted in a gas furnace (oxygen-methane) at a temperature of 1450° C. After approximately 36 hours, the molten material appears perfectly refined, and is thus taken to processing temperature (log η=4) and shaped according to the technique, desired shape and dimensions. In this case, the molten mass during the pressing process is subjected to a rapid cooling, to a temperature corresponding to approximately log η=13, and maintained constant so that the accumulated stresses are dissipated in a time of approximately 1 hour.


The crystallisation cycle was performed by maintaining the sheet at 900° C. for 1 hour and then constantly lowering the temperature to reach the ambient temperature in 12 hours.


Diffraction analysis shows how after crystallisation at 900° C. for 60 minutes the following phases are present: lithium aluminium silicate [35-0794] and lithium silicate Li2Si2O5 [40-0376].


Mechanical features:


Microhardness 832 Hv (charge=100 g)


Other features:















Determination



Test type
method
Minimum values







Water absorption
EN 99
<0.5%


Bending strength
EN 100
>27 N/mm2


Tensile strength

>200-250 Kg


Thermal shock resistance
EN 104-EN 176
Must pass test


Resistance to etching
EN 106-EN 122
Must pass test









EXAMPLE 3

A mixture of oxides having the following composition:















Oxides
wt %


















SiO2
75.60



Al2O3
8.35



ZnO
0.50



Li2O
9.75



P2O5
1.95



K2O
2.35



Na2O
1.00



CaO
0.50










was melted in a gas furnace (oxygen-methane) at a temperature of 1450° C. After approximately 36 hours, the molten material appears perfectly refined, and is thus taken to processing temperature (log η=4) and shaped according to the technique, desired shape and dimensions.


In this case, the molten mass during the pressing process is subjected to a rapid cooling, to a temperature corresponding to log η=13 and maintained constant so that the accumulated stresses are dissipated in a time of approximately 1 hour.


The crystallisation cycle was performed by raising the temperature to 820° C. in approximately 4 hours, maintaining it constant for 4 hours, and then lowering it again to reach the ambient temperature in 12 hours.


Diffraction analysis shows how after crystallisation at 820° C. for 4 hours lithium aluminium silicate [21-0503] and lithium silicate Li2Si2O5 [40-0376].


Mechanical features:


Microhardness: 830 Hv (charge=100 g)


Other features:















Determination



Test type
method
Minimum values







Water absorption
EN 99
<0.5%


Bending strength
EN 100
>27 N/mm2


Tensile strength

>200-250 Kg


Abrasion resistance
EN 102-EN 154
<205 mm3


Hardness
EN 101-EN 176
>6


Thermal shock resistance
EN 104-EN 176
Must pass test


Frost resistance
EN 102
Must pass test


Resistance to etching
EN 106-EN 122
Must pass test










Similarly to that described in the preceding examples, similar results have been obtained using the following oxide mixtures:

















Formu-
Formu-
Formu-
Formu-



lation A
lation B
lation C
lation D





















SiO2
77.61
78.46
75.59
75.13



Li2O
10.23
7.23
11.24
9.68



Al2O3
5.35
5.49
5.36
8.31



K2O
2.34
2.34
2.34
2.33



P2O5
2.95
1.95
1.95
1.94



ZnO
1.52
4.52
0.52
0.52



MgO

1.00
3.00




BaO



0.93



ZrO2



1.14










By proceeding as shown in the examples, sheets of considerable size have been obtained, for example up to 2.00×3.00 meters, which in virtue of the exceptional properties shown above may be used in constructions for flooring and panelling.

Claims
  • 1. A process suitable for manufacturing ceramic glass material in the form of sheets, the process comprising: melting an oxide mixture used for manufacturing ceramic glass material to form a vitreous mass;refining the vitreous mass thus obtained to form a molten glass material;passing the molten glass material through a roller system to form a continuous sheet, wherein the sheet has a dimension of about 2×3 meters;annealing the continuous sheet; andsubjecting the continuous sheet to a thermal crystallization cycle after said annealing, wherein said oxide mixture comprises: SiO2: 50%-80%; Al2O3: 5%-30%; and Li2O: about 7% to about 11%, wherein the ceramic glass material consists essentially of one or more of lithium phyllodisilicate and β-spodumene phase, and wherein the thermal crystallization cycle comprises a last stage of the process before final cooling and is conducted at a temperature from 550° C. to 920° C. for 2 to 6 hours, having a total cycle lasting for 12-25 hours.
  • 2. A process according to claim 1, wherein the oxide mixture further comprises other oxides chosen from the group consisting of ZnO, P2O5, K2O, Na2O, CaO, MgO, BaO, and ZrO2.
  • 3. A process according to claim 2, wherein said other oxides, if present in the mixture, represent a percentage by weight comprised between respectively: ZnO: 0.1-3%; P2O5: 0.1-5%; K2O: 1-5%; Na2O: 0.1-6%; CaO: 0.1-6%; MgO: 0.1-6%; BaO: 0.1-5%; and ZrO2: 0.1-4%.
  • 4. A process according to claim 1, wherein the thermal crystallization cycle is conducted beginning from 550° C. and varying the temperature in 20° increases.
  • 5. The process of claim 1 wherein the oxide mixture comprises one of the following compositions represented as a percentage by weight:
  • 6. The process according to claim 1, wherein the oxide mixture comprises a melting point of 1500° C. to 1550° C.
  • 7. The process according to claim 1, wherein said annealing is carried out in a controlled temperature oven to relieve mechanical stresses caused to the glass during said passing the molten glass material through a roller system.
  • 8. The process according to claim 7, wherein said annealing is carried out for approximately 1 hour.
Priority Claims (1)
Number Date Country Kind
FI2006A0231 Sep 2006 IT national
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/EP2007/059787 9/17/2007 WO 00 3/17/2009
Publishing Document Publishing Date Country Kind
WO2008/034797 3/27/2008 WO A
US Referenced Citations (13)
Number Name Date Kind
3771984 Demarest, Jr. Nov 1973 A
5691256 Taguchi et al. Nov 1997 A
5820989 Reed et al. Oct 1998 A
6086977 Suzuki et al. Jul 2000 A
6372319 Abe et al. Apr 2002 B1
6413906 Shimatani et al. Jul 2002 B1
6593257 Nagata et al. Jul 2003 B1
20020010064 Ota et al. Jan 2002 A1
20020058578 Shindo May 2002 A1
20030054935 Kitamura et al. Mar 2003 A1
20030073563 Brodkin et al. Apr 2003 A1
20040157720 Sakamoto et al. Aug 2004 A1
20050016214 Hsu et al. Jan 2005 A1
Foreign Referenced Citations (8)
Number Date Country
1495144 May 2004 CN
102005033908 May 2006 DE
1026129 Aug 2000 EP
1074520 Feb 2001 EP
1146018 Oct 2001 EP
1435343 Jul 2004 EP
05-193985 Aug 1993 JP
2001019485 Jan 2001 JP
Non-Patent Literature Citations (2)
Entry
Wikipedia: Float Glass, Nov. 10, 2014.
Tooley, “Section 11 Flat Glass Manufacturing Process,” The Handbook of Glass Manufacture (2):714-3 to 714-21 (1984).
Related Publications (1)
Number Date Country
20100069218 A1 Mar 2010 US