The present disclosure relates generally to flow reactors and particularly to flow reactors having optimized channel structures.
Process intensification aims to produce highly efficient reaction and processing systems using configurations that simultaneously significantly reduce reactor sizes and maximize mass- and heat-transfer efficiencies. Interest in and application of process intensification in chemical engineering is continually increasing because of the potential to transform large-scale, environmentally unfriendly industrial processes into smaller, safer, more energy-efficient and environmentally friendly processes.
Process intensification consists in the development of novel apparatuses and techniques that, compared to those commonly used today, are expected to bring very significant, even order(s)-of-magnitude improvements in manufacturing and processing, in decreasing equipment-size/production-capacity ratio, energy consumption, and/or waste production, ultimately resulting in cheaper and sustainable technologies. Put another way, any chemical engineering development that leads to a substantially smaller, cleaner, and more energy-efficient technology is process intensification.
The whole field of process intensification can generally be divided into two areas: process-intensifying equipment, such as novel reactors and intensive mixing, heat-transfer and mass-transfer devices; and process-intensifying methods, such as new or hybrid separations, integration of reaction and separation, heat exchange, or phase transition (in so-called multifunctional reactors), techniques using alternative energy sources (light, ultrasound, etc.), and new process-control methods (like intentional unsteady-state operation). Obviously, there can be some overlap. New methods may require novel types of equipment to be developed and vice versa, while novel apparatuses already developed sometimes make use of new, unconventional processing methods.
In U.S. Pat. No. 7,939,033 is disclosed a “microreactor” or micro- to milli-meter scale flow reactor with a characteristic channel design producing good mixing performance relative to pressure drop in a given channel or device. It would be desirable to achieve even better performance, however, such as equal or better mixing with lower pressure drop.
The following presents a simplified summary of the disclosure in order to provide a basic understanding of some exemplary embodiments described in the detailed description.
In some embodiments, a flow reactor has a module having a process fluid passage with an interior surface, a portion of the passage including a cross section along the portion having a cross-sectional shape, and a cross-sectional area with multiple minima along the passage. The cross-sectional shape varies continually along the portion and the interior surface of the portion includes either no pairs of opposing flat parallel sides or only pairs of opposing flat parallel sides which extend for a length of no more than 4 times a distance between said opposing flat parallel sides along the portion and the portion contains a plurality of obstacles distributed along the portion.
In some embodiments, the portion further comprises successive chambers each with a nozzle-like entrance and a narrowing exit.
In some embodiments, a chamber of said successive chambers is nested with a next-succeeding chamber of said successive chambers such that the narrowing exit of the one chamber forms the nozzle-like entrance of the next adjacent succeeding chamber.
In some embodiments, at least one of the plurality of obstacles is located within a first chamber and intersects a straight line having a first endpoint located at a center of the entrance of the first chamber and a second endpoint locate at a center of the exit of the first chamber.
In some embodiments, the at least one of the plurality of obstacles intersects every straight line having a first end point within the entrance of the first chamber and a second endpoint within the exit of the first chamber.
In some embodiments, the reactor having an obstacles in the first chamber has one or more bypass paths positioned between the at least one obstacle and an inside surface of the first chamber, i.e., around the at least one obstacle of the plurality of obstacles.
In some embodiments, the at least one obstacle has no openings extending through said at least one obstacle.
In some embodiments, with two or more bypass paths around the obstacle, the bypass paths are separated by the obstacle by a distance of at least twice a maximum diameter of the exit of the chamber, or as much as at least 2.5, 3, 3.5, or even 4 times.
In some embodiments, the flow reactor further comprises an internal screw thread structure on an inner surface of the portion of the process fluid passage.
The above embodiments are exemplary and can be provided alone or in any combination with any one or more embodiments provided herein without departing from the scope of the disclosure. Moreover, it is to be understood that both the foregoing general description and the following detailed description present embodiments of the present disclosure, and are intended to provide an overview or framework for understanding the nature and character of the embodiments as they are described and claimed. The accompanying drawings are included to provide a further understanding of the embodiments, and are incorporated into and constitute a part of this specification. The drawings illustrate various embodiments of the disclosure, and together with the description, serve to explain the principles and operations thereof.
These and other features, embodiments, and advantages of the present disclosure can be further understood when read with reference to the accompanying drawings:
Methods and apparatus will now be described more fully hereinafter with reference to the accompanying drawings in which exemplary embodiments of the disclosure are shown. Whenever possible, the same reference numerals are used throughout the drawings to refer to the same or like parts. However, this disclosure can be embodied in many different forms and should not be construed as limited to the embodiments set forth herein.
The present disclosure relates generally to flow reactors employing modules similar to the ones disclosed in U.S. Pat. No. 7,939,033, hereby incorporated in its entirety by reference. If desired, the modules of the present disclosure may, however, depart from the generally planar geometry of that reference.
Flow modules having passages as disclosed herein may be formed by machining, molding, 3-D printing, and the like. Modules may be unitary (not able to be disassembled) or may consists of plates or other parts that are mechanically compressed or otherwise sealed together in a removable fashion.
With respect to
The portion 20 also comprises a cross section 36 along the portion 30, delimited by the interior surface 22 of the passage 20 along the portion 30, the cross section 36 having a cross-sectional area and a cross-sectional shape 38, the cross-sectional area having multiple minima 40 along the passage 20 between the input end 32 and the output end 34.
Various forms of curvature may be used for the interior surface 22 of the portion 30 of the passage 20. As seen in
In the case as in the embodiment of
The portions 30 of passages 20 herein include one or more bypass paths 64, as indicated, for example, in
In some embodiments, the chambers 52 may have or almost have rotational symmetry, such that the height and width of the chambers are both considered instead as a diameter.
According to embodiments, the interior surface 22 (of the portion 30) passage 20 may include an internal screw thread structure 76 to impart an additional, helical motion to the fluid moving in the portion of the passage.
It will be appreciated that the various disclosed embodiments can involve particular features, elements or steps that are described in connection with that particular embodiment. It will also be appreciated that a particular feature, element or step, although described in relation to one particular embodiment, can be interchanged or combined with alternate embodiments in various non-illustrated combinations or permutations.
It is to be understood that, as used herein the terms “the,” “a,” or “an,” mean “at least one,” and should not be limited to “only one” unless explicitly indicated to the contrary. Thus, for example, reference to “a component” includes embodiments having two or more such components unless the context clearly indicates otherwise.
Ranges can be expressed herein as from “about” one particular value, and/or to “about” another particular value. When such a range is expressed, embodiments include from the one particular value and/or to the other particular value. Similarly, when values are expressed as approximations, by use of the antecedent “about,” it will be understood that the particular value forms another aspect. It will be further understood that the endpoints of each of the ranges are significant both in relation to the other endpoint, and independently of the other endpoint.
Unless otherwise expressly stated, it is in no way intended that any method set forth herein be construed as requiring that its steps be performed in a specific order. Accordingly, where a method claim does not actually recite an order to be followed by its steps or it is not otherwise specifically stated in the claims or descriptions that the steps are to be limited to a specific order, it is no way intended that any particular order be inferred.
While various features, elements or steps of particular embodiments can be disclosed using the transitional phrase “comprising,” it is to be understood that alternative embodiments, including those that can be described using the transitional phrases “consisting” or “consisting essentially of,” are implied. Thus, for example, implied alternative embodiments to an apparatus that comprises A+B+C include embodiments where an apparatus consists of A+B+C and embodiments where an apparatus consists essentially of A+B+C.
It will be apparent to those skilled in the art that various modifications and variations can be made to the present disclosure without departing from the spirit and scope of the disclosure. Thus, it is intended that the present disclosure cover the modifications and variations of this disclosure provided they come within the scope of the appended claims and their equivalents.
This application is a continuation of U.S. application Ser. No. 16/635,069, filed on Jan. 29, 2020, which claims the benefit of priority under 35 U.S.C. § 371 of International Application No. PCT/US2018/044572, filed on Jul. 31, 2018, which claims the benefit of priority under 35 U.S.C. § 119 of U.S. Provisional Application No. 62/539,541, filed Jul. 31, 2017, the content of each of which is incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
3648984 | Mimura et al. | Mar 1972 | A |
3927868 | Moore | Dec 1975 | A |
4087862 | Tsien | May 1978 | A |
7510688 | Choe et al. | Mar 2009 | B2 |
7753580 | Woehl et al. | Jul 2010 | B2 |
7794136 | Yang et al. | Sep 2010 | B2 |
7846398 | Lee et al. | Dec 2010 | B2 |
7850930 | Miyamoto et al. | Dec 2010 | B2 |
7939033 | Lavric et al. | May 2011 | B2 |
8061416 | Geskes et al. | Nov 2011 | B2 |
8088345 | Caro et al. | Jan 2012 | B2 |
8206666 | Wang et al. | Jun 2012 | B2 |
8430558 | Yakhshi et al. | Apr 2013 | B1 |
8434933 | Brito et al. | May 2013 | B2 |
8534909 | Guidat et al. | Sep 2013 | B2 |
8591841 | Asano et al. | Nov 2013 | B2 |
9023296 | Roberge et al. | May 2015 | B2 |
9073031 | Hoglund et al. | Jul 2015 | B2 |
9101903 | Zikeli et al. | Aug 2015 | B2 |
11192084 | Jean | Dec 2021 | B2 |
20030219903 | Wang et al. | Nov 2003 | A1 |
20040100864 | Schauerte | May 2004 | A1 |
20040228211 | Koripella et al. | Nov 2004 | A1 |
20050078553 | Wilken | Apr 2005 | A1 |
20050211242 | Plath | Sep 2005 | A9 |
20060101775 | Miyake et al. | May 2006 | A1 |
20070081923 | Choe et al. | Apr 2007 | A1 |
20090323463 | Bhopte et al. | Dec 2009 | A1 |
20100052152 | Choi | Mar 2010 | A1 |
20110150703 | Castro et al. | Jun 2011 | A1 |
20120052558 | Chivilikhin et al. | Mar 2012 | A1 |
20120076705 | Kockmann | Mar 2012 | A1 |
20120171090 | Chang | Jul 2012 | A1 |
20130021868 | Doolin et al. | Jan 2013 | A1 |
20140104975 | Chivilikhin | Apr 2014 | A1 |
20140255265 | Kulkarni et al. | Sep 2014 | A1 |
20140290786 | Ito et al. | Oct 2014 | A1 |
Number | Date | Country |
---|---|---|
101873890 | Oct 2010 | CN |
102188943 | Sep 2011 | CN |
102188944 | Sep 2011 | CN |
102240535 | Nov 2011 | CN |
102247787 | Nov 2011 | CN |
202096947 | Jan 2012 | CN |
102350286 | Feb 2012 | CN |
202169168 | Mar 2012 | CN |
202191898 | Apr 2012 | CN |
202191899 | Apr 2012 | CN |
202191902 | Apr 2012 | CN |
102448596 | May 2012 | CN |
102553482 | Jul 2012 | CN |
202527089 | Nov 2012 | CN |
103285798 | Sep 2013 | CN |
103638853 | Mar 2014 | CN |
203525623 | Apr 2014 | CN |
103877905 | Jun 2014 | CN |
104069767 | Oct 2014 | CN |
104138728 | Nov 2014 | CN |
104307413 | Jan 2015 | CN |
204193922 | Mar 2015 | CN |
104525031 | Apr 2015 | CN |
204338128 | May 2015 | CN |
104737025 | Jun 2015 | CN |
204429262 | Jul 2015 | CN |
105822400 | Aug 2016 | CN |
109863501 | Jun 2019 | CN |
2172260 | Apr 2010 | EP |
2431090 | Mar 2012 | EP |
2475401 | May 2011 | GB |
S52-011221 | Mar 1977 | JP |
S52-151676 | Dec 1977 | JP |
S63-104679 | May 1988 | JP |
2004-024992 | Jan 2004 | JP |
2004-294417 | Oct 2004 | JP |
2006-053091 | Feb 2006 | JP |
2006-122736 | May 2006 | JP |
2007-136322 | Jun 2007 | JP |
2007-190505 | Aug 2007 | JP |
2008-114162 | May 2008 | JP |
2009-082803 | Apr 2009 | JP |
2009-090248 | Apr 2009 | JP |
2009-233483 | Oct 2009 | JP |
4598646 | Dec 2010 | JP |
2011-020044 | Feb 2011 | JP |
2011-036773 | Feb 2011 | JP |
2011-508657 | Mar 2011 | JP |
4677969 | Apr 2011 | JP |
4855471 | Jan 2012 | JP |
4877211 | Feb 2012 | JP |
4892183 | Mar 2012 | JP |
2012-508643 | Apr 2012 | JP |
2014-198324 | Oct 2014 | JP |
10-0898065 | May 2009 | KR |
10-0934267 | Dec 2009 | KR |
10-1176175 | May 2013 | KR |
10-2014-0082377 | Jul 2014 | KR |
200940162 | Oct 2009 | TW |
200946914 | Nov 2009 | TW |
201302299 | Jan 2013 | TW |
2010009239 | Jan 2010 | WO |
2010037012 | Apr 2010 | WO |
2010120234 | Oct 2010 | WO |
2010130808 | Nov 2010 | WO |
2010130811 | Nov 2010 | WO |
2010131297 | Nov 2010 | WO |
2010138676 | Dec 2010 | WO |
2012062567 | May 2012 | WO |
2012166756 | Dec 2012 | WO |
2013054180 | Apr 2013 | WO |
2015137691 | Sep 2015 | WO |
Entry |
---|
Afzal et al; “Convergent-Divergent Micromixer Coupled With Pulsatile Flow”; Sensors and Actuators B; 211 pp. 198205 (2015). |
Afzal et al; “Passive Split and Recombination Micromixer With Convergent-Divergent Walls”; Chemical Engineering Journal; 203; pp. 182192; (2012). |
Ansari et al; “A Novel Passive Micromixer Based on Unbalanced Splits and Collisions of Fluid Streams”; Journal of Micromechanics and Microengineering; 20 (5), 055007; 10 Pages (2010). |
Ansari et al; “A Numerical Study of Mixing in a Microchannel With Circular Mixing Chanbers”; A.I.Ch.E JOURNAL 55 (9), pp. 2217-2225 (2009). |
Ansari et al; “Parametric Study on Mixing of Two Fluids in a Three-Dimensional Serpentine Microchannel” ; Chemical Engineering Journal 146 , pp. 439448, (2009). |
Ansari et al; “Shape Optimization of a Micromixer With Staggered Herringbone Groove” Chem Eng Sci. 62, pp. 6687-6695; (2007). |
Aubin et al; “Characterization of the Mixing Quality in Micromixers”; Chem Eng Technol 26, pp. 12621270 (2003). |
Bhopte et al; “Numerical Study of a Novel Passive Micromixer Design” ; http://ieeexplore.ieee.org/stamp/slamp.jsp?arnumber=05501318, 10 Pages (2010). |
Boskovic et al; “Modelling of the Residence Time Distribution in Micromixers”; Chemical Engineering Journal 135S, pp. S138S146 (2008). |
Chang et al; “Turbulent Heat Transfer and Pressure Drop in Tube Fitted With Serrated Twisted Tape”; International Journal of Thermal Sciences 46 (5), pp. 506-518 (2007). |
Chen et al; “Crosswise Ridge Micromixers With Split and Recombination Helical Flows” Chem. Eng. Sci. 66, pp. 2164-2176 (2011). |
Chen et al; “Topologic Mixing on a Microfluidic Chip”; Appl Phys Lett. 84 (12), pp. 21932195 K2004). |
Chinese Patent Application No. 201880050026.3, Office Action dated Jul. 21, 2021, 5 pages (English Translation Only), Chinese Patent Office. |
Chung et al; “A Rhombic Micromixer With Asymmetrical Flow for Enhancing Mixing” ; J. Micromech. Microeng. 17, pp. 24952504 (2007). |
Chung et al; “Design and Mixing Efficiency of Rhombic Micromixer With Flat Angles” Microsyst Technol 16, pp. 1595-1600 (2010). |
Chung et al; “Mixing Process of an Obstacle Micromixer With Low Pressure Drop” Proceedings of the 3rd IEE Int. Conf. on Nano/ Micro Engineered and Molecular System, J008, China, pp. 170-173. |
Cortes-Quiroz et al; “On Multi-Objective Optimization of Geometry of Staggered Herringbone Micromixer”; Microfluidics and Nanofluidics 7(1), pp. 29-43 (2009). |
Du et al; “A Simplified Design of the Staggered Herringbone Micromixer for Practical Applications”; Biomicrofluidics 4(2), pp. 024105-1-024105-13 (2010). |
Du et al; “Evaluation of Floor-Grooved Micromixers Using Concentration-Channel Length Profiles”; Micromachines 1, pp. 19-33, (2010). |
Eiamsa-Ard et al; “Experimental Investigation of Heat Transfer and Flow Friction in a Circular Tube Fitted With Regularly Spaced Twisted Tape Elements”; International Communications in Heat and Mass Transfer;33(10), pp. 1225-1233 (2006). |
Fang et al; “A Novel Microreactor With 3D Rotating Flow to Boost Fluid Reaction and Mixing of Viscous Fluids”; Sensors and Actuators B 140, pp. 629642 (2009). |
Fang et al; “Mixing Enhancement by Simple Periodic Geometric Features in Microchannels” Chemical Engineering Journal 187, pp. 306 310 (2012). |
Garofalo et al; “Spectral Characterization of Static Mixers. The S-Shaped Micromixeras a Case Study”; AIChE Journal 56(2), pp. 3187-3335 (2010). |
Gentry, C.C, “ROD baffle heat exchanger technology”, Chemical Engineering Progress 86 (7),(Jul. 1, 1990), pp. 48-56. |
Guzman et al; “Transition to Chaos in Converging-Diverging Channel Flows: Ruelle-Takens-Newhouse Scenario”; Phys. Fluids 6(6), pp. 1994-2002 (1993). |
Hessel et al; “Micromixersa Review on Passive and Active Mixing Principles”; Chemical Engineering Science 60, pp. 2479 2501 (2005). |
Holvay et al; “Pressure Drop and Miixng in Single Phase Microreactors: Simplified Designs of Mixers”; Chemical Engineering and Processing: Process Intensification 50(10), pp. 1069-1075 (2011). |
Hong et al; “A Novel In-Plane Passive Microfluidic Mixer With Modified Tesla Structures” AB Chip 4, pp. 109113. (2004). |
Hossainn et al; “Shape Optimization of a Micromixer With Staggered Herringbone Grooves on Top and Bottom Walls”; Engineering Applications of Computational Fluid Mechanics 5(4) pp. 506-516 (2011). |
Hsieh et al; “Passive Mixing in Micro-Channels With Geometric Variations Through PIV and LIF Measurements”; J_Micromech. Microeng. 18 065017; 11 Pages (2008) doi:10.1088/0960-1317/18/6/065017. |
International Search Report and Written Opinion of the International Searching Authority; PCT/US2018/044572; dated Oct. 11, 2018; 12 Pages; European Patent Office. |
Jeon et al; “Design and Characterization of a Passive Recycle Micromixer”; J. Micromech. Microeng. 15, pp. 346350 (2005). |
Jiang et al; “Helical Flows and Chaotic Mixing in Curved Micro Channels”; AIChE Journal 50(9), pp. 2297-2305 (2004). |
Kang et al; “A Chaotic Serpentine Mixer Efficient in the Creeping Flow Regime: From Design Concept to Optimization”; Microfluid Nanofluid; 7; pp. 783-794 {2009)DOI 10.1007/s10404-009-0437-2. |
Kang et al; “Colored Particle Tracking Method for Mixing Analysis of Chaotic Micromixers”; J Micromech Microeng. 14, pp. 891899 (2004). |
Kim et al; “A Serpentine Laminating Micromixing Combining Splitting/Recombination and Advection”; Lab on a Chip; 5, pp. 739-747 (2005). |
Kim et al; “Optimization of Microscale Vortex Generators in a Microchannel Using Advanced Response Surface Method”; International Journal of Heat and Mass Transfer 54 1-3), pp. 118-125 (2011). |
Ko; “Thermodynamic Analysis of Optimal Mass Flow Rate for Fully Developed Laminar Forced Convection in a Helical Coiled Tube Based on Minimal Entropy Generation Principle”; Energy Conversion and Management47{18-19),pp. 3094-3104 (2006). |
Kolbl et al; “Design Parameter Studies on Cyclone Type Mixers”; Chemical Engineering Journal 167, pp. 444454, (2011). |
Kumar et al; “Single-Phase Fluid Flow and Mixing Microchannels”; Chem. Eng. Sci. 66, pp. 1329-1373(2011). |
Lasbet et al; “Thermal and Hydrodynamic Performances of Chaotic Mini-Channel: Application to the Fuel Cell Cooling”; Heat Transfer Engineering 28(8-9), pp. 795-803 (2007). |
Lee et al; “Mixing Efficiency of a Multi Lamination Micromixer With Consecutive Recirculation Zones”; Chem. Eng. Sci. 64 (6), pp. 1223-1231 (2009). |
Lee et al; “Mixing in Tangentially Crossing Microchannels”; AIChE Journal 57(3), pp. 571-580 (2011). |
Lee et al; “On the Enhancement of Mixing in Tangentially Crossing Micro-Channels” Chemical Engineering Journal 181 182, pp. 524 529, (2012). |
Lee et al; “Rotation Effect in Split and Recombination Micromixing”; Sensorsand Actuators B 129, pp. 364-371 (2008). |
Li et al; “Improving Mixing Efficiency of a Polymer Micromixer by Use of a Plastic Shim Divider”; J. Micromech. Microeng. 20, 9 Pages; (2010) doi: 10.1088/0960-1317/20/3/035012. |
Lin; “Numerical Characterization of Simple Three-Dimensional Chaotic Micromixers” Chemical Engineering Journal; 277; pp. 303311 (2015). |
Liu et al; “Passive Mixing in a Three-Dimensional Serpentine Microchannel”; J_Microelectromech. Syst. 9(2), pp. 190197; (2000). |
Lu et al; “Passive Microfluidic Device for Submillisecond Mixing”; Sens Actuators B Chem. 144(1), pp. 301309; (2010). |
MacInnes et al.; “Numerical Characterisation of Folding Flow Microchannel Mixers”; Chem. Eng. Sci. 62, pp. 2178-2727; (2007). |
Malecha et al; “Serpentine Microfluidic Mixer Made in LTCC”; Sensors and Actuators B 143, pp. 400413 (2009). |
Mansur et al; “A State-of-the-Art Review of Mixing in Microfluidic Mixers”; Chinese Journal of Chemical Engineering, 16 (4) pp. 503-516 (2008). |
Mengeaud et al; “Mixing Processes in a Zigzag Microchannel: Finite Element Simulations and Optical Study”; Anal. Chem. 74(16), pp. 42794286 (2002). |
Mielke et al; “Microreactor Mixing-Unit Design for Fast Liquid-Liquid Reactions”; J. Flow Chem. 6(3) pp. 279-287 (2016). |
Miranda et al; “Numerical Study of Micromixing Combining Alternate Flow and Obstacles” Int. Comm. in Heat and Mass Transfer 37, pp. 581-586 (2010). |
Mouza et al; “Mixing Performance of a Chaotic Micro-Mixer”; Chemical Engineering Research and Design 86, pp. 11281134 (2008). |
Naphon et al; “A Review of Flow and Heat Transfer Characteristics in Curved Tubes” Renewable and Sustainable Energy Reviews 10(5), pp. 463-490 (2006). |
Naphon et al; “Effect of Curvature Ratios on the Heat Transfer and Flow Developments in the Horizontal Spirally Coiled Tubes”; International Journal of Heat and Mass Transfer50(34), pp. 444-451 (2007). |
Naphon; “Heat Transfer and Pressure Drop in the Horizontal Double Pipes With and Without Twisted Tape Insert”; International Communications in Heat and Mass Transfer 33(2), pp. 166-175 (2006). |
Nguyen et al; “Micromixersa Review”; J Micromech Microeng. 15, pp. R1R16 (2005). |
Nguyen; “Micromixers: Fundamentals, Design, and Fabrication”; William Andres, Chapters 1,2 5 and 6; 184 Total Pages (2008); ISBN 0815518366. |
Nieves-Remacha et al; “Gas-Liquid Flow and Mass Transfer in an Advanced-Flow Reactor” Ind. & Eng. Chem. Res. 52, pp. 8996 9010 (2013). |
Nieves-Remacha et al; “Hydrodynamics of Liquid-Liquid Dispersion in an Advanced-Flow Reactor”; Ind. & Eng. Chem. Res. 51, pp. 16251 16262 (2012). |
Ohkawa et al; “Flow and Mixing Characteristics of s-Type Plate Static Mixer With Splitting and Inverse Recombination”; Chemical Engineering Research and Design 86, pp. 14471453 2008. |
Park et al; “Improved Serpentine Laminating Micromixer With Enhanced Local Advection” Microfluid Nanofluid 4, pp. 513-523 (2008). |
Park et al; “Numerical Characterization of Three-Dimensional Serpentine Micromixers”; A.I.Ch.E. Journal 54 (8), pp. 19992008. (2008). |
Plouffe et al; “Liquid-Liquid Flow Regimes and Mass Transfer in Various Micro-Reactors” Chemical Engineering Journal; 10 Pages (2015). |
Plouffe et al; “On the Scale-Up of Micro-Reactors for Liquid-Liquid Reactors”; Chemical Engineering Science; 143; pp. 216-225 (2016). |
Rosaguit et al; “Laminar Flow and Heat Transfer in a Periodic Serpentine Channel With Semi-Circular Cross-Section”; International Journal of Heat and Mass Transfer, 49(17-18), pp. 2912-2923, (2006). |
Rosaguti et al; “Low-Reynolds Number Heat Transfer Enhancement in Sinusoidal Channels”; Chemical Engineering Science 62(3),pp. 694-702 (2007). |
Rush et al; “An Experimental Study of Flow and Heat Transfer in Sinusoidal Wavy Passages”; Int. J. Heat Mass Transfer; 42, pp. 1541-1553; (1997). |
Schonfeld et al; “An Optimised Split-and-Recombine Micro-Mixer With Uniform Chaotic Mixing”; Lab on a Chip 4, pp. 6569 (2004). |
Schonfeld et al; “Simulation of Helical Flows in Microchannels”; A.I.Ch. E. Journal 50, pp. 771-778 (2004). |
Sharma et al; “3D Flow Reactors: Flow, Hydrodynamics, and Performance”; Ind. Eng. Chem. Res.; 53; pp. 1916-1923 (2014). |
Sivashanmugam et al; “Experimental Studies on Heat Transfer and Friction Factor Characteristics of Turbulent Flow Through a Circular Tube Fitted With Helical Screwtape Inserts”; Applied Thermal Engineering 26 (16), pp. 1190-1997 (2007). |
Song et al; “Optimization Analysis of the Staggered Herringbone Micromixer Based on the Slip-Driven Method”; Chemical Engineering Research and Design 86(8), pp. 883-891; (2008). |
Stankiewics et al; “Process Intensification: Transforming Chemical Engineering”; Chemical Engineering Progress 96 (1), pp. 22-34 (2000). |
Stankiewicz; Can Microreactor Be Intensified? Alternatice Forms and Sources of Energy for Process Intensification; IMRET 9, 5 Pages; (2006). |
Stroock et al; “Chaotic Mixer for Microchannels”; Science 295, pp. 647651 (2002). |
Tafti et al; “Effect of Laminar Velocity Profile Variation on Mixing in Mircofluidic Devices: The Sigma Micromixer”; Applied Physics Letters 93, pp. 143504-1-143054-3; (2008). |
Vashisth et al;“A Review of the Potential Applications of Curved Geometries in Process Industries”; Ind. Eng. Chem. Res. 47, pp. 3291-3337 (2008). |
Vijayendran et al; “Evaluation of a Three-Dimensional Micromixer in a Surface-Based Biosensor”; Langmuir 19, pp. 18241828 (2003). |
Vikhansky et al; “Analysis of a Pressure-Driven Folding Flow Microreactor With Nearly Plug-Flow Characteristics”; A.I.Ch. E Journal 56 (8), pp. 1988-1994 (2009). |
Wu et al; “Fluid Mixing via Multidirectional Vortices in Converging-Diverging Meandering Microchannels With Semi-Elliptical Side Walls”; Chemical Engineering Journal 217, pp. 320328; (2013). |
Xia et al; “Chaotic Micromixers Using Two-Layer Crossing Channels to Exhibit Fast Mixing A″ Low Reynolds Numbers”; Lab on a Chip; 5, pp. 748755 (2005). |
Xia et al; “Influence of the Reynolds Number on Chaotic Mixing in a Spatially Periodic Micromixer and Its Characterization Using Dynamical System Techniques”; Micromech Microeng; 16, pp. 5361 (2006). |
Xu et al; “Countercurrent Droplet-Flow-Based Mini Extraction With Pulsed Feeding and Without Moving Parts”; AICHE Journal; vol. 62, No. 10 pp. 3685-3698 (2016). |
Yang et al; “A High-Performance Micromixer Using Three-Dimensional Tesla Structures for Bio-Applications”; Chemical Engineering Journal 263; pp. 444451 (2015). |
Yang et al; “Geometric Effects on Fluid Mixing in Passive Grooved Micromixers”; Lab on a Chip 5, pp. 1140-1147 (2005). |
Japanese Patent Application No. 2020-505369, Office Action, dated Mar. 30, 2022, 08 pages (04 pages of English Translation and 04 pages of Original Copy); Japanese Patent Office. |
Number | Date | Country | |
---|---|---|---|
20220055009 A1 | Feb 2022 | US |
Number | Date | Country | |
---|---|---|---|
62539541 | Jul 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16635069 | US | |
Child | 17517104 | US |