The present invention relates to a process for the running of a reactor suitable for heterogeneous reactions combined with reactions taking place in three-phase systems.
More specifically, the present invention relates to a process for the running of a reactor in which reactions take place in multiphase systems, wherein a gaseous phase, prevalently consisting of CO and H2, is bubbled into a suspension of a solid in the form of particles (catalyst) in a liquid (prevalently reaction product), according to the Fischer-Tropsch technology.
The Fischer-Tropsch technology is known in literature, for preparing hydrocarbons from mixtures of gas based on hydrogen and carbon monoxide, conventionally known as synthesis gas. A document which summarizes the main works on the Fischer-Tropsch synthesis reaction is represented by Sie and Krishna, Appl. Catalysis A: General (1999), 186, 55-70.
The Fischer-Tropsch technology is typically based on the use of slurry reactors, reactors which are normally used in relation to chemical reactions which are carried out in multiphase systems in which a gaseous phase is bubbled into a suspension of a solid in a liquid. In the case of Fischer-Tropsch, the gaseous phase consists of synthesis gas, with a molar ratio H2/CO ranging from 1 to 3, the liquid phase, at the reaction temperature, prevalently consists of the reaction product, i.e. essentially linear hydrocarbons with a high number of carbon atoms, and the solid phase is prevalently represented by the catalyst.
The Fischer-Tropsch reaction is an exothermic reaction which, for its industrial embodiment, requires internal heat exchanger devices, for removing the heat produced and for controlling the thermal profile inside the reactor.
The objective of the present invention is the running of the phases which are not included in the normal operating conditions for Fischer-Tropsch reactions and which are particularly critical for the catalyst performances, such as for example:
In scientific literature, for example in published Australian patent application AU 200066518 A1, a process is described for treating, in the charging phase, a catalyst for Fischer-Tropsch reactions which are carried in fluidized multiphase reactors and for running these during the shut-down or re-start-up phases.
The Applicants have now found an alternative process to that of the known art, for charging a catalyst into a bubble column slurry reactor and methods for the running of said reactor outside the normal operating conditions. The description of these methods is effected with the help of
The charging phase of a catalyst into a bubble column slurry reactor (B) at the moment of start-up, comprises:
According to the present invention, the inert gas can consist, for example, of nitrogen or, preferably, purified natural gas.
In the present charging method, the catalyst is englobed in paraffinic waxes in the form of cylindrical blocks, wherein the quantity of wax ranges from 30 to 70% by weight. Any catalyst capable of being active in Fischer-Tropsch reactions can be used in the present process. The preferred catalyst is based on Co dispersed on a solid carrier consisting of at least one oxide selected from one or more of the following elements: Si, Ti, Al, Zr, Mg. Preferred carriers are silica, alumina or titania and their mixtures.
The cobalt is present in the catalyst in quantities ranging from 1 to 50% by weight, generally from 5 to 35% with respect to the total weight.
The catalyst can comprise further additional elements. It can comprise, for example, with respect to the total, from 0.05 to 5% by weight, preferably from 0.1 to 3%, of ruthenium and from 0.05 to 5% by weight, preferably from 0.1 to 3%, of at least a third element selected from those belonging to group 3 (IUPAC regulation). Catalysts of this type are known in literature and described, together with their preparation, in European patent 756,895.
Further examples of catalysts are again based on cobalt but containing tantalum, as promoter element, in quantities of 0.05-5% by weight, with respect to the total, preferably 0.1-3%. These catalysts are prepared by first depositing a cobalt salt on the inert carrier (silica or alumina), for example by means of the dry impregnation technique, followed by a calcination step and, optionally, a reduction and passivation step of the calcined product.
A derivative of tantalum (particularly tantalum alcoholates) is deposited on the catalytic precursor thus obtained, preferably with the wet impregnation technique followed by calcination and, optionally, reduction and passivation.
The catalyst, whatever its chemical composition may be, is used in the form of a finely subdivided powder having an average diameter of the granules ranging from 10 to 250 μm.
The catalyst, englobed in the paraffinic matrix, is brought to a temperature higher than or equal to 150° C., for example, from 150 to 220° C., and diluted with a diluent liquid at those temperatures, and also at room temperature, for example with an oligomer of C6-C10 α-olefins, until a concentration of solid ranging from 10 to 50% by weight is obtained. After the complete melting of the paraffinic matrix, the suspension is transferred into the reactor (B), maintained at a temperature higher than or equal to that of the melting vessel (A), by means of an internal heat exchanger. Under normal operating conditions, the exchanger serves for removing the reaction heat produced and maintaining the conditions more or less isothermal in the whole reaction volume.
During the transfer of the suspension, the reactor (B) is at a pressure lower than that present in the charging vessel (A) in order to favour the passage of the suspension from the vessel to the reactor due to the difference in pressure. The pressure in the charging vessel (A) is generally higher than that present in the reactor (B) by about 0.2-0.4 MPa whereas the pressure inside the reactor is maintained at about 0.1-1 MPa. For the whole duration of the transfer process, a stream of inert gas (5) is maintained at the bottom of the reactor (B) to guarantee the suspension of the catalyst, thus preventing its sedimentation.
Both the temperature and pressure present inside the reactor (B) during the charging phase are lower than the values present during regime synthesis conditions. The Fischer-Tropsch reaction is in fact carried out at temperatures equal to or higher than 150° C., for example ranging from 200 to 350° C., maintaining a pressure ranging from 0.5 to 5 MPa inside the reactor. More significant details on Fischer-Tropsch reactions are available in “Catalysis Science and Technology”, vol. 1, Springer-Verlag, New York, 1981.
In order to reach the normal operating level inside the reactor (B) and all the optional apparatuses (E) envisaged for the treatment of the suspension, the melting, dilution and transfer from the charging vessel (A) to the reactor (B) are repeated various times. In relation to the concentration of the catalyst desired and plant production capacity, this operation can be repeated, for example, from 2 to 30 times.
During the first and subsequent charging steps, the reactor (B) is kept isolated from the optional equipment (E) envisaged for the treatment of the suspension, until an adequate suspension level is reached in the reactor itself enabling it to be on-line with said equipment (E). The charging steps are then completed until the normal operating level is reached. The vessels (A) and (B) have outlets (13) for the recovery of the vapour phase (inert gas and/or non-reacted synthesis gas, and/or synthesis reaction products in vapour phase under the reaction conditions).
At the end of the charging phase, before bringing the system to the normal reaction and production conditions (14), a conditioning phase of the catalyst is activated. More specifically, at the end of the charging, the reactor (B) is in temperature conditions ranging from 150 to 220° C. and a pressure ranging from 0.1 to 1 MPa, and is continuously fed with inert gas. The conditioning phase of the catalyst comprises:
Synthesis gas essentially consists of CO and H2, possibly mixed with CH4, CO2 and inert gases in general; it has a H2/CO molar ratio ranging from 1 to 3 and preferably derives from steam reforming and/or partial oxidation of natural gas or other hydrocarbons, on the basis of the reactions described, for example, in U.S. Pat. No. 5,645,613. Alternatively, the synthesis gas can derive from other productions techniques such as, for example, autothermal reforming, C.P.O. (Catalytic Partial Oxidation) or from the gasification of coal with water vapour at a high temperature as described in “Catalysis Science and Technology”, vol. 1, Springer-Verlag, New York, 1981.
When the reactor (B) is under regime conditions, periodic make-up of the catalyst is envisaged for compensating losses (in activity and material) during the overall production cycle, for example due to purges effected in the liquid-solid separation section.
In order to carry out the make-up of the catalyst, it is not only necessary to effect the melting of the pellets and their possible dilution with a solvent, but it is also preferable to proceed with the conditioning of the fresh catalyst before introducing it into the reaction environment. There is therefore a specific melting and conditioning section for this function, described in the enclosed claims, which is essentially based on:
The vessels (C) and (D) have outlets (13′) for recovering the vapour phase (inert gas and/or non-reacted synthesis gas, and/or products of the synthesis reaction in vapour phase under the reaction conditions).
At the end of the conditioning phase of the catalyst and once the synthesis reactor (B) has been brought to regime conditions, the running of the latter can comprise a further two steps: stoppage (or shut down), with consequent re-start-up, and a temporary stoppage phase, better known as stand-by.
The shut-down of a reactor (B) in which reactions are effected which take place in multiphase systems, wherein a gaseous phase, prevalently consisting of CO and H2, is bubbled into a suspension of a solid in the form of particles (catalyst) in a liquid (prevalently reaction product), requires the following operating phases:
According to the present invention, the inert gas can consist, for example, of nitrogen or, preferably, of purified natural gas.
In this embodiment of the present invention, once the suspension has been discharged from the reactor (B) and from the equipment (E) envisaged for the treatment of the suspension, such as degassing vessels and/or decanters and/or filters and other apparatuses such as recirculation pumps, and once the actions required for the shutdown phase have been completed, the reactor can be reactivated following the method described above, for example, for the charging phase.
The vessel (A) is designed to have a capacity which is such as to contain the volume of suspension present in the reactor (B) and in the other units (E), associated with the treatment of the suspension, at the moment of shut-down.
Should it not be necessary to empty the reactor (B) in the shut-down phase, in the case for example of a temporary stand-by phase, the latter comprises:
In this phase, the reactor (B) can be kept in line with the treatment section of the suspension (E) which is completely recycled, (11) and (12), to the reactor without the extraction of products. Alternatively, the reactor can be taken off-line from the units (E) after removing the suspension from the equipment (E) directly connected to the reactor (B). The latter is preferably designed to have a capacity which is such as to also contain the volume of suspension present in the units (E) at the moment of temporary stand-by.
Number | Date | Country | Kind |
---|---|---|---|
M12003A001777 | Sep 2003 | IT | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP04/10635 | 9/17/2004 | WO | 2/15/2007 |