Claims
- 1. A process for transforming a gas oil cut into a diesel fuel having a cetane number of at least 49, less than 100 ppm of sulphur, less than 200 ppm of nitrogen and less than 10% by volume of aromatic compounds, comprising the following steps:a) passing the gas oil cut and hydrogen under denitrogenation and desulphurisation conditions in at least one step over a catalyst comprising a mineral support, at least one metal or metal compound from group VIB of the periodic table in a quantity, expressed as the weight of metal with respect to the weight of finished catalyst, of about 0.5% to 40%, at least one metal or metal compound from group VIII of the periodic table in a quantity, expressed as the weight of metal with respect to the weight of finished catalyst, of about 0.1% to 30%, and phosphorous or at least one phosphorous compound in a quantity, expressed as the weight of phosphorous pentoxide with respect to the weight of the support, of about 0.001% to 20% to produce an at least partially denitrogenated and desulfurised effluent; (b) steam stripping the effluent from step (a) and, optionally, recycling hydrogen therein for use in step (a); (c) passing at least a portion of the steam stripped effluent from step (b) with hydrogen under dearomatisation conditions over a catalyst comprising, on a mineral support, at least one noble metal or noble metal compound from group VIII in a quantity, expressed as the weight of metal with respect to the weight of finished catalyst, of about 0.01% to 20% to produce a denitrogenated, desulfurised and dearomatised diesel fuel, and, optionally, recycling hydrogenation for use in step (c); with the further provision that fresh hydrogen is introduced into steps (a) and (c) independently of each other and that recycle hydrogen from step (b) is recycled to only step(a) and recycle hydrogen from step (c) is recycled to only step (c).
- 2. A process according to claim 1, in which the operating conditions of step a) include a temperature of about 300° C. to about 450° C., a total pressure of about 2 MPa to about 20 MPa and an overall hourly space velocity of the liquid feed of about 0.1 to about 10 h−1, and those in step d) include a temperature of about 200° C. to about 400° C., a total pressure of about 2 MPa to about 20 MPa and an overall hourly space velocity of about 0.5 to about 10 h−1.
- 3. A process according to claim 1, in which the catalyst in step a) comprises at least one metal or metal compound selected from the group consisting of molybdenum and tungsten and at least one metal or metal compound selected from the group consisting of nickel, cobalt and iron.
- 4. A process according to claim 1, in which the catalyst in step a) comprises molybdenum or a molybdenum compound in a quantity, expressed as the weight of metal with respect to the weight of finished catalyst, of about 2% to 30% and a metal or metal compound selected from the group consisting of nickel and cobalt in a quantity, expressed as the weight of metal with respect to the weight of finished catalyst, of about 0.5% to 15%.
- 5. A process according to claim 1, wherein in step a) the VIII metal is nickel and the group VIB metal is molybdenum.
- 6. A process according to claim 1, in which the catalyst of step a) further comprises boron or at least one boron compound in a quantity of 10% or less, expressed as the weight of boron trioxide with respect to the weight of the support.
- 7. A process according to claim 1, in which the support for the catalysts used in step a) and in step c) is selected independently of each other from the group consisting of alumina, silica, silica-aluminas, zeolites, titanium oxide, magnesia, boron oxide, zirconia, clays and mixtures of at least two of these mineral compounds.
- 8. A process according to claim 1, in which the catalyst of step c) comprises at least one metal or metal compound selected from the group consisting of palladium and platinum in a quantity, expressed as the weight of metal with respect to the weight of finished catalyst, of about 0.01% to 10%.
- 9. A process according to claim 1, wherein the steam stripped effluent passed into step c) has a sulfur content of less than 100 ppm.
- 10. A process according to claim 1, wherein the steam stripped effluent passed into step c) has a sulfur content of less than 50 ppm.
- 11. A process according to claim 1, wherein step b) is the sole stripping step.
Priority Claims (1)
Number |
Date |
Country |
Kind |
96 15929 |
Dec 1996 |
FR |
|
Parent Case Info
This application is a continuation of application Ser. No. 8/992,486, filed Dec. 18, 1997 now U.S. Pat. No. 6,042,716.
US Referenced Citations (8)
Continuations (1)
|
Number |
Date |
Country |
Parent |
08/992486 |
Dec 1997 |
US |
Child |
09/480628 |
|
US |