The present invention relates to a high productivity process for the total conversion to distillates only, without the contextual production of fuel oil or coke, of heavy feedstocks, among which heavy crude oils also with a high metal content, distillation residues, heavy oils coming from catalytic treatment, visbreaker tars, thermal tars, bitumens from oil sands possibly obtained from mining, liquids from coals of different origins and other high-boiling feedstocks of a hydrocarbon origin known as “black oils”.
Fuel oil and coke are undesired by-products of conversion processes of heavy feedstocks due to the high level of pollutants accumulated therein, thus greatly limiting the possibility of their use or even obliging them to be sent for disposal (coke). The upgrading schemes currently applied comprise the production of fuel oil, coke or side-streams destined for thermal use or to be gasified. Apart from the above economical and environmental reasons, these processes seem inadequate as a result of the unproductive yield to distillates when the highest possible volume of products is requested from each barrel of feedstock to be used.
The conversion of heavy feedstocks into liquid products can be substantially effected in two ways: one thermally, and the other by means of hydrogenating treatments.
Current studies are mainly directed towards hydrogenating treatments, as thermal processes, still widely used, have intrinsic limits associated with the production of coke or heavy pitches with a consequent low yield to distillates.
Upgrading processes of residues by means of hydroconversion consist in treating the feedstock in the presence of hydrogen and suitable catalysts, following different objectives:
The hydroconversion technologies currently adopted use fixed or ebullated bed reactors and make use of catalysts generally consisting of one or more transition metals (Mo, W, Ni, Co, etc.) supported on silica and/or alumina, or other oxide carriers.
Fixed bed technologies, also in the most advanced versions, have great limitations:
As a result of these limitations, fixed bed hydroconversion technologies are totally inadequate for configuring total conversion schemes of heavy feedstocks to distillates.
In order to partly overcome these limitations, ebullated bed processes were developed in which although the catalytic bed is confined within a certain area of the reactor, it is mobile and can expand as a result of the flow of reagents in liquid and gaseous phase. This allows the reactor to be equipped with mechanical apparatuses for removing the exhausted catalyst and feeding fresh catalyst in continuous without interrupting the running of the reactor. For this possibility of continuously substituting the exhausted catalyst, ebullated bed technologies can process heavy feedstocks with a metal content of up to 1,200 ppm Ni+V. Catalysts in a spheroidal form can in fact reach metal (Ni+V) uptake levels of up to 100% of their weight. Although the ebullated bed technology benefits from the improvements granted by the continuous regeneration of the catalyst, it only allows conversion levels to distillates up to a maximum of 60% to be obtained. It is possible to bring the conversion to 80% by operating under highly severe conditions and with the recycling of a quota of the products, with problems however of stability of the fuel oil produced due to the separation of the non-converted asphaltene phase which, also in this case, remains the core of the problem. For these reasons, even if the ebullated bed technology leads to a significant production of fuel oil, it is not suitable for total conversion processes to distillates.
As an alternative to hydroconversion processes based on the use of fixed bed or ebullated bed supported catalysts, processes have been proposed which use catalysts homogeneously dispersed in the reaction medium (slurry). These slurry processes are characterized by the presence of particles of catalyst having very small average dimensions and uniformly dispersed in the hydrocarbon phase.
It is consequently difficult for the activity of the catalyst to be influenced by the presence of metals or carbonaceous residues coming from the degradation of asphaltenes. This, together with the high efficiency of the catalyst defined, forms the premises for configuring, as described in patent application IT-95A001095, a conversion process of heavy feedstocks which allows their total transformation (zero residue refinery), comprising the asphaltene section, to distillates and hydrocarbon streams (deasphalted oils) of such a high quality that they can be fed to refinery catalytic cracking plants, such as Hydrocracking and Fluid Bed Catalytic Cracking (FCC).
Said patent application IT-95A001095, describes more specifically a process which allows the catalyst recovered to be recycled to the hydrotreatment reactor without the necessity of a further regeneration step. It is generally necessary to effect a flushing on the recycled stream to prevent the metallic sulfides produced as a result of the demetallation, from accumulating at such high levels as to hinder the efficiency of the process (hydrotreatment reactor, column bottom, separators, pumps and piping). The volumes of the flushing stream therefore depend on the level of metals in the feedstock and quantity of solids the recycled stream can tolerate and which, on the basis of our experience, can vary from 0.3-4% of the feedstock itself. The catalyst is obviously also fatally subtracted from the reaction cycle together with the flushing and must consequently be continuously reintegrated to an equivalent extent.
A desirable evolution of this process should aim at obtaining distillates alone for obvious economical reasons and for considerably simplifying the refining cycle, which is specifically what the present invention proposes, together with other objectives.
The definition of a conversion process which allows the total transformation of heavy feedstocks to distillates has so far remained unsolved. The main obstacle consists of the operability limits, mainly the formation of coke, which are encountered when, in order to complete the conversion of heavy oils to distillates, the conditions of the hydrogenation reactor, whether it be with or without a supported catalyst, become severe.
More specifically, the objectives at which an ideal process (at the moment not available) in the field of the treatment of residues should be aimed, are the following:
A process configuration has therefore been surprisingly found for the treatment of heavy feedstocks based on two steps wherein in the first step the heavy feedstock is effectively hydrotreated in a slurry reactor with a dispersed catalyst. The objective of this operation is to demolish the high molecular weight asphaltene structures to favour the removal of Ni and V (hydrodemetallation, HDM) and contemporaneously to reduce the content of asphaltenes in the feedstock converting part of it to distillates by means of rapid dealkylation processes.
At the outlet of the first hydrotreatment reactor, after separation of the gaseous effluents, the liquid effluent, containing the dispersed catalyst and Ni and V sulphides, is subjected to unitary separation operations (distillations and deasphaltations or possibly physical separations of the solids comprising the catalyst) in order to recover the products resulting from the HDM reaction and hydrotreatment reactions which accompany it (HDS, HDN, HDA and HC).
The asphaltene residue containing the solids in dispersed phase (catalysts and N and V sulphides) is sent for disposal or other further treatment to recover the metals.
This particular configuration is particularly suitable when the heavy feedstock treated is extremely reactive, which leads to a reduction in the volume of the asphaltene fraction, which is further concentrated through the use in deasphalting of solvents having a considerable extracting power (pentanes and hexanes).
When particularly reactive feedstocks are treated, such as oil sands possibly produced from mining, this process proves to be particularly advantageous as the possible inorganic sediments present in the feedstock are concentrated, together with the solids, in this asphaltene fraction.
An aliquot of catalyst, which must be reintegrated, is inevitably subtracted on this stream containing the solid products. This quota can be kept suitably low by operating with relatively low concentrations of catalyst.
The practically demetalled oily product obtained is then sent to a second step where it can be treated under high concentration conditions of catalyst and temperature to directly obtain end-products, at the same time limiting the undesired production of coke which impedes the recycling of the catalyst.
We have also found that the tendency towards the formation of coke depends on both the concentration of the hydrogenation catalyst based on a transition metal (with high concentrations of catalyst, the formation is practically suppressed within a wide temperature range, whereas it is evident under analogously severe conditions, when the catalyst is present in low concentrations), and also on the nature and quantity of maltenes with respect to the asphaltenes present in the system (an increase in the maltenes/asphaltenes ratio can in fact create a situation of instability which can lead to the precipitation of the asphaltenes and subsequently to the formation of coke).
As far as the first aspect is concerned, operating at high temperatures with high concentrations of catalyst allows high productivities to be reached with a good control on the formation of coke. In conventional processes, this is not possible as high concentrations of catalyst correspond, in relation to the flushing degree, to a high consumption which can jeopardize the economical aspect, in the present invention however this drawback is overcome as an efficient preventive demetallation is effected.
An important positive aspect of this approach, however, relates to the fact that high severity reactions (i.e. those that lead to the total transformation of the feedstock to distillates) are carried out in a system without a certain quantity of light paraffins and maltenes (i.e. the distillates of the first step) and they can therefore be run at relatively high temperatures without coming up against problems of instability of the asphaltenes.
To summarize, the specific characteristic of this approach is to envisage two hydrotreatment steps operating under different severity conditions:
By separating the various reactive functions in the best possible way, this approach allows, on the one hand, the direct production of semi-finished distillates required by the market with industrially acceptable reaction rates for a high capacity process and, on the other, the formation of coke to be avoided without the necessity of effecting a flushing (at least on the second hydrotreatment reactor), otherwise envisaged in the schemes so far known.
More specifically, the process, object of the present invention, for the conversion of heavy feedstocks selected from heavy crude oils, distillation residues from crude oil or coming from catalytic treatment, visbreaker tars, thermal tars, bitumens from oil sands, liquids from coals of different origins and other high-boiling feedstocks of a hydrocarbon origin, known as “black oils”, comprises the following steps:
The first distillation area (D1) preferably consists of an atmospheric distillation column and a vacuum distillation column, fed by the bottom fraction of said atmospheric distillation column. One or more flash steps can be optionally added before said atmospheric distillation columnphase to the second hydrotreatment area (HT2).
Two streams are obtained from the vacuum distillation column, a bottom stream consisting of the distillation residue, the other essentially consisting of vacuum gas oil (VGO) which can be optionally sent, at least partially, to the second hydrotreatment area (HT2).
The second distillation area (D2) preferably consists of one or more flash steps and an atmospheric distillation column, even if in some cases the presence of an additional column operating under vacuum can be envisaged.
Substantially all the distillation residue (tar) is preferably recycled to the second hydrotreatment area (HT2).
The heavy feedstocks treated can be of a varying nature: they can be selected from heavy crude oils, distillation residues, heavy oils coming from catalytic treatment, such as for example heavy cycle oils from catalytic cracking treatment, residue products from fixed bed and/or ebullated bed hydroconversion treatment, thermal tars (coming for example from visbreaking or similar thermal processes), bitumens from oils sands, liquids from coals of different origins and other high-boiling feedstocks of a hydrocarbon origin known in the art as “black oils”.
The catalysts used can be selected from those obtained from in-situ decomposable precursors (various kinds of metallic carboxylates such as naphthenates, octoates, etc., metallic derivatives of phosphonic acids, metallocarbonyls, heteropolyacids, etc.) or from preformed compounds based on one or more transition metals such as Ni, Co, Ru, W and Mo: the latter is preferred thanks to its high catalytic activity.
The concentration of transition metal contained in the catalyst fed to the first hydrotreatment area ranges from 20 to 2,000 ppm, preferably from 50 to 1,000 ppm.
The concentration of transition metal contained in the catalyst fed to the second hydrotreatment area ranges from 1,000 to 30,000 ppm, preferably from 3,000 to 20,000 ppm.
The first hydrotreatment area can consist of one or more reactors: part of the distillates produced in the first reactor can be sent to the subsequent reactors.
Said first hydrotreatment area preferably operates at a temperature ranging from 360 to 480° C., more preferably from 380 to 440° C., at a pressure ranging from 3 to 30 MPa, more preferably from 10 to 20 MPa, and with a residence time varying from 0.1 to 5 h, preferably from 0.5 to 3.5 h.
The second hydrotreatment area can consist of one or more reactors: part of the distillates produced in the first reactor of said area can be sent to the subsequent reactors of said area.
Said second hydrotreatment area preferably operates at a temperature ranging from 400 to 480° C., more preferably from 420 to 460° C., at a pressure ranging from 3 to 30 MPa, more preferably from 10 to 20 MPa, and with a residence time varying from 0.5 to 6 h, preferably from 1 to 4 h.
Hydrogen is fed to the reactor, which can operate in both a down-flow mode and, preferably, up-flow. Said gas can be fed to several sections of the reactor.
The vacuum section of the first distillation area preferably operates at a reduced pressure ranging from 0.005 to 1 atm, more preferably from 0.015 to 0.1 atm.
The vacuum section, when present, of the second distillation area preferably operates at reduced pressure ranging from 0.005 to 1 atm, more preferably from 0.015 to 0.1 atm.
The deasphalting step, effected by means of an extraction with solvent, either hydrocarbon or nonhydrocarbon, preferably with paraffins or iso-paraffins having from 3 to 6, preferably from 4 to 5, carbon atoms, is normally carried out at temperatures ranging from 40 to 230° C. and a pressure of 0.1 to 7 MPa. It can also consist of one or more sections operating with the same solvent or different solvents; the recovery of the solvent can be effected under sub-critical or super-critical conditions with one or more steps, thus allowing a further fractionation between the deasphalted oil (DAO) and resins.
By incorporating the process described in patent application IT-MI2003A-000692 in the present patent application, a further secondary section can be optionally present for the hydrogenation post-treatment on a fixed bed reactor of the C2-500° C. fraction, preferably the C5-350° C. fraction, coming from the section of high pressure separators envisaged upstream of the first and second distillation area and downstream of the hydrotreatment section (HT1) and hydrotreatment section (HT2).
The fixed bed hydrotreatment section of the light fractions obtained from the separation pre-steps effected at a high pressure on the hydrotreatment reaction products (HT1 and HT2) can be shared.
In addition to the possible secondary hydrogenating post-treatment section there can optionally be a further secondary post-treatment section of the asphaltene stream containing the solid products, which can be further enriched in the inorganic fraction.
In this case, at least a part of the stream containing asphaltenes, coming from the deasphalting section (SDA), is sent to a treatment section with a suitable solvent for the separation of the product into a solid fraction and a liquid fraction from which said solvent can subsequently be removed.
Said possible treatment section of at least part of the stream containing asphaltenes consists of a deoiling step with solvent (toluene or gas oil or other streams rich in aromatic compounds) and separation of the solid from the liquid fraction.
The liquid fraction obtained can be fed, at least partially, to the “fuel oil pool”, as such or after being separated from the solvent and/or after the addition of a suitable fluxant, wherein, in some cases, the solvent and fluxant can coincide.
The solid fraction can be disposed of as such or, more advantageously, can be sent to a selective recovery treatment of metals.
The deoiling step consists in the treatment of at least part of the stream containing asphaltenes with a solvent capable of reducing the higher possible amount of organic compounds to the liquid state, leaving the metal sulphides, coke and most refractory carbonaceous residues (“insoluble toluene” or similar) and possible further inorganic solvents in the solid state.
Considering that the components of a metallic nature can become pyrophoric when very dry, it is advisable to operate in an inert atmosphere, as much as possible without oxygen and moisture.
Different solvents can be advantageously used in this “deoiling” phase; among these, aromatic solvents such as toluene and/or blends of xylenes, hydrocarbon feedstocks available in the plant such as the gas oil produced therein, or in the refinery such as, for example, Light Cycle Oil coming from the FCC unit or Thermal Gas oil coming from the Visbreaker/Thermal Cracker unit.
Within certain limits, the rate of the operation is facilitated by increasing the temperature and reaction time, but for economical reasons an excessive increase is not advisable.
The operating temperatures depend on the solvent used and the pressure conditions; temperatures ranging from 80 to 150° C. are generally recommended; the reaction times can vary between 0.1 and 12 hrs, preferably between 0.5 and 4 hrs.
The volumetric ratio between the solvent and stream containing asphaltenes is also an important variable to be considered; it can vary from 1 to 10 (w/w), preferably from 1 to 5, more preferably from 1.5 to 3.5.
Once the mixing phase between the solvent and the stream containing asphaltenes has been completed, the effluent maintained under stirring is sent to a separation section of the liquid from the solid phase.
This operation can be one of those typically used in industrial practice, such as decanting, centrifugation and filtration.
The liquid phase can then be sent to a stripping phase with recovery of the solvent, which is recycled to the first step (deoiling) for the treatment of the flushing stream. The remaining heavy fraction can be advantageously used in the refinery as a stream practically free of metals and with a relatively low content of sulphur. If the treatment operation is effected with a gas oil, for example, part of this gas oil can be left in the heavy product so as to bring it to specification for the “fuel oil pool”.
The solid part can be disposed of as such or it can be sent to treatment for the selective recovery of metals.
A preferred embodiment of the present invention is now provided with the help of the enclosed
The heavy feedstock (1) is mixed with fresh catalyst (2) and sent to the first hydrotreatment area (HT1) consisting of one or more reactors in series and/or in parallel wherein hydrogen or a mixture of hydrogen/H2S (3) is introduced. A stream (4) leaves the reaction section HT1, containing the reaction product and the catalyst in dispersed phase, which is sent to a first distillation area (D1) consisting of an atmospheric distillation column (D1A) and a distillation column under vacuum (D1V).
From the atmospheric distillation column (D1A), the lighter fractions (D11, D12, D13, . . . D1n) are separated from the heavier fraction on the bottom (5) which is fed to the vacuum distillation column (D1V) separating two streams, one essentially consisting of vacuum gas oil (6), the other (7) at the bottom, which forms the distillation residue of the first distillation area which is sent to the deasphalting section (SDA), said operation being effected by means of solvent extraction.
Two streams are obtained from the deasphalting unit: one consisting of DAO (8), the other containing asphaltenes (9).
The stream containing asphaltenes and solid products (9) is sent for disposal or possible treatment for the recovery of the metals.
The stream consisting of DAO (8) is sent to a second hydrotreating area (HT2), consisting of a hydrotreating reactor in which hydrogen or a blend of hydrogen/H2S (3) is introduced. A stream (10) leaves this reactor (HT2), containing the reaction product and the catalyst in dispersed phase, which is sent to a second distillation area (D2) consisting of an atmospheric distillation column in order to separate the lighter fractions (D21, D22, D23, . . . D2n) from the heavier fraction at the bottom (11) which is recycled to the second hydrotreatment area (HT2).
Some examples are provided hereunder for a better illustration of the invention, which should in no way be considered as being limited thereto or thereby.
Following the scheme represented in
The catalytic tests were carried out using a 30 cm3 stirred micro-autoclave according to the following general operating procedure:
The tests were carried out using the feedstock indicated in Table 1.
Following the scheme represented in
The same method was used as in example 1, but a different vacuum residue was treated, whose characteristics are shown in Table 2.
A residual asphaltenes concentration of 10.4%, corresponding to a deasphalting of 36% and a concentration of metals of 15 ppm, corresponding to a deasphalting of 96%, was obtained by operating at a temperature of 430° C., a catalyst concentration corresponding to 500 ppm of Molybdenum, and with a reaction time of 1 hour.
Following the scheme represented in
Hydrotreatment Step 1
The properties of the feedstock are those indicated in Table 2 of Example 2. A test was carried out according to the procedure described below. The reactor was charged with the residue and molybdenum compound and pressurized with hydrogen. The reaction was carried out under the operating conditions indicated. When the test was completed, quenching was effected; the autoclave was depressurised and the gases collected in a sampling bag for gas chromatographic analysis.
The liquid product present in the reactor was subjected to distillation and to subsequent deasphalting with pentane.
Distillation Step
This was effected using laboratory equipment for distilling oil feedstocks.
Deasphalting Step (SDA)
The product to be deasphalted and a volume of solvent equal to 8-10 times the residue volume are charged into an autoclave. The feedstock and solvent mixture is heated to a temperature of 80-180° C. and subjected to stirring (800 rpm) by means of a mechanical stirrer for a period of 30 minutes. At the end of the operation, decanting is effected and the separation of the two phases, the asphaltene phase which is deposited on the bottom of the autoclave, and the deasphalted oil phase diluted in the solvent. The decanting lasts about two hours. The DAO-solvent phase is transferred, by means of a suitable recovery system, to a second tank. The DAO-solvent phase is then recovered, and the solvent is subsequently eliminated by evaporation.
Results of the Experimentation
Following the procedure described above, the results indicated in Table 3 were obtained.
Following the scheme represented in
Hydrotreatment Step 2
The catalytic tests were carried out using a 30 cm3 stirred micro-autoclave according to the following general operating procedure:
The feedstock used for the test was prepared from Example 3, and specifically from the DAO obtained by the deasphalting with n-pentane of the residue produced by the hydrogenation reaction in the presence of dispersed catalyst.
By operating at 450° C., with a catalyst concentration of 6,000 ppm and a reaction time of 2 hrs, a DAO 500+ conversion of 80.1% to distilled products and a desulphuration of 68.3% was obtained.
Number | Date | Country | Kind |
---|---|---|---|
MI2006A1511 | Jul 2006 | IT | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2007/006709 | 7/27/2007 | WO | 00 | 5/1/2009 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2008/014948 | 2/7/2008 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3905892 | Gregoli et al. | Sep 1975 | A |
4062758 | Goudriaan et al. | Dec 1977 | A |
4176048 | Corns et al. | Nov 1979 | A |
5013427 | Mosby et al. | May 1991 | A |
5932090 | Marchionna et al. | Aug 1999 | A |
20030089636 | Marchionna et al. | May 2003 | A1 |
20060157385 | Montanari et al. | Jul 2006 | A1 |
20060163115 | Montanari et al. | Jul 2006 | A1 |
20060175229 | Montanari et al. | Aug 2006 | A1 |
20060186021 | Marchionna et al. | Aug 2006 | A1 |
20060272982 | Montanari et al. | Dec 2006 | A1 |
20070144944 | Del Bianco et al. | Jun 2007 | A1 |
Number | Date | Country |
---|---|---|
2005 047425 | May 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20090314681 A1 | Dec 2009 | US |