Process for the racemization of optically active secondary alcohols with the use of two alcohol dehydrogenases

Information

  • Patent Grant
  • 7795004
  • Patent Number
    7,795,004
  • Date Filed
    Thursday, April 19, 2007
    17 years ago
  • Date Issued
    Tuesday, September 14, 2010
    14 years ago
Abstract
A method for racemizing optically active secondary alcohols by incubating these alcohols with at least one alcohol dehydrogenase of the E.C. 1.1.1. class.
Description
RELATED APPLICATIONS

This application is a national stage application (under 35 U.S.C. §371) of PCT/EP2007/053858, filed Apr. 19, 2007, which claims benefit of European Application No. 06112908.6, filed Apr. 21, 2006.


DESCRIPTION

The present invention relates to a method for enzymatic racemization of optically active secondary alcohols.


PRIOR ART

Secondary alcohol dehydrogenases catalyze the oxidation of secondary alcohols and the reduction of the corresponding ketone to the alcohol.




embedded image


The present invention relates to a method for racemizing optically active secondary alcohols by incubating these alcohols with at least one alcohol dehydrogenase of the E.C. 1.1.1. class.


Optically active secondary alcohols which can be employed in the method of the invention include a large number of structurally different alcohols and compounds comprising secondary alcohol groups.


Aliphatic alcohols having a chain length of from 4 to about 20 C atoms are suitable, it being possible for the aliphatic radical to be branched or unbranched, mono- or polyunsaturated or else cyclic or to form parts of a cyclic system, for example a heterocyclic system such as morpholine, pyrrole, thiophene, pyrazole, imidazole, oxazole, thiazole, pyridine, pyran, pyrimidine, pyridazine, pyrazine, coumarone, indole, quinoline.


Preferred aliphatic alcohols are 2-butanol, 2-pentanol, 2-hexanol, 3-hexanol, 2-heptanol, 3-heptanol, 2-octanol, 3-octanol, 2-nonanol, 2-decanol.


Further suitable secondary alcohols are those having an aryl-alkyl structure, it being possible for the aromatic moiety to be homoaromatic or heteroaromatic.


Preferred alcohols are those which have an optionally substituted phenyl, naphthyl, pyridyl group as aromatic moiety.


Particularly preferred secondary alcohols are optionally substituted phenylethanol-2, phenylpropanol-2, phenylbutanol-2, phenylpentanol-2, phenylhexanol-2.


The alcohols may also be substituted one or more times, i.e. one or more H atoms are by groups such as F, Cl, Br, I, NH2, NHR, NR2, SH, CN, COOH, COOR, CO, CS, CNH, NO2, in which R may be alkyl or alkylaryl radicals.


Suitable as alcohol dehydrogenase are NAD- or NADP-dependent oxidoreductases of enzyme classification E.C. 1.1.1., in particular alcohol dehydrogenases, preferably those which have been isolated from microorganisms or have been isolated and/or modified from such by means of genetic manipulation methods. The modification can be introduced either by so-called random mutagenesis methods or by so-called site-specific mutagenesis.


Alcohol dehydrogenases preferably used are those from microorganisms of the genus Lactobacillus, especially of the species Lactobacillus kefir, and those of the genus Rhodococcus, especially of the species Rhodococcus erythropolis.


These alcohol dehydrogenases are commercially available (e.g. from Fluka) or can be acquired from collections of strains accessible to the public and be isolated by known methods. For example Lactobacillus kefiri DSM 20587, ATCC 35411; Rhodococcus erythropolis DSM 43066, ATCC 25544.


In a preferred embodiment, a plurality of different alcohol dehydrogenases is used as alcohol dehydrogenases, preferably those differing in Prelog specificity, particularly preferably an alcohol dehydrogenase having Prelog specificity and a second alcohol dehydrogenase having anti-Prelog specificity. For the definition of Prelog specificity, reference is made to the document by Kurt Faber, Pure Appl. Chem. 69, 1613-1632, 1997, especially the section on redox reactions, which is expressly incorporated herein by reference.


Thermodynamic considerations indicate that racemization is possible with any alcohol dehydrogenase. The alcohol dehydrogenase employed for the racemization ought to have a minimal enantio/stereoselectivity both for the oxidation and for the reduction, in order to achieve a maximal racemization rate. Since the selectivity is inter alia a function of temperature, racemization is likewise possible at elevated temperature using an enzyme which is selective under “normal” conditions (e.g. L. kefir alcohol dehydrogenase) if the activity is not lost under these conditions. Alcohol dehydrogenases having a high enantio- and stereoselectivity (E>200) show a slow racemization activity.


In two- or multi-enzyme systems, the selectivity of the alcohol dehydrogenase system is composed of the selectivities of the enzymes employed. On simultaneous use of a ‘Prelog’ enzyme (R. erythropolis alcohol dehydrogenase) and of an anti-‘Prelog’ enzyme (L. kefir alcohol dehydrogenase), each of which has a high substrate-related enantio- or stereoselectivity but have opposite stereopreference, the overall selectivity of the system is 1 and the racemization is speeded up.


The enzymes having dehydrogenase activity which are used according to the invention can be used in the method of the invention as free or immobilized enzyme.







The method of the invention is advantageously carried out at a temperature between 0° C. to 95° C., preferably between 10° C. to 85° C., particularly preferably between 15° C. to 75° C.


The pH in the method of the invention is advantageously maintained at between pH 4 and 12, preferably between pH 4.5 and 9, particularly preferably between pH 5 and 8.


The method of the invention can be carried out, depending on the substrate, in an additional solvent or in the substrate itself as solvent. Suitable solvents are all conventional organic solvents which permit an enzymatic redox reaction, especially alcohols, ketones, ethers, hydrocarbons or mixtures of these substances. The chosen solvents advantageously allow easy removal of the racemic secondary alcohol.


By optically active alcohols are meant in the method of the invention enantiomers which show an enantiomeric enrichment. The enantiomeric purities preferably used in the method are at least 70% ee, preferably min. 80% ee, particularly preferably min. 90% ee, very particularly preferably min. 98% ee.


By racemization of optically active alcohols is meant in this connection a reduction in the enantiomeric purity compared with the initial alcohol (substrate), especially a reduction in the enantiomeric purity by 10, 20, 25, 30 percent. Racemization is not to be understood to mean the categoric necessity for the ratio of the enantiomers to reach 50:50, although this complete racemization represents a preferred embodiment of the invention.


The amount of cofactor (NAD/NADH or NADP/NADPH) employed is immaterial for the racemization as long as it is ensured that at least one mole of NAD+ or NADP is present per mole of enzyme, in order to ensure complete formation of the enzyme-cofactor complex. The concentration of ketone formed as intermediate is controlled by the NAD+/NADH ratio employed and by the alcohol/ketone redox potential.


The method of the invention can also advantageously be coupled to cofactor-regeneration systems.


The method of the invention can be operated both continuously and batchwise.


Experimental Section


Alcohols Used (Substrate)














Number
Name
Structure







1
2-Octanol


embedded image







2
2-Heptanol


embedded image







3
2-Nonanol


embedded image







4
1-Phenyl-2-propanol


embedded image







5
6-Methyl-5-hepten-2-ol


embedded image












Enzymes Used














Abbreviation
Name
Source







LK alcohol

Lactobacillus kefir

commercial


dehydrogenase
alcohol dehydrogenase
Fluka 05643


RE alcohol

Rhodococcus erythropolis

commercial


dehydrogenase
alcohol dehydrogenase
Jülich Fine Chemicals




04.11










Enzymes Used


















Enzyme stock solutions

Concentration
U/mL





















LK alcohol dehydrogenase
8
mg/ml
3



RE alcohol dehydrogenase
80
mg/ml
3



RE alcohol dehydrogenase &
4
mg/mL
1.5



LK alcohol dehydrogenase
40
mg/mL
1.5











50 μl of enzyme stock solution were dissolved in 500 μl of phosphate buffer (50 mM, pH 7.5) in a 2 ml Eppendorf® vessel, and 10 μl of NAD+/NADH stock solution (50 mg NADH/ml, 30 mg NAD+/ml) were added. The reaction was then started by adding 2 μl of substrate (48 h, 30° C./65° C., 130 rpm). The reaction was stopped by extraction with 500 μl of EtOAc.


One-Enzyme System


















e.e. of







substratea

Temperature
Ketone
e.e.a,b


Substrate
[%]
Enzyme
[° C.]
[%]
[%]




















(R)-1
>−99.9
RE alcohol
30
<0.1
−98.35




dehydrogenase




LK alcohol
30
22.61
−98.04




dehydrogenase




LK alcohol
65
<0.1
−4.53




dehydrogenase


(S)-1
>99.9
RE alcohol
30
0.25
99.53




dehydrogenase




LK alcohol
30
0.00
>99.9




dehydrogenase


(R)-2
>−99.9
RE alcohol
30
n.d.
<−99.9




dehydrogenase




LK alcohol
30
n.d.
<−99.9




dehydrogenase


(R)-3
>−99.9
RE alcohol
30
1.67
−97.54




dehydrogenase




LK alcohol
30
27.30
−93.04




dehydrogenase


(S)-4
>99.9
RE alcohol
30
3.12
>99.9




dehydrogenase




LK alcohol
30
3.63
>99.9




dehydrogenase


(R)-5
>−99.9
RE alcohol
30
0.56
−98.12




dehydrogenase




LK alcohol
30
24.38
−73.94




dehydrogenase






aPositive and negative e.e. values relate to the excess of the respective (S) and (R) enantiomer.




be.e. after a reaction time of 48 h.








Two-Enzyme System


















e.e. of







substratea

Temperature
Ketone
e.e.a,b


Substrate
[%]
Enzyme
[° C.]
[%]
[%]




















(R)-1
>−99.9
RE alcohol
30
2.23
−9.49




dehydrogenase




& LK alcohol




dehydrogenase


(S)-1
>99.9
RE alcohol
30
3.35
36.95




dehydrogenase




& LK alcohol




dehydrogenase


(R)-2
>−99.9
RE alcohol
30
n.d.
−40.21




dehydrogenase




& LK alcohol




dehydrogenase


(R)-3
>−99.9
RE alcohol
30
2.57
−32.19




dehydrogenase




& LK alcohol




dehydrogenase


(S)-4
>99.9
RE alcohol
30
23.12
>99.9




dehydrogenase




& LK alcohol




dehydrogenase


(R)-5
>−99.9
RE alcohol
30
5.74
−23.92




dehydrogenase




& LK alcohol




dehydrogenase






aPositive and negative e.e. values relate to the excess of the respective (S) and (R) enantiomer.




be.e. after a reaction time of 48 h.








Analyses


GC Analyses
  • Gas chromatograph: Variant 3900 gas chromatograph (FID)
  • Column: Chrompack Chirasil-DEX CB (25 m×0.32 mm×0.25 μm, 1.0 bar H2)


















Temperature
Retention time
e.e.b


Substr.
GC column
programa
[min]
[%]



















2
Chirasil-DEX CB
110/0/2.5/120/0/
(S) 1.369
>99.9




10/200/0
(R) 1.434
<−99.9





Ketone n.d.



3
Chirasil-DEX CB
110/0/2.5/120/0/
(S) 2.741
>99.9




10/200/0
(R) 2.988
<−99.9





Ketone 1.795



4
Chirasil-DEX CB
110/0/2.5/120/0/
(S) 3.683
>99.9




10/200/0
(R) n.d.
<−99.9





Ketone 2.65



5
Chirasil-DEX CB
110/0/2.5/120/0/
(S) 1.860
>99.9




10/200/0
(R) 1.981
<−99.9





Ketone 1.303







a° C./holding time [min]/heating rate [° C./min]/° C./holding time/heating rate/° C./holding time [min],




bPositive and negative e.e. values relate to the excess of the respective (S) and (R) enantiomer.



n.d.: not detectable







Acetylation of Alcohols (General Method)


The derivatization was carried out by adding 100 μl of acetic anhydride/DMAP solution and incubating at 30° C./130 rpm for 60 min. 0.5 ml of H2O was added.


The organic phase was removed and dried over Na2SO4.

Claims
  • 1. A method for racemizing optically active secondary alcohols comprising incubating said optically active secondary alcohols with at least one alcohol dehydrogenase of the E.C. 1.1.1. class, wherein said at least one alcohol dehydrogenase of the E.C. 1.1.1. class comprises a mixture of two alcohol dehydrogenases, and wherein one alcohol dehydrogenase of said mixture has a Prelog specificity and the other alcohol dehydrogenase of said mixture has an anti-Prelog specificity.
  • 2. The method of claim 1, wherein said incubation is performed in the absence of organic solvents.
Priority Claims (1)
Number Date Country Kind
06112908 Apr 2006 EP regional
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/EP2007/053858 4/19/2007 WO 00 10/20/2008
Publishing Document Publishing Date Country Kind
WO2007/122182 11/1/2007 WO A
Foreign Referenced Citations (1)
Number Date Country
WO-2006021885 Mar 2006 WO
Related Publications (1)
Number Date Country
20090098623 A1 Apr 2009 US