The present invention relates to a process for the production of solid pharmaceutical dosage forms with at least reduced potential for abuse, by
Many pharmaceutical active ingredients, in addition to having excellent activity in their appropriate application, also have potential for abuse. i.e. they can be used by an abuser to bring about effects other than those intended.
Opiates, for example, which are highly active in combating severe to very severe pain, are frequently used by abusers to induce a state of narcosis or euphoria.
In order to make abuse possible, the corresponding dosage forms, such as tablets or capsules are communicated, for example ground in a mortar, by the abuser, the active ingredient is extracted from the resultant powder using a preferably aqueous liquid and the resultant solution, optionally after being filtered through cotton wool or cellulose wadding, is administered parenterally, in particular intravenously. An additional phenomenon of this kind of administration, in comparison with abusive oral administration, is a further accelerated increase in active ingredient levels giving the abuser the desired effect, namely the “kick” or “rush”. This kick is also obtained if the powdered dosage form is administered nasally. i.e. is sniffed.
Since delayed-release dosage forms containing active ingredients with potential for abuse do not give rise to the kick desired by the abuser when taken orally even in abusively high quantities, such dosage forms are also comminuted and extracted in order to be abused.
U.S. Pat. No. 4,070,494 proposed adding a swellable agent to the dosage form in order to prevent abuse. When water is added to extract the active ingredient, this agent swells and ensures that the filtrate separated from the gel contains only a small quantity of active ingredient.
The multilayer tablet disclosed in WO 95120947 is based on a similar approach to preventing parenteral abuse, said tablet containing the active ingredient with potential for abuse and at least one gel former, each in different layers.
WO 03/015531 A2 discloses another approach to preventing parenteral abuse. A dosage form containing an analgesic opioid and a dye as an aversive agent is described therein. The colour released by tampering with the dosage form is intended to discourage the abuser from using the dosage form which has been tampered with.
Another known option for complicating abuse involves adding antagonists to the active ingredients to the dosage form, for example naloxone or naltrexone in the case of opiates, or compounds which cause a physiological defence response, such as for example ipecacuanha (ipecac) root.
Since, however, as in the past, it is in most cases necessary for the purposes of abuse to pulverise dosage forms containing an active ingredient suitable for abuse, it was the object of the present invention to provide a process for the production of abuse-proofed dosage forms with which the pulverisation of the dosage form which precedes abuse using the means conventionally available to the potential abuser is complicated or prevented and thus to produce a dosage form for active ingredients with potential for abuse, which, when correctly administered, ensures the desired therapeutic action, but from which the active ingredient cannot be converted into a form suitable for abuse simply by pulverization.
Said object has been achieved by the process according to the invention for the production of solid pharmaceutical dosage forms with at least reduced potential for at least reduced potential for abuse, by
The use of polymers (C) having the stated minimum breaking strength in the process according to the invention, preferably in quantities such that the dosage form also exhibits such a minimum breaking strength, means that pulverisation of the dosage form is considerably more difficult using conventional means, so considerably complicating or preventing the subsequent abuse.
If comminution is inadequate, parenteral, in particular intravenous, administration cannot be performed safely or extraction of the active ingredient therefrom takes too long for the abuser or there is no “kick” when taken orally, as release is not instantaneous.
According to the invention, comminution is taken to mean pulverisation of the dosage form by the application of force with conventional means which are conventionally available to an abuser, such as for example a pestle and mortar, a hammer, a mallet or other usual means for pulverisation, wherein the proportion of fines which may arise (particle size equal to or smaller than 0.3 mm) must not exceed 5 wt. %.
The dosage form obtained according to the invention is thus suitable for preventing parenteral, nasal and/or oral abuse of pharmaceutical active ingredients with potential for abuse.
Pharmaceutical active ingredients with potential for abuse are known to the person skilled in the art, as are the quantities thereof to be used and processes for the production thereof, and may be present in the dosage form according to the invention as such, in the form of the corresponding derivatives thereof, in particular esters or ethers, or in each case in the form of corresponding physiologically acceptable compounds, in particular in the form of the salts or solvates thereof, as racemates or stereoisomers. The dosage form obtained according to the invention is also suitable for the administration of a plurality of active ingredients. It is preferably used for the administration of one specific active ingredient.
The dosage form obtained according to the invention is in particular suitable for preventing the abuse of at least one pharmaceutical active ingredient which is selected from the group comprising opiates, opioids, tranquillisers, preferably benzodiazepines, barbiturates, stimulants and further narcotics.
The dosage form obtained according to the invention is very particularly preferably suitable for preventing abuse of an opiate, opioid, tranquilliser or another narcotic, which is selected from the group comprising N-{{1-[2-(4-ethyl-5-oxo-2-tetrazolin-1-yl)ethyl]-4-methoxymethyl-4-piperdyl}propionanilide (affentanil), 5,5-diallylbarbituric acid (allobarbital), allylprodine, alphaprodine, 8-chloro-1-methyl-6-phenyl-4H-[1,2,4]triazolo[4,3-a][1,4]-benzodiazepine (alprazolam), 2-diethylaminopropiophe-nome (amfepranome), (±)-α-methylphenethylamine (amphetamine), 2-(α-methylphe-nethylamino)-2-phenylacetonitrile (amphetaminil), 5-ethyl-5-isopentylbarbituric acid (amabarbital), anileridine, apocodeine, 5,5-diethylbarbituric acid (barbital), benzyl-morphine, bezitramide, 7-bromo-5-(2-pyridyl)-1H-1,4-benzodiazepine-2(3H)-one (bromazepam), 2-bromo-4-(2-chlorophenyl)-9-methyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepine (brotizolam), 17-cyclopropylmethyl-4,5 α-epoxy-7α[(S)-1-hydroxy-1,2,2-trimethyl-propyl]-6-methoxy-6,14-endo-ethanomorphinan-3-ol (buprenorphine), 5-butyl-5-ethylbarbitunic acid (butobarbital), butorphanol, (7-chloro-1,3-dihydro-1-methyl-2-oxo-5-phenyl-2H-1,4-benzodiazepin-3-yl) dimethylcarbamate (camazepam), (1S,2S)-2-amino-1-phenyl-1-propanol (cathine/D-norpseudoephe-drine), 7-chloro-N-methyl-5-phenyl-3H-1,4-benzodiazepin-2-ylamine 4-oxide (chiro-diazepoxide), 7-chloro-1-methyl-5-phenyl-1H-1,5benzodiazepine-2,4(3H,5H)-dione (clobazam), 5-(2-chlorophenyl)-7-nitro-1H-1,4-benzodiazepin-2(31-1)-one (clonaze-pam), clonitazene, 7-chloro-2,3-dihydro-2-oxo-5-phenyl-1H-1,4-benzodiazepine-3-carboxylic acid (clorazepate), 5-(2-chlorophenyl)-7-ethyl-1-methyl-1H-thieno[2,3-e][1,4]diazepin-2(3H)-one (clotmazepam), 10-chloro-11b-(2-chlorophenyl)-2,3,7,11b-tetrahydrooxazolo[3,2-d][1,4]benzodiazepin-6(5H)-one(cloxazolam), (−) methyl-[3β-benzoyloxy-2β(1αH,5αH)-tropane carboxylate](cocaine), 4,5α-epoxy-3-methoxy-17-methyl-7-morphinen-6α-ol (codeine), 5-(1-cyclohexenyl)-5-ethylbarbituric acid (cyclobarbital), cyclorphan, cyprenorphine, 7-chloro-5-(2-chlorophenyl)-1H-1,4-benzodiazepin-2(3H)-one (delorazepam), desomorphine, dextromoramide, (+)-(1-benzyl-3-dimethylamino-2-methyl-1-phenylpropyl)propionate (dextropropoxyphene), dezocine, diampromide, diamorphone, 7-chloro-1-methyl-5-phenyl-1H-1,4-benzodiazepin-2(3H)-one (diazepam), 4,5α-epoxy-3-methoxy-17-methyl-6α-morphinanol (dihydrocodeine), 4,5α-epoxy-17-methyl-3,6α-morphinandiol (dihydro-morphine), dimenoxadol, dimephetamol, dimethylthiambutene, dioxaphetyl butyrate, dipipanone, (6aR, 10aR)-6,6,9-trimethyl-3-pentyl-6a,7,8,10a-tetrahydro-6H-benzo[c]chromen-1-ol (dronabinol), eptazocine, 8-chloro-6-phenyl-4H-[1,2,4]triazolo [4,3-(a)][1,4]benzodiazepine (estazolam), ethoheptazine, ethylmethylthiambutene, ethyl [7-chloro-5-(2-fluorophenyl)-2,3-dihydro-2-oxo-1H-1,4-benzodiazepine-3-carboxylate](ethyl loflazepate), 4,5α-epoxy-3-ethoxy-17-methyl-7-morphinen-6α-ol (ethylmorphine), etonitazene, 4,5α-epoxy-7α-(1-hydroxy-1-methylbutyl)-6-methoxy-17-methyl-6,14-endo-etheno-morphinan-3-ol (etorphine), N-ethyl-3-phenyl-8,9,10-trinorbornan-2-ylamine (fencarnfarnine), 7-[2-(α-methylphenethylamino)ethyl-theophylline) (fenethylline), 3-(α-methylphenethylamino)propionitrile (fenproporex), N-(1-phenethyl-4-piperidyl)propionanilide (fentanyl), 7-chloro-5-(2-fluorophenyl)-1-methyl-1H-1,4-benzodiazepin-2(3H)-one (fludiazepam), 5-(2-fluorophenyl)-1-methyl-7-nitro-1H-1,4-benzodiazepin-2(3H)-one (flunitrazepam), 7-chloro-1-(2-diethylaminoethyl)-5-(2-fluorophenyl)-1H-1,4-benzodiazepin-2(3H)-one (flurazepam), 7-chloro-5-phenyl-1-(2,2,2-trifluoroethyl)-1H-1,4-benzodiazepin-2(3H)-one (halazepam), 10-bromo-11b-(2-fluorophenyl)-2,3,7,11b-tetrahydro[1,3]oxazolo[3,2-d][1,4]benzodiazepin-6(5H)-one (haloxazolam), heroin, 4,5α-epoxy-3-methoxy-17-methyl-6-morphinanone (hydrocodone), 4,5α-epoxy-3-hydroxy-17-methyl-6-morphinanone (hydromorphone), hydroxypethidine, isomethadone, hydroxymethyl-morphinan, 11-chloro-8,12b-dihydro-2,8-dimethyl-12b-phenyl-4H-[1,3]oxazino[3,2-d]d][1,4]benzodiazepine-4,7(6H)-dione (ketazolam), 1-[4-(3-hydroxyphenyl)-1-methyl-4-peperidyl]-1-propanone (ketobemidone), (3S,6S)-6-dimethylamino-4,4-diphenylheptan-3-yl acetate (levacetylmethadol (LAAM)), (−)-6-dimethylamino-4,4-diphenol-3-heptanone (levomethadone), (−)-17-methyl-3-morphinanol (levorphanol), levophenacylmorphane, lofentanil, 6-(2-chlorophenyl)-2-(4-methyl-1-piperazinylme-thylene)-8-nitro-2H-imidazo[1,2-a][1,4]-benzodiazepin-1(4H)-one (loprazolam), 7-chloro-5-(2-chlorophenyl)-3-hydroxy-1H-1,4-benzodiazepin-2(3H)-one (lorazepam), 7-chloro-5-(2-chlorophenyl)-3-hydroxy-1H-1,4-benzodiazepin-2(3H)-one (lorme-tazepam), 5-(4-chlorophenyl)-2,5-dihydro-3H-imidazo[2,1-a]isoindol-5-ol (mazindol), 7-chloro-2,3-dihydro-1-methyl-5-phenyl-1H-1,4-benzodiazepine (medazepam), N-(3-chloropropyl)-α-methylphenethylamine (mefenorex), meperidine, 2-methyl-2-propyl-trimethylene dicarbamate (meprobamate), meptazinol, metazocine, methylmorphine, N,α-dimethylphenethylamine (methamphetamine), (±)-6-dimethyl-amino-4,4-diphenol-3-heptanone (methadone), 2-methyl-3-o-totyl-4(3H)-quinazoli-none (methaqualone), methyl [2-phenyl-2-(2-piperidyl)acetate](methylphenidate), 5-ethyl-1-methyl-5-phenylbarbituric acid (methylphenobarbital), 3,3-diethyl-5-methyl-2,4-piperidinedione (methyprylon), metopon, 8-chloro-6-(2-fluorophenyl)-1-methyl-4H-imidazo[1,5a][1,4]benzodiazepine (midazolam), 2-(benzhydrylsulfinyl)acetamide (modafinil), 4,5α-epoxy-17-methyl-7-morphinen-3,6α-diol (morphine), myrophine, (±)-trans-3-(1,1-dimethylheptyl)-7,8,10,10α-tetrahydro-1-hydroxy-6,6-dimethyl-6H-dibenzo-[b,d]pyran-9(6αH)-one (nabilone), nalbuphene, nalorphine, narceine, nico-morphine, 1-methyl-7-nitro-5-phenyl-1H-1,4-benzodiazepin-2(3H)-one (nimetazepam), 7-nitro-5-phenyl-1H-1,4-benzodiazepin-2(31H)-one (nitrazepam), 7-chloro-5-phenyl-1H-1,4-benzodiazepin-2(3H)-one (nordazepam), norlevorphanol, 6-dimethyl-amino-4,4-diphenyl-3-hexanone (normethadone), normorphine, norpipa-none, the exudation from plants belonging to the species Papaver somniferum (opium), 7-chloro-3-hydroxy-5-phenyl-1H-1,4-benzodiazepin-2(3H)-one (oxazepam), (cis-trans)-10-chloro-2,3,7,11b-tetrahydro-2-methyl-11b-phenyloxazolo[3,2-1,4]benzo-diazepin-6-(5H)-one (oxazolam), 4,5α-epoxy-14-hydroxy-3-methoxy-17-methyl-6-morphinanone (oxycodone), oxymorphone, plants and parts of plants belonging to the species Papaver somniferum (including the subspecies setigerum) (Papaver somniferum), papaveretum, 2-imino-5-phenyl-4-oxazolidinone (pernoline), oxazo-lidinone (pemoline), 1,2,3,4,5,6-hexahydro-6,11-dimethyl-3(3-methyl-2-butenyl)-2,6-methano-3-benzazocin-8-ol (pentazocine), 5-ethyl-5-(1-methylbutyl)-barbuturic acid (pentobarbital), ethyl-(1-methyl-4-phenyl-4-piperidinecarboxylate) (pethidine), phenadoxone, phenomorphane, phenazocine, phenoperidine, pimino-dine, phot-codeine, 3-methyl-2-phenylmorpholine (phenmetrazine), 5-ethyl-5-phenyl-barbituric acid (phenobarbital), α,α-dimethylphenethylamine (phentermine), 7-chloro-5-phenyl-1-(2-proponyl)-1H-1,4-benzodiazepin-2(3H)-one (pinazepam), α-(2-piperidyl) benzhydryl alcohol (pipradrol), 1′-(3-cyano-3,3-diphenylpropyl)[1,4′-bipiperi-dine]-4′-carboxamide (piritramide), 7-chloro-1-(cyclopropylmethyl)-5-phenyl-1H-1,4-benzo-diazepin-2(31H)-one (prazepam), profadol, proheptazine, promedol, properi-dine, propoxyphene, N-(1-methyl-2-piperidinoethyl)-N-(2-pyridy)propionamide, methyl {3-[4-methoxycarbonyl-4-(N-phenylpropanamido)piperidino]propanoate} (remifentanil), 5-sec-butyl-5-ethylbarbituric acid (secbutabarbital), 5-allyl-5-(1-methyl-butyl)-barbituric acid (secobarbital), N-[4-methoxymethyl-1-[2-(2-thienyl)ethyl-4-piperi-dyl)propionanilide (sufentanil), 7-chloro-2-hydroxy-methyl-5-phenyl-1H-1,4-benzo-diazepin-2(3H)-one (temazepam), 7-chloro-5-(1-cyclohexenyl)-1-methyl-1H-1,4-benzodiazepin-2(3H)-one (tetrazepam), ethyl (2-dimethylamino-1-phenyl-3-cyclo-hexene-1-carboxylate) (tilidine (cis and trans)), tramadol, 8-chloro-6-(2-chloro-phenyl)-1-methyl-4H-[1,2,4]triazolo[4,3-a]1,4]benzodiazepine (triazolam), 5-(1-methylbutyl)-5-vinylbarbituric acid (vinylbital), (1R,2R)-3-(3-dimethylamino-1-ethyl-2-methyl-propyl)phenol, (1R,2R,4S)-2-(dimethylamino)methyl-4-(p-fluorobenzyloxy)-1-(m-methoxyphenyl)cyclohexanol, (1R,2R)-3-(2-dimethylaminomethyl-cyclohexy) phenol, (1S,2S)-3-(3-dimethylamino-1-ethyl-2-methyl-propyl)phenol, (2R,3R)-1-dimethylamino-3(3-methoxyphenyl)-2-methyl-pentan-3-ol, (1RS,3RS,6RS)-6-dimethylaminomethyl-1-(3-methoxyphenyl)-cyclohexane-1,3-diol, preferably as racemate, 3-(2-dimethylaminomethyl-1-hydroxy-cyclohexyl)phenyl 2-(4-isobutoxy-phenyl)-propionate, 3-(2-dimethylaminomethyl-1-hydroxy-cyclohexyl)phenyl 2-(6-methoxy-naphthalen-2-yl)-propionate, 3-(2-dimethylaminomethyl-cyclohex-1-enyl)-phenyl 2-(4-isobutyl-phenyl)-propionate, 3-(2-dimethylaminomethyl-cyclohex-1-enyl)-phenyl 2-(6-methoxy-naphthalen-2-yl)-propionate, (RR—SS)-2-acetoxy-4-trifluoro-methyl-benzoic acid 3-(2-dimethylaminomethyl-1-hydroxy-cyclohexyl)-phenyl ester, (RR—SS)-2-hydroxy-4-trifluoromethyl-benzoic acid 3-(2-dimethylaminomethyl-1-hydroxy-cyclohexyl)-phenyl ester, (RR—SS)-4-chloro-2-hydroxy-benzoic acid 3-(2-dimethylaminomethyl-1-hydroxy-cyclohexyl)-phenyl ester, (RR—SS)-2-hydroxy-4-methyl-benzoic acid 3-(2-dimethylaminomethyl-1-hydroxy-cyclohexyl)-phenyl ester, (RR—SS)-2-hydroxy-4-methoxy-benzoic acid 3-(2-dimethylaminomethyl-1-hydroxy-cyclohexyl)-phenyl ester, (RR—SS)-2-hydroxy-5-nitro-benzoic acid 3-(2-dimethyl-aminomethyl-1-hydroxy-cyclohexyl)-phenyl ester, (RR—SS)-2′,4′-difluoro-3-hydroxy-biphenyl-4-carboxylic acid 3-(2-dimethylaminomethyl-1-hydroxy-cyclohe yl)-phenyl ester together with corresponding stereoisomeric compounds, in each case the corresponding derivatives thereof, in particular amides, esters or ethers, and in each case the physiologically acceptable compounds thereof, in particular the salts and solvates thereof, particularly preferably hydrochlorides.
The dosage form according to the invention is particularly suitable for preventing abuse of an opioid active ingredient selected from among the group comprising oxycodene, hydromorphone, morphine, tramadol and the physiologically acceptable derivatives or compounds thereof, preferably the salts and solvate thereof, preferably the hydrochlorides thereof.
The dosage form according to the invention is furthermore in particular suitable for preventing abuse of an opioid active ingredient selected from among the group comprising (1R,2R)-3-(3-dimethylamino-1-ethyl-2-methyl-propyl)phenol, (2R,3R)-1-dimethylamino-3-(3-methonyphenyl)-2-methyl-pentan-3-ol, (1RS,3RS,6RS)-6-dimethylaminomethyl-1-(3-methoxyphenyl)-cyclohexane-1,3-diol, (1R,2R)-3-(2-dimethylaminonethyl-cyclohexyl)phenol, the physiologically acceptable salts thereof, preferably hydrochlorides, physiologically acceptable enantiomers, stereoisomers, diastereomers and racemates and the physiologically acceptable derivatives thereat, preferably ethers, esters or amides.
These compounds and the process for the production thereof are described in EP-A-693475 and EP-A-780369 respectively. The corresponding descriptions are hereby introduced as a reference and are deemed to be part of the disclosure.
In order to achieve the necessary breaking strength, at least one synthetic or natural polymer (C) which exhibits a breaking strength, measured using the method disclosed in the present application, of at least 500 N is used in the process according to the invention.
Preferably, at least one polymer is selected for this purpose from among the group comprising polyalkylene oxides, preferably polymethylene oxides, polyethylene oxides, polypropylene oxides, polyethylenes, polypropylenes, polyvinyl chlorides, polycarbonates, polystyrenes, polyacrylates, the copolymers thereof, and mixtures at least two of the stated polymer classes or polymers. The polymers are distinguished by a molecular weight of at least 0.5 million, determined by theological measurements. Thermoplastic polyalkylene oxides, such as polyethylene oxides, with a molecular weight of at least 0.5 million, preferably of at least 1 million to 15 million, determined by theological measurements, are very particularly preferred. These polymers have a viscosity at 25° C. of 4500 to 17600 cP, measured on a 5 wt. % aqueous solution using a model RVF Brookfield viscosimeter (spindle no. 2/rotational speed 2 rpm), of 400 to 4000 cP, measured on a 2 wt. % aqueous solution using the stated viscosimeter (spindle no. 1 or 3/rotational speed 10 rpm) or of 1650 to 10000 cP, measured on a 1 wt. % aqueous solution using the stated viscosimeter (spindle no, 2/rotational speed 2 rpm).
The polymers are preferably used in powder form. They may be soluble in water.
Polymers (C) are present in the formulation mixture or in the dosage forms produced according to the invention in an amount of at least 30 wt. %, preferably of at least 50 wt. % to 99.9 wt. %, relative to the total quantity.
In order to achieve the necessary breaking strength of the dosage form obtained according to the invention, it is furthermore possible additionally to use at least one natural or synthetic wax (D) with a breaking strength, measured using the method disclosed in the present application, of at least 500 N.
Waxes with a softening point of at least 60° C. are preferably used. Carnauba wax and beeswax are particularly preferred. Carnauba wax is very particularly preferred.
Carnauba wax is a natural wax which is obtained from the leaves of the carnauba palm and has a softening point of at least 80° C. When the wax component (D) is additionally used, it is used together with at least one polymer (C) in quantities such that the dosage form exhibits a breaking strength of at least 500 N.
Auxiliary substances (B) which may be used are those known auxiliary substances which are conventional for the formulation of solid dosage forms. These are preferably plasticisers, such as polyethylene glycols, auxiliary substances which Influence active ingredient release, preferably hydrophobic or hydrophilic, preferably hydrophilic polymers, very particularly preferably hydroxypropylmethylcellulose, and/or antioxidants. Suitable antioxidants are ascorbic acid, butylhydroxyanisole, butylhydroxytoluene, salts of ascorbic acid, monothioglycerol, phosphorous acid, vitamin C, vitamin E and the derivatives thereof, sodium bisulfite, particularly preferably butylhydroxytoluene (BHT) or butylhydroxyanisole (BHA) and α-tocopherol.
The antioxidant is preferably used in quantities of 0.01 to 10 wt. %, preferably of 0.03 to 5 wt. %, relative to the total, weight of the dosage form.
The abuse-proofed, solid dosage form is produced by initially mixing the active ingredient, the component (C), optionally the wax component (D), optionally auxiliary substances (B) and optionally at least one of the optionally present further abuse-preventing components (a)-(f) listed below and the resultant formulation mixture is shaped by application of force into formed articles, preferably the dosage form.
The formulation mixture is prepared in a mixer known to the person skilled in the art. The mixer may, for example, be a roll mixer, shaking mixer, shear mixer or compulsory mixer.
The resultant formulation mixture Is preferably directly shaped by application of force into formed articles, preferably the dosage form, preferably without exposure to heat. The formulation mixture may for example, be formed into tablets by direct tabletting. In direct tabletting, pressing is performed with the assistance of a tabletting tool, i.e. bottom punch, top punch and die.
The formulation mixture may also first be granulated and then shaped.
Shaping is preferably performed with application of force, a force of greater than or equal to 0.5 kN, preferably of 1 to 100 kN, being applied. The force is preferably exerted with the assistance of a press, preferably a tablet press, with shaping rollers or shaping belts equipped with rollers. The formulation mixture may also be extruded with the assistance of an extruder to yield a strand which is singulated into formed articles having the desired size. If heating also proceeds during application of force, heating should remain below 60° C.
If the formulation mixture is processed to yield multiparticulate formed articles, such as granules, pellets, these should have a minimum size of 0.6 mm, preferably a size of 1 to 3.5 mm. Before further processing, these formed articles, if they are not of a largely uniform size, are preferably graded by size. This grading may proceed with the assistance of a screening method.
In the further process step c), the formed articles are again exposed to force, wherein either before or during application of force the formed articles are heated at least to the softening point of the polymer (C), preferably to greater than or equal to 60° C. A force of at least 0.1 kN, preferably of 1 kN up to 120 kN, particularly preferably up to 100 kN, very particularly preferably up to at most 90 kN, is applied. As is known to any person skilled in the art, the duration of the treatment with force is dependent on the strength of the applied force, on the heating before or during the application of force and optionally on the size of the formed articles and may be determined by simple tests such that, after the application of force, the formed articles exhibit a breaking hardness of at least 500 N, measured using the method stated below.
The necessary heating may preferably be monitored by a temperature measurement in the interior of a formed article with the assistance of a temperature sensor.
Force may be applied continuously or discontinuously with the assistance of the above-stated apparatus. The entire process according to the invention may proceed continuously and discontinuously.
The formed articles may be heated in the most varied manner. Heating in ovens, i.e. with the assistance of a heated gas atmosphere, or with radiant heat is preferred. Heating may also be effected by electromagnetic waves. In particular by microwaves. Apart from ovens which are loaded in discontinuous batches, tunnel ovens, in which the formed articles are continuously conveyed through these ovens, are also suitable. In a further preferred process variant, heat is also introduced into the formed articles (1) via the conveyor belt.
Heating preferably proceeds under a protective gas atmosphere, particularly preferably under a nitrogen atmosphere.
As already explained, force may be applied with the assistance of a tablet press, the formed articles being supplied heated to the die. In particular, this may also be combined with jacketed tablet production, wherein the outer envelope material which is applied by pressure may consist of auxiliary substances or of an active ingredient/auxiliary substance mixture.
A procedure in which the application of for according to c) is effected by shaping rollers (see
This procedure is also suitable for continuous performance, wherein the formed articles are supplied to the rollers by a conveyor belt, by means of which, before the force is applied to the formed articles, said articles are previously directly exposed to heating in the tunnel oven, under a radiation source or through the belt.
In a further preferred embodiment, the formed articles (1) are conveyed in a carrier (3), which comprises a profile for the formed articles (1) and is particularly preferably configured as a continuous conveyor belt. This carrier (3) is brought into alignment with a second shaping belt (5), which likewise comprises a partial profile of the formed articles (1), and forced is exerted onto both sides of the carrier belts. This procedure is shown in
In the process according to the invention, it may be advantageous to apply release agents onto the shaped profiles, in which force is applied to the formed articles, and onto the formed articles so that the formed articles may readily be detached again from the carrier belts or the pressure rollers. Suitable release agents are pharmaceutically conventional release agents, such as for example talcum, magnesium stearate. Preferred release agents are those which do not-change their state of aggregation at the temperature of the process.
It may furthermore be advantageous to provide mechanical release aids in the apparatus with which force is applied, which release aids actively eject the formed articles after the application of force. This may for example proceed by holes through which a gas is blown under pressure or by mechanical punches.
The method according to the invention may be accelerated and optimised by rapidly cooling the formed articles after the application of force according to c). This may proceed, for example by conveying the formed articles into or through a cooling chamber or by introducing them into a cooling medium, such as for example into a liquid gas.
The dosage forms obtained according to the invention are distinguished in that, due to their hardness, they cannot be pulverised, for example by grinding even if cooled to low temperatures. This virtually rules out oral or parenteral, in particular intravenous or nasal abuse.
However, in order to prevent any possible abuse in the event of comminution and/or pulverisation of the dosage form obtained according to the invention which has nevertheless been achieved by application of extreme force, the dosage toms obtained according to the invention may, in a preferred embodiment, contain further agents which complicate or prevent abuse as auxiliary substances (B).
The abuse-proofed dosage form obtained according to the invention, which comprises, apart from one or more active ingredients with potential for abuse, at least one hardening polymer (C) optionally auxiliary substances (B) and optionally at least one wax (D), may accordingly also comprise at least one of the following components (a)-(e) as optional further auxiliary substances (B):
Components (a) to (f) are additionally each individually suitable for abuse-proofing the dosage form according to the invention. Accordingly, component (a) Is preferably suitable for proofing the dosage form against nasal, oral and/or parenteral, preferably intravenous, abuse, component (b) is preferably suitable for proofing against parenteral, particularly preferably intravenous and/or nasal abuse, component (c) is preferably suitable for proofing against nasal and/or parenteral, particularly preferably intravenous, abuse, component (d) is preferably suitable for proofing against parenteral, particularly preferably intravenous, and/or oral and/or nasal abuse, component (e) is suitable as a visual deterrent against oral or parenteral abuse and component (f) is suitable for proofing against oral or nasal abuse. Combined use according to the invention of at least one of the above-stated components makes it possible still more effectively to complicate abuse of dosage forms obtained according to the invention.
In one embodiment, the dosage form according to the invention may also comprise two or more of components (a)-(f) in a combination, preferably (a), (b) and optionally (c) and/or (f) and/or (e) or (a), (b) and optionally (d) and/or (f) and/or (e).
In another embodiment, the dosage form obtained according the invention may comprise all of components (a)-(f).
If the dosage form obtained according to the invention comprises an abuse-preventing component (a), substances which irritate the nasal passages and/or pharynx which may be considered according to the invention are any substances which, when administered accordingly via the nasal passages and/or pharynx, bring about a physical reaction which is either so unpleasant for the abuser that he/she does not wish to or cannot continue administration, for example burning, or physiologically counteracts taking of the corresponding active ingredient, for example due to increased nasal secretion or sneezing. These substances which conventionally irritate the nasal passages and/or pharynx may also bring about a very unpleasant sensation or even unbearable pain when administered parenterally, in particular intravenously, such that the abuser does not wish to or cannot continue taking the substance.
Particularly suitable substances which irritate the nasal passages and/or pharynx are those which cause burning, itching, an urge to sneeze, increased formation of secretions or a combination of at least two of these stimuli. Appropriate substances and the quantities thereof which are conventionally to be used are known per se to the person skilled in the art or may be identified by simple preliminary testing.
The substance which irritates the nasal passages and/or pharynx of component (a) is preferably based on one or more constituents or one or more plant parts of at least one hot substance drug.
Corresponding hot substance drugs are known per se to the person skilled in the art and are described, for example, in “Pharmazeutische Biologie—Drogen und ihre Inhaltsstoffe” by Prof. Dr. Hildebert Wagner, 2nd., revised edition, Gustav Fischer Verlag, Stuttgart-New York, 1982, pages 82 et seq. The corresponding description is hereby introduced as a reference and is deemed to be part of the disclosure.
A dosage unit is taken to mean a separate or separable administration unit, such as for example a tablet or a capsule.
One or more constituents of at least one hot substance drug, selected from the group consisting of Allii sativi bulbus (garlic), Asari rhizoma cum herba (Asarum root and leaves), Calemi rhizoma (calamus root), Capsici fructus (capsicum), Capsici fructus acer (cayenne pepper), Curcumae longae rhizoma (turmeric root), Curcunae xanthorrhizae rhizoma (Javanese turmeric root), Galangae rhizoma (galangal root), Myristicae semen (nutmeg), Piperis nigri fructus (pepper), Sinapis albae semen/Erucae semen (white mustard seed), Sinapis nigri semen (black mustard seed), Zedoariae rhizoma (zedoary root) and Zinglberis rhizoma (ginger root), particularly preferably from the group consisting of Capsici fructus (capsicum), Capsici fructus acer (cayenne pepper) and Piperis nigri fructus (pepper) may preferably be added as component (a) to the dosage form obtained by the process according to the invention
The constituents of the hot substance drugs preferably comprise o-methoxy(methyl)phenol compounds, acid amide compounds, mustard oils or sulfide compounds or compounds derived therefrom.
Particularly preferably, at least one constituent of the hot substance drugs is selected from the group consisting of myristicin, elemicin, isoeugenol, β-asarone, safrole, gingerols, xanthorrhizol, capsaicinoids, preferably capsaicin, capsalcin derivatives, such as N-vanillyl-9E-octadecenamide, dihydrocapsaicin, nordihydrocapsaicin, homocapsaicin, norcapsaicin and romorcapsaicin, piperine, preferably trans-piperine, glucosinolates, preferably based on non-volatile mustard oils, particularly preferably based on p-hydroxybenzyl mustard oil, methylmercapto mustard oil or methylsuffonyl mustard oil, and compounds derived from these constituents.
The dosage form obtained according to the invention may preferably contain the plant parts of the corresponding hot substance drugs in a quantity of 0.01 to 30 wt. %, particularly preferably of 0.1 to 0.5 wt. % in each case relative to the total weight of the dosage unit.
If one or more constituents of corresponding hot substance drugs are used, the quantity thereof in a dosage unit according to the invention preferably amounts to 0.001 to 0.005 wt. %, relative to the total weight of the dosage unit.
Another option for preventing abuse of the dosage form obtained according to the invention consists in adding at least one viscosity-increasing agent as a further abuse-preventing component (b) to the dosage form, which, with the assistance of a necessary minimum quantity of an aqueous liquid, forms a gel with the extract obtained from the dosage form, which gel is virtually impossible to administer safely and preferably remains visually distinguishable when introduced into a further quantity of an aqueous liquid.
For the purposes of the present invention, visually distinguishable means that the active Ingredient-containing gel formed with the assistance of a necessary minimum quantity of aqueous liquid, when Introduced, preferably with the assistance of a hypodermic needle, into a further quantity of aqueous liquid at 37° C., remains substantially insoluble and cohesive and cannot straightforwardly be dispersed in such a manner that it can safely be administered parenterally, in particular intravenously. The material preferably remains visually distinguishable for at least one minute, preferably for at least 10 minutes.
The increased viscosity of the extract makes it more difficult or even impossible for it to be passed through a needle or injected. If the gel remains visually distinguishable, this means that the gel obtained on introduction into a further quantity of aqueous liquid, for example by injection into blood, initially remains in the form of a largely cohesive thread, which, while it may indeed be broken up mechanically into smaller fragments, cannot be dispersed or even dissolved in such a manner that it can safely be administered parenterally, in particular intravenously. In combination with at least one optionally present component (a) to (e), this additionally leads to unpleasant burning, vomiting, bad flavour and/or visual deterrence.
Intravenous administration of such a gel would most probably result in obstruction of blood vessels, associated with serious damage to the health of the abuser.
In order to verify whether a viscosity-increasing agent is suitable as component (b) for use in the dosage form obtained according to the invention, the active ingredient is mixed with the viscosity-increasing agent and suspended in 10 ml of water at a temperature of 25° C. If this results in the formation of a gel which fulfils the above-stated conditions, the corresponding viscosity-increasing agent is suitable for preventing or averting abuse of the dosage forms according to the invention.
If component (b) is added to the dosage form obtained according to the invention, one or more viscosity-increasing agents are used which are selected from the group consisting of microcrystalline cellulose with 11 wt. % carboxymethylcellulose sodium (Avicel® RC 591), carboxymethylcellulose sodium (Blanose®, CMC-Na C300P®, Frimulsion BLC-5®, Tylose C300P®), polyacrylic acid (Carbopol® 980 NF, Carbopol® 981), locust bean flour (Cesagum® LA-200, Cesagum® LID/150, Cesagum® LN-1), pectins, preferably from citrus fruits or apples (Cesapectin® HM Medium Rapid Set), waxy maize starch (C*Gel 04201®), sodium alginate (Frimuision ALG (E401)®) guar flour (Frimulsion BM®, Polygum 26/1-75®, iota-carrageenan (Frimuision D021®), karaya gum, gellen gum (Kelcogel F®, Kelcogel LT100®), galactomannan (Meyprogat 150®), tara stone flour (Polygum 43/1 ®), propylene glycol alginate (Protanal-Ester SD-LB®), sodium hyaluronate, tragacanth, tara gum (Vidogum SP 200®), fermented polysaccharide welan gum (K1A96), xanthan gum (Xantural 180®). Xanthans are particularly preferred. The names stated in brackets are the trade names by which the materials are known commercially. In general, a quantity of 0.1 to 20 wt. %, particularly preferably of 0.1 to 15 wt. %, relative to the total weight of the dosage form, of the stated viscosity-increasing agent(s) is sufficient to fulfil the above-stated conditions.
The component (b) viscosity-increasing agents, where provided, are preferably present in the dosage form according to the invention in quantities of greater than or equal to 5 mg per dosage unit, i.e. per administration unit.
In a particularly preferred embodiment of the present invention, the viscosity-increasing agents used as component (b) are those which, on extraction from the dosage form with the necessary minimum quantity of aqueous liquid, form a gel which encloses air bubbles. The resultant gels are distinguished by a turbid appearance, which provides the potential abuser with an additional optical warning and discourages him/her from administering the gel parenterally.
Component (C) may also optionally serve as an additional viscosity-increasing agent, which forms a gel with the assistance of a necessary minimum quantity of aqueous liquid.
It is also possible to formulate the viscosity-increasing agent and the other constituents in the dosage form obtained according to the invention in a mutually spatially separated arrangement.
In order to discourage and prevent abuse, the dosage form obtained according to the invention may furthermore comprise component (c), namely one or more antagonists for the active ingredient or active ingredients with potential for abuse, wherein the antagonists are preferably spatially separated from the remaining constituents of the dosage form obtained according to the invention and, when correctly used, do not exert any effect.
Suitable antagonists for preventing abuse of the active Ingredients are known per se to the person skilled in the art and may be present in the dosage form obtained according to the invention as such or in the form of corresponding derivatives, in particular esters or ethers, or in each case in the form of corresponding physiologically acceptable compounds, in particular in the form of the salts or solvates thereof.
If the active ingredient present in the dosage form is an opiate or an opioid, the antagonist used is preferably an antagonist selected from the group comprising nalcixone, naltrexone, nalmefene, nalid, nalmexone, nalorphine or naluphine, in each case optionally in the form of a corresponding physiologically acceptable compound, in particular in the form of a base, a salt or solvate. The corresponding antagonists, where component (c) is provided, are preferably used in a quantity of greater than or equal to 1 mg, particularly preferably in a quantity of 3 to 100 mg, very particularly preferably in a quantity of 5 to 50 mg per dosage form, i.e. per administration unit.
If the dosage form obtained according to the invention comprises a stimulant as active ingredient, the antagonist is preferably a neuroleptic, preferably at least one compound selected from the group consisting of haloperidol, promethazine, fluphenazine, perphenazine, levornepromazirie, thioridazine, perazine, chlorpromazine, chlorprothixine, zuclopentixol, flupentixol, prothipendyl zotepine, benperidol, pipamperone, melperone and bromperidol.
The dosage form obtained according to the invention preferably comprises these antagonists in a conventional therapeutic dose known to the person skilled in the art, particularly preferably in a quantity of twice to three times the conventional dose per administration unit.
If the combination to discourage and prevent abuse of the dosage form obtained according to the invention comprises component (d), it may comprise at least one emetic, which is preferably present in a spatially separated arrangement from the other components of the dosage form according to the invention and, when correctly used, is intended not to exert its effect in the body.
Suitable emetics for preventing abuse of an active ingredient are known per se to the person skilled in the art and may be present in the dosage form obtained according to the invention as such or in the form of corresponding derivatives, in particular esters or ethers, or in each case in the form of corresponding physiologically acceptable compounds, in particular in the form of the salts or solvates thereof.
An emetic based on one or more constituents of ipecacuanha (ipecac) root, preferably based on the constituent emetine may preferably be considered in the dosage form obtained according to the invention, as are, for example, described in “Pharmazeutische Biologie—Drogen und ihre Inhaftsstoffe” by Prof. Dr. Hildebert Wagner, 2nd, revised edition, Gustav Fischer Verlag, Stuttgart, N.Y., 1982. The corresponding literature description Is hereby introduced as a reference and is deemed to be part of the disclosure.
The dosage form obtained according to the invention may preferably comprise the emetic emetine as component (d), preferably in a quantity of greater than or equal to 3 mg, particularly preferably of greater than or equal to 10 mg and very particularly preferably in a quantity of greater than or equal to 20 mg per dosage form, i.e. administration unit.
Apornorphine may likewise preferably be used as an emetic in the abuse-proofing according to the invention, preferably in a quantity of ≥3 mg, particularly preferably of ≥5 mg and very particularly preferably of ≥7 mg per administration unit.
If the dosage form obtained according to the Invention contains component (e) as an additional abuse-preventing auxiliary substance, the use of such a dye brings about an intense coloration of a corresponding aqueous solution, in particular when the attempt is made to extract the active ingredient for parenteral, preferably intravenous administration, which coloration may act as a deterrent to the potential abuser. Oral abuse, which conventionally begins by means of aqueous extraction of the active ingredient, may also be prevented by this coloration. Suitable dyes and the quantities required for the necessary deterrence may be found in WO 03/016531, wherein the corresponding disclosure should be deemed to be part of the present disclosure and is hereby introduced as a reference.
If the dosage form obtained according to the invention contains component (f) as a further abuse-preventing auxiliary substance, this addition of at least one bitter substance and the consequent impairment of the flavour of the dosage form additionally prevents oral and/or nasal abuse.
Suitable bitter substances and the quantities effective for use may be found in US-2003/0064099 A1, the corresponding disclosure of which should be deemed to be the disclosure of the present application and is hereby introduced as a reference. Suitable bitter substances are preferably aromatic oils, preferably peppermint oil, eucalyptus oil, bitter almond oil, menthol, fruit aroma substances, preferably aroma substances from lemons, oranges, limes, grapefruit or mixtures thereof, and/or denatonium benzoate. Denatonium benzoate is particularly preferred.
The solid dosage form obtained according to the invention is suitable for oral, vaginal or rectal administration, preferably for oral administration, to humans and animals. The dosage form is preferably not in film form. The orally administrable dosage form according to the invention may assume multiparticulate form, preferably in the form of microtablets, microcapsules, micropellets, granules, spheroids, beads or pellets, optionally packaged in capsules or pressed into tablets. The multiparticulate forms are preferably of a minimum size of 0.5 mm, particularly preferably in the range from 1 to 3.5 mm. Depending on the desired dosage form, conventional auxiliary substances (B) are optionally also used for the formulation of the dosage form.
In a further preferred embodiment, the dosage form according to the invention assumes the form of a tablet, a capsule or is in the form of an oral osmotic therapeutic system (OROS), preferably if at least one further abuse-preventing component (a)-(f) Is also present.
If components (c) and/or (d) and/or (f) are present in the dosage form obtained according to the invention, care must be taken to ensure that they are formulated in such a manner or are present in such a low dose that, when correctly administered, the dosage form is able to bring about virtually no effect which impairs the patient or the efficacy of the active ingredient.
If the dosage form produced according to the invention contains component (d) and/or (f), the dosage must be selected such that, when correctly orally administered, no negative effect is caused. If, however, the intended dosage of the dosage form is exceeded inadvertently, in particular by children, or in the event of abuse, nausea or an inclination to vomit or a bad flavour are produced. The particular quantity of component (d) and/or (f) which can still be tolerated by the patient in the event of correct oral administration may be determined by the person skilled in the art by simple preliminary testing.
If, however, irrespective of the fact that the dosage form produced according to the invention is virtually impossible to pulverise, the dosage form containing the components (c) and/or (d) and/or (f) is provided with protection, these components should preferably be used at a dosage which is sufficiently high that when abusively administered, they bring about an intense negative effect on the abuser. This is preferably achieved by spatial separation of at least the active ingredient or active ingredients from components (c) and/or (d) and/or (f), wherein the active ingredient or active ingredients is/are present in at least one subunit (X) and components (c) and/or (d) and/or (f) is/are present in at least one subunit (Y), and wherein, when the dosage form is correctly administered, components (c), (d) and (f) do not exert their effect on taking and/or in the body and the remaining components of the formulation, in particular component (C), are identical.
If the dosage form according to the invention comprises at least 2 of components (c) and (d) or (f), these may each be present in the same or different subunits (Y). Preferably, when present, all the components (c) and (d) and (f) are present in one and the same subunit (Y).
For the purposes of the present invention, subunits are solid formulations, which in each case, apart from conventional auxiliary substances known to the person skilled in the art, contain the active ingredient(s), preferably also at least one polymer (C) and the optionally present component (D) and optionally at least one of the optionally present components (a) and/or (b) and/or (e) or preferably in each case at least one polymer (C) and optionally (D) and the antagonist(s) and/or emetic(s) and/or component (e) and/or component (f) and optionally at least one of the optionally present components (a) and/or (b). Care must here be taken to ensure that each of the subunits Is formulated in accordance with the above-stated process according to the invention, if the mechanical skill is desired or required.
One substantial advantage of the separated formulation of active ingredients from components (c) or (d) or (f) in subunits (X) and (Y) of the dosage form produced according to the invention is that, when correctly administered, components (c) and/or (d) and/or (f) are hardly released on taking and/or in the body or are released in such small quantities that they exert no effect which impairs the patient or therapeutic success or, on passing through the patient's body, they are only liberated in locations where they cannot be sufficiently absorbed to be effective. When the dosage form is correctly administered, preferably hardly any of components (c) and/or (d) and/or (f) is released into the patient's body or they go unnoticed by the patient.
The person skilled in the art will understand that the above-stated conditions may vary as a function of the particular components (c), (d) and/or (f) used and of the formulation of the subunits or the dosage form. The optimum formulation for the particular dosage form may be determined by simple preliminary testing. What is vital, if necessary for abuse prevention, is that each subunit contains the polymer (C and has been formulated in the stated manner and produced according to the invention.
Should, contrary to expectations, the abuser succeed in comminuting such a dosage form according to the invention, which comprises components (c) and/or (e) and/or (d) and/or (f) in subunits (Y), for the purpose of abusing the active ingredient and obtain a powder which is extracted with a suitable extracting agent, not only the active ingredient but also the particular component (c) and/or (e) and/or (f) and/or (d) will be obtained in a form in which it cannot readily be separated from the active ingredient, such that when the dosage form which has been tampered with is administered, in particular by oral and/or parenteral administration, it will exert its effect on taking and/or in the body combined with an additional negative effect on the abuser corresponding to component (c) and/or (d) and/or (f) or, when the attempt is made to extract the active ingredient, the coloration will act as a deterrent and so prevent abuse of the dosage form.
A dosage form according to the invention, in which the active ingredient or active ingredients is/are spatially separated from components (c), (d) and/or (e), preferably by formulation in different subunits, may be formulated in many different ways, wherein the corresponding subunits may each be present in the dosage form according to the invention in any desired spatial arrangement relative to one another, provided that the above-stated conditions for the release of components (c) and/or (d) are fulfilled.
The person skilled in the art will understand that component(s) (a) and/or (b) which are optionally also present may preferably be formulated in the dosage form produced according to the invention both in the particular subunits (X) and (Y) and in the form of independent subunits corresponding to subunits (X) and (Y), provided that neither the abuse-proofing nor the active ingredient release in the event of correct administration is impaired by the nature of the formulation and the polymer (C) is preferably included in the formulation and formulation is preferably carried out in accordance with the process according to the invention.
In a preferred embodiment of the dosage form produced according to the invention, subunits (X) and (Y) are present in multiparticulate form, wherein granules, spheroids, beads or pellets are preferred and the same form, i.e. shape, is selected for both subunit (X) and subunit (Y), such that it is not possible to separate subunits (X) from (Y) by mechanical selection. The multiparticulate forms are preferably of a size in the range from 0.5 to 3.5 mm, preferably of 0.5 to 2 mm.
The subunits (X) and (Y) in multiparticulate form may also preferably be packaged in a capsule or be press-moulded into a tablet, wherein the final formulation in each case proceeds in such a manner that the subunits (X) and (Y) are also retained in the resultant dosage form.
The multiparticulate subunits (X) and (Y) of Identical shape should also not be visually distinguishable from one another so that the abuser cannot separate them from one another by simple sorting. This may, for example, be achieved by the application of identical coatings which, apart from this disguising function, may also incorporate further functions, such as, for example, delayed release of one or more active ingredients or provision of a finish resistant to gastric juices on the particular subunits.
The multiparticulate subunits may also be formulated as an oral dosage form as a slurry or suspension in pharmaceutically safe suspending media.
In a further preferred embodiment of the present invention, subunits (X) and (Y) are in each case arranged in layers relative to one another.
The layered subunits (X) and (Y) are preferably arranged for this purpose vertically or horizontally relative to one another in the dosage form produced according to the invention, wherein in each case one or more layered subunits (X) and one or more layered subunits (Y) may be present in the dosage form, such that, apart from the preferred layer sequences (X)-(Y) or (X)-(Y)-(X), any desired other layer sequences may be considered, optionally in combination with layers containing components (a) and/or (b).
Another preferred dosage form produced according to the invention is one in which subunit (Y) forms a core which is completely enclosed by subunit (X), wherein a separation layer (Z) may be present between said layers. Such a structure is preferably also suitable for the above-stated multiparticulate forms, wherein both subunits (X) and (Y) and an optionally present separation layer (Z), which should preferably satisfy the hardness requirement according to the invention, are then formulated in one and the same multiparticulate form using the process according to the invention.
In a further preferred embodiment of the dosage form produced accenting to the invention, the subunit (X) forms a core, which Is enclosed by subunit (Y), wherein the latter comprises at least one channel which leads from the core to the surface of the dosage form.
The dosage form produced according to the invention may comprise, between one layer of the subunit (X) and one layer of the subunit (Y), in each case one or more, preferably one, optionally swellable separation lay (Z) which serves to separate subunit (X) spatially from (Y).
If the dosage form produced according to the invention comprises the layered subunits (X) and (Y) and an optionally present separation layer (Z) In an at least partially vertical or horizontal arrangement, the dosage form preferably takes the form of a tablet, a coextrudate or a laminate, which has been produced using the process according to the invention.
In one particularly preferred embodiment, the entirety of the free surface of subunit (Y) and optionally at least part of the free surface of subunit(s) (X) and optionally at least part of the free surface of the optionally present separation layer(s) (Z) may be coated with at least one barrier layer (Z) which prevents release of component (c) and/or (e) and/or (d) and/or (f). The barrier layer (r) should preferably also fulfil the hardness conditions according to the invention.
Another particularly preferred embodiment of the dosage form produced according to the invention comprises, a vertical or horizontal arrangement of the layers of subunits (X) and (Y) and at least one push layer (p) arranged therebetween, and optionally a separation layer (Z), in which dosage form the entirety of the free surface of the layer structure consisting of subunits (X) and (Y), the push layer and the optionally present separation layer (Z) is provided with a semipermeable coating (E), which is permeable to a release medium, i.e. conventionally a physiological liquid, but substantially impermeable to the active ingredient and to component (c) and/or (d) and/or (f), and wherein this coating (E) comprises at least one opening for release of the active ingredient in the area of subunit (X).
A corresponding dosage form is known to the person skilled in the art, for example under the name oral osmotic therapeutic system (OROS), as are suitable materials and methods for the production thereof, inter alia from U.S. Pat. Nos. 4,612,008, 4,765,989 and 4,783,337, The corresponding descriptions are hereby introduced as a reference and are deemed to be part of the disclosure.
In a further preferred embodiment, the subunit (X) of the dosage form produced according to the invention is in the form of a tablet, the edge face and optionally one of the two main faces of which is covered with a barrier layer (Z′) containing component (c) and/or (d) and/or (f).
The person skilled in the art will understand that the auxiliary substances of the subunit(s) (X) or (Y) and of the optionally present separation layer(s) (Z) and/or of the barrier layer(s) (Z′) used in the production according to the invention of the respective dosage form will vary as a function of the arrangement thereof in the dosage form, the mode of administration and as a function of the particular active ingredient of the optionally present components (a) and/or (b) and/or (e) and of component (c) and/or (d) and/or (f). The materials which have the requisite properties are in each case known per se to the person skilled in the art.
If release of component (c) and/or (d) and/or (f) from subunit (Y) of the dosage form produced according to the invention is prevented with the assistance of a cover, preferably a barrier layer, the subunit may consist of conventional materials known to the person skilled in the art, providing that they contain at least one polymer (C) and optionally (D) and have preferably been produced according to the invention.
If a corresponding barrier layer (Z′) is not provided to prevent release of components (c) and/or (d) and/or (f), the materials of the subunits should be selected such that release of the particular component (c) and/or (d) from subunit (Y) is virtually ruled out.
The materials which are stated below to be suitable for production of the barrier layer may preferably be used for this purpose.
Preferred materials are those which are selected from the group comprising alkylcelluloses, hydroxyalkylcelluloses, glucans, scleroglucans, mannans, xanthans, copolymers of poly(bis(p-carboxyphenoxy)propane and sebacic acid, preferably in a molar ratio of 20:80 (commercially available under the name Polifeprosan 20®), carboxymethylcelluloses, cellulose ethers, cellulose esters, nitrocelluloses, polymers based on (meth)acrylic acid and the esters thereof, polyamides, polycarbonates, polyalkylenes, polyalkylene glycols, polyalkylene oxides, polyalkylene terephthalates, polyvinyl alcohols, polyvinyl ethers, polyvinyl esters, halogenated polyvinyls, polyglycolides, polysiloxanes and polyurethanes and the copolymers thereof.
Particularly suitable materials may be selected from the group comprising methylcellulose, ethylcellulose, hydroxypropylcellulose, hydroxypropylmethylcellulose, hydroxybutylmethylcellulose, cellulose acetate, cellulose propionate (of low, medium or high molecular weight), cellulose acetate propionate, cellulose acetate butyrate, cellulose acetate phthalate, carboxymethylcellulose, cellulose triacetate, sodium cellulose sulfate, polymethyl methacrylate, polyethyl methacrylate, polybutyl methacrylate, polyisobutyl methacrylate, polyhexyl methacrylate, polyisodecyl methacrylate, polylauryl methacrylate, polyphenyl methacrylate, polymethyl acrylate, polyisopropyl acrylate, polyisobutyl acrylate, polyoctadecyl acrylate, polyethylene, low density polyethylene, high density polyethylene, polypropylene, polyethylene glycol, polyethylene oxide, polyethylene terephthalate, polyvinyl alcohol, polyvinyl isobutyl ether, polyvinyl acetate and polyvinyl chloride.
Particularly suitable copolymers may be selected from the group comprising copolymers of butyl methacrylate and isobutyl methacrylate, copolymers of methyl vinyl ether and maleic acid of high molecular weight, copolymers of methyl vinyl ether and maleic acid monoethyl ester, copolymers of methyl vinyl ether and maleic anhydride and copolymers of vinyl alcohol and vinyl acetate.
Further materials which are particularly suitable for formulating the barrier layer are starch-filled polycaprolactone (WO98/20073), aliphatic polyesteramides (DE 19 753 534 A1, DE 19 800 698 A1, EP 0 820 698 A1), aliphatic and aromatic polyester urethanes (DE 19822979), polyhydroxyalkanoates, in particular polyhydroxybutyrates, polyhydroxyvalerates, casein (DE 4 309 528), polylactides and copolylactides (EP 0 980 894 A1). The corresponding descriptions are hereby introduced as a reference and are deemed to be part of the disclosure.
The above-stated materials may optionally be blended with further conventional auxiliary substances known to the person skilled in the art, preferably selected from the group comprising glyceryl monostearate, semi-synthetic triglyceride derivatives, semi-synthetic glycerides, hydrogenated castor oil, glyceryl palmitostearate, glyceryl behenate, polyvinylpyrrolidone, gelatine, magnesium stearate, stearic acid, sodium stearate, talcum, sodium benzoate, boric acid and colloidal silica, fatty acids, substituted triglycerides, glycerides, polyoxyalkylene glycols and the derivatives thereof.
If the dosage form produced according to the invention comprises a separation layer (Z′), said layer, like the uncovered subunit (Y), may preferably consist of the above-stated materials described for the barrier layer. The person skilled in the art will understand that release of the active ingredient or of component (c) and/or (d) from the particular subunit may be controlled by the thickness of the separation layer.
The dosage form produced according to the invention exhibits controlled release of the active ingredient. It is preferably suitable for repeated daily administration to patients, such as for example for combatting pain in human patients.
The dosage form produced according to the invention may comprise one or more active ingredients at least partially in a further delayed-release form, wherein delayed release may be achieved with the assistance of conventional materials and methods known to the person skilled in the art, for example by embedding the active ingredient in a delayed-release matrix or by the application of one or more delayed-release coatings. Active ingredient release must, however, be controlled such that the above-stated conditions are fulfilled in each case, for example that, in the event of correct administration of the dosage form, the active ingredient or active ingredients are virtually completely released before the optionally present component (c) and/or (d) can exert an impairing effect.
Addition of materials effecting controlled release must moreover not impair the necessary hardness.
Controlled release from the dosage form produced according to the invention is preferably achieved by embedding the active ingredient in a matrix. The auxiliary substances acting as matrix materials control active ingredient release. Matrix materials may, for example, be hydrophilic, gel-forming materials, from which active ingredient release proceeds mainly by diffusion, or hydrophobic materials, from which active ingredient release proceeds mainly by diffusion from the pores in the matrix.
Physiologically acceptable, hydrophobic materials which are known to the person skilled in the art may be used as matrix materials. Polymers, particularly preferably cellulose ethers, cellulose esters and/or acrylic resins are preferably used as hydrophilic matrix materials. Ethylcellulose, hydroxypropylmethylcellulose, hydroxypropylcellulose, hydroxymethylcellulose, poly(meth)acrylic acid and/or the derivatives thereof, such as the salts, amides or esters thereof are very particularly preferably used as matrix materials.
Matrix materials prepared from hydrophobic materials, such as hydrophobic polymers, waxes, fats, long-chain fatty acids, fatty alcohols or corresponding esters or ethers or mixtures thereof are also preferred. Mono- or diglycerides of C12-C30 fatty acids and/or C12-C30 fatty alcohols and/or waxes or mixtures thereof are particularly preferably used as hydrophobic materials.
It is also possible to use mixtures of the above-stated hydrophilic and hydrophobic materials as matrix materials.
Component (C) and the optionally present component (D), which serve to achieve the breaking strength of at least 500 N which is obtained according to the invention, may furthermore themselves serve as additional matrix materials.
If the dosage form produced according to the invention is intended for oral administration, it may also preferably comprise a coating which is resistant to gastric juices and dissolves as a function of the pH value of the release environment.
By means of this coating, it is possible to ensure that the dosage form produced according to the invention passes through the stomach undissolved and the active ingredient is only released in the intestines. The coating which is resistant to gastric juices preferably dissolves at a pH value of between 5 and 7.5.
Corresponding materials and methods for the controlled release of active ingredients and for the application of coatings which are resistant to gastric juices are known to the person skilled in the art, for example from “Coated Pharmaceutical Dosage Forms—Fundamentals, Manufacturing Techniques, Biopharmaceutical Aspects, Test Methods and Raw Materials” by Kurt H. Bauer, K. Lehmann, Hermann P. Osterwald, Rothgang, Gerhart, 1st edition, 1998, Medpharm Scientific Publishers. The corresponding literature description is hereby introduced as a reference and is deemed to be part of the disclosure.
Method for Determining Breaking Strength
The invention is explained below with reference to Examples. These explanations are given merely by way of example and do not restrict the general concept of the invention.
Tramadol hydrochloride was used as the active ingredient in a series of Examples. Tramadol hydrochloride was used, despite tramadol not being an active ingredient which conventionally has potential for abuse, because it is not governed by German narcotics legislation, so simplifying the experimental work Tramadol is moreover a member of the opioid class with excellent water solubility.
Tramadol hydrochloride and polyethylene oxide powder and hydroxypropyl methylcellulose were mixed in a free-fall mixer. The magnesium stearate powder was then mixed in. The powder mixture was pressed into tablets on a Korsch EK0 eccentric press. The tabletting tool has a diameter of 10 mm and a radius of curvature of 8 mm. These tablets were further processed with the assistance of a laboratory heat sealer (Kopp laboratory sealer SPGE 20, Hot & Cold tack heat-sealed seam strength tester from Kopp). The heat sealing bars were replaced with two metal rails, into each of which had been milled a concavity having a diameter of 10 mm and a radius of 8 mm. The surface of the concavity is coated with Teflon. Once the bars have been fitted in the heat sealer, two complementary concavities produce a lens shape into which the tablets are in each case placed.
The heat sealing bars were heated in advance to 130° C., the tablets introduced and then a force of 750 N was exerted for 2.5 min.
The breaking strength of the tablets is determined using the above-described method. No breakage occurred when a force of 500 N was applied. The tablets could not be comminuted using a hammer, nor with the assistance of a pestle and mortar.
In vitro release of the active ingredient tramadol from the tablets was determined in a paddle stirrer apparatus with sinker in accordance with Pharm. Eur. The temperature of the release medium was 37° C. and the rotational speed of the stirrer 75 min−1. The release medium used was an intestinal juice of pH 6.8. The quantity of active ingredient released in each case into the dissolution medium at any one time was determined by spectrophotometry.
As stated in Example 1, tablets with a diameter of 10 mm and a radius of curvature of 8 mm were produced.
The tablets were also further processed as in Example 1, except that the sealing bars were heated to 100° C.
The breaking strength of the tablets is determined using the above-described method. No breakage occurred when a force of 500 N was applied. The tablets could not be comminuted using a hammer, nor with the assistance of a pestle and mortar.
In vitro release of the active ingredient from the preparation was determined in a paddle stirrer apparatus with sinker in accordance with Pharm. Eur. The temperature of the release medium was 37° C. and the rotational speed of the stirrer 75 min−1. The release medium used was an intestinal juice of pH 6.8. The quantity of active ingredient released in each case into the dissolution medium at any one time was determined by spectrophotometry.
Tablets were produced as described in Example 1. The tablets were also further processed as explained in Example 1.
The breaking strength of the tablets was determined using the above-described method. No breakage occurred when a force of 500 N was applied. The tablets could not be comminuted using a hammer, nor with the assistance of a pestle and mortar.
In vitro release of the active ingredient from the preparation was determined in a paddle stirrer apparatus with sinker in accordance with Pharm. Eur. The temperature of the release medium was 37° C. and the rotational speed of the stirrer 75 min−1. The release medium used was an intestinal juice of pH 6.8. The quantity of active ingredient released in each case into the dissolution medium at any one time was determined by spectrophotometry.
Tablets were produced as stated in Example 1.
The tablets were then heated in a microwave oven for 10 min at 700 watts. Further processing proceeded as stated in Example 1, except that 2 bars each comprising 5 concavities were used and, using sealing bars heated to 100° C., in each case 5 heated tablets were exposed to a force of 1000 N for 30 seconds.
The breaking strength of the tablets is determined using the above-described method. No breakage occurred when a force of 500 N was applied. The tablets could not be comminuted using a hammer, nor with the assistance of a pestle and mortar.
Tablets were produced as stated in Example 1.
The tablets were then heated under an N2 atmosphere in a circulating air cabinet for 45 min at 110° C. The tablets were further processed as stated in Example 4, except that the sealing bars were heated to 130° C.
The breaking strength of the tablets is determined using the above-described method. No breakage occurred when a force of 500 N was applied. The tablets could not be comminuted using a hammer, nor with the assistance of a pestle and mortar.
Tablets were produced as stated in Example 1.
Further processing proceeded as stated in Example 1, except that the sealing bars were heated to 130° C. and the tablets were preheated in the lower bar for 2 minutes while being exposed to a force of 10 N. The table ire then post-compacted with a force of 1000 N at 130° C. for 20 seconds.
The breaking strength of the tablets is determined using the above-described method. No breakage occurred when a force of 500 N was applied. The tablets could not be comminuted using a hammer, nor with the assistance of a pestle and mortar.
The stated quantity of butylhydroxytoluene was dissolved in 0.6 g of ethanol (96%). This solution was mixed with the polyethylene glycol 6000 and then dried at 40° C. for 12 hours. All the further components apart from magnesium stearate were added and mixed for 15 min in a free-fall mixer. The magnesium stearate was then mixed in. The mixture was screened with a 0.8 mm screen.
Using a Korsch EK0 eccentric press, tablets were produced from the screened mixture (diameter: 10 mm and radius of curvature: 8 mm). These were then heated to 80° C. in a drying cabinet under an N2 atmosphere for 15 minutes.
The hot tablets were pressed again on an eccentric press (Kilian/IMA, model SP 300) with a force of 80 kN. The tool used was a tabletting punch with a diameter of 11 mm and a radius of curvature of 8 mm.
The breaking strength of the tablets was determined using the above-described method. No breakage occurred when a force of 600 N was applied. The tablets could not be comminuted using a hammer, nor with the assistance of a pestle and mortar.
In vitro release of the active ingredient from the preparation was determined in a paddle stirrer apparatus with sinker in accordance with Pharm. Eur. The temperature of the release medium was 37° C. and the rotational speed of the stirrer 75 min−1. The release medium used was intestinal juice with a pH of 6.8. The quantity of active ingredient released in each case into the dissolution medium at any one time was determined by spectrophotometry.
This application is a continuation of U.S. patent application Ser. No. 14/580,578, now pending, filed on Dec. 23, 2014, which is a continuation of U.S. patent application Ser. No. 11/471,438, now abandoned, filed on Jun. 20, 2006, which is a continuation of International Patent Application No. PCT/EP04/14679, filed on Dec. 23, 2004, which claims priority of German Patent Application No. 103 61 596.2, filed Dec. 24, 2003, the entire contents of which patent applications are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2524855 | Schnider et al. | Oct 1950 | A |
2806033 | Lewenstein et al. | Sep 1957 | A |
2987445 | Levesque | Jun 1961 | A |
3332950 | Blumberg et al. | Jul 1967 | A |
3370035 | Ogura et al. | Feb 1968 | A |
3652589 | Flick et al. | Mar 1972 | A |
3658259 | Ledergerber et al. | Apr 1972 | A |
3806603 | Gaunt et al. | Apr 1974 | A |
3865108 | Hartop | Feb 1975 | A |
3941865 | Miller et al. | Mar 1976 | A |
3966747 | Monkovic et al. | Jun 1976 | A |
3980766 | Shaw et al. | Sep 1976 | A |
4002173 | Manning et al. | Jan 1977 | A |
4014965 | Stube et al. | Mar 1977 | A |
4070494 | Hoffmeister et al. | Jan 1978 | A |
4070497 | Wismer et al. | Jan 1978 | A |
4175119 | Porter | Nov 1979 | A |
4200704 | Stanley et al. | Apr 1980 | A |
4207893 | Michaels | Jun 1980 | A |
4262017 | Kuipers et al. | Apr 1981 | A |
4343789 | Kawata et al. | Aug 1982 | A |
4353887 | Hess et al. | Oct 1982 | A |
4404183 | Kawata et al. | Sep 1983 | A |
4427681 | Munshi et al. | Jan 1984 | A |
4427778 | Zabriskie | Jan 1984 | A |
4457933 | Gordon et al. | Jul 1984 | A |
4462941 | Lee et al. | Jul 1984 | A |
4473640 | Combie et al. | Sep 1984 | A |
4483847 | Augart | Nov 1984 | A |
4485211 | Okamoto | Nov 1984 | A |
4529583 | Porter | Jul 1985 | A |
4599342 | Hann | Jul 1986 | A |
4603143 | Schmidt | Jul 1986 | A |
4612008 | Wong et al. | Sep 1986 | A |
4629621 | Snipes | Dec 1986 | A |
4667013 | Reichle | May 1987 | A |
4690822 | Uemura | Sep 1987 | A |
4711894 | Wenzel et al. | Dec 1987 | A |
4713243 | Schiraldi et al. | Dec 1987 | A |
4744976 | Snipes et al. | May 1988 | A |
4764378 | Keitn et al. | Aug 1988 | A |
4765989 | Wong et al. | Aug 1988 | A |
4774074 | Snipes | Sep 1988 | A |
4774092 | Hamilton | Sep 1988 | A |
4783337 | Wong et al. | Nov 1988 | A |
4806337 | Snipes et al. | Feb 1989 | A |
RE33093 | Schiraldi et al. | Oct 1989 | E |
4880585 | Klimesch et al. | Nov 1989 | A |
4892778 | Theeuwes et al. | Jan 1990 | A |
4892889 | Kirk | Jan 1990 | A |
4940556 | Macfarlane et al. | Jul 1990 | A |
4954346 | Sparta et al. | Sep 1990 | A |
4957668 | Plackard et al. | Sep 1990 | A |
4957681 | Klimesch et al. | Sep 1990 | A |
4960814 | Wu et al. | Oct 1990 | A |
4992278 | Khanna | Feb 1991 | A |
4992279 | Palmer et al. | Feb 1991 | A |
5004601 | Snipes | Apr 1991 | A |
5051261 | McGinity | Sep 1991 | A |
5073379 | Klimesch et al. | Dec 1991 | A |
5082668 | Wong et al. | Jan 1992 | A |
5126151 | Bodor et al. | Jun 1992 | A |
5139790 | Snipes | Aug 1992 | A |
5145944 | Steinmann | Sep 1992 | A |
5149538 | Granger et al. | Sep 1992 | A |
5169645 | Shukla et al. | Dec 1992 | A |
5190760 | Baker | Mar 1993 | A |
5198226 | MacFarlane et al. | Mar 1993 | A |
5200194 | Edgren et al. | Apr 1993 | A |
5200197 | Wright et al. | Apr 1993 | A |
5211892 | Gueret | May 1993 | A |
5225417 | Dappen | Jul 1993 | A |
5227157 | Mcginity et al. | Jul 1993 | A |
5229164 | Pins et al. | Jul 1993 | A |
5273758 | Royce | Dec 1993 | A |
5326852 | Fujikake | Jul 1994 | A |
5350741 | Takada | Sep 1994 | A |
5378462 | Boedecker et al. | Jan 1995 | A |
5387420 | Mitchell | Feb 1995 | A |
5427798 | Ludgwig et al. | Jun 1995 | A |
RE34990 | Khanna et al. | Jul 1995 | E |
5458887 | Chen et al. | Oct 1995 | A |
5460826 | Merrill et al. | Oct 1995 | A |
5472943 | Crain et al. | Dec 1995 | A |
5508042 | Oshlack et al. | Apr 1996 | A |
5552159 | Mueller et al. | Sep 1996 | A |
5556640 | Ito et al. | Sep 1996 | A |
5562920 | Demmer et al. | Oct 1996 | A |
5591452 | Miller et al. | Jan 1997 | A |
5593694 | Hayashida et al. | Jan 1997 | A |
5601842 | Bartholomaeus | Feb 1997 | A |
5620697 | Tormala et al. | Apr 1997 | A |
5679685 | Cincotta et al. | Oct 1997 | A |
5681517 | Metzger | Oct 1997 | A |
5707636 | Rodriguez et al. | Jan 1998 | A |
5741519 | Rosenberg et al. | Apr 1998 | A |
5792474 | Rauchfuss | Aug 1998 | A |
5801201 | Gradums et al. | Sep 1998 | A |
5811126 | Krishanamurthy | Sep 1998 | A |
5849240 | Miller et al. | Dec 1998 | A |
5866164 | Kuczynski et al. | Feb 1999 | A |
5900425 | Kanikanti et al. | May 1999 | A |
5908850 | Zeitlin et al. | Jun 1999 | A |
5914132 | Kelm et al. | Jun 1999 | A |
5916584 | O'Donoghue et al. | Jun 1999 | A |
5928739 | Pophusen et al. | Jul 1999 | A |
5939099 | Grabowski et al. | Aug 1999 | A |
5945125 | Kim | Aug 1999 | A |
5948787 | Merill et al. | Sep 1999 | A |
5962488 | Lang | Oct 1999 | A |
5965161 | Oshlack et al. | Oct 1999 | A |
5968925 | Knidlberger | Oct 1999 | A |
6001391 | Zeidler et al. | Dec 1999 | A |
6009390 | Gupta et al. | Dec 1999 | A |
6009690 | Rosenberg et al. | Jan 2000 | A |
6051253 | Zettler et al. | Apr 2000 | A |
6071970 | Mueller et al. | Jun 2000 | A |
6077538 | Merrill | Jun 2000 | A |
6090411 | Pillay et al. | Jul 2000 | A |
6093420 | Baichwal | Jul 2000 | A |
6096339 | Ayer et al. | Aug 2000 | A |
6117453 | Seth et al. | Sep 2000 | A |
6120802 | Breitenbach et al. | Sep 2000 | A |
6133241 | Bok et al. | Oct 2000 | A |
6183781 | Burke | Feb 2001 | B1 |
6228863 | Palermo et al. | May 2001 | B1 |
6235825 | Yoshida et al. | May 2001 | B1 |
6238697 | Kumar et al. | May 2001 | B1 |
6245357 | Edgren et al. | Jun 2001 | B1 |
6248737 | Buschmann et al. | Jun 2001 | B1 |
6251430 | Zhang et al. | Jun 2001 | B1 |
6254887 | Miller et al. | Jul 2001 | B1 |
6261599 | Oshiack | Jul 2001 | B1 |
6290990 | Grabowski et al. | Sep 2001 | B1 |
6306438 | Oshlack et al. | Oct 2001 | B1 |
6309668 | Bastin et al. | Oct 2001 | B1 |
6318650 | Breitenbach et al. | Nov 2001 | B1 |
6322811 | Verma | Nov 2001 | B1 |
6322819 | Burnside et al. | Nov 2001 | B1 |
6326027 | Miller et al. | Dec 2001 | B1 |
6335035 | Drizen et al. | Jan 2002 | B1 |
6337319 | Wang | Jan 2002 | B1 |
6340475 | Shell et al. | Jan 2002 | B2 |
6344215 | Bettman et al. | Feb 2002 | B1 |
6344535 | Timmermann et al. | Feb 2002 | B1 |
6348469 | Seth | Feb 2002 | B1 |
6355656 | Zeitlin et al. | Mar 2002 | B1 |
6375957 | Kaiko et al. | Apr 2002 | B1 |
6375963 | Repka et al. | Apr 2002 | B1 |
6384020 | Flanner et al. | May 2002 | B1 |
6387995 | Sojka | May 2002 | B1 |
6399100 | Clancy et al. | Jun 2002 | B1 |
6419954 | Chu et al. | Jul 2002 | B1 |
6436441 | Sako et al. | Aug 2002 | B1 |
6455052 | Marcussen et al. | Sep 2002 | B1 |
6461644 | Jackson et al. | Oct 2002 | B1 |
6488939 | Zeidler et al. | Dec 2002 | B1 |
6488962 | Berner et al. | Dec 2002 | B1 |
6488963 | McGinity | Dec 2002 | B1 |
6534089 | Ayer et al. | Mar 2003 | B1 |
6547977 | Yan et al. | Apr 2003 | B1 |
6547997 | Breithenbach et al. | Apr 2003 | B1 |
6562375 | Sako et al. | May 2003 | B1 |
6569506 | Jerdee et al. | May 2003 | B1 |
6572889 | Guo | May 2003 | B1 |
6592901 | Durig et al. | Jul 2003 | B2 |
6623754 | Guo et al. | Sep 2003 | B2 |
6635280 | Shell et al. | Oct 2003 | B2 |
6696088 | Oshlack et al. | Feb 2004 | B2 |
6699503 | Sako et al. | Mar 2004 | B1 |
6723340 | Gusler et al. | Apr 2004 | B2 |
6723343 | Kugelmann | Apr 2004 | B2 |
6733783 | Oshlack et al. | May 2004 | B2 |
6753009 | Luber et al. | Jun 2004 | B2 |
6821588 | Hammer et al. | Nov 2004 | B1 |
6946146 | Mulye | Sep 2005 | B2 |
6979722 | Hamamoto et al. | Dec 2005 | B2 |
7074430 | Miller et al. | Jul 2006 | B2 |
7129248 | Chapman et al. | Oct 2006 | B2 |
7141250 | Oshlack et al. | Nov 2006 | B2 |
7157103 | Sackler | Jan 2007 | B2 |
7176251 | Bastioli et al. | Feb 2007 | B1 |
RE39593 | Buschmann et al. | Apr 2007 | E |
7201920 | Kumar et al. | Apr 2007 | B2 |
7214385 | Gruber | May 2007 | B2 |
7230005 | Shafer et al. | Jun 2007 | B2 |
7300668 | Pryce et al. | Nov 2007 | B2 |
7332182 | Sackler | Feb 2008 | B2 |
7388068 | Falk et al. | Jun 2008 | B2 |
7399488 | Hirsh et al. | Jul 2008 | B2 |
7510726 | Kumar et al. | Mar 2009 | B2 |
7674799 | Chapman et al. | Mar 2010 | B2 |
7674800 | Chapman et al. | Mar 2010 | B2 |
7683072 | Chapman et al. | Mar 2010 | B2 |
7776314 | Bartholomaus et al. | Aug 2010 | B2 |
7842307 | Oshlack et al. | Nov 2010 | B2 |
7851482 | Dung et al. | Dec 2010 | B2 |
7932258 | Petereit et al. | Apr 2011 | B2 |
7939543 | Kupper | May 2011 | B2 |
7968119 | Farrell | Jun 2011 | B2 |
7994364 | Fischer et al. | Aug 2011 | B2 |
8075872 | Arkenau-Maric | Dec 2011 | B2 |
8101630 | Kumar et al. | Jan 2012 | B2 |
8114383 | Bartholomeus et al. | Feb 2012 | B2 |
8114384 | Arkenau et al. | Feb 2012 | B2 |
8114838 | Marchionni | Feb 2012 | B2 |
8192722 | Arkenau-Maric et al. | Jun 2012 | B2 |
8202542 | Mehta et al. | Jun 2012 | B1 |
8309060 | Bartholomaus et al. | Nov 2012 | B2 |
8309122 | Kao et al. | Nov 2012 | B2 |
8323889 | Arkenau-Maric et al. | Dec 2012 | B2 |
8329216 | Kao et al. | Dec 2012 | B2 |
8337888 | Wright et al. | Dec 2012 | B2 |
8383152 | Jans et al. | Feb 2013 | B2 |
8420056 | Arkenau-Maric et al. | Apr 2013 | B2 |
8445023 | Guimberteau et al. | May 2013 | B2 |
8722086 | Arkenau-Mari et al. | May 2014 | B2 |
8858963 | Devarakonda et al. | Oct 2014 | B1 |
8895063 | Guimberteau et al. | Nov 2014 | B2 |
8901113 | Leech et al. | Dec 2014 | B2 |
9044758 | Niwa et al. | Jun 2015 | B2 |
9192578 | Mcginity et al. | Nov 2015 | B2 |
9463165 | Shimatani et al. | Oct 2016 | B2 |
9629807 | Arkenau-Maric et al. | Apr 2017 | B2 |
9675610 | Bartholomaeus et al. | Jun 2017 | B2 |
9737490 | Barnscheid et al. | Aug 2017 | B2 |
9750701 | Jans et al. | Sep 2017 | B2 |
9855263 | Wening et al. | Jan 2018 | B2 |
9884022 | Deshmukh et al. | Feb 2018 | B2 |
9925146 | Barnscheid et al. | Mar 2018 | B2 |
20010038852 | Kolter et al. | Nov 2001 | A1 |
20020012701 | Kolter et al. | Jan 2002 | A1 |
20020015730 | Hoffmann et al. | Feb 2002 | A1 |
20020187192 | Joshi et al. | Feb 2002 | A1 |
20020051820 | Shell et al. | May 2002 | A1 |
20020114838 | Ayer et al. | Aug 2002 | A1 |
20020132359 | Waterman | Sep 2002 | A1 |
20020132395 | Iyer et al. | Sep 2002 | A1 |
20020176888 | Bartholomaeus et al. | Nov 2002 | A1 |
20020192277 | Oshlack et al. | Dec 2002 | A1 |
20030008409 | Spearman et al. | Jan 2003 | A1 |
20030015814 | Krull et al. | Jan 2003 | A1 |
20030017532 | Biswas et al. | Jan 2003 | A1 |
20030021546 | Sato | Jan 2003 | A1 |
20030044458 | Wright et al. | Mar 2003 | A1 |
20030044464 | Ziegler et al. | Mar 2003 | A1 |
20030059397 | Hughes | Mar 2003 | A1 |
20030064099 | Oshlack et al. | Apr 2003 | A1 |
20030068276 | Hughes et al. | Apr 2003 | A1 |
20030068370 | Sackler et al. | Apr 2003 | A1 |
20030068371 | Oshlack et al. | Apr 2003 | A1 |
20030068375 | Wright et al. | Apr 2003 | A1 |
20030068392 | Sackler | Apr 2003 | A1 |
20030069263 | Breder et al. | Apr 2003 | A1 |
20030077297 | Chen et al. | Apr 2003 | A1 |
20030077327 | Durig et al. | Apr 2003 | A1 |
20030091630 | Louie-Helm et al. | May 2003 | A1 |
20030092724 | Huaihung et al. | May 2003 | A1 |
20030104052 | Berner et al. | Jun 2003 | A1 |
20030104053 | Gusler et al. | Jun 2003 | A1 |
20030118641 | Maloney et al. | Jun 2003 | A1 |
20030124185 | Oshlack et al. | Jul 2003 | A1 |
20030125347 | Anderson et al. | Jul 2003 | A1 |
20030129230 | Baichwal et al. | Jul 2003 | A1 |
20030133985 | Louie-Helm et al. | Jul 2003 | A1 |
20030143269 | Oshlack et al. | Jul 2003 | A1 |
20030152622 | Louie-Helm et al. | Aug 2003 | A1 |
20030158242 | Kugelmann | Aug 2003 | A1 |
20030158265 | Radhakrishnan et al. | Aug 2003 | A1 |
20030175326 | Thombre | Sep 2003 | A1 |
20030198677 | Pryce Lewis et al. | Oct 2003 | A1 |
20030215508 | Davis et al. | Nov 2003 | A1 |
20030224051 | Fink et al. | Dec 2003 | A1 |
20030232895 | Omidian et al. | Dec 2003 | A1 |
20040010000 | Ayer et al. | Jan 2004 | A1 |
20040011806 | Luciano et al. | Jan 2004 | A1 |
20040049079 | Murray et al. | Mar 2004 | A1 |
20040052731 | Hirsh et al. | Mar 2004 | A1 |
20040052844 | Hsiao et al. | Mar 2004 | A1 |
20040081694 | Oshlack | Apr 2004 | A1 |
20040091528 | Rogers et al. | May 2004 | A1 |
20040126428 | Hughes et al. | Jul 2004 | A1 |
20040131671 | Zhang et al. | Jul 2004 | A1 |
20040156899 | Louie-Helm et al. | Aug 2004 | A1 |
20040170567 | Sackler | Sep 2004 | A1 |
20040170680 | Oshlack | Sep 2004 | A1 |
20040185105 | Berner et al. | Sep 2004 | A1 |
20040213845 | Sugihara | Oct 2004 | A1 |
20040213848 | Li et al. | Oct 2004 | A1 |
20040253310 | Fischer et al. | Dec 2004 | A1 |
20050015730 | Gunturi et al. | Jan 2005 | A1 |
20050031546 | Bartholomaeus et al. | Feb 2005 | A1 |
20050058706 | Bartholomaeus et al. | Mar 2005 | A1 |
20050063214 | Takashima | Mar 2005 | A1 |
20050079138 | Chickering, III et al. | Apr 2005 | A1 |
20050089475 | Gruber | Apr 2005 | A1 |
20050089569 | Bar-Shalom | Apr 2005 | A1 |
20050095291 | Oshlack et al. | May 2005 | A1 |
20050106249 | Hwang et al. | May 2005 | A1 |
20050112067 | Kumar et al. | May 2005 | A1 |
20050127555 | Gusik et al. | Jun 2005 | A1 |
20050152843 | Bartholomaeus et al. | Jul 2005 | A1 |
20050181046 | Oshlack et al. | Aug 2005 | A1 |
20050186139 | Bartholomaeus et al. | Aug 2005 | A1 |
20050191244 | Bartholomaeus et al. | Sep 2005 | A1 |
20050191352 | Hayes | Sep 2005 | A1 |
20050192333 | Hinze et al. | Sep 2005 | A1 |
20050214223 | Bartholomaeus et al. | Sep 2005 | A1 |
20050220877 | Patel | Oct 2005 | A1 |
20050222188 | Chapman et al. | Oct 2005 | A1 |
20050236741 | Arkenau et al. | Oct 2005 | A1 |
20050245556 | Brogman et al. | Nov 2005 | A1 |
20050266084 | Li et al. | Dec 2005 | A1 |
20050271594 | Groenewoud | Dec 2005 | A1 |
20060002859 | Arkenau et al. | Jan 2006 | A1 |
20060002860 | Bartholomaus et al. | Jan 2006 | A1 |
20060004034 | Hinze et al. | Jan 2006 | A1 |
20060009478 | Friedman et al. | Jan 2006 | A1 |
20060017916 | Clarke et al. | Jan 2006 | A1 |
20060039864 | Bartholomaus et al. | Feb 2006 | A1 |
20060099250 | Tian et al. | May 2006 | A1 |
20060104909 | Vaghefi | May 2006 | A1 |
20060182801 | Breder et al. | Aug 2006 | A1 |
20060188447 | Arkenau-Maric et al. | Aug 2006 | A1 |
20060193782 | Bartholomeus et al. | Aug 2006 | A1 |
20060193914 | Ashworth et al. | Aug 2006 | A1 |
20060194759 | Eidelson | Aug 2006 | A1 |
20060194826 | Oshlack et al. | Aug 2006 | A1 |
20060204575 | Feng et al. | Sep 2006 | A1 |
20060240105 | Devane et al. | Oct 2006 | A1 |
20060240110 | Kiick et al. | Oct 2006 | A1 |
20060269603 | Brown Miller et al. | Nov 2006 | A1 |
20070003616 | Arkenau-Maric et al. | Jan 2007 | A1 |
20070003617 | Fischer et al. | Jan 2007 | A1 |
20070020188 | Sackler | Jan 2007 | A1 |
20070020335 | Chen et al. | Jan 2007 | A1 |
20070042044 | Fischer et al. | Feb 2007 | A1 |
20070048228 | Arkenau-Maric et al. | Mar 2007 | A1 |
20070048373 | Chastain et al. | Mar 2007 | A1 |
20070065365 | Kugelmann et al. | Mar 2007 | A1 |
20070092573 | Joshi et al. | Apr 2007 | A1 |
20070183979 | Arkenau-Maric et al. | Aug 2007 | A1 |
20070183980 | Arkenau-Maric et al. | Aug 2007 | A1 |
20070184117 | Gregory et al. | Aug 2007 | A1 |
20070190142 | Breitenbach et al. | Aug 2007 | A1 |
20070196396 | Pilgaonkar et al. | Aug 2007 | A1 |
20070196481 | Amidon et al. | Aug 2007 | A1 |
20070224129 | Guimberteau et al. | Sep 2007 | A1 |
20070231268 | Emigh et al. | Oct 2007 | A1 |
20070259045 | Mannion et al. | Nov 2007 | A1 |
20070264326 | Guimberteau et al. | Nov 2007 | A1 |
20070264327 | Kumar et al. | Nov 2007 | A1 |
20070269505 | Flath et al. | Nov 2007 | A1 |
20070292508 | Szamosi et al. | Dec 2007 | A1 |
20080014228 | Darmuzey et al. | Jan 2008 | A1 |
20080020032 | Crowley et al. | Jan 2008 | A1 |
20080063725 | Guimberteau et al. | Mar 2008 | A1 |
20080069871 | Vaughn et al. | Mar 2008 | A1 |
20080075669 | Soscia et al. | Mar 2008 | A1 |
20080075768 | Vaughn et al. | Mar 2008 | A1 |
20080081290 | Wada et al. | Mar 2008 | A1 |
20080085304 | Baichwal et al. | Apr 2008 | A1 |
20080131503 | Holm et al. | Jun 2008 | A1 |
20080145429 | Leyenecker et al. | Jun 2008 | A1 |
20080152595 | Emigh et al. | Jun 2008 | A1 |
20080181932 | Bortz et al. | Jul 2008 | A1 |
20080207757 | Mickle | Aug 2008 | A1 |
20080220079 | Chen | Sep 2008 | A1 |
20080233178 | Reidenberg et al. | Sep 2008 | A1 |
20080234352 | Fischer et al. | Sep 2008 | A1 |
20080247959 | Bartholomaus et al. | Oct 2008 | A1 |
20080248113 | Bartholomaus et al. | Oct 2008 | A1 |
20080260836 | Boyd | Oct 2008 | A1 |
20080280975 | Badul | Nov 2008 | A1 |
20080311049 | Arkenau-Maric et al. | Dec 2008 | A1 |
20080311187 | Ashworth et al. | Dec 2008 | A1 |
20080311197 | Arkenau-Maric et al. | Dec 2008 | A1 |
20080311205 | Habib et al. | Dec 2008 | A1 |
20080312264 | Arkenau-Maric et al. | Dec 2008 | A1 |
20080317695 | Everaert et al. | Dec 2008 | A1 |
20080317854 | Arkenau et al. | Dec 2008 | A1 |
20090004267 | Arkenau-Maric et al. | Jan 2009 | A1 |
20090005408 | Arkenau-Maric et al. | Jan 2009 | A1 |
20090011016 | Cailly-Dufestel et al. | Jan 2009 | A1 |
20090017121 | Berner et al. | Jan 2009 | A1 |
20090022798 | Rosenberg et al. | Jan 2009 | A1 |
20090081287 | Wright et al. | Mar 2009 | A1 |
20090081290 | McKenna et al. | Mar 2009 | A1 |
20090087486 | Krumme | Apr 2009 | A1 |
20090117191 | Brown Miller et al. | May 2009 | A1 |
20090143478 | Richardson et al. | Jun 2009 | A1 |
20090155357 | Muhuri | Jun 2009 | A1 |
20090202634 | Jans et al. | Aug 2009 | A1 |
20090215808 | Yum et al. | Aug 2009 | A1 |
20090232887 | Odidi et al. | Sep 2009 | A1 |
20090253730 | Kumar et al. | Oct 2009 | A1 |
20090258066 | Venkatesh et al. | Oct 2009 | A1 |
20090317355 | Roth et al. | Dec 2009 | A1 |
20090318395 | Schramm et al. | Dec 2009 | A1 |
20100015223 | Cailly-Deufestel et al. | Jan 2010 | A1 |
20100035886 | Cincotta et al. | Feb 2010 | A1 |
20100047345 | Crowley et al. | Feb 2010 | A1 |
20100092553 | Guimberteau et al. | Apr 2010 | A1 |
20100098758 | Bartholomaus et al. | Apr 2010 | A1 |
20100099696 | Soscia et al. | Apr 2010 | A1 |
20100104638 | Dai et al. | Apr 2010 | A1 |
20100151028 | Ashworth et al. | Jun 2010 | A1 |
20100168148 | Wright et al. | Jul 2010 | A1 |
20100172989 | Roth et al. | Jul 2010 | A1 |
20100203129 | Anderson et al. | Aug 2010 | A1 |
20100221322 | Bartholomaus et al. | Sep 2010 | A1 |
20100239667 | Hemmingsen et al. | Sep 2010 | A1 |
20100249045 | Babul | Sep 2010 | A1 |
20100260833 | Bartholomaus et al. | Oct 2010 | A1 |
20100260844 | Scicinski et al. | Oct 2010 | A1 |
20100280047 | Kolter et al. | Nov 2010 | A1 |
20100291205 | Downie et al. | Nov 2010 | A1 |
20100297229 | Sesha | Nov 2010 | A1 |
20100316712 | Nangia et al. | Dec 2010 | A1 |
20110020451 | Bartholomaus et al. | Jan 2011 | A1 |
20110038930 | Barnscheid et al. | Feb 2011 | A1 |
20110077238 | Leech et al. | Mar 2011 | A1 |
20110082214 | Faure et al. | Apr 2011 | A1 |
20110092515 | Qiu et al. | Apr 2011 | A1 |
20110097404 | Oshlack et al. | Apr 2011 | A1 |
20110129535 | Mantelle | Jun 2011 | A1 |
20110135731 | Kao et al. | Jun 2011 | A1 |
20110159100 | Anderson et al. | Jun 2011 | A1 |
20110187017 | Haupts | Aug 2011 | A1 |
20110223244 | Liversidge et al. | Sep 2011 | A1 |
20110245783 | Stinchcomb | Oct 2011 | A1 |
20110262496 | Desai | Oct 2011 | A1 |
20120034171 | Arkenau-Maric et al. | Feb 2012 | A1 |
20120059065 | Barnscheid et al. | Mar 2012 | A1 |
20120065220 | Barnscheid et al. | Mar 2012 | A1 |
20120077879 | Vasanthavada et al. | Mar 2012 | A1 |
20120107250 | Bartholomaus et al. | May 2012 | A1 |
20120108622 | Wright et al. | May 2012 | A1 |
20120135071 | Bartholomaus et al. | May 2012 | A1 |
20120136021 | Barnscheid et al. | May 2012 | A1 |
20120141583 | Mannion et al. | Jun 2012 | A1 |
20120202838 | Ghosh et al. | Aug 2012 | A1 |
20120225901 | Leyendecker et al. | Sep 2012 | A1 |
20120231083 | Carley et al. | Sep 2012 | A1 |
20120251637 | Bartholomaus et al. | Oct 2012 | A1 |
20120277319 | Steigerwald et al. | Nov 2012 | A1 |
20120321716 | Vachon et al. | Dec 2012 | A1 |
20130017262 | Mullen et al. | Jan 2013 | A1 |
20130022654 | Deshmukh et al. | Jan 2013 | A1 |
20130028970 | Schwier et al. | Jan 2013 | A1 |
20130028972 | Schwier et al. | Jan 2013 | A1 |
20130059010 | Herry et al. | Mar 2013 | A1 |
20130090349 | Gei Ler et al. | Apr 2013 | A1 |
20130129825 | Billoet et al. | May 2013 | A1 |
20130129826 | Gei Ler et al. | May 2013 | A1 |
20130171075 | Arkenau-Maric et al. | Jul 2013 | A1 |
20130209557 | Barnscheid et al. | Aug 2013 | A1 |
20130225625 | Barnscheid et al. | Aug 2013 | A1 |
20130251643 | Bartholomäus et al. | Sep 2013 | A1 |
20130289062 | Kumar et al. | Oct 2013 | A1 |
20130303623 | Barnscheid et al. | Nov 2013 | A1 |
20130330409 | Mohammad | Dec 2013 | A1 |
20140010874 | Sackler | Jan 2014 | A1 |
20140034885 | Leech | Feb 2014 | A1 |
20140079780 | Arkenau Maric et al. | Mar 2014 | A1 |
20140080858 | Bartholomäus et al. | Mar 2014 | A1 |
20140080915 | Bartholomäus et al. | Mar 2014 | A1 |
20140094481 | Fleischer et al. | Apr 2014 | A1 |
20140112984 | Arkenau Maric et al. | Apr 2014 | A1 |
20140112989 | Bartholomäus et al. | Apr 2014 | A1 |
20140170079 | Arkenau Maric et al. | Jun 2014 | A1 |
20140186440 | Han et al. | Jul 2014 | A1 |
20140271848 | Guido et al. | Sep 2014 | A1 |
20140275143 | Devarakonda et al. | Sep 2014 | A1 |
20140356426 | Barnscheid et al. | Dec 2014 | A1 |
20140356428 | Barnscheid et al. | Dec 2014 | A1 |
20140378498 | Devarakonda et al. | Dec 2014 | A1 |
20150017250 | Wenig et al. | Jan 2015 | A1 |
20150030677 | Adjei et al. | Jan 2015 | A1 |
20150064250 | Ghebre-Sellassie et al. | Mar 2015 | A1 |
20150079150 | Fischer et al. | Mar 2015 | A1 |
20150118300 | Haswani et al. | Apr 2015 | A1 |
20150118302 | Haswani et al. | Apr 2015 | A1 |
20150118303 | Haswani et al. | Apr 2015 | A1 |
20150190348 | Haksar et al. | Jul 2015 | A1 |
20150313850 | Krishnamurthi et al. | Nov 2015 | A1 |
20150374630 | Arkenau Maric et al. | Dec 2015 | A1 |
20160089439 | Rajagopalan | Mar 2016 | A1 |
20160175256 | Bartholomaeus et al. | Jun 2016 | A1 |
20160184297 | Arkenau-Maric et al. | Jun 2016 | A1 |
20160256456 | Caruso et al. | Sep 2016 | A1 |
20160263037 | Arkenau Maric et al. | Sep 2016 | A1 |
20160346274 | Vaka et al. | Dec 2016 | A1 |
20160361308 | Bartholomaeus et al. | Dec 2016 | A1 |
20160367549 | Bartholomaeus et al. | Dec 2016 | A1 |
20170027886 | Bartholomaeus et al. | Feb 2017 | A1 |
20170071862 | Wening et al. | Mar 2017 | A1 |
Number | Date | Country |
---|---|---|
046994 | Dec 2004 | AR |
045353 | Oct 2005 | AR |
049562 | Aug 2006 | AR |
049839 | Sep 2006 | AR |
053304 | May 2007 | AR |
054222 | Jun 2007 | AR |
054328 | Jun 2007 | AR |
769807 | Mar 2001 | AU |
2003237944 | Dec 2003 | AU |
2003274071 | May 2004 | AU |
2003278133 | May 2004 | AU |
2003279317 | May 2004 | AU |
2004264666 | Feb 2005 | AU |
2004264667 | Feb 2005 | AU |
2004308653 | Apr 2005 | AU |
2005259476 | Jan 2006 | AU |
2005259478 | Jan 2006 | AU |
2006210145 | Aug 2006 | AU |
2006210145 | Aug 2006 | AU |
2009207796 | Jul 2009 | AU |
2009243681 | Nov 2009 | AU |
2009299810 | Apr 2010 | AU |
2006311116 | Jan 2013 | AU |
P10413318 | Oct 2006 | BR |
P10413361 | Oct 2006 | BR |
P10513300 | May 2008 | BR |
P10606145 | Feb 2009 | BR |
0722109 | Nov 1965 | CA |
2082573 | May 1993 | CA |
2577233 | Oct 1997 | CA |
2650637 | Oct 1997 | CA |
2229621 | Mar 1998 | CA |
2317747 | Jul 1999 | CA |
2343234 | Mar 2000 | CA |
2352874 | Jun 2000 | CA |
2414349 | Jan 2002 | CA |
2456322 | Feb 2003 | CA |
2502965 | May 2004 | CA |
2503155 | May 2004 | CA |
2534925 | Feb 2005 | CA |
2534932 | Feb 2005 | CA |
2489855 | Apr 2005 | CA |
2551231 | Jul 2005 | CA |
2572352 | Jan 2006 | CA |
2572491 | Jan 2006 | CA |
2595954 | Jul 2006 | CA |
2229650 | Aug 2006 | CA |
2594713 | Aug 2006 | CA |
2595979 | Aug 2006 | CA |
2625055 | Apr 2007 | CA |
2713128 | Jul 2009 | CA |
2723438 | Nov 2009 | CA |
2595954 | Jan 2011 | CA |
689109 | Oct 1998 | CH |
20162004 | May 2005 | CL |
20172004 | May 2005 | CL |
200403308 | Sep 2005 | CL |
200500952 | Nov 2005 | CL |
200501624 | Dec 2005 | CL |
200501625 | Jun 2006 | CL |
424-2013 | Mar 2012 | CL |
437-2013 | Mar 2012 | CL |
87102755 | Oct 1987 | CN |
1135175 | Nov 1996 | CN |
1473562 | Feb 2004 | CN |
1980643 | Apr 2005 | CN |
101010071 | Jun 2005 | CN |
1671475 | Sep 2005 | CN |
101022787 | Jan 2006 | CN |
1863513 | Nov 2006 | CN |
1863514 | Nov 2006 | CN |
1917862 | Feb 2007 | CN |
1942174 | Apr 2007 | CN |
101011395 | Aug 2007 | CN |
101027044 | Aug 2007 | CN |
101057849 | Oct 2007 | CN |
101484135 | Nov 2007 | CN |
101091721 | Dec 2007 | CN |
101111232 | Jan 2008 | CN |
101175482 | Feb 2008 | CN |
101370485 | Feb 2009 | CN |
101394839 | Mar 2009 | CN |
101578096 | Nov 2009 | CN |
101652128 | Feb 2010 | CN |
102413835 | Apr 2012 | CN |
102821757 | Dec 2012 | CN |
2530563 | Jan 1977 | DE |
4229085 | Mar 1994 | DE |
4309528 | Sep 1994 | DE |
4446470 | Jun 1996 | DE |
69400215 | Oct 1996 | DE |
19522899 | Dec 1996 | DE |
2808505 | Jan 1997 | DE |
19753534 | Jun 1999 | DE |
19800689 | Jul 1999 | DE |
19800698 | Jul 1999 | DE |
19822979 | Dec 1999 | DE |
69229881 | Dec 1999 | DE |
19855440 | Jun 2000 | DE |
19856147 | Jun 2000 | DE |
19940740 | Mar 2001 | DE |
19960494 | Jun 2001 | DE |
10036400 | Jun 2002 | DE |
69429710 | Aug 2002 | DE |
10250083 | Dec 2003 | DE |
10250084 | May 2004 | DE |
10250087 | May 2004 | DE |
10250088 | May 2004 | DE |
10336400 | Mar 2005 | DE |
10361596 | Sep 2005 | DE |
102004019916 | Nov 2005 | DE |
102004020220 | Nov 2005 | DE |
102004032049 | Jan 2006 | DE |
102004032051 | Jan 2006 | DE |
102004032103 | Jan 2006 | DE |
102005005446 | Aug 2006 | DE |
102005005449 | Aug 2006 | DE |
102007011485 | Sep 2008 | DE |
1658055 | Jul 2007 | DK |
1658054 | Oct 2007 | DK |
1515702 | Jan 2009 | DK |
SP066345 | Aug 2006 | EC |
0008131 | Feb 1980 | EP |
0043254 | Jan 1982 | EP |
0008131 | Dec 1982 | EP |
0177893 | Apr 1986 | EP |
0216453 | Apr 1987 | EP |
0226061 | Jun 1987 | EP |
0228417 | Jul 1987 | EP |
0229652 | Jul 1987 | EP |
0232877 | Aug 1987 | EP |
0239973 | Oct 1987 | EP |
0240906 | Oct 1987 | EP |
0261616 | Mar 1988 | EP |
0261616 | Mar 1988 | EP |
0270954 | Jun 1988 | EP |
0277289 | Aug 1988 | EP |
0293066 | Nov 1988 | EP |
0328775 | Aug 1989 | EP |
0358105 | Mar 1990 | EP |
0228417 | Sep 1990 | EP |
0229652 | Oct 1991 | EP |
0477135 | Mar 1992 | EP |
0277289 | Apr 1992 | EP |
0293066 | Apr 1993 | EP |
0270954 | May 1993 | EP |
0544144 | Jun 1993 | EP |
0583726 | Feb 1994 | EP |
0598606 | May 1994 | EP |
0636370 | Feb 1995 | EP |
0641195 | Mar 1995 | EP |
0647448 | Apr 1995 | EP |
0654263 | May 1995 | EP |
0661045 | Jul 1995 | EP |
0675710 | Oct 1995 | EP |
0682945 | Nov 1995 | EP |
0693475 | Jan 1996 | EP |
0820693 | Jan 1996 | EP |
0696598 | Feb 1996 | EP |
0216453 | Mar 1996 | EP |
0583726 | Nov 1996 | EP |
0756480 | Feb 1997 | EP |
0760654 | Mar 1997 | EP |
0761211 | Mar 1997 | EP |
0780369 | Jun 1997 | EP |
0785775 | Jul 1997 | EP |
0809488 | Dec 1997 | EP |
0820698 | Jan 1998 | EP |
0820753 | Jan 1998 | EP |
0857062 | Aug 1998 | EP |
0864324 | Sep 1998 | EP |
0864326 | Sep 1998 | EP |
0598606 | Jun 1999 | EP |
0675710 | Aug 1999 | EP |
0980894 | Feb 2000 | EP |
0988106 | Mar 2000 | EP |
1014941 | Jul 2000 | EP |
1070504 | Jan 2001 | EP |
1127871 | Aug 2001 | EP |
1138321 | Oct 2001 | EP |
1152026 | Nov 2001 | EP |
1138321 | Jan 2002 | EP |
1166776 | Jan 2002 | EP |
1201233 | May 2002 | EP |
0661045 | Jul 2002 | EP |
1250045 | Oct 2002 | EP |
1251120 | Oct 2002 | EP |
1293127 | Mar 2003 | EP |
1293195 | Mar 2003 | EP |
1293196 | Mar 2003 | EP |
1127871 | Sep 2003 | EP |
1201233 | Dec 2004 | EP |
1251120 | Dec 2004 | EP |
1492506 | Jan 2005 | EP |
1166776 | Feb 2005 | EP |
1502592 | Feb 2005 | EP |
1658054 | Feb 2005 | EP |
1658055 | Feb 2005 | EP |
1515702 | Mar 2005 | EP |
1527775 | Apr 2005 | EP |
1558221 | Aug 2005 | EP |
1558257 | Aug 2005 | EP |
1560585 | Aug 2005 | EP |
1611880 | Jan 2006 | EP |
1658054 | May 2006 | EP |
1138321 | Jan 2007 | EP |
1740161 | Jan 2007 | EP |
1658055 | Mar 2007 | EP |
1765303 | Mar 2007 | EP |
1786403 | May 2007 | EP |
1558221 | Jun 2007 | EP |
1813276 | Aug 2007 | EP |
1842533 | Oct 2007 | EP |
1845955 | Oct 2007 | EP |
1845956 | Oct 2007 | EP |
1859789 | Nov 2007 | EP |
1980245 | Oct 2008 | EP |
1897545 | Dec 2008 | EP |
2131830 | Dec 2009 | EP |
2246063 | Nov 2010 | EP |
2249811 | Nov 2010 | EP |
2273983 | Jan 2011 | EP |
2606879 | Dec 2011 | EP |
2402004 | Jan 2012 | EP |
2336571 | Dec 2004 | ES |
2260042 | Nov 2006 | ES |
2285497 | Nov 2007 | ES |
2288621 | Jan 2008 | ES |
2289542 | Feb 2008 | ES |
2315505 | Apr 2009 | ES |
1147210 | Apr 1969 | GB |
1567727 | May 1980 | GB |
2047095 | Nov 1980 | GB |
2057878 | Apr 1981 | GB |
2238478 | Jun 1991 | GB |
20070456 | Jun 2007 | HR |
20070272 | Nov 2007 | HR |
S36-022895 | Nov 1961 | JP |
S55162714 | Dec 1980 | JP |
S5659708 | May 1981 | JP |
S56169622 | Dec 1981 | JP |
S62240061 | Oct 1987 | JP |
H0249719 | Feb 1990 | JP |
03-501737 | Apr 1991 | JP |
H0517566 | Jan 1993 | JP |
H06507645 | Sep 1994 | JP |
08053331 | Feb 1996 | JP |
8-505076 | Jun 1996 | JP |
H09508410 | Aug 1997 | JP |
H1057450 | Mar 1998 | JP |
H10251149 | Sep 1998 | JP |
2000513333 | Oct 2000 | JP |
2002524150 | Aug 2002 | JP |
2002-275175 | Sep 2002 | JP |
2003113119 | Apr 2003 | JP |
2003125706 | May 2003 | JP |
2003526598 | Sep 2003 | JP |
2004143071 | May 2004 | JP |
2004530676 | Oct 2004 | JP |
2005506965 | Mar 2005 | JP |
2005515152 | May 2005 | JP |
2005534664 | Nov 2005 | JP |
2006506374 | Feb 2006 | JP |
2007501201 | Jan 2007 | JP |
2007501202 | Jan 2007 | JP |
2007513147 | May 2007 | JP |
2007533692 | Nov 2007 | JP |
2008024603 | Feb 2008 | JP |
2008504327 | Feb 2008 | JP |
2008528654 | Jul 2008 | JP |
2009523833 | Jun 2009 | JP |
2009524626 | Jul 2009 | JP |
2009531453 | Sep 2009 | JP |
2009536927 | Oct 2009 | JP |
2009537456 | Oct 2009 | JP |
2010505949 | Feb 2010 | JP |
2010527285 | Aug 2010 | JP |
2010534204 | Nov 2010 | JP |
2011504455 | Feb 2011 | JP |
2011506493 | Mar 2011 | JP |
2011510034 | Mar 2011 | JP |
WO 2011059074 | May 2011 | JP |
2012515735 | Jul 2012 | JP |
2012528845 | Nov 2012 | JP |
2013523804 | Jun 2013 | JP |
2013155124 | Aug 2013 | JP |
2013536810 | Sep 2013 | JP |
2014505736 | Mar 2014 | JP |
2014528437 | Oct 2014 | JP |
6085307 | Feb 2017 | JP |
2013523780 | Jun 2017 | JP |
1020060069832 | Jun 2006 | KR |
20070039041 | Apr 2007 | KR |
20070111510 | Nov 2007 | KR |
20090085312 | Aug 2009 | KR |
20100111303 | Oct 2010 | KR |
20110016921 | Feb 2011 | KR |
2007000008 | Mar 2007 | MX |
2007000009 | Mar 2007 | MX |
2007009393 | Aug 2007 | MX |
2010008138 | Aug 2010 | MX |
2010012039 | Nov 2010 | MX |
20061054 | Mar 2006 | NO |
20070578 | Jan 2007 | NO |
20074412 | Nov 2007 | NO |
528302 | Feb 2007 | NZ |
1699440 | Dec 2004 | PT |
1658054 | May 2006 | PT |
1658055 | Jul 2007 | PT |
1515702 | Dec 2008 | PT |
2131244 | Jun 1999 | RU |
2198197 | Feb 2003 | RU |
2220715 | Jan 2004 | RU |
2328275 | May 2004 | RU |
2396944 | Jul 2004 | RU |
2326654 | Sep 2005 | RU |
2339365 | Dec 2007 | RU |
2354357 | Dec 2007 | RU |
2007103712 | Sep 2008 | RU |
2007103707 | Nov 2008 | RU |
2007132975 | Apr 2009 | RU |
2567723 | Nov 2015 | RU |
1515702 | Apr 2009 | SI |
1699440 | Nov 2009 | SI |
10612003 | Jan 2004 | SK |
1759445 | Sep 1992 | SU |
1254634 | May 2006 | TW |
WO 1980000841 | May 1980 | WO |
WO 1989005624 | Jun 1989 | WO |
WO 1990003776 | Apr 1990 | WO |
WO 1993006723 | Apr 1993 | WO |
WO 9310765 | Jun 1993 | WO |
WO 1993010758 | Jun 1993 | WO |
WO 1993011749 | Jun 1993 | WO |
WO 1993023017 | Nov 1993 | WO |
WO 1994006414 | Mar 1994 | WO |
WO 1994008567 | Apr 1994 | WO |
WO 1995017174 | Jun 1995 | WO |
WO 1995020947 | Aug 1995 | WO |
WO 1995022319 | Aug 1995 | WO |
WO 1995030422 | Nov 1995 | WO |
WO 1996000066 | Jan 1996 | WO |
WO 1996003979 | Feb 1996 | WO |
WO 1996014058 | May 1996 | WO |
WO 1997000673 | Jan 1997 | WO |
WO 1997033566 | Sep 1997 | WO |
WO 1997049384 | Dec 1997 | WO |
WO 1998035655 | Feb 1998 | WO |
WO 1998020073 | May 1998 | WO |
WO 1998028698 | Jul 1998 | WO |
WO 1998035655 | Aug 1998 | WO |
WO 1998051758 | Nov 1998 | WO |
WO 1999012864 | Mar 1999 | WO |
WO 1999032120 | Jul 1999 | WO |
WO 1999044591 | Sep 1999 | WO |
WO 1999045887 | Sep 1999 | WO |
WO 1999048481 | Sep 1999 | WO |
WO 0015261 | Mar 2000 | WO |
WO 2000013647 | Mar 2000 | WO |
WO 2000033835 | Jun 2000 | WO |
WO 2000040205 | Jul 2000 | WO |
WO 2001008661 | Feb 2001 | WO |
WO 2001012236 | Feb 2001 | WO |
WO 2001015667 | Mar 2001 | WO |
WO 2001052651 | Jul 2001 | WO |
WO 2001058451 | Aug 2001 | WO |
WO 2001097783 | Dec 2001 | WO |
WO 2002026061 | Apr 2002 | WO |
WO 2002026262 | Apr 2002 | WO |
WO 2002026928 | Apr 2002 | WO |
WO 2002635991 | May 2002 | WO |
WO 2002071860 | Sep 2002 | WO |
WO 2002088217 | Nov 2002 | WO |
WO 2002094254 | Nov 2002 | WO |
WO 2003006723 | Jan 2003 | WO |
WO 2003007802 | Jan 2003 | WO |
WO 2003013433 | Feb 2003 | WO |
WO 2003013476 | Feb 2003 | WO |
WO 2003013479 | Feb 2003 | WO |
WO 2003013538 | Feb 2003 | WO |
WO 2003015531 | Feb 2003 | WO |
WO 2003018015 | Mar 2003 | WO |
WO 2003024426 | Mar 2003 | WO |
WO 2003024430 | Mar 2003 | WO |
WO 2003026624 | Apr 2003 | WO |
WO 2003026743 | Apr 2003 | WO |
WO 2003028698 | Apr 2003 | WO |
WO 2003028990 | Apr 2003 | WO |
WO 2003031546 | Apr 2003 | WO |
WO 2003035029 | May 2003 | WO |
WO 2003035053 | May 2003 | WO |
WO 2003035054 | May 2003 | WO |
WO 2003035177 | May 2003 | WO |
WO 2003039561 | May 2003 | WO |
WO 2003049689 | Jun 2003 | WO |
WO 2003053417 | Jul 2003 | WO |
WO 2003068392 | Aug 2003 | WO |
WO 2003070191 | Aug 2003 | WO |
WO 2003092648 | Nov 2003 | WO |
WO 2003094812 | Nov 2003 | WO |
WO 2003105808 | Dec 2003 | WO |
WO 2004004693 | Jan 2004 | WO |
WO 2004043967 | Feb 2004 | WO |
WO 2004026262 | Apr 2004 | WO |
WO 2004026263 | Apr 2004 | WO |
WO 2004026280 | Apr 2004 | WO |
WO 2004037222 | May 2004 | WO |
WO 2004037230 | May 2004 | WO |
WO 2004037259 | May 2004 | WO |
WO 2004037260 | May 2004 | WO |
WO 2004043449 | May 2004 | WO |
WO 2004066910 | Aug 2004 | WO |
WO 2004078212 | Sep 2004 | WO |
WO 2004084869 | Oct 2004 | WO |
WO 2004093801 | Nov 2004 | WO |
WO 2004093819 | Nov 2004 | WO |
WO 2004098567 | Nov 2004 | WO |
WO 2004100894 | Nov 2004 | WO |
WO 2005002553 | Jan 2005 | WO |
WO 2005016313 | Feb 2005 | WO |
WO 2005016314 | Feb 2005 | WO |
WO 2005053587 | Mar 2005 | WO |
WO 2005053656 | Mar 2005 | WO |
WO 2005055981 | Mar 2005 | WO |
WO 2005032524 | Apr 2005 | WO |
WO 2005041968 | May 2005 | WO |
WO 2005060942 | Jul 2005 | WO |
WO 2005063214 | Jul 2005 | WO |
WO 2005065646 | Jul 2005 | WO |
WO 2005066183 | Jul 2005 | WO |
WO 2005079760 | Sep 2005 | WO |
WO 2005102286 | Nov 2005 | WO |
WO 2005102294 | Nov 2005 | WO |
WO 2005102294 | Nov 2005 | WO |
WO 2005105036 | Nov 2005 | WO |
WO 2006002883 | Jan 2006 | WO |
WO 2006002884 | Jan 2006 | WO |
WO 2006002886 | Jan 2006 | WO |
WO 2006002884 | Mar 2006 | WO |
WO 2006024881 | Mar 2006 | WO |
WO 2006039692 | Apr 2006 | WO |
WO 2006058249 | Jun 2006 | WO |
WO 2006082097 | Aug 2006 | WO |
WO 2006082099 | Aug 2006 | WO |
WO 2006105615 | Oct 2006 | WO |
WO 2006128471 | Dec 2006 | WO |
WO 2007005716 | Jan 2007 | WO |
WO 2007008752 | Jan 2007 | WO |
WO 2007014061 | Feb 2007 | WO |
WO 2007048233 | May 2007 | WO |
WO 2007053698 | May 2007 | WO |
WO 2007085024 | Jul 2007 | WO |
WO 2007085024 | Jul 2007 | WO |
WO 2007093642 | Aug 2007 | WO |
WO 2007103105 | Sep 2007 | WO |
WO 2007103286 | Sep 2007 | WO |
WO 2007112273 | Oct 2007 | WO |
WO 2007112285 | Oct 2007 | WO |
WO 2007112286 | Oct 2007 | WO |
WO 2007131357 | Nov 2007 | WO |
WO 2007138466 | Dec 2007 | WO |
WO 2007149438 | Dec 2007 | WO |
WO 2008023261 | Feb 2008 | WO |
WO 2008033523 | Mar 2008 | WO |
WO 2008045060 | Apr 2008 | WO |
WO 2008069941 | Jun 2008 | WO |
WO 2008086804 | Jul 2008 | WO |
WO 2008107149 | Sep 2008 | WO |
WO 2008107149 | Sep 2008 | WO |
WO 2008109462 | Sep 2008 | WO |
WO 2008132707 | Nov 2008 | WO |
WO 2008142627 | Nov 2008 | WO |
WO 2008148798 | Dec 2008 | WO |
WO 2009005803 | Jan 2009 | WO |
WO 2009014534 | Jan 2009 | WO |
WO 2009034541 | Mar 2009 | WO |
WO 2009034541 | Mar 2009 | WO |
WO 2009034541 | Mar 2009 | WO |
WO 2009035474 | Mar 2009 | WO |
WO 2009051819 | Apr 2009 | WO |
WO 2009076764 | Jun 2009 | WO |
WO 2009092601 | Jul 2009 | WO |
WO 2009110005 | Sep 2009 | WO |
WO 2009112273 | Sep 2009 | WO |
WO 2009135680 | Nov 2009 | WO |
WO 2010022193 | Feb 2010 | WO |
WO 2010037854 | Apr 2010 | WO |
WO 2010044842 | Apr 2010 | WO |
WO 2010057036 | May 2010 | WO |
WO 2010066034 | Jun 2010 | WO |
WO 2010069050 | Jun 2010 | WO |
WO 2010083843 | Jul 2010 | WO |
WO 2010083894 | Jul 2010 | WO |
WO 2010088911 | Aug 2010 | WO |
WO 2010105672 | Sep 2010 | WO |
WO 2010140007 | Dec 2010 | WO |
WO 2010140007 | Dec 2010 | WO |
WO 2010141505 | Dec 2010 | WO |
WO 2010149169 | Dec 2010 | WO |
WO 2011008298 | Jan 2011 | WO |
WO 2011009602 | Jan 2011 | WO |
WO 2011009603 | Jan 2011 | WO |
WO 2011009604 | Jan 2011 | WO |
WO 2011095314 | Aug 2011 | WO |
WO 2011095314 | Aug 2011 | WO |
WO 2011124953 | Oct 2011 | WO |
WO 2011124953 | Oct 2011 | WO |
WO 2011128630 | Oct 2011 | WO |
WO 2011141241 | Nov 2011 | WO |
WO 2011154414 | Dec 2011 | WO |
WO 2012028317 | Mar 2012 | WO |
WO 2012028318 | Mar 2012 | WO |
WO 2012028319 | Mar 2012 | WO |
WO 2012061779 | May 2012 | WO |
WO 2012076907 | Jun 2012 | WO |
WO 2012085657 | Jun 2012 | WO |
WO 2012119727 | Sep 2012 | WO |
WO 2012166474 | Dec 2012 | WO |
WO 2013003845 | Jan 2013 | WO |
WO 2013017234 | Feb 2013 | WO |
WO 2013017242 | Feb 2013 | WO |
WO 2013025449 | Mar 2013 | WO |
WO 2013030177 | Mar 2013 | WO |
WO 2013050539 | Apr 2013 | WO |
WO 2013072395 | May 2013 | WO |
WO 2013084059 | Jun 2013 | WO |
WO 2013127830 | Sep 2013 | WO |
WO 2013127831 | Sep 2013 | WO |
WO 2013128276 | Sep 2013 | WO |
WO 2013156453 | Oct 2013 | WO |
WO 2013158810 | Oct 2013 | WO |
WO 2013167735 | Nov 2013 | WO |
WO 2014032741 | Mar 2014 | WO |
WO 2014059512 | Apr 2014 | WO |
WO 2014140231 | Sep 2014 | WO |
WO 2014190440 | Dec 2014 | WO |
WO 2014191396 | Dec 2014 | WO |
WO 2014191397 | Dec 2014 | WO |
WO 2015004245 | Jan 2015 | WO |
WO 2015023675 | Feb 2015 | WO |
WO 2015048597 | Apr 2015 | WO |
WO 2015103379 | Jul 2015 | WO |
WO 2015120201 | Aug 2015 | WO |
WO 2017178658 | Oct 2017 | WO |
Entry |
---|
Vezin, W.R., et al., “Adjustment of precompression force to reduce mixing-time dependence of tablet tensile strength”, J. Pharm. Pharmacol., 1983, pp. 555-558 (Year: 1983). |
Extended European Search Report for Application No. EP 16183922.0-1460, dated Oct. 31, 2016. |
Fathima, N. et al. “Drug-excipient interaction and its importance in dosage form development,” Journal of Applied Pharmaceutical Science 01 (06); 2011, pp. 66-71. |
Meyer et al., “Awareness Topic: Mitigating the Risks of Ethanol Induced Dose Dumping from Oral Sustained/Controlled Release Dosage Forms,” FDA ACPS Meeting, Oct. 2005, p. 1-4. |
Remington, Chapter 45, pp. 996-1035. |
Schilling, et al., “Novel application of hot-melt extrusion for the preparation of monolithic matrices containing enteric-coated particles.” International Journal of Pharmaceutics 400 (2010) 34-31. |
Starch 1500, Partially Pregelatinized Maize Starch, technical data from Colorcon, Feb. 2016, 6 pages. |
Decision of the United States District Court for the Southern District of New York, in In re Endo Pharmaceuticals Inc. and Grünenthal GmbH v. Amneal Pharmaceuticals, LLC et al., Findings of Fact and Conclusions of Law, District Judge Thomas P. Griesa, New York, New York, Jan. 14, 2015. |
Decision of the United States District Court for the Southern District of New York, in In re Oxycontin Antitrust Litigation, Purdue Pharma LP v. Teva Pharmaceuticals, Findings of Fact and Conclusions of Law, District Judge Sidney H. Stein, New York, New York, Jan. 14, 2014. |
U.S. Court of Appeals, Federal Circuit, Purdue Pharma L.P. v. Epic Pharma, LLC, 117 USPQ2d 1733 (Fed. Cir. 2016). |
Al-Angari, A. et al. “The compaction properties of polyethylene glycols,” J Pharm. Pharmacol. (1985) 37:151-153. |
Al-Nasassrah et al. , “The effect of an increase in chain length on the mechanical properties of polyethylene glycols,” European Journal of Pharmaceutics and Biopharmaceutics 46 (1998) 31-38. |
Anderson, S.L. et al., “A Model for Antiplasticization in Polystyrene,” Macromolecules 28:2944-54 (1995). |
Back, D.M.et al., “Ethylene Oxide Polymers”, in Kirk-Othmer Encyclopedia of Chemical Technology. 2000, John Wiley & Sons, Inc., vol. 10, 673-696. |
Bailey, F.E., et al., “High Molecular Weight Polymers of Ethylene Oxide” Solution Properties Industrial and Engineering Chemistry, 1958. 50(1): 8-11. |
Balogh, E., “Tastes In and Tastes Of Paprika,” in Taste: Proceedings of the Oxford Symposium on Food and Cookery 28 (Tom Jaine Ed.) 1988, pp. 25-40. |
Baumann, T., “Pain Management,” Pharmacotherapy: A Pathophysiologic Approach (J.T. DiPiro et al. eds., McGraw-Hill 4th ed. 1999), Ch. 56, 1014-1026. |
Baumrucker, S.J., “OxyContin, the Media, and Law Enforcement”, American Journal of Hospice & Palliative Care, 18:3 (May/Jun. 2001), 154-156. |
Choi, S., et al., “Development of a Directly Compressible Poly(Ethylene Oxide) Matrix for the Sustained-Release of Dihydrocodeine Bitartrate”, Drug Development and Industrial Pharmacy, vol. 29, No. 10, pp. 1045-1052, 2003. |
Choi, S., et al., “Hydrophilic Matrix Formulations of Dihydrocodeine Bitartrate with Polyethylene Oxide by Direct Compression,” Proceedings of the 29th Annual Meeting of the Controlled Release Society, in collaboration with the Korea Society for Biomaterials, Minneapolis, 1st Edition, 2002, 984-985. |
Ciccone, P. E., “Attempted Abuse of Concerta,” Letters to the Editor, J. Am. Acad. Child Adolesc. Psychiatry, 41:7 (Jul. 2002). |
Controversies in ADHD: A Breakfast Symposium—Concerta. |
Crowley, M. et al., Pharmaceutical Applications of Hot-Melt Extrusion: Part I. Drug Dev. & Indus. Pharmacy (2007) 33:909-926. |
Crowley, M. et al., “Properties of Hot-Melt Extruded CPM Tablets Using Hydrophilic Polymers,” poster presentation, (2000). |
Crowley, M., “Physicochemical and Mechanical Characterization of Hot-Melt Extruded Dosage Forms.” Dissertation presented to the Faculty of the Graduate School of The University of Texas at Austin. (May 2003). |
Crowley, M., et al., “Evaluation of a Hot Melt Extrusion Technique using a Hydrophilic Thermal Polymer and Retardant for the Preparation of Extended Release Chlorpheniramine Maleate Tablets,” in American Association of Pharmaceutical Scientists: Indianapolis, IN (2000). |
CROWLEY0000001-CROWLEY0000127. |
Davies, N. “Sustained Release and Enteric Coated NSAIDs: Are They Really GI Safe?”J. Pharm. & Pharmaceut. Sci., 2(1):5-14, 1999. |
Declaration of Dr. James W. McGinity, dated Oct. 28, 2009; online, retrieved from: http://www.accessdata.fda.gov/dmgsatfda_docs/labeV2013/021121s032lbl.pdf. |
Dimitrov, M, et al., “Study of Verapamil hydrochloride release from compressed hydrophilic Polyox-Wsr tablets.” Int'l J Pharmaceutics (1999) 189:105-111. |
Dittmer, D.K., et al., “Glue-Sniffing Neuropathies,” Canadian Family Physician 39:1965-1971 (1993). |
Donnelly, C.L., “ADHD Medications: Past and Future,” Behavioral Health Management, May/Jun. 2002, 28 & 30. |
Dow, “Material Safety Data Sheet: POLYOX(TM) WSR 30” (effective date: Sep. 18, 2001). |
Dow, “POLYOX Water-Soluble Resins: Degradation of Water-Soluble Resins,” Technical Data (Oct. 2002). |
Drug Bank “Oxymorphone,” 2015; online, available at: www.dmgbank.ca/chugs/db01192 printed Jul. 1, 2015. |
Endo Pharmaceuticals Inc. v. Teva Pharmaceuticals USA, Inc. (S.D.N.Y 2015)—Redacted Version. |
FDA News Release, “FDA approves abuse-deterrent labeling for reformulated OxyContin,” Apr. 16, 2013, available at http://www.fda.gov/NewsEvents/Newsroom/Press.Announcements/ucm348252.htm. |
FDA, “Notice of Determination that OxyContin Drug Products Covered by NDA 20-553 Were Withdrawn From Sale for Reasons of Safety or Effectiveness.” Federal Register, vol. 78, No. 75, Apr. 18, 2013, 23273-23274. |
Final Draft Labeling for Concerta Extended-Release Tablets Attachment to Approval Letter (2000); available at: http://www.accessdata.fda.gov/drugsatfda_docs/label/2000/21121lbl.pdf. |
Greenhill, L.L., et al., “Practice Parameter for the Use of Stimulant Medications in the Treatment of Children, Adolescents, and Adults,” J. Am. Acad. Child Adolesc. Psychiatry, 41:2 Supplement, 26S-49S (Feb. 2002). |
Griffith, D., “Potential new ADHD drug creating lots of big hopes,” Sacramento Bee (California), Oct. 30, 2002. |
Huang, H. et al., “Preparation of Controlled Release Oral Dosage Forms by Low Temperature Melt Extrusion,” AAPS PharmSci. 2000 2(S1). |
Jaffe, S.L., “Failed Attempts At Intranasal Abuse of Concerta,” Letters to the Editor, J. Am. Acad. Child Adolesc. Psychiatry, 41:1 (Jan. 2002). |
Jannsen Pharmaceuticals, Inc. Concerta Labeling Revisioins, Dec. 12, 2013; online, retrieved from: http://www.accessdata.fda.gov/dmgsatfda_docs/labeV2013/021121s032lbl.pdf. |
Joint Claim Construction and Prehearing Statement, dated Jul. 11, 2014. Janssen Pharmaceuticals, Inc. and Grünenthal GMBH v. Actavis Elizabeth LLC and Alkem Laboratories Limited, Civil Action No. 2:13-cv-04507 CCC-MF (D.N.J.), Janssen Pharmaceuticals, Inc. and Grünenthal GMBH v. Roxane Laboratories, Inc., Civil Action No. 2:13-cv-06929 CCC-MF (D.N.J.), and Janssen Pharmaceuticals, Inc. and Grünenthal GMBH v. Alkem Laboratories Limited, Civil Action No. 2:13-cv-07803 CCC-MF (D.N.J.). |
Kibbe, Coloring Agents, in Handbook of Pharmaceutical Excipients (3d ed. 2000). |
Kidokoro, M. et al., “Properties of Tablets Containing Granulations of Ibuprofen and Acrylic Copolymers Prepared by Thermal Processes,” Pharm Dev. and Tech. , 6:263-275 (2001). |
Kinjo, N. et al., “Antiplasticization in the Slightly Plasticized Poly(vinyl chloride),” Polymer Journal 4(2):143-153 (1973). |
Larhib, H. et al., “Compressing polyethyelene glycols: the effect of compression pressure and speed,” Int 'l J Pharmaceutics (1997) 147: 199-205. |
Lieberman, H., et al., Pharmaceutical Dosage Forms: Tablets, vol. 2, Ch. 5: Granulation Technology and Tablet Characterization (1990), Table of contents and 245-348. |
Lyons et al., “Twitch Interpolation in the Assessment of the Maximum Force-Generating Capacity of the Jaw-Closing Muscles in Man,” Arch. Oral. Biol. 41:12, 1161-1168 (1996). |
Makki, A, et al., Eds., A Dictionary of American Idioms, 4th Ed. Barron's, New York (2004), 342-343. |
Markovitz, H., et al. “Calculations Of Entanglement Coupling Spacings In Linear Polymers.” Journal of Physical Chemistry, 1962. 66(8): 1567-1568. |
McCrum, N., et al., Principles of Polymer Engineering. 2nd ed., New York: Oxford University Press. 447(1997), Chapter 7, 296-351. |
McGinity, J.W. et al., “Melt-Extruded Controlled-Release Dosage Forms” in Pharmaceutical Extrusion Technology, Ghebre-Sellassie, I. and Martin, C., Eds., Marcel Dekker, Inc., New York, 2003, Chapter 10, 183-208. |
McQuay, H. et a. “Methods of Therapeutic Trials,” Textbook of Pain 1125-1138 (P.D. Wall & R. Melzack eds., Elsevier 4th ed. 1999), Table of Contents and 1125-1138. |
Miura et al., “Comparison of Maximum Bite Force and Dentate Status Between Healthy and Frail Elderly Persons,” J. Oral Rehabilitation, vol. 28 (2001), pp. 592-595. |
Miyagawa, Y. et al., “Controlled-release of diclofenac sodium from wax matrix granulate,” Int 'l J. Pharmaceutics (1996) 138:215-224. |
National Drug Intelligence Center Information Bulletin “OxyContin Diversion and Abuse” Jan. 2001. |
Payne, H. et al., Denatonium Benzoate as a Bitter Aversive Additive in Ethylene Glycol and Methanol-Based Automotive Products, SAE Technical Paper 930589, Abstract (1993). |
Pilpel, N., et al. “The effect of temperature on the tensile strength and disintegration of paracetamol and oxytetracylcine tablets,” J Pharm Pharmac., 29:389-392 (1977). |
POLYOX Water-Soluble Resins NF in Pharmaceutical Applications, Dow Chemical Company, Aug. 2002. |
Purdue Pharma LP Material Safety Data Sheet, OxyContin Tablets, 10 mg, 15 mg, 20 mg, 30 mg, 40 mg, 60 mg, Version Sep. 16, 2010; available at www.purduephruma.com/msdss/oxycontin_msds.pdf. |
Rauwendaal, Chris, PHD, Responsive Expert Report of Chris Rauwendaal, Ph.D. Regarding Expert Report of Michael M. Crowley, Ph.D., dated Jul. 17, 2015. |
Repka, M. et al. Pharmaceutical Applications of Hot-Melt Extrusion: Part II. Drug Dev. & Indus. Pharmacy (2007) 33:1043-1057. |
Saravanan, M. et al., “The Effect of Tablet Formulation and Hardness on in Vitro Release of Cephalexin from Eudragit L100 Based Extended Release Tablets,” Biol. Pharm. Bull. (2002) 25(4):541-545. |
Seitz, J.A.; et al., “Evaluation of the Physical Properties of Compressed Tablets 1: Tablet Hardness and Friability,” J. of Pharm. Sci. , 54:1353-1357 (1965). |
Shah, et al., “Some Effects of Humidity and Heat on the Tableting Properties of Microcrystalline Cellulose Formulations 1,” J. of Pharm. Sci., 57:181-182 (1967). |
Singhal, et al., Handbook of Indices of Food Quality and Authenticity (1997), “Capsicum” p. 398-299. |
Smith, K.L. et al. “High Molecular Weight Polymers of Ethylene Oxide—Plastic Properties.” Industrial and Engineering Chemistry, 1958. 50(1): 12-16. |
Tapentadol Pre-Review Report, Expert Committee on Drug Dependency Thirty-Fifth Meeting Hammamet, Tunisia, Jun. 4-8, 2012, available at http ://www.who.int/medicines/areas/quality_safety/5.2Tapentadolpre-review.pdf. |
Tiwari, D., et al., “Evaluation of polyoxyethylene homopolymers for buccal bioadhesive drug delivery device formulations.” AAPS Pharmsci, 1999. 1(3): Article 13. |
Wilkins, J.N., “Pharmacotherapy of Schizophrenia Patients with Comorbid Substance Abuse,” Schizophrenia Bulletin, 23:215-228 (1997). |
World Health Org., Cancer Pain Relief With a Guide to Opioid Availability (2d ed. 1996). |
Yin, T.P., et al., “Viscoelastic Properties Of Polyethylene Oxide In Rubber-Like State.” Journal of Physical Chemistry, 1961. 65(3): 534-538. |
Zacny, J. et al. Drug & Alcohol Dependence (2003) 69:215-232. |
Zhang, F., “Hot-Melt Extrusion as a Novel Technology to Prepare Sustained-Release Dosage Forms,” Dissertation University of Texas at Austin, Dec. 1999. |
2.9 Methoden der pharmazeutischen Technologie, European Pharmacopeia, 143-144, 1997. (Full English translation attached). |
Albertini, B. “New spray congealing atomizer for the microencapsulation of highly concentrated solid and liquid substances” European Journal of Pharmaceutics and Biopharmaceutics 69 (2008) 348-357. |
Almeida, A. et al., Ethylene vinyl acetate as matrix for oral sustained release dosage forms produced via hot-melt extrusion, European Journal of Pharmaceutics and Biopharmaceutics 77 (2011) 297-305. |
Almeida, A. et al., Sustained release from hot-melt extruded matrices based on ethylene vinyl acetate and polyethylene oxide, European Journal of Pharmaceutics and Biopharmaceutics 82 (2012) 526-533. |
Andre et al., “O-Demethylation of Opiod Derivatives With Methane Sulfonic Acid/Methoinine: Application to the Synthesis of Naloxone and Analogues” Synthetic Comm. 22(16), p. 2313-2327, 1992. |
Apicella A.et al., Biomaterials, vol. 14, No. 2, pp. 83-90, 1993. |
Application of a modelling system in the formulation of extended release hydrophilic matrices, Reprinted from Pharmaceutical Technology Europe, Jul. 2006. |
Application of Opadry II, complete film coating system, on metformin HCI extended release matrices containing Polyox water soluble resin, Colorcon Apr. 2009. |
Arnold C., “Teen Abuse of Painkiller OxyContin on the Rise,” www.npr.org, Dec. 19, 2005. |
Augustine, R.L., Catalytic Hydrogenation of a, B-Unsaturated Ketones. III The Effect of Quantity and Type of Catalysts, J.Org Chem. 28(1), pp. 152-155, Abstract 1963. |
Avis, Kenneth, Parenteral Preparations. Chapter 85. pp. 1518-1541In Remington's Pharmaceutical Sciences, 17th Ed, 1985. |
Bailey, F.E., et al.,“Some properties of poly(ethylene oxide) in aqueous solution,” Journal of Applied Polymer Science, vol. 1, Issue No. 1, pp. 56-62, 1959. |
Bauer et al. Lehrbuch der Pharmazeutischen Technologie. Eight Edition 2006. Stuttgart, pp. 343-352. |
Bauer et al. Lehrbuch der Pharmazeutischen Technologie. Sixth Edition 1999. Stuttgart, pp. IX-XV, Table of contents. (Full English translation attached). |
Bauer, Kurt H., et al., Coated Pharmaceutical Dosage Forms—Fundamentals, Manufacturing Techniques, Biopharmaceutical Aspects, Test Methods and Raw Materials, 1st edition, 1998, CRC Press, Medpharm Scientific Publishers. (Preface, Table of Content, List of Abbreviations, Explanation of Terms only). |
Baum et al.,“The impact of the addition of naloxone on the use and abuse of pentazocine”, Public Health Reports, Jul.-Aug. 1987, vol. 102, No. 4, p. 426-429. |
Bingwen et al, 2008, p. 367. (full translation attached). |
Block, Lawrence. Medicated Applications. Chapter 88. In Remington's Pharmaceutical Sciences, 17th Ed, 1985. |
Borquist et al, “Simulation of the release from a multiparticulate system validated by single pellet and dose release experiments,” J. Controlled Release, 97: 453-465 (2004). |
Braun, et al. A study of Bite Force. Part 2: Relationship to Various cephalometric Measurements. Angel Orthodontist. vol. 65 (5) pp. 373-377, 1995. |
Brown, The Dissolution Procedure: Development and Validation, heading “Study Design”, “Time Points” US Pharmacopoeia (USP), vol. 31(5), General Chapter 1092, pp. 1-15, 2006. |
Bruce et al., Properties of hot-melt extuded tablet formulations for the colonic delivery of 5-aminosalicylic acid, European Journal of Pharmaceutics and Biopharmaceutics, 59 (2005) 85-97. |
Caraballo, Journal of Controlled Release, vol. 69, pp. 345-355, 2000. |
Carbopol 71G, retrieved Mar. 10, 2014 from http://www.lubrizol.com/LifeScience/Products/Carbopol71G-NF.html. |
Cawello, “Parameters for Compartment-free Pharmacokinetics—Standardization of Study Design, Data Analysis and Reporting” 1999, pp. XI-XIII (table of contents). |
Chibuzor et al. “Formulation Development and Evaluation of Drug Release Kinetics from Colon-Targeted Ibuprofen Tablets Based on Eudragit RL 100-Chitosan Interpolyelectrolyte Complextes,” Hindawi Publ. Corporation ISRN Pharmaceutics, vol. 2013, Article ID 838403. |
Committee for Proprietary Medicinal Products. Note for Guidance on the Investigation of Bioavailability and Bioequivalence. 2001. pp. 1-18. |
Coppens et al., “Hypromellose, Ethylcellulose, and Polyethylene Oxide Use in Hot Melt Extrusion”; Pharmaceutical Technology, 62-70, Jan. 2005. |
Cornish, P. “Avoid the Crush”: hazards of medication administration in patients with dysphagia or a feeding tube, CMA Media Inc., CMAJ. 172(7), pp. 871-872, 2005. |
Costa et al. “Modeling and comparison of dissolution profiles”; European Journal of Pharmaceutical Sciences 13 (2001) 123-33. |
Crowley M.M. et al., “Stability of polyethylene oxide in matrix tablets prepared by hot-melt extrusion,” Biomaterials 23, 2002, pp. 4241-4248. |
Crowley MM, Drug Dev Ind Pharm. Sep. 2007; 33(9):909-26. (Abstract only). |
Dachille et al., “High-pressure Transformations in Laboratory Mechanical Mixers and Mortars”, Nature, vol. 186, Apr. 2, 1960, pp. 34 and 71. |
Dachille, F. et al., “High-Pressure Phase Transformation in Laboratory Mechanical Mixers and Mortars”, 1960., Nature, vol. 186, pp. 1-2 (abstract). |
Davies, et al; European Journal of Pharmaceutics and Biopharmaceutics, 67, 2007, pp. 268-276. |
Dean, D.A., E.R. Evans, I.H. Hall, Pharmaceutical Packaging Technology, Taylor & Francis, 1st Edition, Nov. 30, 2000 (Publisher description dated Oct. 22, 2010). |
Deighan, C.J. et al., Rhabdomyolysis and acute renal failure resulting from alcohol and drug abuse, Q.J. Med, vol. 93, 2000, pp. 29-33. |
Dejong (Pharmaceutisch Weekblad Scientific Edition) 1987, p. 24-28. |
Dexheimer, Terahertz Spectroscopy: Principles and Applications (Optical Science and Engineering Series), CRC; 1 edition 2007. (Table of content only). |
Dierickx et al., “Co-extrusion as manufacturing technique for fixed-dose combination mini-matrices,” European Journal of Pharmaceutics and Biopharmaceutics 81 (2012), 683-689. |
Disanto, Anthony. Bioavailability and Bioequivalency Testing. Chapter 77. In Remington's Pharmaceutical Sciences, 17th Ed, 1985. |
Dow Chemical Company, “Using Dow Excipients for Controlled Release of Drugs in Hydrophilic Matrix Systems”, Sep. 2006, pp. 1-36. |
Dow Excipients Chem. Of Poly. Water Soluble-Resin 2004, pp. 1-2. |
DOW Technical Data, POLYOX WSR Solid Dosage Formulation via Melt Extrusion, Feb. 2003, pp. 1-3. |
Efentakis M et al. “Evaluation of High Molecular Weight Poly(Oxyethylene) (Polyox) Polymer: Studies of Flow Properties and Release Rates of Furosemide and Captopril from controlled-Release hard Gelatin Capsulres”, Pharmaceutical Development and Technology, 5 (3), p. 339-346, 2000. |
Eggleston, “The seat of the emetic action of various drugs,” J. Pharmacol. Exp. Ther. 7, 225-253 (1915). |
El-Egakey, Adel et al, “Hot extruded dosage forms Part I Technology and dissolution kinetics of polymeric matrices” Pharmacerutica Acta Helvetiae, vol. 46, pp. 31-53, Mar. 19, 1970. |
El-Sherbiny I.M. et al “Preparation, characterization, swelling and in vitro drug release behaviour of poly[N-acryloylglycine-chitosan] interplymeric pH and thermally-resposive hydrogels”, European Polymer Journal, vol. 41, pp. 2584-2591, 2005. |
Encyclopedia of Pharmaceutical Technology, Third Edition, vol. 1, edited by James Swarbrick PharmaceuTech, Inc., Pinehurst, North Carolinia, USA (Table of Contents only), Oct. 25, 2006. |
Encyclopedia of Pharmaceutical Technology, Third Edition, vol. 2, edited by James Swarbrick PharmaceuTech, Inc., Pinehurst, North Carolinia, USA (Table of Contents only), Oct. 25, 2006. |
Encyclopedia of Pharmaceutical Technology, Third Edition, vol. 3, edited by James Swarbrick PharmaceuTech, Inc., Pinehurst, North Carolinia, USA (Table of Contents only), Oct. 25, 2006. |
Encyclopedia of Pharmaceutical Technology, Third Edition, vol. 4, edited by James Swarbrick PharmaceuTech, Inc., Pinehurst, North Carolinia, USA (Table of Contents only), Oct. 25, 2006. |
Encyclopedia of Pharmaceutical Technology, Third Edition, vol. 5, edited by James Swarbrick PharmaceuTech, Inc., Pinehurst, North Carolinia, USA (Table of Contents only), Oct. 25, 2006. |
Encyclopedia of Pharmaceutical Technology, Third Edition, vol. 6, edited by James Swarbrick PharmaceuTech, Inc., Pinehurst, North Carolinia, USA (Table of Contents only), Oct. 25, 2006. |
Encyclopedia of Pharmacological Technology, Informa Healthcare, 1st Ed., 1996, vol. 14 (Table of Content only). |
Erskine, Jr., Clyde. Quality Assurance and Control. Chapter 83. pp. 1487-1491 In Remington's Pharmaceutical Sciences, 17th Ed, 1985. |
Eudragit NE40D web page from Evonik website; downloaded Feb. 24, 2015. |
Eudragit RS PO web page from Evonik website; downloaded Feb. 24, 2015. |
European Pharmacopeia 5.0; Glyceryl behenate monograph; dated Jan. 2005; downloaded Feb. 24, 2011. |
European Pharmacopoeia 2.9.40 “Uniformity of Dosage Units”, 2006, pp. 3370-3373. |
European Pharmacopoeia 5.0, 2.9.8 “Resistance to Crushing of Tablets”, 2005, p. 235. |
European Pharmacopoeia, Third Edition Supplement 2000, Council of Europe, Strasbourg, 2000, pp. 85-107. |
European Pharmacopoeia, Third Edition, Council of Europe, Strasbourg, 1997, pp. 127-152. |
European Search Report and Opinion Application No. 12002708.1-1219, dated Sep. 24, 2012. |
European Search Report and Opinion Application No. 14176277.3-1460, dated Dec. 15, 2014. |
European Search Report and Opinion, Application No. 11006253.6-2112, dated Dec. 16, 2011. |
European Search Report and Opinion, Application No. 11006254.4-2112, dated Dec. 16, 2011. |
European Search Report and Opinion, Application No. 11008131.2-1219, dated Feb. 24, 2012. |
European Search Report and Opinion, Application No. 11009129.5-2112, dated Apr. 10, 2012. |
European Search Report and Opinion, Application No. 12001296.8-1219, dated Jun. 26, 2012. |
European Search Report and Opinion, Application No. 12001301.6-1219, dated Jun. 26, 2012. |
European Search Report and Opinion, Application No. 12003743.7-1219, dated Sep. 24, 2012. |
European Search Report and Written Opinion for EP Application No. 13169658.5, dated Aug. 6, 2013. |
European Search Report and Written Opinion for EP Application No. 13169659.3, dated Aug. 6, 2013. |
European Search Report and Written Opinion for EP Application No. 13176309.9-1460, dated Oct. 9, 2013. |
European Search Report and Written Opinion for EP Application No. 13197503.9-1460, dated Feb. 18, 2014. |
European Search Report and Written Opinion for EP Application No. 13425151.1-1460, dated Mar. 11, 2014. |
European Search Report and Written Opinion for EP Application No. 14169801.9-1455 dated Oct. 20, 2014. |
Evaluation of Verapamil HCI (240 mg) Extended Release Matrix Formulation Using USP Apparatus III in Biorelevant Dissolution Media, Jul. 2009. |
Evonik Industries, Eudragit Application Guidelines, 10th Edition, 2008, (Table of Contents only). |
Evonik Rohm GmbH product brochure: EUDRAGIT acrylic polymers for solid oral dosage forms (2009). |
Extended European Search Report and Opinion for Application No. EP 15153679.4-1455, dated Jun. 30, 2015. |
Extended European Search Report and Opinion for Application No. EP 15165064.5-1455, dated Oct. 16, 2015. |
Extended European Search Report and Opinion for Application No. EP 15165065.2-1455, dated Nov. 2, 2015. |
Extended European Search Report and Opinion for Application No. EP 15165067.8-1455, dated Nov. 2, 2015. |
Extended European Search Report and Opinion for Application No. EP 15165069.4-1455, dated Nov. 2, 2015. |
Extended European Search Report and Opinion for Application No. EP 15165070.2-1455, dated Nov. 2, 2015. |
Fell J.T., et al., “Determinination of Tablet Strength by the Diametral-Compression Test” Journal of Pharmaceutrical Sciences, vol. 59, No. 5, May 1970, pp. 688-691. |
Follonier N. et al., “Evaluation of hot-melt extrusion as a new technique for the production of polymer-based pellets for sustained release capsules containing high loadings of freely soluble drugs,” Drug Development and Industrial Pharmacy, 20(8), pp. 1323-1339, 1994. |
Follonier, N. et al., “Various ways of modulating the release of dltiazem hydrochloride from hot-melt extruded sustained release pellets prepared using polymeric materials” Journal of Controlled Release 36, pp. 243-250, 1995. |
Formulation of Polyox ER Matrices for a Highly Soluble Active, Colorcon Jul. 2009. |
Foye, W., Principles of Medicinal Chemistry; Analgesics pp. 241-242, at 241 (1989). |
Foye, W., Principles of Medicinal Chemistry; Structural Features and Pharmacologic Activity, pp. 63-66 at 65 (1989). |
Freed et al., “pH Control of Nucleophilic/electrophilic oxidation”, International Journal of Pharmaceutics, vol. 357, pp. 180-188 (2008). |
Giles R. et al. Plastic Packaging Materiais. Chapter 81. pp 1473-1477 In Remington's Pharmaceutical Sciences, 17th Ed, 1985. |
Goodman and Gilman “The Pharmacological Basis of Therapeutics, Seventh Edition”, MacMillan Publishing Company, Table of Contents. 1985. |
Goodman and Gilman, 1985, 7th Edition, chapter 22, 491-530. |
Goodman and Gilman, 1985, 7th edition, chapter 23, 533-579. |
Graham N.B., Poly(Ethylene Glycol) Chemistry: Biotechnical and Biomedical Applications, p. 263-291 Chapter 17, 1992. |
Griffin W, “Classification of Surface-Active Agents By HLB” Journal of the Society of Cosmetic Chemists, Atlas Powder Company, 1949, pp. 311-326. |
Griffith, et al. “Tablet Crushing and the Law: The Implications for Nursing” Professional Nurse 19(1), pp. 41-42, 2003. |
Gryczke et al, “Development and evaluation of orally disintegrating tablets (ODTs) containing Ibuprofen granules prepared by hot melt extrusion”, Colloids and surfaces., B, Biointerfaces, Elsevier, Amsteram, NL, vol. 86, No. 2, Apr. 5, 2011, pp. 275-284. |
Guidance for Industry—Bioavailability and Bioequivalence—Studies for Orally Administered Drug Products—General Considerations, FDA, BP, Announced in the Federal Register: vol. 68, No. 53/Mar. 19, 2003. |
Guidance for Industry—Statistical Approaches to Establishing Bioequivaience, FDA, BP, Jan. 2001. |
Handbook of Pharmaceutical Excipients, 1986, American Pharmaceutical Association, Washington, DC and London (Table of Content Only). |
Handbuch der Kunststoff-Extrusionstechnik 1, “Grundlagen” in Chapter 1.2 “Klassifizierung von Extrudern”, pp. 3-7. 1989. (Full english translation attached). |
Hanning C.D. et al. “The Morphone Hydrogel Suppository. A New Sustained release Rectal Preparation”, British Journal of Anaesthesia, 61, pp. 221-227, 1988. |
Hartauer, Kerry J. “Influence of Peroxide Impurities in Povidone and Crospovidone on the Stability of Raloxife” Pharma. Dev. & Tech, 5 (3) 303-310 (2000). |
Henriest D et al. In vitro and in vivo evaluation of starch-based hot stage extruded double matrix systems. Journal of Controlled Release. 2001, vol. 75, pp. 391-400. |
Hoepfner et al. Fiedler Encyclopedia of Excipients. Sixth Edition, 2007, Aulendorf, Germany; Table of Contents only. |
Hong S et al. Dissolution kinetics and physical characterization of three-layered tablet with poly(ethylene oxide) core matrix capped by Carbopol. Int .J. Pharmacol. 2008, vol. 356, pp. 121-129. |
Inert gas—Wikipedia, Dec. 2009, pp. 1-3. |
Investigation of a Directly Compressible Metformin HCI 500mg Extended Release Formulation Based on Hypromellose, Colorcon Jul. 2009. |
James, A. “The legal and clinical implications of crushing tablet medication”, Nurse Times 100(50), 28-33, 2004. |
Janicki S. et al. “Slow-Release Microballs: Method of Preparation”, Acta Pharm. Technol. 33 (3) 154-155, 1987. |
Jannetto, P. et al., “Oxycodone: Recognition and Pharmacogenomics,” Toxicology News, Mar. 2003, 1-7. |
Kalant H. et al., Death in Amphetamine Users: Caues and Rates, CMA Journal, vol. 112 (Feb. 8, 1975): 299-304. |
Katz N. et al. “Challenges in the development of prescription opioid abuse-deterrent formulations”, Clin. J. Pain, 23(8): 648-660 (Oct. 2007). |
Kim C.-J. “Drug Release from Compressed Hydrophilic Polyox-WSR Tablet” J. Pharm. Sciences 1995, 84(3): pp. 303-306. |
Kim N et al. “Preparation and Evaluation of Eudragit Gels. V. Rectal Gel Preparations for Sustained Release and Avoidance of First-Pass Metabolism of Lidocaine”, Chem. Pharm Bull. 1992, 40(10), 2800-2804. |
King et al. Oral Solid Dosage Forms. Chapter 90. pp. 163-1632 In Remington's Pharmaceutical Sciences, 17th Ed, 1985. |
King, R, “Tablets, Capsules, and Pills” Remington's Pharmaceutical Sciences, pp. 1553-1593, Ch. 89, 1980, 16th Edition. |
King, Remington's Pharmaceutical Sciences 17th ed., Chapter 78, p. 1418 (1985). |
Knevel, Adelbert. Separation. Chapter 78. pp. 1432-1442 In Remington's Pharmaceutical Sciences, 17th Ed, 1985. |
Kolter, K., “Compression Behaviour of Kollidon SR,” APV/APGI 2002, Florence, Apr. 11, 2002. |
Kondrat, T. , “Technology dosage forms” Moscow 1991, p. 96. |
Lee, Y.-S. et al., PrincipleS of Terahertz Science and Technology (Lecture Notes in Physics), Springer; 1 edition 2008. (Table of Contents Only). |
Lenindzer, A., “The molecular basis of the structure and functions of cell” Moscow 1974, p. 68. |
Levina et al.,“The Effect of Ultrasonic Vibration on the Compaction Characteristics of Ibuprofen” Drug Development and Industrial Pharmacy, vol. 28, No. 5, pp. 495-514, 2002. |
Levina M. et al. “The Effect of Ultrasonic Vibration on the Compaction Characteristics of Paracetamol”, Journal of Pharmaceutical Sciences, vol. 89, No. 6, pp. 705-723, Jun. 2000. |
Li et al, “Characterization of Poly(Ethylene Oxide) as a Drug Carrier in Hot-Melt Extrusion”, Drug Development and Industrial Pharmacy, vol. 32, No. 8, Jan. 1, 2006, pp. 991-1002. |
Lieberman, Herbert A., Pharmaceutical Dosage Forms, Tablets, Second Edition, Revised and Expanded, 1990. vol. 2 (Cover and Table of Content only). |
Lintner, Carl. Stability of Pharmaceutical Products. Chapter 82. pp. 1478-1486 In Remington's Pharmaceutical Sciences, 17th Ed, 1985. |
Liu J. et al., “Properties of Lipophilic Matrix Tables Containing Phenylpropanolamine Hydrochloride Prepared by Hot-Melt Extrusion”, EJPB, 52 (2001), pp. 181-190. |
Lockhart H. et al., “Packaging of Pharnaceuticals and Health Care Products”; Blackie Academic & Professional; First Edition 1996. (Table of contents only). |
Longer et al. Sustained-Release Drug Delivery Systems. Chapter 92. pp. 1611-1661 In Remington's Pharmaceutical Sciences, 17th Ed, 1985. |
Madorsky S.L. “Thermal degradation of Polyethylene Oxide and Polypropylene Oxide”, Journal of Polymer Science, pp. 183-194 vol. 36, No. 3, Mar. 1959. |
Maggi et al., “Dissolution behavior of hydrophilic matrix tabiets containing two different polyethylene oxides (PEOs) for the controlled release of a water-soluble drug. Dimensionality study” Biomaterials, 2002, 23, 1113-1119. |
Maggi L.et al, “High molecular weight polyethylene oxides (PEOs) as an alternative to HPMC in controlled release dosage form”, 2000, International Journal of Pharmaceutics, 195 pp. 229-238. |
Maggi, C.. Therapeutic Potential of Capsaicin-like Molecules. Life Sciences, vol. 51, pp. 1777-1781, 1992. |
Mank R. et al., “Darstellung wirkstoffhaltiger Extrusionsformlinge auf der Basis von Thermoplasten. Teil 1: Untersuchung zur Wirkstoffliberation” Pharmazie 44, H. 11, pp. 773-776, 1989. English language translation of relevant paragraph provided. |
Mank R., “Darstellung wirkstoffhaltiger Extrusionsformlinge auf der Basis von Thermoplasten. Teil 2: Unersuchungen zur Optimierung der Wirkstofffreigabe” Pharmazie 45, H. 8, pp. 592-593 1990. English language translation of relevant paragraph provided. |
Marques, Tablet breaking force, 2008. |
Matos, Dr. Rick, Ph.D—Letter Jan. 6, 2011. |
McGary, C.W.. Jr. “Degradation of Poly(ethylene Oxide)”, Journal of Polymer Science vol. XLVI, 1960, pp. 51-57. |
McGinity et al., Hot-Melt Extrusion as a Pharmaceutical Process, American Pharmaceutical Review, vol. 4 (2), pp. 25-36, 2001. |
McGinity, J.W.—Letter of Jan. 26, 2009, pp. 1-4. |
McNeill M. et al. Properties controlling the diffusion and release of water-soluble solutes from poly(ethylene oxide) hydrogels. 4. Extended constant rate release from partly-coated spheres. Journal Biomat. Sci. Polymer. Ed. 1996, vol. 7, pp. 953-963. |
Mesiha M.S. et al “A Screening Study of Lubricants in Wet Powder Passes Suitable for extrusio-spheronization”, Drug Development and Industrial Pharmacy, 19(8), pp. 943-959, 1993. |
Metformin Hydrochloride 1000 mg Extended Release Tabiets, Lubrizol Advanced Materials, Inc., Nov. 20, 2009, Previous Edition Dec. 19, 2008. |
Metformin Hydrochloride 750 mg Extended Release Tablets, Lubrizol Advanced Materials, Inc., Sep. 2010. |
Miles, R.E. et al., Terahertz Frequency Detection and Identification of Materials and Objects (NATO Science for Peace and Security Series B: Physics and Biophysics), Springer; 1 edition 2007. (Table of contents). |
Miller “To crush or not crush? What to consider before giving medications to a patent with a tube or who has trouble swallowing”, Nursing, pp. 50-52, Feb. 2000. |
Mises à jour cumulatives, Vidal, Jan./Oct. 2002 (full translation attached). |
Mitchell, “Oral Dosage Forms That Should Not Be Crushed: 2000 Update” Hospital Pharmacy 35(5), 553-557, 2000. |
Monolithic: retrieved from internet: http:/merriam-webster.com/dictionary/monolithic. Retrieved on Sep. 2, 2015. |
Moorman-Li, R. et al.,“A Review of Abuse-Deterrent Opioids for Chronic Nonmalignant Pain.” Pharmacy and Therapeutics, vol. 37 No. 7, Jul. 2012, pp. 412-421. |
Morissette et al. Advanced Drug Delivery Review 26 (2004), 275-300. |
Moroni A. et al, “Application of Poly(Oxyethylene) Homopolymers in Sustained release Solid formulations” Drug Development and Industrial Pharmacy, 21(12) pp. 1411-1428, 1995. |
Mullins, John. Ophthalmic Preparations. Chapter 87. pp. 1553-1563; In Remington's Pharmaceutical Sciences, 17th Ed, 1985. |
Munjal M. et al., “Polymeric Systems for Amorphous Delta^9-Tetrahydrocannabinol Produced by a Hot-Melt Method. Part II: Effect of Oxidation Mechanisms and Chemical Interactions on Stability” Journal of Pharmaceutical Sciences vol. 95 No. 11, Wiley InterScience, 2006, pp. 2473-2485. |
Munsell Color Company, “The Munsell Book of Color: Glossy Collection”, X-Rite, Originally published in 1966, pp. 1-7. |
Nairn, J.G., Solutions, Emulsion, Suspensions and Extractives. Chapter 84. pp. 1492-1517, In Remington's Pharmaceutical Sciences, 17th Ed, 1985. |
Note for Guidance on Stability Testing, EMA, Aug. 2003, pp. 1-20. |
Note for Guidance on the Investigation of Bioavailability and Bioequivalence, EMEA, London, Jul. 26, 2001 (CPMP/EWP/QWP/1401/98). |
Ohnishi N. et al., Effect of the Molecular Weight of Polyethylene Glycol on the Bioavailability of Indomethacin Sustained-Release suppoositories Prepared with Solid Dispersion, Chem. Pharm. Bull, 35(8), pp. 3511-3515, 1987. |
Oliveira et al., “Production and characterization of laminar coextrudates at room temperature in the absence of solvents,” AAPS Annual Meeting and Exposition, Oct. 14-18, 2012, Chicago, USA. |
Oxicotin: Balancing Risks and Benefits, United States Senate, Hearing, Feb. 12, 2002. |
Oxycodon (Oxygesic): Missbrauch, Abhaengigkeit und toedliche Folgen durch Injection zerstossener Retardtabletten, Deutsches Ärtzeblatt, vol. 36, A2326-A2326, Sep. 5, 2003. |
Ozeki T. et al. “Control of Medicine Release From Solid Dispersion Through Poly(ethylene oxide)-Carboxyvinylpolymer Interaction”, International Journal of Pharmaceutics, 165, 1998, pp. 239-244. |
Ozeki T. et al. “Controlled Release From Solid Dispersion Composed of Poly(ethylene oxide)-Carbopol Interpolymer Complex With Various Cross-Linking Degrees of Carbopol”, Journal of Controlled Release. 63, 2000. pp. 287-295. |
Ozeki T. et al., “Control of medicine release from solid dispersion composed of the poly(ethylene oxide)-carboxyviylpolymer interpolymer complex by varying molecular wight of poly(ethylene oxide)” Journal of Controlled Release 58, pp. 87-95, 1999. |
PCT International Search Report and Written Opinion for PCT Application No. PCT/EP2010/004459 dated Dec. 1, 2010. |
PCT International Search Report and Written Opinion for PCT Application No. PCT/EP2009/003290 dated Jul. 9, 2009. |
PCT International Search Report and Written Opinion for PCT Application No. PCT/EP2013/053894 dated Mar. 22, 2013. |
PCT International Search Report and Written Opinion for PCT Application No. PCT/EP2013/057851 dated Jun. 12, 2013. |
PCT International Search Report and Written Opinion for PCT Application No. PCT/EP2013/059728 dated Aug. 6, 2013. |
PCT International Search Report and Written Opinion for PCT Application No. PCT/EP2014/064830 dated Aug. 6, 2014. |
PCT International Search Report and Written Opinion for PCT Application No. PCT/EP2014/075618 dated Feb. 11, 2015. |
PCT International Search Report and Written Opinion for PCT Application No. PCT/EP2014/0777748 dated Feb. 12, 2015. |
PCT International Search Report and Written Opinion for PCT Application No. PCT/EP2015/060377 dated Jul. 23, 2015. |
PCT International Search Report and Written Opinion for PCT Application No. PCT/EP2015/061343 dated Jul. 21, 2015. |
PCT Second Written Opinion for PCT Application No. PCT/EP2013/053893 dated Feb. 21, 2014. |
PCT Second Written Opinion for PCT Application No. PCT/EP2013/057851 dated Apr. 15, 2014. |
Pentoxifylline 400 mg Extended Release Tablets, Lubrizol Advanced Materials, Inc., Mar. 3, 2011, Previous Edition Nov. 19, 2009. |
Perez-Marcos, B., Usefulness of certain varieties of Carbomer in the formulation of hydrophilic furosemide matrices, International Journal of Pharmaceutics, 67 (1991) 113-121. |
Pharm. Research, Official Journal of the American Association of Pharmaceutical Scientists, Sep. 1989, 6(9), S-98. |
Pharm. Research, Official Journal of the American Association of Pharmaceutical Scientists, Oct. 1991, 8(10), S-192. |
Phillips, G. Briggs. Sterilization. Chapter 79. pp. 1443-1454, In Remington's Pharmaceutical Sciences, 17th Ed, 1985. |
Physico-mechanical Characterization of Polyox for Table Manufacture, Colorcon Jul. 2009. |
Pillay V. et al. A novel approach for constant rate delivery of highly soluble bioactives from a simple monolithic system. Journal of Controlled Release. 2000, vol. 67, pp. 67-78. |
Pinto, Joao F. et al.,“Evaluation of the Potential Use of Poly(ethylene oxide) as Tablet- and Extrudate-Forming Material,” AAPS PharmSci, 2004; 6 (20), Article 15, pp. 1-10, (http://www.aapspharmsci.org). |
Piringer, O.G.and A.L. Baner, Plastic Packaging: Interactions with Food and Pharmaceuticals, Wiley VCH, 2nd Completely Raised Edition, Feb. 13, 2008. (Table of Contents only). |
Polyox water soluble resins 2003. http://www.dow.com/webapps/lit/litorder.asp?filepath=polyox/pdfs/noreg/326-00002.pdf. |
POLYOX water-soluble resins (DOW Mar. 2002); see http://msdssearch.dow.com/PublishedLiteratureDOWCOM/dh_0031/0901b80380031a4a.pdf?filepath=/326-00001.pdf&fromPage=GetDoc). |
Polyox WSR-303, retrieved Mar. 10, 2014 from URL http://www.dow.com/dowwolff/en/industrial_solutions/polymers/polyethylene. |
Polyox, Colorcon, Application Data (Apr. 2009) downloaded from http://www.colorcon.com/literature/marketing/mr/Extended%20Release/POLYOX/English/ads_PEO_Antioxidant.pdf. |
Pontier, C. et al, “Use of cycles of compression to characterize the behavior of apatitic phosphate powders,” Journal of the European Ceramic Society 22 (2002), 1205-1216. |
Porter, S. Coating of Pharmaceutical Dosage Forms. Chapter 91. pp. 1633-1643 In Remington's Pharmaceutical Sciences, 17th Ed, 1985. |
Prapaitrakul W. et al, “Release of Chlorpheniramine Maleate from Fatty Acid Ester Matrix disks Prepared by Melt-extrusion” J. Pharm. Pharmacol. 43, pp. 377-381, 1991. |
Proeschel, P.A. et al., “Task-dependence of activity / bite-force Relations and its impact on estimation of chewing force from EMG”; J. Dent. Res., vol. 81, No. 7, pp. 464-468, 2002. |
Purdue News, “Purdue Pharma Provides Update on Deveiopment of New Abuse-Resistant Pain Medications; FDA Cites Patient Needs As First Priority; New Drug Application Delayed,” www.headaches.about.com, Jun. 18, 2002, pp. 1-6. |
Quintavalle et al., “Preparation of sustained release co-extrudates by hot-melt extrusion and mathematical modelling of in vitro/in vivo drug release profiles,” European Journal of Pharmaceutical Sciences 33 (2008), 282-293. |
Radko S.et al., Applied ad Theoretical Electrophoresis 5, pp. 79-88, 1995. |
Ravin, L. Preformulation. Chapter 76, pp. 1409-1423, In Remington's Pharmaceutical Sciences, 17th Ed, 1985. |
Remington, The Science and Practice of Pharmacy, 19th ed., vol. II, p. 1457 (1995) (providing a table of DFA-approved commercially marketed salts). |
Repka M. et al., Bioadhesive Properties of Hydroxypropylcellulose Topical Films Produced by Hot-Melt Extrusion, Journal of Controlled Release, 70 (2001), pp. 341-351. |
Repka MA, Drug Dev Ind Pharm. Oct. 2007; 33(10):1043. (Abstract). |
Riippi M. et al., The effect of compression force on surface structure, crushing strength, friability and disintegration time of erythromycin acistrate tablets, Eur J Pharm Biopharm, vol. 46, 1998, pp. 339-345. |
Rippie E.G. et al, “Regulation of Dissolution Rate by Pellet Geometry” Journal of Pharmaceutical Sciences, Vo. 58, No. 4, pp. 428-431, Apr. 1969. |
Rippie, E. Powders. Chapter 89, pp. 1585-1602, In Remington's Pharmaceutical Sciences, 17th Ed, 1985. |
Ritschel et al. Die Tablette: Handbuch der Entwicklung, Herstellung und Qualitatssicherung. 2nd Edition, 2002, Ch 6, pp. 515-519. (Full English translation attached). |
Ritschel et al. Die Tablette: Handbuch der Entwicklung, Herstellung und Qualitatssicherung. 2nd Edition, 2002, Ch 6, pp. 69-82 and 115-136. |
Ritschel et al. Die Tablette: Handbuch der Entwicklung, Herstellung und Qualitatssicherung. 2nd Edition, 2002, Table of content. |
Rosiaux et al. “Ethanol-resitant ethylcellulose/guar gum coatings—Importance for formulation parameters” European Journal of Pharmaceutics and Bioharmaceutics, vol. 85, No. 3, (Jul. 25, 2013). pp. 1250-1258. |
Rowe C et al. Handbook of Pharmaceutical Excipients. Sixth Edition. 2009, Edition Cantor Verlag Aulendorf, pp. V-IX, Table of Contents. |
Rowe C et al., Handbook of Pharmaceutical Excipients, 7th Edition, 2012, Table of Contents. |
Salomies et al., “Determination of Oxycodone Hydrochloride in Oral Solutions by High-Performance Thin-Layer Chromatography/Densitometry,” Journal of AOAC International, 83: 1497-1501 (2000). |
Satish et al. “Formulation and Characterization of Matrix and Triple Layer Matrix Tablets for Controlled Delivery of Tramadol Hydrochloride,” International Journal of Pharmaceutical Sciences; 5(4) (2013) 458-464. |
Sax et al., Hawley's Condensed Chemical Dictionary, 11th ed., 1987, p. 1233, definition of “wax”. |
Scheirs J., et al.“Characterizing the Solid-State Thermal Oxidation of Poly (ethytene oxide) Powder”, pp. 2014-2019, Polymer, vol. 32, No. 11, 1991. |
Schier et al. “Fatality from Administration of Labetalol and Crushed Extended-Release Nifedipine” The Annals of Pharmacotherapy vol. 37, 1420-1423, Oct. 2003. |
Schroeder J., et al. Granulierung hydrophober Wirkstoffe im Planetwalzenextruder, Pharm. Ind. 2003, vol. 65, No. 4, 367-372. (Full English translation attached). |
Sciarra et al. Aerosols. Chapter 93., pp. 1662-1677, In Remington's Pharmaceutical Sciences, 17th Ed, 1985. |
Search result conducted on http://www.unitconversion.org/force/newtons-to-kiloponds-convresion.html, on Jul. 5, 2011 (Conversion of 18.8 kiloponds to newtons). |
Shivanand P et al.,“Factors Affecting Release of KCI From Melt extruded Polyethylene Disks”, Pharmaceutical Research, Oct. 1991, vol. 8, No. 10, p. S-192. |
Sidhu et al., “Watch for nonpsychotropics causing psychiatric side effects,” Current Psychiatry, vol. 7, No. 4, 2008, 61-74. |
Siegel, P. Tonicity, Osmoticity, Osmolality, and Osmolarity. Chapter 80. pp. 1454-1472 In Remington's Pharmaceutical Sciences, 17th Ed, 1985. |
Silver, J. “Painkiller OxyContin most commonly abused prescription drug on the streets of Western Pennsylvania”, Pittsburg Post-Gazette, Apr. 8, 2001. |
Spassov et al., Stereochemistry of Diastereomeric 3-Dialkylaminopropanols and O-Derivatives, J.f. prakt. Chemie, 323:5, 793-800 (1981). |
Sprockel O.L et al. “Permeability of Cellulose Polymers: Water Vapour Transmission Rates”., J. Pharma. Pharmacol. 42, pp. 152-157, 1990. |
Sreenivasa, B. et al, Design and Evaluation of Ethylene Vinyl Acetate Sintered Matrix Tablets, Indian Journal of Pharmaceutical Sciences, Sep.-Oct. 2003, 65(5): 496-502. |
Stafford J., überzogene feste Formen, 1991, 347-68. (English translation attached). |
Strang, Abuse of buprenorphie (Temgesic) by snorting, Letter to the editor, British Med. J., 302: 969 (1991). |
Stringer J.L., et al “Diffusion of small molecular weight drugs in radiation-crosslinked poly(ethylene oxide) hydrogels”, Journal of Controlled Release 42, pp. 195-202, 1996. |
Summers et al; “Influence of Crystal Form on Tensile Strength of Compacts of Pharmaceutical Materials” Journal of Pharmaceutical Sciences, vol. 66, No. 8, Aug. 1977, pp. 1172-1175. |
Swarbrick, Encyclopedia of Pharmaceutical Technology, Informa Healthcare, 1988, 1st edition, vol. 1, table contents. |
Swarbrick, Encyclopedia of Pharmaceutical Technology, Informa Healthcare, 1988, 1st edition, vol. 10, table of contents. |
Swarbrick, Encyclopedia of Pharmaceutical Technology, Informa Healthcare, 1988, 1st edition, vol. 11, table of contents. |
Swarbrick, Encyclopedia of Pharmaceutical Technology, Informa Healthcare, 1988, 1st edition, vol. 12, table of contents. |
Swarbrick, Encyclopedia of Pharmaceutical Technology, Informa Healthcare, 1988, 1st edition, vol. 13, table of contents. |
Swarbrick, Encyclopedia of Pharmaceutical Technology, Informa Healthcare, 1988, 1st edition, vol. 14, table of contents. |
Swarbrick, Encyclopedia of Pharmaceutical Technology, Informa Healthcare, 1988, 1st edition, vol. 15, table of contents. |
Swarbrick, Encyclopedia of Pharmaceutical Technology, Informa Healthcare, 1988, 1st edition, vol. 16, table of contents. |
Swarbrick, Encyclopedia of Pharmaceutical Technology, Informa Healthcare, 1988, 1st edition, vol. 18, table of contents. |
Swarbrick, Encyclopedia of Pharmaceutical Technology, Informa Healthcare, 1988, 1st edition, vol. 19, table of contents. |
Swarbrick, Encyclopedia of Pharmaceutical Technology, Informa Healthcare, 1988, 1st edition, vol. 2, table of contents. |
Swarbrick, Encyclopedia of Pharmaceutical Technology, Informa Healthcare, 1988, 1st edition, vol. 20, table of contents. |
Swarbrick, Encyclopedia of Pharmaceutical Technology, Informa Healthcare, 1988, 1st edition, vol. 3, table of contents. |
Swarbrick, Encyclopedia of Pharmaceutical Technology, Informa Healthcare, 1988, 1st edition, vol. 4, table of contents. |
Swarbrick, Encyclopedia of Pharmaceutical Technology, Informa Healthcare, 1988, 1st edition, vol. 5, table of contents. |
Swarbrick, Encyclopedia of Pharmaceutical Technology, Informa Healthcare, 1988, 1st edition, vol. 6, table of contents. |
Swarbrick, Encyclopedia of Pharmaceutical Technology, Informa Healthcare, 1988, 1st edition, vol. 7, table of contents. |
Swarbrick, Encyclopedia of Pharmaceutical Technology, Informa Healthcare, 1988, 1st edition, vol. 8, table of contents. |
Swarbrick, Encyclopedia of Pharmaceutical Technology, Informa Healthcare, 1988, 1st edition, vol. 9, table of contents. |
Tablet, www.docstoc.com (2011). |
Third Party Observations filed with EPO for Patent EP658055B1, Feb. 2, 2009, pp. 1-8. |
Thoma V.K. et al. “Bestimmung der In-vitro-Freigabe von schwach basischen Wirkstoffen aus Ratardarzneiformen”, pp. 299-301, Pharm. Ind. 51, Nr. 3, 1989. |
Tikhonov, A. et al, Biopharmacy. The Manual for Students of Pharmaceutical Universities and Departments, 2003, pp. 40-41, Kharkov, Ukraine (Full English translation attached). |
Tipler, et al., Physics for Scientists and Engineers, vol. I, 6th Edition, pp. 234-235, 2003. |
Tompkins et al., “Human abuse liability assessment of oxycodone combined with ultra-low-dose natrexone,” Psychopharma., 210: 471-480 (2010) |
Tramadol Hydrochloride 100 mg Extended Release Tablets, Lubrizol Advanced Materials, Inc., Sep. 2010. |
Tranquilan-Aranilla et al., “Kappa-carrageenan-polyethylene oxide hydrogel blends prepared by gamma irradiation,” Radiation Physics and Chemistry vol. 55, pp. 127-131, 1999. |
Turco et al. Intravenous Admixtures. Chapter 86. pp. 1542-1552, In Remington's Pharmaceutical Sciences, 17th Ed, 1985. |
US Pharmacopoeia, Chapter 1217, Aug. 12, 2008. |
Varma et al, Factors Affecting Mechanism and Kinetics of Drug Release from Matrix-Based Oral Controlled Drug Delivery Systems, Am. J. Drug Deliv. 2004: 2 (1): 43-57. |
Verhoeven et al., “Influence of polyethylene glycol/polyethylene oxide on the release characteristics of sustained-release ethylcellulose mini-matrices produced by hot-melt extrusion: in vitro and in vivo evaluations,” European Journal of Pharmaceutics and Biopharmaceutics 72 (2009) 463-470. |
Verhoeven, et al. “Xanthan gum to tailor drug release of sustained-release ethylcellulose mini-matrices prepared via hotmelt extrusion: in vitro and in vivo evaluation,” European Journal of Pharmaceutics and Biopharmaceutics, 63 (2006) 320-330. |
Vippagunta et al. Crystalline Solids, Advanced Drug Delivery Review 48 (2001), 3-26. |
Vynckier et al.,“Hot-melt co-extrusion for the production of fixed-dose combination products with a controlled release ethylcellulose matrix core,” International Journal of Pharmaceutics 464 (2014), 65-74. |
Wade and Weller, “Handbook of Pharmaceutical Excipients: 2nd Edition”, The American Pharmaceutical Association and The Pharmaceutical Press, Washington and London, Table of Contents pp. v-vi, 1994. |
Wagner, Pharmazeutische Biologie—Drogen und ihre Inhaltsstoffe—Scharfstoffdrogen, 2nd., revised edition, Gustav Fischer Verlag, Stuttgart-N.Y., 1982, pp. 82-92 (Full English Translation attached). |
Wagner, Pharmazeutische Biologie—Drogen und ihre Inhaltsstoffe—Scharfstoffdrogen, 2nd., revised edition, Gustav Fischer Verlag, Stuttgart-N.Y., 1982, Table of Content. |
Waltimo, et al, “A novel bite force recorder and maximal isometric bite force values for healthy young adults”, Scandinavian Journal of Dental Research 1993; 101: 171-175. |
Waltimo, et al., “Maximal bite force and its association with signs and symptoms of craniomandibular disorders in young Finnish non-patients”, Acta Odontol Scand 53 (1995): 254-258. |
Waterman et al., “Stabilization of Pharmaceuticals to Oxidative Degradation”, Pharmaceutical Development and Technology, vol. 7(1), pp. 1-32, (2002). |
Waters et al., “Intravenous Quetiapine-Cocaine Use (“Q-Ball”)”, Letter to the Editor, Am. J. Psychiatry, 164(1): pp. 173-174 (2007). |
Weiss, U., “Derivatives of Morphine. I 14-Dihydroxydihydromorphinone,” J. Am. Chem. Soc. 77, pp. 5891-5892, Nov. 20, 1955. |
West, Anthony R., Solid state chemistry and its applications, Wiley, New York, 1988, pp. 358 and 365. |
Wikipedia—Dextromethorphan Aug. 12, 2013 (and attached related English-language entry dated Dec. 11, 2013). |
Woodburn, K.R. et al., Vascular complications of injecting drug misuse, Br. J. of Surgery, vol. 83, 1996, pp. 1329-1334. |
Wu N, et al. Mathematic modeling and in vitro study of controlled drug release via a highly swellable and dissoluble polymer matrix: polyethylene oxide with high molecular weights, J Control Release. Feb. 16, 2005;102(3):569-581. |
Yang et al., “Zero-Order Release Kinetics from a Self-Correcting Floatable Asymmetric Configuration Drug Delivery System”, Journal of Pharmaceutical Sciences, vol. 85, No. 2, Feb. 1996, pp. 170-173. |
Yang, et al; “Characterization of Compressibility and Compactibility of Poly(ethylene oxide) Polymers for Modified Release Application by Compaction Simulator”; Journal of Pharmaceutical Sciences, vol. 85, No. 10, pp. 1085-1090, Oct. 1996. |
Yarbrough et al, Letters to Nature “Extraordinary effects of mortar-and-pestle grinding on microstructure of sintered alumina gel”, Nature 322, pp. 347-349 (Abstract only) (Jul. 24, 1986). |
Yeh et al., Stability of Morphine in Aqueous Solution III: Kinetics of Morphine Degradation in Aqueous Solution, Wiley Subscription Services, Inc., Journal of Pharmaceutical Sciences, 50(1): 35-42 (1961). |
Zeeshan, F and N. Bukhari, “Development and Evaluation of a Novel Modified-Release Pellet-Based Tablet System for the Delivery of Loratadine and Pseudophedrine Hydrochloride as Model Drugs,” AAPS PharmaSciTech 11(2); 910-916 (available on-line May 22, 2010). |
Zhang et al., “Properties of Sustained-Release Tablets Prepared by Hot-Melt Extrusion” Pharmaceutical Development and Technology, 1999, 4(2), 241-250. |
Alekseeva et al, Chemical-Pharmaceutical Journal, vol. 41, No. 9, 2007, 49-52. (Full translation attached.). |
Efentakis et al, Effects of Excipients on Swelling and Drug Release from Compressed Matrices, in Drug Development and Industrial Pharmacy 23(1): 107-112, Jan. 1997, Abstract. |
Extended European Search Report and Opinion for Application No. EP 15184634.2-1455, dated Mar. 3, 2016. |
Linz et al. “Cebranopadol: A Novel Potent Analgesic Nociception/Orphanin FQ Peptide and Opioid Receptor Agonist,” J Pharmacol. Exp. Ther. 2014; 349: 535-548; available online Apr. 8, 2014. |
Saleem et al. “Formulation and Evaluation of Tramadol hydrochloride Rectal Suppositories,” Indian J. Pharm Sci. Sep.-Oct. 2008; 70(5), 640-644. |
Tennant, “Simultaneous Use of Stimulants and Opioids,” 2011 [online] retrieved on Jul. 7, 2016 from: http://www.practicalpainmanagement.com/treatments/pharmacological/opioids/simultaneous-use-stimulants-opioids; 7 pages. |
The Merck Index, 14th Ed. (2006) No. 0006360 Nalefene. |
The Merck Index, 14th Ed. (2006) No. 0006362 Naloxone. |
The Merck Index, 14th Ed. (2006) No. 0006363 Naltrexone. |
The Merck Index, 14th Ed. (2006) No. 0006959 Oxycodone. |
Dabbagh, et al. “Release of Propranolol Hydrochloride from Matrix Tablets Containing Sodium Carboxymethylcellulose and Hydroxypropylmethylcellulose”; 1999; Pharmaceutical Development and Technology, 4(3), 313-324. |
USP Expert Council, US Pharmacopoeia, Chapter 1092, 2007, 1-15. |
M. Xu et al., “Evaluation of the coat quality of sustained release pellets by individual pellet dissolution methodology,” Int. J. Pharm. 478 (2015) 318-327. |
Baxter, J.L. et al., “Hydrodynamics-induced variability in the USP apparatus II dissolution test,” International Journal of Pharmaceutics 292 (2005) 17-28. |
Bellmann et al., “Development of an advanced in vitro model of the stomach and its evaluation versus human gastric psychology.” Food Research International 88 (2016) 191-198. |
Koziolek, M. et al., “Development of a bio-relevant dissolution test device simulating mechanical aspects present in the fed stomach,” European Journal of Pharmaceutical Sciences 57 (2014) 250-256. |
Remington, Chapter 45, pp. 996-1035. (Full Translation Attached). |
Bannwarth, Bernard, “Will Abuse-Deterrent Formulations of Opioid Analgesics be Successful in Achieving Their Purpose?”, Drugs, 2012, vol. 72, pp. 1713-1723. |
COMPAP 90 technical data sheet Mar. 2014; 1 page. |
Extended European Search Report for Application No. EP 16182124.4-1455, dated Jan. 17, 2017. |
Furu et al. “use of ADHD drugs in the Nordic countries: a population-based comparison study,” Acta Psychiatrica Scandinavia, May 2010. |
Nickerson, B., Sample Preparation of Pharmaceutical Dosage Forms, Springer, New York (2011); Chapter 1, pp. 3-48. |
PCT International Search Report and Written Opinion for PCT Application No. PCT/EP2016/052046 dated Apr. 12, 2016. |
PCT International Search Report and Written Opinion for PCT Application No. PCT/EP2017/070396 dated Sep. 8, 2017. |
POLYOX Water-Soluble Resins in Pharmaceutical Applications. Dow Chemicals. Published 2004. |
U.S. Appl. No. 60/287,509, filed Dec. 2, 2002, Joshi et al. |
U.S. Appl. No. 60/288,211, filed Sep. 2, 2004, Oshlack et al. |
U.S. Appl. No. 60/310,514, filed Apr. 3, 2003, Oshlack et al. |
U.S. Appl. No. 60/310,534, filed Apr. 10, 2003, Wright et al. |
U.S. Appl. No. 60/376,470, filed Jan. 15, 2004, Ayer et al. |
U.S. Appl. No. 60/384,442, filed Dec. 4, 2003, Fink et al. |
King, Remington's Pharmaceutical Sciences 17th ed., Chapter 78, p. 1418-1419 (1985). |
Pharma Tips ([online] retrieved on Mar. 22, 2018 from http://ww.pharmatips.in/Articles/Pharmaceutics/Tablet/Co-Processed-Directly-Compressed-Adjutants.aspx May 2011: 10 pages). |
De Brabander C., et al., “Development and evaluation of sustained release mini-matrices prepared via hot melt extrusion,” Journal of Controlled Release 89 (2003), 235-247. |
Goodman and Gilman, 1985, 7th edition, chapter 29, 674-715. |
Quadros, E. et al., “Evaluation of a novel colonic delivery device in vivo,” STP Pharma Sci. 5, 77-82 (1995). |
Wooten, Marvin R. et al., Intracerebral Hemorrhage and Vasculitis Related to Ephedrine Abuse, 13 Annals of Neurology 337 (1983). |
Theeuwes, Felix et al., Osmotic Systems for Colon-Targeted Drug Delivery in Colonic Drug Absorption and Metabolism (Peter R. Bieck ed., 1993). |
European Pharmacopoeia 3.0, 2.9.8 “Resistance to Crushing of Tablets”, 1997, p. 135. |
Sumitomo Seika Chemicals, Co., Ltd, “Certificate of Analysis,” Product: Polyethylene Oxide; Grade: PEO-18NF; Feb. 2, 2016. |
Sumitomo Seika Chemicals, Co., Ltd, “Certificate of Analysis,” Product: Polyethylene Oxide; Grade: PEO-20NF; May 15, 2013. |
Sumitomo Seika Chemicals, Co., Ltd, “Certificate of Analysis,” Product: Polyethylene Oxide; Grade: PEO-20NF; Jan. 23, 2012. |
Sumitomo Seika Chemicals, Co., Ltd, “Certificate of Analysis,” Product: Polyethylene Oxide; Grade: PEO-20NF; Feb. 3, 2016. |
Turkington, R., “Amphetamines,” in Chemicals used for Illegal Purposes. A Guide for first Responders to Identify Explosives, Recreational Drugs, and Poisons, 2010, p. 247. |
Houston, T.E., et al., “Bite Force and Bite Pressure: Comparison of Humans and Dogs,” http://www.glapbta.com/BFBP.pdf, 2003, pp. 1-7. |
Sigma-Aldrich entry for CAS No. 9010-88-2; www.sigmaaldrich.com/catalog/product/aldrich/182249?lang=en®ion=US (downloaded Jun. 2018). |
Definition Granule, Merriam-Webster, accessed online Jun. 28, 2018 (2018). |
Patel, Et. Al., “Poloxamers: A pharmaceutical excipient with therapeutic behaviors,” PharmTech, vol. 1, No. 2, pp. 299-300 (Apr. 2009). |
Romach et al. “Update on tamper-resistant drug formulations,” Drug and Alcohol Dependence, 130 (2013), 13-23. |
Agarwal, G, et al, “Oral Sustained Release Tablets: An Overview with a Special Emphasis on Matrix Tablet,” American Journal of Advanced Drug Delivery, 2017. |
Befort et al., “The Conserved Asparatate Residue in the Third Putative Transmember Domain,” Molecular Pharmacology 1996: 49:216-223 (1996). |
Brzeclo, W.,et al., “The Advent of a new Pseudoephedrine Product to Combat Methampetamine Abuse,” Am J Drug Alcohol Abuse, 2013: 39(5): 284-290. |
Extended European Search Report for Application No. EP 17173240.7, dated Nov. 28, 2017. |
Fitzpatrick, J., “The influence of Superdisintegrants on Immediate Release,” By Pharmaceutical Technology Editions [online] retrieved from http://www.pharmatech.com/influence-superdisintegrants-immediate-release; vol. 21, issue 6 (Jun. 1, 2011). |
Jamini, M., et al, “Sustained Release Matrix Type Drug Delivery System: A Review,” Journal of Drug Delivery & Therapeutics; 2012, 2(6), 142-148. |
Misal, R, et al., “Matrix Tablet: A Promising Technique for Controlled Drug Delivery,” Indo American Journal of Pharmaceutical Research, 2013. |
Presley, B. et al., “Efficiency of Extraction and Conversion of Pseudoephedrine to Methamphetamine from Tamper-Resistant and Non-Tamper-Resistant Formulations,” Journal of Pharmaceutical and Biomedical Analysis, 2018, 16-22. |
Sprockel, et. al, “A melt-extrusion process for manufacturing matrix drug delivery systems,” Int. Journal of Pharmaceutics 155 (1997) 191-199. |
Suzuki, T, “Blood-brain barrier transport of opioid analgesics,” Abstract, Yakugaki Zasshi; 131(10):1445-51 (2011). |
Targin(R) Product Monograph. Purdue Pharma. Revised Mar. 1, 2016. |
Claffey et al, “Amphetamine Adducts of Melanin Intermediates Demonstrated by Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry,” Chem. Res. Toxicol. 2001, 14, 1339-1344. |
Evans, J.C, et. Al. “Optimal tocopherol concentrations to inhibit soybean oil oxidation,” Journal of The American Oil Chemists' Society 79.1 (2002): 47-51. |
Quinn, M.E. “Alpha Tocopherol” in Handbook of Pharmaceuical Excipients, Sixth Edition (2009), 31-33. |
European Pharmacopeia, 7th Ed. 2.2.8 and 2.2.10, 27ff. (2010). |
Pintauro, Nicholas, D., Food Flavoring Processes, Table of Content. Park Ridge, NJ and London, UK, 1976. |
Kelly, C. et al, “Methamphetamine Synthesis Inhibition: Dissolving Metal Reductions,” Johns Hopkins Univ. Applied Physics Lab., 2015, 1-10. |
Qi et al, “An Investigation into the Crystallisation Behavior of an Amorphous Cryomilled Pharmaceutical Material Above and Below the Glass Transition Temperature,” Journal of Pharmaceutical Sciences, 2009, 196-208. |
Evekeo, (Amphetame Sulfate) for treating patients with ADHD website ([online] https://www.evekeo.com.about-evekeo; 2019:5 pages), 2019. |
Lurie et al., “Chiral Resolution of Cationic Drugs of Forensic Interest,” (Analytical Chemistry 1994; 66(22): 4019-4026. |
BASF the chemical company, Kollicoat IR Technical information, Feb. 2013, p. 1-14 (2013). |
Domino E.F. (1991) Nicotine: A Unique Psychoactive Drug. In: Adlkofer F., Thurau K. (eds.) Effects of Nicotine on Biological Systems. APS Advances in Pharmacological Sciences. Birkhaeuser Basel (1991). |
Kolar et al., “Treatmen of adults with attention-deficit/hyperactivity disorder,” Neuropsychiatric Disease and Treatment 2008:4(3):389-403. |
Rasmussen, N. “America's First Amphetamine Epidemic 1929-1971,” American Journal of Public Health 2008:98(6): 974-985. |
Weinhold, et al. “Buprenorphine alone and in combination with naloxone in non-dependent humans.” Drug & Alcohol Dependence 30.3 (1992): 263-274. |
Ely et al., “Lithium-Ammonia Reduction of Ephedrine to Methamphetamine: An Unusual Clandestine Synthesis,” Technical Note, 1990, 720-723. |
Kunalan et al., “Investigation of the Reaction Impurities Associated with Methylamphetamine Synthesized using the Nagai Method,” Anal. Chem. 2012, 84, 5744-52. |
Lee et al., “Analysis of the impurities in the metamphetamine synthesized by thee different methods from ephedrine and pseudoephedrine,” Forensic Science International 161 (2006), 209-215. |
Person et al., Structural Determination of the Principal Byproduct of the Lithium-Ammonia Reduction Method of Methamphetamine Manufacture, J Forensic Sci, Jan. 2005, vol. 50, No. 1, 87-95. |
Salouros et al., Isolation and Identification of Three By-Products Found in Methylamphetamine Synthesized by the Emde Route2010, 605-615. |
Skinner, Harry F., “Methamphetamine Synthesis via Hydriodic Acid/Red Phosphorus Reduction of Ephedrine,” Forensic Science International, 48 (1990), 123-134. |
Vezin, W et al, “Adjustment of precompression force to reduce mixing-time dependence of tablet tensile strength,” J. Pharm. Pharmacol. 1983, 35: 555-558 (Mar. 28, 1983). |
POLYOX, 2004, online retrieved on Oct. 15, 2018. |
Jedinger, N., et al., Eur. J. Pharm. Biopharm 87 (2014), 217-226. |
“Low Substituted Hydroxypropyl Celluslose”, Drugs.com, from https://www.drugs.com/inactive/low-substitute-hydroxypropyl-cellulose-581.html (2018). |
Patrick, K., et al., “Pharmacology of Methylphenidate, Amphetamine Enantiomers and Pemoline in Attention-Deficit Hyperactivity Disorder,” Human Psychopharmacology, vol. 12, 527-546 (1997). |
Martin et al., “Applications of Polyethylene Oxide (POLYOX) in Hydrophilic Matrices,” in Hydrophilic Matrix Tablets for Oral Controlled Release, Springer, New York, 2014, Chapter 5, pp. 123-141. |
Vosburg, et al., “A comparison among tapentadol tamper-resistant formulations (TRF) and OxyCotin® (non-TRF) in prescription opioid abusers,” 2013; Society for the Study of Addiction; Addiction, vol. 108, pp. 1095-1106. |
Lefnaoui et al., Synthesis and evaluation of the structual and physiochemical properties of carboxymethyl pregelatinized starch as a pharmaceutical excipient, Saudi Pharmaceutical Jourani, Feb. 2015:23:698-711 (2015). |
Lopez-Solis et al., Effect of disintegrants with different hygroscopicity on dissolution of Norfloxacin/Pharmatose DCL 11 tablets, International Journal of Pharmaceutics 2001:216:127-135 (2001). |
Heal et al. “Amphetamine, past and present—a pharmacological and clinical perspective,” Journal of Psychology 2013:27(6):479-496 (2013). |
Gaitondf, B. “General Principles of Drug Action”, 1967, p. 48. |
Thumma et al., “Influence of Plasticizers on the Stability of a Prodrug of D9-Tetrahydrocannabinol Incorporated in poly(Ethyelen Oxide) Matrices”, Eur J. Pharm Biopharm. Oct. 2008 (70(2): 605-614. |
Wolff, K. et al., “Screening for Drugs of Abuse: Effect of Heat-Treating Urine for Safe Handling of Samples”, Clinical Chemistry, vol. 36, No. 6, 1990. |
Nagar et al., “Orally disintegrating tablets : formulation, preparation techniques and evaluation,” Journal of Applied Pharmaceutical Science 2011; 01(04): 35-45 (2011). |
Hedaya, M. et al. “The Need for Tamper-Resistant and Abuse-Deterrent Formulations,” J. Pharma Care Health Systems, vol. 1, Issue 1 (2014). |
Cuesov, Drug Production Technology, Khar'kov, 1999, pp. 351-352. (Full translation attached.). |
Mastropietro, D. et al. “Current approaches in tamper-resistant and abuse-deterrent formulations.” Drug Development and Industrial Pharmacy, vol. 39(5), pp. 611-624 (2013). |
Number | Date | Country | |
---|---|---|---|
20160367487 A1 | Dec 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14580578 | Dec 2014 | US |
Child | 15257079 | US | |
Parent | 11471438 | Jun 2006 | US |
Child | 14580578 | US | |
Parent | PCT/EP2004/014679 | Dec 2004 | US |
Child | 11471438 | US |