The invention concerns a cup grinding wheel including:
The invention further seeks to provide a process for the production of the cup wheel according to the invention.
Such cup wheels are already part of the state of the art and are shown for example in DE 25 48 28 1 C2 and DE 26 14 743 A1.
Cup grinding wheels are used for grinding metals like for example in tool grinding. These include for example machining processes like slot grinding, bevel grinding, finishing machining of boring tools and drills and tools and so forth. A cup grinding wheel substantially comprises a carrier (grinding cup) and a grinding body of annular shape which at its surface has or provides grinding faces. The grinding faces are provided with super abrasive means like for example CBN or diamond which are bound together in a metal and/or synthetic resin binding.
There are several possible ways of producing a standard cup wheel, in which firstly the grinding body is produced, by the binding agent and the super abrasive means being introduced into a mold and then hot-pressed. After that hot-pressing operation the annular grinding body is removed from the mold and put into a further mold. That further second mold is such that it predetermines the geometry of the carrier (grinding cup). The binding powder (binding agent) for the carrier in the form of metal powder, synthetic resin, metal-synthetic resin mixture etc is introduced into that second mold and then hot-pressed. Two hot-pressing operations are required. The cup grinding wheel is finished after being removed from the mold. In the inside the grinding cup has a supporting geometry in the region of the grinding body. That supporting geometry, often in the form of a ring, fixes and supports the grinding body on the carrier. That supporting ring must be set back to correspond to the wear of the grinding ring in a machining process (like for example by turning down in a turning lathe).
A disadvantage with that manufacturing process is that two hot-pressing operations have to be used. In addition the grinding ring can be damaged upon being removed from the first mold. After removal from the first mold sintering edges and contamination on the grinding ring have to be removed.
A further disadvantage which has nothing to do with the manufacturing process but with use of the wheel is that upon the supporting edge being set back by a turning apparatus like a turning lathe this involves time and work. In a further manufacturing variant, an independent supporting ring of plastic material is fitted behind the grinding body. In that case the grinding body and the cup are produced separately from each other and then glued together. That is the case for example when, by virtue of its shape, the grinding body cannot be pushed over a ring which is shaped by the carrier. Subsequently, after the grinding body is glued to the grinding cup, the supporting ring is produced by molding a plastic material like for example epoxy resin, and an additional mold is required for that purpose.
That manufacturing variant also entails serious disadvantages: the grinding body and the grinding cup are produced separately from each other each in their own dedicated mold. Additional working steps like internal molding using an epoxy resin to provide the supporting ring and gluing the grinding body to the carrier in themselves constitute increased effort and complication. In addition, before the grinding body is glued to the carrier, a primer has to be applied to the adhesive surfaces in order to pre-treat them. Otherwise it is not possible to ensure an adequate adhesive bond. Before the surfaces of the grinding body and the cup which are to be joined are glued together they have to be pre-treated for example by sand blasting and degreasing with an agent like for example acetone and coated with a primer.
The object of the invention is to avoid the above-described disadvantages and to provide a cup grinding wheel which is improved over the state of the art and a process for the production of such a cup grinding wheel.
In the case of the cup grinding wheel according to the invention that is achieved in that the grinding body is connected only by the binding region having the annular surface to the annular mounting surface of the carrier.
In a further embodiment it can be provided that the grinding body is substantially completely shaped in the form of a cone ring. A configuration in the form of cone ring means that less material is required for the structure of the grinding body, and less mass has to be set in movement when bringing the grinding wheel into operation.
If the grinding body provides a binding region in the form of an annular surface then it can be fixed to a carrier by way of that binding region in the form of the annular surface.
In that respect it has proven to be particularly advantageous if the cup-shaped carrier at its end edge region has an annular mounting surface, at that mounting surface it can receive the binding region of the grinding body.
In a further embodiment it can be provided that after the grinding body is connected to the carrier in the transitional region no separation layer is visible between the grinding body and the carrier, wherein in the hot-pressing operation fusing is effected between the materials of the grinding body and the carrier. That therefore involves a strong connection between the grinding body and the carrier, it is possible to dispense with a supporting ring. The connection is substantially stronger than a connection made by adhesive or the like.
If the inside grinding surface at the inside of the grinding body is not covered by the cup-shaped carrier and thus the inside can also be used as an inside grinding surface, then that cup grinding wheel permits a wider spectrum of machining options. In addition, in the case of wear of the grinding body, the supporting ring does not have to be cut away by for example a turning lathe.
In a further embodiment it can be provided that no supporting ring is necessary for fixing the grinding body to the carrier and thus the inside can also be used as an inside grinding surface. That therefore enlarges the spectrum of machining options which are made possible by the cup grinding wheel.
If no additional temperature is supplied in the step of pre-shaping the grinding body and only the operation of pressing to the cup-shaped carrier is effected under the action of heat further working steps are avoided and energy costs are reduced.
In a further embodiment it can be provided that for shaping the grinding body in the pre-shaping step a grinding body top punch and a grinding body bottom punch are introduced into the pressing ring and pressure is applied to the material disposed between the punches for the grinding body. That therefore provides that the material for the grinding body is hardened and it remains pre-shaped in its position to be joined to the carrier in the next steps. Removal of the grinding body is not necessary.
If in a hot-shaping step the grinding body bottom punch is removed and replaced by a carrier bottom punch having a pin and in that case the material for the cup-shaped carrier is introduced, wherein the pre-shaped grinding body remains in its position in the pressing ring there is a saving in working time and the risk of the grinding ring being damaged upon shaping thereof is minimized.
In a further embodiment it can be provided that in the hot-shaping step a carrier top punch is introduced into the grinding body top punch and the carrier top punch together with the grinding body top punch is pressed against the carrier bottom punch, wherein the grinding body is hot-pressed to the cup-shaped carrier. The joint hot pressing of carrier and grinding body gives rise to mingling of the materials in the carrier and in the grinding body. In that case a connection is made, which does not have any separation line. By virtue of that very good join there is no need to incorporate a supporting ring. It is also not necessary for the carrier itself to shape a supporting ring which supports the grinding body.
In that respect it has proven to be particularly advantageous if the cup-shaped carrier is made from a metallic material when the grinding body has metallic binding agents and the cup-shaped carrier is made from a plastic material, preferably synthetic resin, when the grinding body has a synthetic resin as binding agent. If synthetic resin is used as the binding agent in the carrier a filler material like preferably metal powder is added. That ensures that a join of the materials between the carrier and the grinding body can occur without a separation line.
Protection is also claimed for a process for the production of a cup grinding wheel including a cup-shaped carrier and an annular grinding body.
Further details and advantages of the present invention will be described in greater detail hereinafter by means of the specific description with reference to the embodiments by way of example illustrated in the drawings in which:
a shows a diagrammatic view of an annular grinding body,
b shows a diagrammatic view of a cup-shaped carrier,
a shows a diagrammatic view of the grinding body fixed to the carrier,
b shows a diagrammatic view of detail X,
a shows a diagrammatic sectional view of a cup grinding wheel with supporting ring, and
b shows a diagrammatic sectional view of a cup grinding wheel without supporting ring.
a shows a grinding body 3. The grinding body 3 which is made from super abrasive grain and a binding agent has preferably four surfaces. Disposed at the end faces of the annular grinding body 3 are respectively a binding region 5 and a face grinding surface 4b. At the outside the grinding body 3 forms an outside grinding surface 4a. The inside 7 of the grinding body 3 forms the inside grinding surface 4c.
b shows a cup-shaped carrier 2. Depending on the material from which the grinding body 3 (not shown in
a shows a grinding body 3 fixed to the carrier 2. For that purpose the grinding body 3 is fused with its binding region 5 to the annular mounting surface 6 of the carrier 2. Even after fusion of the grinding body 3 to the carrier 2 the grinding surfaces 4a, 4b and 4c are still retained. Only the binding region 5 is lost by virtue of being fixed to the carrier 2 and thus cannot be used as a grinding surface. The detail X in
b diagrammatically shows a detail view X from
a shows a cup grinding wheel 1 with a supporting ring 20. In this embodiment the supporting ring 20 is afforded by the carrier 2. The carrier 2 supports the grinding body 3. When the grinding body wears at its face grinding surface 4b then the supporting ring 20 would have to be moved rearwardly by a turning-off operation using a turning lathe or another piece of equipment. For that purpose the cup grinding wheel 1 is gripped at its mounting opening 17, for example in a turning lathe, and turned down rearwardly with a turning lathe tool. The operation of unclamping it from the grinding apparatus, clamping it in a suitable clamping means in a turning lathe by way of the mounting opening 17, turning off the supporting ring, unclamping it from the turning lathe and fitting it into the grinding apparatus require many unnecessary working steps.
Instead of the supporting rings 20 which are shaped by the carrier the rings could also be subsequently cast in place behind the grinding body 3 in bonded relationship with the carrier 2. That also requires many additional working steps in production of the cup grinding wheel.
b shows the cup grinding wheel 1 according to the invention. It will be seen that no disruptive supporting ring 20 is fitted to the grinding body 3 or the carrier 2. Thus there are three grinding surfaces—the outside grinding surface 4a, the face grinding surface 4b and the inside grinding surface 4c. Those three grinding surfaces can be used for machining a workpiece. If the cup grinding wheel 1 has to be cut back at its end grinding face 4b there is no supporting ring 20 that has to be subsequently subjected to machining.
Number | Date | Country | Kind |
---|---|---|---|
A 142/2014 | Feb 2014 | AT | national |