The present invention generally relates to a continuous roll-to-roll process for producing and transferring security devices in the form of microstructures from a transfer film to a final substrate.
Security threads as well as security patches may be mounted on a surface of a security document (e.g., currency or banknote paper) or label either during or post manufacture. Mounting of these devices may be achieved by any number of known techniques including: applying a pressure-sensitive adhesive to the backside of the device and pressing the device to the surface of the document or label; and applying a heat activated adhesive to the backside of the device and applying the device using thermal transfer techniques, to the surface of the document or label.
The production of these security devices and the application of these devices to security documents or labels take place in separate operations. Combining these operations in a continuous roll-to-roll process for producing and transferring these security devices to a final substrate would realize advantages in both speed and precision.
The present invention fulfills this need by providing a continuous roll-to-roll process for producing and transferring security devices in the form of microstructured elements or microstructures from a transfer film to a final substrate.
More specifically, the present invention provides a transfer film for transferring microstructures to a final substrate. The microstructures transferred by the transfer film to a final substrate are single or multi-layer structures that comprise: voids in a substantially planar surface, the voids optionally filled or coated with another material; raised areas in a substantially planar surface; or combinations thereof.
In a first exemplary embodiment, the transfer film comprises a carrier film and one or more thermal release adhesive layers on a surface of the carrier film, wherein the thermal release adhesive layer(s) is made up of a plurality of expandable microspheres and one or more pressure sensitive adhesives.
The term “thermal release adhesive”, as used herein, means an adhesive that decreases its adhesion to a surface when heated to temperatures higher than about 60° C., while the term “expandable microspheres”, as used herein, means polymer microspheres that start expansion and/or foaming when heated to temperatures higher than about 60° C.
Thermal release adhesives (e.g., thermal release tapes) are known in the art and have been used in semiconductor wafer processing and other electronic component manufacturing processes. Suppliers of thermal release products used for electronic applications include Nitto Denko Corporation, 1-2, Shimohozumi 1-chome Ibaraki-shi, Osaka Japan (Nitto Denko), which sells REVALPHA® thermal release adhesive tapes and sheets, and Haeun Chemtec Co., Ltd., Shingil-dong, Danwon-gu, Ansan, Kyungki-do, 425-839, Korea, which sells REXPAN™ heat release film. However, the thickness and cost of these products are prohibitive for anything other than small scale samples, and are not suitable for volume production as described herein.
The term “pressure sensitive adhesive”, as used herein, means an adhesive that needs only minimal pressure to adhere or stick to a surface.
In an exemplary embodiment, the one or more thermal release adhesive layers are prepared from a formulation comprising from about 25 to about 99% by wt. (preferably, from about 75 to about 97% by wt., more preferably, from about 90 to about 96% by wt.) of an energy (e.g., ultraviolet (UV) radiation) curable pressure sensitive adhesive (PSA) formulation, and from about 1 to about 75% by wt. (preferably, from about 3 to about 25% by wt., more preferably, from about 4 to about 10% by wt.) of expandable microspheres.
In this exemplary embodiment, the energy curable PSA formulation generally comprises:
In a second exemplary embodiment, the transfer film comprises a carrier film and one or more cured binder layers. In this embodiment, the microstructures have one or more cured conformal release coating layers on a surface thereof, and are bonded to the transfer film by way of the one or more cured binder layers. Heat is not required to initiate release during transfer of the microstructures.
The present invention further provides a method of using the transfer films described above, which method comprises using the transfer films (a) to transfer the above-described microstructures in a continuous roll-to-roll process to a final substrate, or (b) as manufacturing substrates during production of the microstructures and then to transfer the microstructures in a continuous roll-to-roll process to a final substrate.
Also provided is a process for transferring microstructures to a final substrate. In a first exemplary embodiment, the process comprises subjecting the transfer film first described above in a continuous roll-to-roll process to the following operations: either forming microstructures on, or transferring microstructures to a surface of the thermal release adhesive layer(s) of the transfer film, wherein the microstructures are single or multi-layer structures that comprise: voids in a substantially planar surface, wherein the voids are optionally filled or coated with another material; raised areas in a substantially planar surface; or combinations thereof; and then transferring the microstructures from the transfer film onto a surface of the final substrate.
In a first preferred embodiment, the process comprises: forming the microstructures on a surface of a disposable manufacturing substrate; bringing the formed microstructures into contact with a surface of the transfer film while applying pressure thereto, thereby activating the pressure sensitive adhesive in the thermal release adhesive layer(s) of the transfer film, adhering the microstructures to its surface; stripping away the disposable manufacturing substrate; applying one or more heat and/or pressure activated adhesives to the microstructures on the transfer film; bringing the adhesive coated microstructures on the transfer film into contact with a surface of the final substrate while applying both heat and pressure to the transfer film, thereby causing the microspheres in the thermal release adhesive layer(s) to expand (or foam) and deactivate the pressure sensitive adhesive, allowing transfer of the microstructures onto the surface of the final substrate, while simultaneously activating the adhesive on the microstructures, allowing the microstructures to adhere to the surface of the final substrate.
This embodiment is particularly suited for microstructures having so-called “up/down non-parity” (e.g., refractive optical systems). As will be readily appreciated by those skilled in the art, such structures are intended to be viewed from a top or upper side rather than a bottom or lower side. The inventive process allows the microstructures on the disposable manufacturing substrate to be visually inspected for quality assurance purposes before transferring the microstructures to the transfer film, and further allows the microstructures to be properly positioned in an upright position on a surface of the final substrate.
In a second preferred embodiment, the process comprises: forming the microstructures on a surface of the thermal release adhesive layer(s) of the transfer film; applying one or more heat and/or pressure activated adhesives to the formed microstructures on the transfer film; bringing the adhesive coated microstructures into contact with a surface of the final substrate while applying both heat and pressure to the transfer film, thereby causing the microspheres in the thermal release adhesive layer(s) to expand (or foam) and deactivate the pressure sensitive adhesive, allowing transfer of the microstructures onto the surface of the final substrate, while simultaneously activating the adhesive on the microstructures, allowing the microstructures to adhere to the surface of the final substrate.
This embodiment is particularly suited for microstructures that do not require an upper/lower surface inspection (e.g., conductive circuit elements or structures). Such structures could be symmetrical in cross section and are not necessarily intended to be viewed from a top or upper side rather than a bottom or lower side.
In a second exemplary embodiment, the process is a continuous roll-to-roll process that comprises:
In a preferred embodiment, the microstructures are transferred from the carrier film onto a surface of the final substrate by: applying one or more heat and/or pressure activated adhesives to the microstructures on the carrier film; bringing the adhesive coated microstructures on the carrier film into contact with a surface of the final substrate; applying both heat and pressure to the carrier film and then lifting the carrier film from the microstructures causing separation between the microstructures and the release coating layer(s), thereby allowing transfer of the microstructures onto the surface of the final substrate, while simultaneously activating the adhesive on the microstructures, thereby allowing the microstructures to adhere to the surface of the final substrate.
Other features and advantages of the invention will be apparent to one of ordinary skill from the following detailed description and accompanying drawings.
Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. All publications, patent applications, patents and other references mentioned herein are incorporated by reference in their entirety. In case of conflict, the present specification, including definitions, will control. In addition, the materials, methods/processes, and examples are illustrative only and not intended to be limiting.
Particular features of the disclosed invention are illustrated by reference to
The subject invention provides methods or processes for producing microstructures (e.g., precision cast microstructures) on a continuous roll-to-roll substrate or film in ways that allow these microstructures to be subsequently transferred to a final substrate. Advantages in speed and precision are realized by using roll-to-roll processes to produce microstructures, while providing a means for transferring the microstructures to a final surface that is not necessarily compatible with or suitable for flexible web processing (e.g., rigid final substrates such as glass). In this way, final substrates may have precision microstructures applied to their surface, without being subjected to all of the conditions which are necessary for the production of, for example, precision cast microstructures.
The present invention is useful in the production of passport security laminates, the application of security patches or seals on value documents, labels on products, thin films or foils to banknotes, conductors or insulating circuit components onto rigid substrates, and other general applications of microstructured elements or microstructures to a surface.
For avoidance of doubt, nanostructures are also contemplated by the present invention, as are (as alluded to above) end-use applications outside of the security field.
Exemplary embodiments of the inventive system will now be disclosed. There is no intent, however, to limit the present disclosure to the embodiments disclosed herein. On the contrary, the intent is to cover all alternatives, modifications and equivalents.
The microstructures used in the present invention are single or multi-layer structures that comprise: voids in a substantially planar surface, the voids optionally filled or coated with another material; raised areas in a substantially planar surface; or combinations thereof. In an exemplary embodiment, the microstructures (e.g., optical or physical structures) are precision cast microstructures that include any and all types of structures whose form may be produced by backfilling a negative void in a cured or hardened matrix on a flexible substrate.
Examples of such contemplated precision cast microstructures include multilayer optical systems such as refractive, reflective, diffractive, and hybrid micro-optic structures, as well as other single or multilayer structures such as conductive traces, circuit patterns, microlenses, waveguides, negative space air lenses, insulating ceramic structures, icon image elements, microtext, anti-reflective structures, light refracting prisms, micromirror structures, patterned semiconductors, patterned or unpatterned metallization, fluorescent security print, porous filtration structures, chemical or electronic sensor elements, photoresist masking structures, ruled gratings, periodic or aperiodic arrays, structures for increasing surface area, tactility altering structures, structures for facilitating mechanical bonding, etc.
Generally speaking, the size of these microstructures (i.e., width or depth) is limited only by that which is achievable by casting from an embossing tool onto a flexible substrate. The size may range from tens of nanometers (a few atomic layers thick) in depth in some cases to a few micrometers in most cases, and up to millimeter scale structures.
Precision casting of microstructures in a roll-to-roll form on a flexible substrate or film has many advantages, particularly when considered together with a transferrable process, as will be described. The term “precision casting”, as used herein, means the replication of a microstructured surface having a predesigned pattern of voids and/or raised areas, or negative and positive features.
By using radiation cured polymers on film, or hot embossable films, for example, the surface of the master is copied continuously, and a precise pattern of voids and/or raised areas may be formed in a cured matrix, resulting in precisely formed microstructures or “icon elements.” Exemplary processes are described in U.S. Pat. No. 7,333,268 to Steenblik et al., U.S. Pat. No. 7,468,842 to Steenblik et al., U.S. Pat. No. 7,738,175 to Steenblik et al., U.S. patent application Ser. No. 12/820,320 to Steenblik et al., and U.S. patent application Ser. No. 13/360,017 to Samuel M. Cape et al., which are all incorporated herein by reference in their entirety. By casting these structures, each negative space results in a voluminous region that can be backfilled with a second material that can be much different than the material used to cast the matrix. For example, slurries, pastes, dispersions, gels, powders, liquids, and flakes may all be used to fill the voids, resulting in a precision element that is contained within the volume of the matrix. This allows for the formation of shapes using materials that would be difficult or impossible to cast without using this matrix backfilling technique. The backfilled material may be further cured, washed, etc. to ensure desired properties such as degree of crosslinking, etc.
Once a first layer of such backfilled embossed matrix has been formed, any practical number of additional layers may be added thereafter, such as a second layer of backfilled precision elements, or precision elements that are not backfilled such as a microlens layer, or a polymer spacer layer followed by a microlens layer, a metallization layer, or other functional coatings. Additionally, it is possible and often desirable to apply a coating to the flexible substrate before the first microstructured layer is cast, in order to facilitate replication from the embossing master and for removal of the microstructured elements at a later time. This coating may be tailored to provide adhesion or release properties between the flexible substrate and the microstructured layer. For example, such a coating may be prepared from polymers having low surface energy, such as UV curable silicone-modified polyacrylates.
In an example of the first exemplary embodiment of the inventive process for transferring microstructures having “up/down non-parity”, the precision cast single or multi-layer microstructures are formed on a flexible disposable manufacturing substrate, and then the microstructures are transferred away from the manufacturing substrate and onto a new carrier film having one or more thermal release adhesive layers. The thermal release adhesive layer(s) is used to provide a strong bond between the new carrier film and the microstructures and to allow for the release of these microstructures at a later time upon the application of heat. To summarize, the inventive process:
The thermal release adhesive layer(s) of the transfer film provides a strong bond between the precision cast microstructures and the new carrier film yet has a mechanism for decisive, predictable release at a later time when the microstructures are transferred to the final substrate.
The formulation used to prepare the thermal release adhesive layer(s) of the present invention is made specifically to have strong bonding at room temperatures, and significantly reduced bond strength when elevated temperatures are applied. The adhesive formulation may be said to be ‘activated’ when it is in the low temperature, high bond strength state, and ‘deactivated’ when it is in an elevated temperature, diminished bond strength state.
As noted above, the inventive thermal release adhesive formulation, in a more preferred embodiment, comprises from about 90 to about 96% by weight of an energy curable PSA formulation, and from about 4 to about 10% by weight of expandable microspheres.
The energy curable PSA formulation used in the inventive thermal release adhesive formulation, in a more preferred embodiment, comprises:
Specific examples of suitable PSA formulations include, but are not limited to, the following:
PSA Formulation 1:
PSA Formulation 2:
Specific examples of suitable expandable microspheres, which start expansion and/or foaming when heated to temperatures higher than about 60° C., include:
A specific example of a suitable TRA formulation is set forth below:
TRA Formulation:
The TRA works through the mechanism of microsphere expansion, allowing for precise control of release. During the release process, the adhesive bond strength declines dramatically. In one example, the bond strength of the activated TRA was found to be between 5.3 to 9.6 Newtons/inch (N/in), while the heat-deactivated strength was measured to be approximately 0.9 to 0.1 N/in. Typical microspheres for this use will start expanding at 80-180° C. and continue to expand up to 125-220° C. Once the adhesive has been heated in this way, the tack and bond strength are permanently reduced.
Before expansion, the microspheres preferably range from 5 to 50 microns in diameter, and after heating they preferably expand to 15 to 150 microns in diameter. More preferably, the microspheres range from 6 to 20 microns in diameter before expansion.
Prior to heating, preferable thermal release adhesive layer thicknesses range from 3 to 100 microns and more preferably from 5 to 25 microns. After heating, this layer will typically double in thickness.
Preparation of the TRA formulation may be accomplished by combining premixed energy curable PSA in its liquid state with the weighed quantity of polymeric microspheres (e.g., polymeric microsphere powder), followed by blending with a high shear mixer. The resulting suspension of powder with energy curable PSA will remain stable in its liquid form for an extended period of time as long as exposure to sources of heat and UV radiation are avoided.
The TRA formulation is applied to a carrier film. Suitable carrier films may be any flexible material that is capable of receiving a coating and being conveyed through production equipment. For example, polymeric materials such as biaxially oriented polyethylene terephthalate (PET), polypropylene (PP), nylon 6 polyamide (PA), polyethylene napthalate (PEN), cellulose acetate or other film materials, as well as non-polymeric materials such as paper constitute suitable carrier films.
Methods suitable for liquid adhesive application may be used to apply the TRA formulation to a carrier film as long as the microsphere activation temperature is not exceeded. For example, a suitable layer thickness of TRA formulation may be achieved by drawing down onto a carrier film with a wire wrapped rod (e.g., a #14 Meyers rod), or by means of a flexographic printing unit or gravure cylinder. The liquid TRA formulation may be heated above room temperature in order to reduce the viscosity for ease of application (i.e., to facilitate pumping or pouring) as long as the microsphere activation temperature is not exceeded. When a thin layer has been applied to the carrier film with the desired thickness (e.g., 15 micron thickness), the TRA may be cured by UV radiation, for example, by passing the coated carrier film beneath a 300 Watts/in Hg lamp at 40 fpm. Alternatively, the TRA may be electron beam cured by passing the uncured resin through an e-beam curing unit. In addition, both methods may be used in combination.
Once cured, the TRA becomes activated so that it has high tack and peel strength (e.g., peel strength values ranging from about 5 to about 50 N/in (ASTM D903-98)), and is ready to be brought into contact with the desired bonding surface. For example, a flexible micro-optic security film may be brought into contact with the TRA and carrier film (i.e., the TRA transfer film), forming a laminated structure that remains bonded until it is desirable to release the bond by application of heat.
The entire laminated structure thus formed may then be rewound and handled as a single flexible film, allowing further processing such as: stripping away the base manufacturing film, applying adhesives on the exposed side of the micro-optic film, die cutting, printing, metalizing, or other film converting operations. The adhesive bond of the TRA may then be deactivated by heating (e.g., 80-220° C.) at a point in time when it is advantageous to transfer the microstructure from the TRA transfer film (e.g., TRA/60 gauge PET carrier film) onto the final substrate. As noted above, such a process may be useful in the production of passport security laminates, the application of security patches or seals on value documents, labels on products, thin films or foils to banknotes, conductors or insulating circuit components onto rigid substrates, and other general applications of microstructured elements or microstructures to a surface.
Deactivation of the TRA occurs whenever the softening temperature of the polymeric shell of the microspheres has been reached or exceeded, causing volume expansion (or foaming) and a significant decrease in the adhesive bond strength compared to its preheated state. Heating methods suitable for causing deactivation of the TRA include forced hot air, heated roller, infrared heating, oven or hotplate heating, heated foil stamping roller, passport laminator, heated shoe, heated platen, heated bath, and the like.
In a preferred process for transferring microstructures having “up/down non-parity” to a final substrate, the continuous roll-to-roll process comprises:
In an exemplary embodiment, the microstructure is a multi-layer optical system in the form of a security thread or foil, and the final substrate is banknote paper. In this exemplary embodiment, the heat and pressure of lamination causes the thread/foil to securely bond to the banknote paper, while at the same time exceeding the deactivation temperature of the TRA, thereby causing the TRA and carrier film to separate from the thread/foil. This process provides an advantageous means of delivering a security thread/foil to banknote paper, following by rewinding and discarding the carrier film containing deactivated TRA.
In another exemplary embodiment, the microstructure is a die-cut, heat-seal label, and the final substrate is product packaging.
In an exemplary embodiment of the inventive process for transferring microstructures having “up/down parity” (i.e., cross-sectional symmetry), the precision cast single or multi-layer microstructures are formed directly on the TRA transfer film, and then the microstructures are transferred away from the TRA transfer film onto the final substrate. In this configuration, care must be taken to avoid overheating the TRA during the microstructure casting step. Casting resins with low viscosities (resins that do not need additional heat to flow freely such as neopentyl glycol diacrylate (available from Sartomer under the trade designation SR247)), combined with an internally water cooled casting surface (comparable to a flexographic chill drum) allow microstructures to be UV cured against the TRA without overheating the expandable microspheres or causing premature expansion.
In a preferred process, the continuous roll-to-roll process comprises:
In an exemplary embodiment, the microstructure is an embedded lens array structure, and the final substrate is a laser engravable polycarbonate substrate. Here, the embedded lens array structure is made up of a low refractive index (RI) (e.g., n=1.35-1.45) concave polymeric matrix backfilled with high RI (e.g., n=1.5-1.8) polymer, the applied adhesive is a heat-activated adhesive, and the embedded lens array structure of the transfer ready film is brought into contact with a surface of the laser engravable polycarbonate substrate and heated under pressure to a point in which the embedded lens array structure is thermally laminated to the surface of the polycarbonate substrate. In this embodiment, the heat and pressure of lamination causes the embedded lens structure to securely bond to the intended polycarbonate final substrate, while at the same time exceeding the deactivation temperature of the TRA, causing the TRA transfer film to separate from the embedded lens structure. This process provides an advantageous means of delivering a lens structure to a surface of a laser engravable polycarbonate surface, such that further processing steps may occur, such as laser writing through the lens structure into the polycarbonate, providing an optically variable laser written effect.
In another exemplary embodiment, the microstructure is a reflective optical system, and the final substrate is currency or banknote paper. In this embodiment, the reflective optical system is cast against the TRA transfer film. It is suitable to form such a multi-layer microstructure directly onto the TRA transfer film that will be used to transfer the optics to the final substrate (rather than onto a flexible disposable manufacturing substrate followed by transferring onto the TRA transfer film). This is so because a reflective optical system operates with the reflector side against the final substrate and so is compatible and advantageous to use with this method.
To produce this reflective optical system, the following method may be used. A thin layer (e.g., 5 microns) of TRA is coated onto a 60 gauge film of PET and cured by application of UV light. Next, icons are formed as voids in a radiation cured liquid polymer (e.g., acrylated urethane) that is cast from an icon mold, then the icon voids are filled with a submicron particle pigmented coloring material by gravure-like doctor blading against the polymeric icon surface, then the fill is solidified by suitable means (e.g., solvent removal, radiation curing, or chemical reaction), then the reflective lens elements are cast against the filled icons by bringing the icon side of the film against a lens mold filled with radiation curable polymer, and the polymer is solidified by application of UV light or other actinic radiation. Next the lens elements are metalized (e.g., with aluminum) using a physical vapor deposition process, which is known in the art of holographic foil manufacture. Following metallization, an optional sealing layer may be applied to further protect the metal coating, followed by the application and drying of an adhesive, for example, a tack-free, heat-activated polyurethane foiling adhesive. Next, the entire structure (i.e., TRA transfer film with optical microstructure (icon layer/reflective lens elements/metal reflecting layer/sealing layer/adhesive layer)) may be converted into its final form by undergoing slitting and rewinding onto reels that are compatible with holographic foil transfer equipment. In this form, the micro-optic system may be transferred away from the TRA transfer film and onto the final substrate by the application of heat and pressure. For example, the structure may be brought into contact with currency or banknote paper while a foiling die applies pressure at 140° C. At this temperature, the foiling adhesive bonds the structure (by the side having reflector elements) to the final paper substrate, while the TRA provides the mechanism for release of the micro-optic system from the TRA transfer film. Then the desired final product (paper with surface applied reflective micro-optics) is rewound and the waste TRA transfer film is rewound and discarded or recycled.
In yet another exemplary embodiment, the microstructures are conductive circuit traces, and the final substrate is a glass substrate, which constitutes a subassembly of a touch screen display. In this embodiment, heat and pressure causes the conductive circuit traces to bond to the glass substrate, while releasing from the TRA transfer film. This process provides a means of producing the microstructure conductive circuit traces in high volume on a roll-to-roll basis, and subsequent delivery to an inflexible final substrate, resulting in an economically produced subassembly of a touch screen display.
In a further exemplary embodiment, the microstructure is in the form of a regular array of microstructured pre-ceramic polymers, and the final substrate is a quartz substrate, which forms a temperature sensing diffraction grating. In this embodiment, heat and pressure allows the ‘green cured’ array of pre-ceramic polymers (referring to a ceramic that is yet to be fired) to transfer away from the TRA transfer film and onto the quartz substrate. Next, the quartz and pre-ceramic are fired in a kiln at high temperatures (e.g., 1400-1600° C.), resulting in a sintered ceramic microstructure fused to a quartz substrate.
This process provides a means of producing a microstructured diffraction grating using ceramic precursors in high volume and at low temperatures on a roll-to-roll basis, and subsequent transfer to an inflexible final substrate. In this way, further processes incompatible with a flexible web can occur such as high temperature firing, resulting in the formation of a microstructured ceramic surface that can survive extremes in temperature exposure, but is produced using economical flexible web processes. In this example, the microstructured ceramic grating on quartz substrate finds use as a temperature monitor or a strain gauge. By reflecting a laser off of its surface and measuring the distance between the reflected bright zones (areas of constructive interference), highly accurate changes in groove spacing due to temperature or strain can be detected and calculated.
An alternative process for transferring microstructures to a final substrate will now be described. This alternative process provides improvements in overall system thickness, transfer speed, stability over time, and elimination of residue on the transferred microstructures.
The alternative process does not require the use of heat to initiate release of the microstructures from the carrier film (and thus is compatible with cold foiling methods), although it is still compatible and may be used with thermally activated adhesives. This process is also compatible with a cast spacer between focusing elements (e.g., lenses) and icons, and as such is not limited to the “spacer-less” structure shown in
As mentioned above, the alternative process for transferring microstructures employs:
The one or more binder layers, in a preferred embodiment, are prepared from an energy curable (e.g., UV curable) binder formulation generally comprising:
In a more preferred embodiment, the one or more binder layers are prepared from a formulation comprising:
In order to prevent a permanent bond between the binder and microstructures (e.g., a microlens-based film structure), the microstructures are first treated with a ‘release’ formulation that has low bond strength (i.e., peel strength of less than 1 N/in (ASTM D903-98)). In this way, the cured binder bonds strongly to the carrier film and also bonds strongly to the cured release coating layer(s). This combination provides a bond which is strong under one set of conditions (favorable for removal of the manufacturing substrate) as well as a bond that is easily broken under another set of conditions (favorable for transfer of the microstructures to final substrate).
The one or more conformal release coating layers, in a preferred embodiment, are prepared from an energy curable (e.g., UV curable) formulation generally comprising:
In a more preferred embodiment, the release formulation comprises:
The conditions that provide either a strong bond or weak bond using this construction are determined by the geometry of separation (i.e., by the angle at which the manufacturing substrate is peeled away relative to the carrier film). With a low angle of peel (i.e., obtuse angles greater than 90 to about 180°), the bond is high between the carrier and the microstructures, due to the distribution of force over a larger area (similar to the difficulty of separating two flat plates of glass with a layer of water between). With a high angle of peel (i.e., acute angles less than 90 to about 0°), the stress is concentrated to a smaller region, breaking bonds at the interface closest to the source of stress, allowing the manufacturing substrate to be removed without disrupting the bond between the microstructures and the carrier film. Once the manufacturing substrate has been removed and the adhesive applied, the microstructures may be applied to the final substrate such as paper on a commercial foiling unit (e.g., a Leonard Kurz MHS foiling machine), or passport booklet laminating machine. This equipment is designed to lift away carrier films to rewind and discard, and this lifting process easily breaks the bond between the microstructures and the film at the release coating interface.
Referring now to
As noted above, this alternative process provides improvements in overall system thickness and transfer speed. The binder layer(s) is cured between films allowing the binder to be rolled out to a very thin layer between the films, which reduces overall system caliper. This reduction in caliper translates into run speed improvements because the conductance of heat through the system is faster when there is less material acting as a thermal mass to slow down the melting of the adhesive.
Other features and advantages of the invention will be apparent to one of ordinary skill from the following detailed description and accompanying drawings. Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. All publications, patent applications, patents and other references mentioned herein are incorporated by reference in their entirety. In case of conflict, the present specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting.
The present application claims priority under 35 U.S.C. § 120 as a divisional of U.S. patent application Ser. No. 14/421,394, filed Feb. 12, 2015, which claims priority under 35 U.S.C. § 365 and is a 371 National Stage of International Application No. PCT/US2012/051395, filed Aug. 17, 2012, the contents of which are herein incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
992151 | Berthon | May 1911 | A |
1824353 | Jensen | Sep 1931 | A |
1849036 | Ernst | Mar 1932 | A |
1942841 | Shimizu | Jan 1934 | A |
2268351 | Tanaka | Dec 1941 | A |
2355902 | Berg | Aug 1944 | A |
2432896 | Hotchner | Dec 1947 | A |
2888855 | Tanaka | Jun 1959 | A |
2992103 | Land et al. | Jul 1961 | A |
3122853 | Koonz et al. | Mar 1964 | A |
3241429 | Rice et al. | Mar 1966 | A |
3264164 | Jerothe et al. | Aug 1966 | A |
3312006 | Rowland | Apr 1967 | A |
3357772 | Rowland | Dec 1967 | A |
3357773 | Rowland | Dec 1967 | A |
3463581 | Clay | Aug 1969 | A |
3609035 | Ataka | Sep 1971 | A |
3643361 | Eaves | Feb 1972 | A |
3704068 | Waly | Nov 1972 | A |
3801183 | Sevelin et al. | Apr 1974 | A |
3811213 | Eaves | May 1974 | A |
3887742 | Reinnagel | Jun 1975 | A |
4025673 | Reinnagel | May 1977 | A |
4073650 | Yevick | Feb 1978 | A |
4082426 | Brown | Apr 1978 | A |
4185191 | Stauffer | Jan 1980 | A |
4345833 | Siegmund | Aug 1982 | A |
4417784 | Knop et al. | Nov 1983 | A |
4498736 | Griffin | Feb 1985 | A |
4507349 | Fromson et al. | Mar 1985 | A |
4519632 | Parkinson et al. | May 1985 | A |
4534398 | Crane | Aug 1985 | A |
4634220 | Hockert et al. | Jan 1987 | A |
4645301 | Orensteen et al. | Feb 1987 | A |
4662651 | Mowry, Jr. | May 1987 | A |
4688894 | Hockert | Aug 1987 | A |
4691993 | Porter et al. | Sep 1987 | A |
4756972 | Kloosterboer et al. | Jul 1988 | A |
4765656 | Becker et al. | Aug 1988 | A |
4814594 | Drexler | Mar 1989 | A |
4892336 | Kaule et al. | Jan 1990 | A |
4892385 | Webster, Jr. et al. | Jan 1990 | A |
4920039 | Fotland et al. | Apr 1990 | A |
4935335 | Fotland | Jun 1990 | A |
4988126 | Heckenkamp et al. | Jan 1991 | A |
5044707 | Mallik | Sep 1991 | A |
5074649 | Hamanaka | Dec 1991 | A |
5085514 | Mallik et al. | Feb 1992 | A |
5135262 | Smith et al. | Aug 1992 | A |
5142383 | Mallik | Aug 1992 | A |
5211424 | Bliss | May 1993 | A |
5215864 | Laakmann | Jun 1993 | A |
5232764 | Oshima | Aug 1993 | A |
5254390 | Lu | Oct 1993 | A |
5282650 | Smith et al. | Feb 1994 | A |
5359454 | Steenblik et al. | Oct 1994 | A |
5384861 | Mattson et al. | Jan 1995 | A |
5393099 | D'Amato | Feb 1995 | A |
5393590 | Caspari | Feb 1995 | A |
5413839 | Chatwin et al. | May 1995 | A |
5433807 | Heckenkamp et al. | Jul 1995 | A |
5438928 | Chatwin et al. | Aug 1995 | A |
5449200 | Andric et al. | Sep 1995 | A |
5460679 | Abdel-Kader | Oct 1995 | A |
5461495 | Steenblik et al. | Oct 1995 | A |
5464690 | Boswell | Nov 1995 | A |
5468540 | Lu | Nov 1995 | A |
5479507 | Anderson | Dec 1995 | A |
5492370 | Chatwin et al. | Feb 1996 | A |
5503902 | Steenblik et al. | Apr 1996 | A |
5538753 | Antes et al. | Jul 1996 | A |
5543942 | Mizuguchi et al. | Aug 1996 | A |
5555476 | Suzuki et al. | Sep 1996 | A |
5567276 | Boehm et al. | Oct 1996 | A |
5568313 | Steenblik et al. | Oct 1996 | A |
5574083 | Brown et al. | Nov 1996 | A |
5575507 | Yamauchi et al. | Nov 1996 | A |
5598281 | Zimmerman et al. | Jan 1997 | A |
5623347 | Pizzanelli | Apr 1997 | A |
5623368 | Calderini et al. | Apr 1997 | A |
5626969 | Joson | May 1997 | A |
5631039 | Knight et al. | May 1997 | A |
5639126 | Dames et al. | Jun 1997 | A |
5642226 | Rosenthal | Jun 1997 | A |
5643678 | Boswell | Jul 1997 | A |
5670003 | Boswell | Sep 1997 | A |
5670096 | Lu | Sep 1997 | A |
5674580 | Boswell | Oct 1997 | A |
5688587 | Burchard et al. | Nov 1997 | A |
5695346 | Sekiguchi et al. | Dec 1997 | A |
5712731 | Drinkwater et al. | Jan 1998 | A |
5723200 | Oshima et al. | Mar 1998 | A |
5731064 | Süss | Mar 1998 | A |
5737126 | Lawandy | Apr 1998 | A |
5753349 | Boswell | May 1998 | A |
5759683 | Boswell | Jun 1998 | A |
5763349 | Zandona | Jun 1998 | A |
5783017 | Boswell | Jul 1998 | A |
5783275 | Mück et al. | Jul 1998 | A |
5800907 | Yumoto | Sep 1998 | A |
5810957 | Boswell | Sep 1998 | A |
5812313 | Johansen et al. | Sep 1998 | A |
5886798 | Staub et al. | Mar 1999 | A |
5933276 | Magee | Aug 1999 | A |
5949420 | Terlutter | Sep 1999 | A |
5995638 | Amidror et al. | Nov 1999 | A |
6030691 | Burchard et al. | Feb 2000 | A |
6036230 | Farber | Mar 2000 | A |
6036233 | Braun et al. | Mar 2000 | A |
6060143 | Tompkin et al. | May 2000 | A |
6084713 | Rosenthal | Jul 2000 | A |
6089614 | Howland et al. | Jul 2000 | A |
6106950 | Searle et al. | Aug 2000 | A |
6176582 | Grasnick | Jan 2001 | B1 |
6177953 | Vachette et al. | Jan 2001 | B1 |
6179338 | Bergmann et al. | Jan 2001 | B1 |
6195150 | Silverbrook | Feb 2001 | B1 |
6249588 | Amidror et al. | Jun 2001 | B1 |
6256149 | Rolfe | Jul 2001 | B1 |
6256150 | Rosenthal | Jul 2001 | B1 |
6283509 | Braun et al. | Sep 2001 | B1 |
6288842 | Florczak et al. | Sep 2001 | B1 |
6297911 | Nishikawa et al. | Oct 2001 | B1 |
6301363 | Mowry, Jr. | Oct 2001 | B1 |
6302989 | Kaule | Oct 2001 | B1 |
6328342 | Belousov et al. | Dec 2001 | B1 |
6329040 | Oshima et al. | Dec 2001 | B1 |
6329987 | Gottfried et al. | Dec 2001 | B1 |
6345104 | Rhoads | Feb 2002 | B1 |
6348999 | Summersgill et al. | Feb 2002 | B1 |
6350036 | Hannington et al. | Feb 2002 | B1 |
6369947 | Staub et al. | Apr 2002 | B1 |
6373965 | Liang | Apr 2002 | B1 |
6381071 | Dona et al. | Apr 2002 | B1 |
6404555 | Nishikawa | Jun 2002 | B1 |
6405464 | Gulick, Jr. et al. | Jun 2002 | B1 |
6414794 | Rosenthal | Jul 2002 | B1 |
6424467 | Goggins | Jul 2002 | B1 |
6433844 | Li | Aug 2002 | B2 |
6450540 | Kim | Sep 2002 | B1 |
6467810 | Taylor et al. | Oct 2002 | B2 |
6473238 | Daniell | Oct 2002 | B1 |
6483644 | Gottfried et al. | Nov 2002 | B1 |
6500526 | Hannington | Dec 2002 | B1 |
6521324 | Debe | Feb 2003 | B1 |
6542646 | Bar-Yona | Apr 2003 | B1 |
6558009 | Hannington et al. | May 2003 | B2 |
6587276 | Daniell | Jul 2003 | B2 |
6616803 | Isherwood et al. | Sep 2003 | B1 |
6618201 | Nishikawa et al. | Sep 2003 | B2 |
6641270 | Hannington et al. | Nov 2003 | B2 |
6671095 | Summersgill et al. | Dec 2003 | B2 |
6712399 | Drinkwater et al. | Mar 2004 | B1 |
6721101 | Daniell | Apr 2004 | B2 |
6724536 | Magee | Apr 2004 | B2 |
6726858 | Andrews | Apr 2004 | B2 |
6751024 | Rosenthal | Jun 2004 | B1 |
6761377 | Taylor et al. | Jul 2004 | B2 |
6795250 | Johnson et al. | Sep 2004 | B2 |
6803088 | Kaminsky et al. | Oct 2004 | B2 |
6819775 | Amidror et al. | Nov 2004 | B2 |
6833960 | Scarbrough et al. | Dec 2004 | B1 |
6856462 | Scarbrough et al. | Feb 2005 | B1 |
6870681 | Magee | Mar 2005 | B1 |
6900944 | Tomczyk | May 2005 | B2 |
6935756 | Sewall et al. | Aug 2005 | B2 |
7030997 | Neureuther et al. | Apr 2006 | B2 |
7058202 | Amidror | Jun 2006 | B2 |
7068434 | Florczak et al. | Jun 2006 | B2 |
7114750 | Alasia et al. | Oct 2006 | B1 |
7194105 | Hersch et al. | Mar 2007 | B2 |
7246824 | Hudson | Jul 2007 | B2 |
7254265 | Naske et al. | Aug 2007 | B2 |
7255911 | Lutz et al. | Aug 2007 | B2 |
7288320 | Steenblik et al. | Oct 2007 | B2 |
7333268 | Steenblik et al. | Feb 2008 | B2 |
7336422 | Dunn et al. | Feb 2008 | B2 |
7372631 | Ozawa | May 2008 | B2 |
7389939 | Jones et al. | Jun 2008 | B2 |
7422781 | Gosselin | Sep 2008 | B2 |
7457038 | Dolgoff | Nov 2008 | B2 |
7457039 | Raymond et al. | Nov 2008 | B2 |
7468842 | Steenblik et al. | Dec 2008 | B2 |
7504147 | Hannington | Mar 2009 | B2 |
7545567 | Tomczyk | Jun 2009 | B2 |
7609450 | Niemuth | Oct 2009 | B2 |
7630954 | Adamczyk et al. | Dec 2009 | B2 |
7686187 | Pottish et al. | Mar 2010 | B2 |
7712623 | Wentz et al. | May 2010 | B2 |
7719733 | Schilling et al. | May 2010 | B2 |
7738175 | Steenblik et al. | Jun 2010 | B2 |
7751608 | Hersch et al. | Jul 2010 | B2 |
7762591 | Schilling et al. | Jul 2010 | B2 |
7763179 | Levy et al. | Jul 2010 | B2 |
7812935 | Cowbum et al. | Oct 2010 | B2 |
7820269 | Staub et al. | Oct 2010 | B2 |
7830627 | Commander et al. | Nov 2010 | B2 |
7849993 | Finkenzeller et al. | Dec 2010 | B2 |
8027093 | Commander et al. | Sep 2011 | B2 |
8057980 | Dunn et al. | Nov 2011 | B2 |
8111463 | Endle et al. | Feb 2012 | B2 |
8149511 | Kaule et al. | Apr 2012 | B2 |
8241732 | Hansen et al. | Aug 2012 | B2 |
8284492 | Crane et al. | Oct 2012 | B2 |
8514492 | Schilling et al. | Aug 2013 | B2 |
8528941 | Dörfler et al. | Sep 2013 | B2 |
8537470 | Endle et al. | Sep 2013 | B2 |
8557369 | Hoffmüller et al. | Oct 2013 | B2 |
8693101 | Tomczyk et al. | Apr 2014 | B2 |
8867134 | Steenblik et al. | Oct 2014 | B2 |
8908276 | Holmes | Dec 2014 | B2 |
20010048968 | Cox et al. | Dec 2001 | A1 |
20020014967 | Crane et al. | Feb 2002 | A1 |
20020114078 | Halle et al. | Aug 2002 | A1 |
20020185857 | Taylor et al. | Dec 2002 | A1 |
20030031861 | Reiter et al. | Feb 2003 | A1 |
20030112523 | Daniell | Jun 2003 | A1 |
20030157211 | Tsunetomo et al. | Aug 2003 | A1 |
20030179364 | Steenblik et al. | Sep 2003 | A1 |
20030183695 | Labrec et al. | Oct 2003 | A1 |
20030228014 | Alasia et al. | Dec 2003 | A1 |
20030232179 | Steenblik et al. | Dec 2003 | A1 |
20030234294 | Uchihiro et al. | Dec 2003 | A1 |
20040020086 | Hudson | Feb 2004 | A1 |
20040022967 | Lutz et al. | Feb 2004 | A1 |
20040065743 | Doublet | Apr 2004 | A1 |
20040100707 | Kay et al. | May 2004 | A1 |
20040140665 | Scarborough et al. | Jul 2004 | A1 |
20040209049 | Bak | Oct 2004 | A1 |
20050094274 | Souparis | May 2005 | A1 |
20050104364 | Keller et al. | May 2005 | A1 |
20050161501 | Giering et al. | Jul 2005 | A1 |
20050180020 | Steenblik et al. | Aug 2005 | A1 |
20050247794 | Jones et al. | Nov 2005 | A1 |
20060003295 | Hersch et al. | Jan 2006 | A1 |
20060011449 | Knoll | Jan 2006 | A1 |
20060017979 | Goggins | Jan 2006 | A1 |
20060018021 | Tompkins et al. | Jan 2006 | A1 |
20060061267 | Yamasaki | Mar 2006 | A1 |
20060227427 | Dolgoff | Oct 2006 | A1 |
20070058260 | Steenblik et al. | Mar 2007 | A1 |
20070092680 | Chathns et al. | Apr 2007 | A1 |
20070164555 | Mang et al. | Jul 2007 | A1 |
20070183045 | Shilling et al. | Aug 2007 | A1 |
20070183047 | Phillips et al. | Aug 2007 | A1 |
20070237938 | Ouderkirk | Oct 2007 | A1 |
20070273143 | Crane et al. | Nov 2007 | A1 |
20070284546 | Ryzi et al. | Dec 2007 | A1 |
20070291362 | Hill et al. | Dec 2007 | A1 |
20080130018 | Steenblik et al. | Jun 2008 | A1 |
20080143095 | Isherwood et al. | Jun 2008 | A1 |
20080160226 | Kaule et al. | Jul 2008 | A1 |
20080182084 | Tompkin et al. | Jul 2008 | A1 |
20090008923 | Kaule et al. | Jan 2009 | A1 |
20090061159 | Staub | Mar 2009 | A1 |
20090243278 | Camus et al. | Oct 2009 | A1 |
20090290221 | Hansen et al. | Nov 2009 | A1 |
20090310470 | Yrjonen | Dec 2009 | A1 |
20090315316 | Staub et al. | Dec 2009 | A1 |
20100001508 | Tompkin et al. | Jan 2010 | A1 |
20100018644 | Sacks et al. | Jan 2010 | A1 |
20100045024 | Attner et al. | Feb 2010 | A1 |
20100068459 | Wang et al. | Mar 2010 | A1 |
20100084851 | Schilling | Apr 2010 | A1 |
20100109317 | Huffmuller et al. | May 2010 | A1 |
20100177094 | Kaule et al. | Jul 2010 | A1 |
20100182221 | Kaule et al. | Jul 2010 | A1 |
20100194532 | Kaule | Aug 2010 | A1 |
20100208036 | Kaule | Aug 2010 | A1 |
20100308571 | Steenblik et al. | Dec 2010 | A1 |
20100328922 | Peters et al. | Dec 2010 | A1 |
20110017498 | Lauffer et al. | Jan 2011 | A1 |
20110019283 | Steenblik et al. | Jan 2011 | A1 |
20110056638 | Rosset | Mar 2011 | A1 |
20110179631 | Gates et al. | Jul 2011 | A1 |
20120019607 | Dunn et al. | Jan 2012 | A1 |
20120033305 | Moon et al. | Feb 2012 | A1 |
20120091703 | Maguire et al. | Apr 2012 | A1 |
20120098249 | Rahm et al. | Apr 2012 | A1 |
20120194916 | Cape et al. | Aug 2012 | A1 |
20120243744 | Camus et al. | Sep 2012 | A1 |
20130003354 | Meis et al. | Jan 2013 | A1 |
20130010048 | Dunn et al. | Jan 2013 | A1 |
20130038942 | Holmes | Feb 2013 | A1 |
20130044362 | Commander et al. | Feb 2013 | A1 |
20130154250 | Dunn et al. | Jun 2013 | A1 |
20140174306 | Wening et al. | Jun 2014 | A1 |
20140175785 | Kaule et al. | Jun 2014 | A1 |
20140353959 | Lochbihler | Dec 2014 | A1 |
20140367957 | Jordan | Dec 2014 | A1 |
20160176221 | Holmes | Jun 2016 | A1 |
20160257159 | Attner et al. | Sep 2016 | A1 |
Number | Date | Country |
---|---|---|
2009278275 | Jul 2012 | AU |
2741298 | Apr 2010 | CA |
1102865 | May 1995 | CN |
1126970 | Nov 2003 | CN |
1950570 | Apr 2007 | CN |
101678664 | Mar 2010 | CN |
19804858 | Aug 1999 | DE |
19932240 | Jan 2001 | DE |
10100692 | Aug 2004 | DE |
0090130 | Oct 1983 | EP |
0092691 | Nov 1983 | EP |
0118222 | Sep 1984 | EP |
0156460 | Oct 1985 | EP |
0203752 | Dec 1986 | EP |
0253089 | Jan 1988 | EP |
0318717 | Jun 1989 | EP |
0415230 | Mar 1991 | EP |
0319157 | Jul 1992 | EP |
0801324 | Oct 1997 | EP |
0887699 | Dec 1998 | EP |
0930174 | Jul 1999 | EP |
0997750 | May 2000 | EP |
1002640 | May 2000 | EP |
1356952 | Oct 2003 | EP |
1002640 | May 2004 | EP |
1354925 | Apr 2006 | EP |
1659449 | May 2006 | EP |
1743778 | Jan 2007 | EP |
1876028 | Jan 2008 | EP |
1897700 | Mar 2008 | EP |
1931827 | Apr 2009 | EP |
2335937 | Jun 2011 | EP |
2338682 | Jun 2011 | EP |
2162294 | Mar 2012 | EP |
2803939 | Jul 2001 | FR |
2952194 | May 2011 | FR |
1095286 | Dec 1967 | GB |
2103669 | Feb 1983 | GB |
2362493 | Nov 2001 | GB |
2395724 | Jun 2004 | GB |
2433470 | Jun 2007 | GB |
2490780 | Nov 2012 | GB |
41-004953 | Mar 1966 | JP |
46-022600 | Aug 1971 | JP |
04-234699 | Aug 1992 | JP |
H05-508119 | Nov 1993 | JP |
10-035083 | Feb 1998 | JP |
10-039108 | Feb 1998 | JP |
11-501590 | Feb 1999 | JP |
11-189000 | Jul 1999 | JP |
2000-056103 | Feb 2000 | JP |
2000-233563 | Aug 2000 | JP |
2000-256994 | Sep 2000 | JP |
2001-055000 | Feb 2001 | JP |
2001-516899 | Oct 2001 | JP |
2001-324949 | Nov 2001 | JP |
2003-039583 | Feb 2003 | JP |
2003-165289 | Jun 2003 | JP |
2003-528349 | Sep 2003 | JP |
2003-326876 | Nov 2003 | JP |
2004-262144 | Sep 2004 | JP |
2004-317636 | Nov 2004 | JP |
2005-193501 | Jul 2005 | JP |
2009-274293 | Nov 2009 | JP |
2011-502811 | Jan 2011 | JP |
10-0194536 | Jun 1999 | KR |
2002170350000 | Mar 2001 | KR |
2003119050000 | May 2003 | KR |
1005443000000 | Jan 2006 | KR |
1005613210000 | Mar 2006 | KR |
2111125 | May 1998 | RU |
2245566 | Jan 2005 | RU |
2010101854 | Jul 2011 | RU |
575740 | Feb 2004 | TW |
WO 2011051669 | May 2011 | WF |
WO 1992008998 | May 1992 | WO |
WO 1992019994 | Nov 1992 | WO |
WO 1993024332 | Dec 1993 | WO |
WO 1996035971 | Nov 1996 | WO |
WO 1997019820 | Jun 1997 | WO |
WO 1997044769 | Nov 1997 | WO |
WO 1998013211 | Apr 1998 | WO |
WO 1998015418 | Apr 1998 | WO |
WO 1998026373 | Jun 1998 | WO |
WO 1999014725 | Mar 1999 | WO |
WO 1999023513 | May 1999 | WO |
WO 1999026793 | Jun 1999 | WO |
WO 1999066356 | Dec 1999 | WO |
WO 2001007268 | Feb 2001 | WO |
WO 2001011591 | Feb 2001 | WO |
WO 2001039138 | May 2001 | WO |
WO 2001053113 | Jul 2001 | WO |
WO 2001063341 | Aug 2001 | WO |
WO 2001071410 | Sep 2001 | WO |
WO 2002040291 | May 2002 | WO |
WO 2002043012 | May 2002 | WO |
WO 2002101669 | Dec 2002 | WO |
WO 2003005075 | Jan 2003 | WO |
WO 2003007276 | Jan 2003 | WO |
WO 2003022598 | Mar 2003 | WO |
WO 2003053713 | Jul 2003 | WO |
WO 2003061980 | Jul 2003 | WO |
WO 2003061983 | Jul 2003 | WO |
WO 2003082598 | Oct 2003 | WO |
WO 2003098188 | Nov 2003 | WO |
WO 2004022355 | Mar 2004 | WO |
WO 2004036507 | Apr 2004 | WO |
WO 2004087430 | Oct 2004 | WO |
WO 2005106601 | Nov 2005 | WO |
WO 2006029744 | Mar 2006 | WO |
WO 2007076952 | Jul 2007 | WO |
WO 2007133613 | Nov 2007 | WO |
WO 2009000527 | Dec 2008 | WO |
WO 2009000528 | Dec 2008 | WO |
WO 2009000529 | Dec 2008 | WO |
WO 2009000530 | Dec 2008 | WO |
WO 2009121784 | Oct 2009 | WO |
WO 2010015383 | Feb 2010 | WO |
WO 2010094691 | Dec 2010 | WO |
WO 2010136339 | Dec 2010 | WO |
WO 2011015384 | Feb 2011 | WO |
WO 2011019912 | Feb 2011 | WO |
WO 2011044704 | Apr 2011 | WO |
WO 2011107793 | Sep 2011 | WO |
WO 2011122943 | Oct 2011 | WO |
WO 2012027779 | Mar 2012 | WO |
WO 2012103441 | Aug 2012 | WO |
WO 2013028534 | Feb 2013 | WO |
WO 2013093848 | Jun 2013 | WO |
WO 2013098513 | Jul 2013 | WO |
Entry |
---|
Egyptian Patent Office, “Technical Report,” Application No. EG2015020243, Feb. 12, 2019, 7 pages. |
Office Action dated Dec. 20, 2018 in connection with Korean Patent Application No. 10-2015-7006374, 4 pages. |
Article: “Spherical Lenses” (Jan. 18, 2009); pp. 1-12; retrieved from the Internet: URL:http://www.physicsinsights.org/simple_optics_spherical_lenses-1.html. |
Drinkwater, K. John, et al., “Development and applications of Diffractive Optical Security Devices for Banknotes and High Value Documents”, Optical Security and Counterteit Deterrence Techniques III, 2000, pp. 66-79, SPIE vol. 3973, San Jose, CA. |
Fletcher, D.A., et al., “Near-field infrared imaging with a microfabricated solid immersion lens”, Applied Physics Letters, Oct. 2, 2000, pp. 2109-2111, vol. 77, No. 14. |
Gale, M. T., et al., Chapter 6—Replication, Micro Optics: Elements, Systems and Applications, 1997, pp. 153-177. |
Hardwick, Bruce and Ghioghiu Ana, “Guardian Substrate as an Optical Medium for Security Devices”, Optical Security and Counterfeit Deterrence Techniques III, 2000, pp. 176-179, SPIE vol. 3973, San Jose, CA. |
Hutley, M.C., et al., “The Moiré Magnifier”, Pure Appl. Opt. 3, 1994, pp. 133-142, IOP Publishing Ltd., UK. |
Hutley, M.C., “Integral Photography, Superlenses and the Moiré Magnifier”, European Optical Society, 1993, pp. 72-75, vol. 2, UK. |
Hutley, M., et al., “Microlens Arrays”, Physics World, Jul. 1991, pp. 27-32. |
Kamal, H., et al., “Properties of Moiré Magnifiers”, Opt. Eng., Nov. 1998, pp. 3007-3014, vol. 37, No. 11. |
Leech, Patrick W., et al., Printing via hot embossing of optically variable images in thermoplastic acrylic lacquer, Microelectronic Engineering, 2006, pp. 1961-1965, vol. 83, No. 10, Elsevier Publishers BV, Amsterdam, NL. |
Lippmann, G., “Photgraphie—Épreuves Réversibles, Photographies Intégrals”, Académie des Sciences, 1908, pp. 446-451, vol. 146, Paris. |
Liu, S., et al., “Artistic Effects and Application of Moiré Patterns in Security Holograms”, Applied Optics, Aug. 1995, pp. 4700-4702, vol. 34, No. 22. |
Phillips, Roger W., et al., Security Enhancement of Holograms with Interference Coatings, Optical Security and Counterfeit Deterrence Techniques III, 2000, pp. 304-316, SPIE vol. 3973, San Jose, CA. |
Steenblik, Richard A., et al., Unison Micro-optic Security Film, Optical Security and Counterfeit Deterrence Techniques V, 2004, pp. 321-327, SPIE vol. 5310, San Jose, CA. |
Van Renesse, Rudolf L., Optical Document Security, 1994, Artech House Inc., Norwood, MA. |
Van Renesse, Rudolf L., Optical Document Security, 1998, 2nd edition, pp. 232-235, 240-241 and 320-321, Artech House Inc., Norwood, MA (ISBN 0-89006-982-4). |
Van Renesse, Rudolf L., Optical Document Security, 2005, 3rd edition, pp. 62-169, Artech House Inc., Norwood, MA (ISBN 1-58053-258-6). |
Wolpert, Gary R., Design and development of an effective optical variable device based security system incorporating additional synergistic security technologies, Optical Security and Counterfeit Deterrence Techniques III, 2000, pp. 55-61, SPIE vol. 3973, San Jose, CA. |
Zhang, X., et al., “Concealed Holographic Coding for Security Applications by Using a Moire Technique”, Applied Optics, Nov. 1997, pp. 8096-8097, vol. 36, No. 31. |
Office Action dated Sep. 10, 2018 in connection with Australian Application No. AU2017235929, 3 pages. |
Amidror, “A Generalized Fourier-Based Method for the Analysis of 2D Moiré Envelope-Forms in Screen Superpositions”, Journal of Modern Optics (London, GB), vol. 41, No. 9, Sep. 1, 1994, pp. 1837-1862, ISSN: 0950-0340. |
Dunn, et al., “Three-Dimensional Virtual Images for Security Applications”, Optical Security and Counterfeit Deterrence Techniques V, (published Jun. 3, 2004), pp. 328-336, Proc. SPIE 5310. |
Muke, “Embossing of Optical Document Security Devices”, Optical Security and Counterfeit Deterrence Techniques V, (published Jun. 3, 2004), pp. 341-349, Proc. SPIE 5310. |
Intellectual Property India, “Examination report under sections 12 & 13 of the Patents Act, 1970 and the Patents Rules, 2003,” Application No. IN 1934/DELNP/2015, dated Jul. 29, 2019, 6 pages. |
IMPI Mexican Institute Industrial Property, “Notification of 1st in-depth requirement,” Application No. MX/a/2015/002072, dated May 8, 2019, 8 pages. |
IP Australia, “Examination report No. 2 for standard patent application,” Application No. AU2017235929, dated Aug. 14, 2019, 3 pages. |
IP Australia, “Examination report No. 3 for standard patent application,” Application No. AU2017235929, dated Sep. 10, 2019, 3 pages. |
Canadian Intellectual Property Office, Office Action in connection with Application No. CA 2,881,826, dated Oct. 3, 2019, 4 pages. |
Brazil Instituto Nacionalda Propriedade Industrial, Office Action in connection with Application No. BR112015003455-1, dated Oct. 11, 2019, 5 pages. |
European Patent Office, “Communication pursuant to Article 94(3) EPC,” Application No. EP12766740.0, dated Sep. 23, 2019, 4 pages. |
Office Action in connection with Mexican Application No. MX/a/2015/002072 dated Dec. 17, 2019, 6 pages. |
Examination report No. 1 in connection with Australian Application No. 2019229332 dated Sep. 12, 2020, 4 pages. |
Examination report No. 2 in connection with Australian Application No. 2019229332 dated Oct. 6, 2020, 4 pages. |
Number | Date | Country | |
---|---|---|---|
20190105887 A1 | Apr 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14421394 | US | |
Child | 16198952 | US |