Process for the preparation of mono alkyl aromatic compounds

Information

  • Patent Grant
  • 6573415
  • Patent Number
    6,573,415
  • Date Filed
    Monday, August 20, 2001
    23 years ago
  • Date Issued
    Tuesday, June 3, 2003
    21 years ago
Abstract
Process for the mono alkylation of a hydrocarbon substrate containing aromatic hydrocarbon compounds comprising contacting the aromatic substrate with an alkylating agent consisting of a mixture of olefinic compounds and poly-alkylated aromatic compounds in presence of a fluorinated sulphonic acid.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




The present invention relates to a process for the preparation of mono alkyl aromatic compounds.




2. Brief Description of the Related Art




Benzene and other aromatic hydrocarbons are readily alkylated with olefins using a catalyst comprising a fluorinated sulphonic acid being supported on polar porous contact material. U.S. Pat. No. 5,959,169 discloses a process to remove aromatic hydrocarbons from a hydrocarbon mixture by selective alkylation of the noxious unsubstituted aromatic compounds with an olefinic alkylating agent in the presence of a catalyst consisting of a fluorinated alkyl sulphonic acid on a silica containing support material.




In a mixed stream of hydrocarbons containing aromatic compounds it is desirable to achieve high conversion with maximum selectivity to mono alkylated products. However, the alkylation reaction produces not only the desired mono alkylated product, but also products in which two or more alkyl groups are introduced. This problem is particularly important under conditions with high conversion of the aromatic feedstock.




SUMMARY OF THE INVENTION




It has been observed that fluorinated sulphonic acids including trifluoromethanesulphonic acid supported on a polar porous support material are capable of catalysing trans-alkylation reactions in which the poly-alkylated aromatic by-products are reacted with non-alkylated aromatic compounds to produce mono-alkylated aromatic compounds.




In accordance with the above finding, this invention is a process for the mono-alkylation of a aromatic hydrocarbon substrate in presence of a fluorinated sulphonic acid by contact of the aromatic substrate with an alkylating agent consisting of a mixture of olefinic compounds and poly-alkylated aromatic compounds.




The process according to the invention is in particular useful in the removal of benzene from reformat gasoline. With the tightening specifications on benzene content of gasoline it is desirable to convert benzene to less noxious alkyl derivatives such as ethyl or isopropyl benzene. These compounds have high octane numbers and alkylation of benzene to these compounds increases the octane value of the product. Poly-alkylated benzene being employed in the inventive process as alkylating agent such as tri-isopropyl benzene or triethyl benzene boil at temperatures being outside the range of compounds to be desirable to include those compounds into gasoline.




In the following examples the invention will be disclosed in more detail.




DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS











EXAMPLES




Comparison Example 1




A stream of C6 distillate cut from reformat containing 30% benzene was alkylated with an alkylating agent consisting of solely propene. The alkylation reaction was carried out in a 100 ml reactor filled with silica gel on loaded with 10 g of trifluoromethanesulphonic acid catalyst. The reactor was submerged in a bath for temperature control.




The reaction was performed at 80° C. with total feed flow of 2.5 g/min. using various molar olefin/benzene ratios. The results are shown in Table 1.




The results indicate high conversion rate of benzene with a low selectivity to isopropyl benzene, when using propene as the sole alkylating agent in the reaction.












TABLE 1









Alkylation of benzene with propene at 80° C.




























Propene/benzene molar ratio




1:1




2:1




3:1







Benzene conversion, %




52




72




92







Composition of aromatics in







product:







Benzene, % wt




33




15




 3







Isopropyl benzene, % wt




25




15




 4







Di- and poly-isopropyl benzenes, % wt




42




70




93















Example 2




Alkylation of benzene in presence of poly-alkylated benzene and propene alkylating agent according to a specific embodiment of the invention.




The same reactor as above was used but in this Example 20 g trifluoromethanesulphonic acid supported on silica gel was used as catalyst. A feed containing the same C6 cut of reformat as disclosed above but mixed with di- or tri-isopropyl benzene and propene was reacted at the below summarized conditions. The results are shown in Table 2.












TABLE 2









Alkylation of benzene with propene and di- and tri-isopropyl benzene



























Temperature, ° C.




80




110




80




110






Propene/benzene molar ratio




1:2




1:2




1:2




1:2






Benzene conversion, %




35




44




39




41






Feed






Propene, % wt




5.2




3.6




4.6




4.6






Benzene, % wt




23




23




22




22






Isopropyl benzene, % wt




0




0




0




0






Di-isopropyl benzene, % wt




0




0




21




21






Tri-isopropyl benzene, % wt




17




21




0




0






Residual hydrocarbons




balance




balance




balance




balance






Product






Propene, % wt




0




0




0




0






Benzene, % wt




15




13




14




13






Isopropyl benzene, % wt




7




9




8




11






Di-isopropyl benzene, % wt




6




11




19




18






Tri-isopropyl benzene, % wt




15




12




6




4






Residual hydrocarbons




balance




balance




balance




balance














As apparent from the above results, there is a significant conversion of the poly-alkylated benzene in the feed and an increased productivity of isopropyl benzene. Poly-alkylated aromatic compounds can be recycled to the reactor to react with benzene in a trans-alkylation reaction to form the desired mono alkylbenzene product.



Claims
  • 1. A process for the mono-alkylation of a hydrocarbon substrate containing aromatic hydrocarbon compounds comprising contacting the hydrocarbon substrate with an alkylating agent consisting of a mixture of olefinic compounds and polyalkylated aromatic compounds in the presence of a fluorinated sulphonic acid to thereby produce a mono-alkylated aromatic compound.
  • 2. The process according to claim 1, wherein the hydrocarbon substrate is reformat gasoline.
  • 3. The process according to claim 1, wherein the poly-alkylated aromatic compounds includes tri-isopropyl benzene and/or triethyl benzene.
Priority Claims (1)
Number Date Country Kind
2000 01272 Aug 2000 DK
US Referenced Citations (6)
Number Name Date Kind
4288646 Olah Sep 1981 A
4547474 Olah Oct 1985 A
4547604 Olah Oct 1985 A
4613723 Olah Sep 1986 A
H1305 Townsend et al. May 1994 H
5959169 Hommeltoft Sep 1999 A
Foreign Referenced Citations (4)
Number Date Country
491 575 Oct 1975 AU
0 537 389 Apr 1993 EP
0 538 518 Apr 1993 EP
0748784 Dec 1996 EP