NOT APPLICABLE.
NOT APPLICABLE.
The present invention relates to a process for preparing amorphous form of idelalisib which has the chemical name (S)-2-(1-(9H-purin-6-ylamino)propyl)-5-fluoro-3-phenylquinazolin-4(3H)-one and is represented by the structure:
Idelalisib (marketed as Zydelig®, codenamed GS-1101 or CAL-101) is a drug used for the treatment of chronic lymphocytic leukemia and was approved by the U.S. Food and Drug Administration (FDA) on Jul. 23, 2014.
U.S. Pat. No. 8,865,730 B2 discloses various forms of idelalisib, Form I (anhydrous), Form II (anhydrous), Form III (IPA/water solvate), Form IV (DMF solvate), Form V (DMSO solvate), Form VI (DCM solvate) and Form VII (water/ethanol solvate). International (PCT) Publication No. WO 2015092810A2 discloses an amorphous form of idelalisib by providing a solution or suspension of idelalisib in one or more solvents and obtaining the amorphous form of idelalisib by the removal of the solvent.
In view of the above, the present invention provides a process which can effectively afford amorphous idelalisib for drug development.
The present invention provides an amorphous form of idelalisib and the preparation method thereof. In one aspect, the present invention provides a process for preparing the amorphous form of idelalisib, the process comprising:
The processes provided herein for the preparation of the amorphous form of idelalisib, have the benefits using mild reaction conditions. The amorphous form of idelalisib prepared by the present invention is stable and would not transfer to other crystalline form easily. The present invention provides a novel process for preparing amorphous form of idelalisib with high yield, and this method is suitable for the manufacture of idelalisib for large scale.
In one aspect, the present invention provides a process for preparing the amorphous form of idelalisib, the process comprising:
In some embodiments, the solvent of step (a) is selected from methanol or dimethyl sulfoxide. In some embodiments, the cooling temperature of step (b) is below 10° C. In some embodiments, the cooling temperature is at 5° C.
In a related aspect, the present invention provides a process for preparing the amorphous form of idelalisib, the process comprising:
In some embodiments, the solvent of step (a) is dimethyl sulfoxide. In some embodiments, the temperature of the solution of step (a) is at 25° C.
In some embodiments, the amorphous form of idelalisib by using methanol as solvent is characterized by an XRPD pattern with no significant peaks as provided in
The thermal analysis of the amorphous form of idelalisib was conducted by TGA and DSC. In TGA thermogram
In DSC thermogram
The water-solid interaction investigated of amorphous idelalisib using Dynamic Vapor Sorption (DVS) analyzer shows that approximately 8.9% moisture uptake is obtained when the sample is exposed in the humidity condition changing from 0% RH to 90% RH. The DVS isotherm plot of amorphous idelalisib is shown in
In some embodiments, the amorphous form of idelalisib by using dimethyl sulfoxide as solvent is characterized by an XRPD pattern with no significant peaks as provided in
The preliminary physicochemical stability of the amorphous idelalisib was studied under the recommended long term storage condition (25° C./60% RH) and accelerated condition (40° C./75% RH) for 3 months. The amorphous idelalisib was recommended to be packed and stored following the procedures below: wrap amorphous idelalisib inside a Low-Density PolyEthylene (LDPE) bag under the humidity controlled environment with a relative humidity lower than 10% and again wrap inside a second LDPE bag. The double packed LDPE bag was then placed inside an aluminum foil bag with appropriate amount of desiccant between the LDPE bag and the aluminum foil bag. The aluminum bag package was then placed in a High-Density PolyEthylene (HDPE) container and stored at temperature below 25° C. There was no significant degradation impurity detected, the water content was not increased and the solid form remained as amorphous under storage condition (25° C./60% RH) and accelerated condition (40° C./75% RH) for 3 months. The results indicate that the recommended packaging and storage condition described above are compatible to amorphous idelalisib.
Powder X-Ray Diffractometer (PXRD)
X-ray Powder Diffraction patterns were collected on a Bruker AXS D8 Advance diffractometer using Cu Kα1 radiation (40 kV, 40 mA), 0-20 goniometer, and divergence of V4 and receiving slits, a Ge monochromator and LynxEye detector. The representative XRPD pattern was collected under ambient condition. The details of the scanning parameters are:
Thermo Gravimetric Analysis (TGA)
TGA data was collected on a TA instrument Q500 TGA. Each sample (15-20 mg) was loaded onto a pre-tared platinum crucible; the balance and furnace were purged with nitrogen prior to the analysis with a flow rate set as 40±5 and 60±5 mL/min, respectively. The heating process was programmed to start at the ambient temperature and stop at 300° C. with a 10° C./min ramp.
Differential Scanning Calorimetry (DSC)
DSC data was collected on a TA Instrument MDSC Q200. Each sample (2-5 mg) was loaded onto a hermetic pan with pinhole and the analysis was carried out under a constant flow of nitrogen (60 mL/min). The heating process was programmed to start from 30° C. and stop at 250° C. with a 10° C./min ramp.
Dynamic Vapor Sorption (DVS)
The sample was placed into the DVS sample pan and dried under a stream of dry nitrogen at 25° C. with 0% RH. The moisture was gradually introduced into the system with a 10% RH increment up to 90% RH and the humidity was then decreased in a similar trend for desorption phase. The sorption and desorption data were collected with equilibration set to dm/dt 0.004%/min for 5 min/step. The minimum and maximum time for each step were set to 10 and 360 min. Two sorption/desorption cycles were performed.
The following examples are provided to further illustrate, but not to limit this invention.
Idelalisib (1.005 g, 1.0 equiv) and MeOH (10 mL, 10 vol) were charged into a suitable vessel. The mixture was stirred at 50° C. until a homogeneous solution was achieved. After dissolved, the hot resulting solution was added into PPW (100 mL, 100 vol) for about 5 min at RT, and then stirred for NLT 0.5 hr. The solids were filtered by vacuum suction, purged with nitrogen for NLT 1 hr, and vacuum drying (about 100 torr) at NMT 60° C. to afford 0.890 g of amorphous idelalisib with white to off white solid.
Idelalisib (10.03 g, 1.0 equiv) and MeOH (90 mL, 9 vol) were charged into a suitable vessel. The mixture was stirred at ˜55° C. to achieve a homogeneous solution. The resulting solution was cooled to room temperature (20 to 35° C.) and filtered followed by washed with MeOH (10 mL, 1 vol) twice through filter paper and added into PPW (800 mL, 80 vol) for NLT 0.5 hr at 25° C., and then stirred for NLT 1 hr. The resulting mixture was cooled to 0-5° C. and then stirred for NLT 1 hr. Afterward, the solids were filtered by vacuum suction and washed with a MeOH/PPW co-solution (v/v=1/8, 50 mL, 5 vol) twice. The wet cake was purged with nitrogen for NLT 1 hr, and vacuum drying (about 100 torr) at NMT 60° C. to afford amorphous idelalisib with white to off white solid.
Idelalisib (10.004 g, 1.0 equiv) and MeOH (90 mL, 9 vol) were charged into a suitable vessel. The mixture was stirred at 60˜65° C. to achieve a homogeneous solution. The resulting solution was cooled to room temperature (20 to 35° C.) and filtered followed by washed with MeOH (10 mL, 1 vol) through filter paper and added into PPW (400 mL, 40 vol) for NLT 0.5 hr at 25° C., and then stirred for NLT 1 hr. The resulting mixture was cooled to 0-5° C. and then stirred for NLT 1 hr. Afterward, the solids were filtered by vacuum suction and washed with a pre-cooled MeOH/PPW co-solution (v/v=1/4, 50 mL, 5 vol) twice. The wet cake was purged with nitrogen for NLT 1 hr, and vacuum drying (about 100 torr) at NMT 60° C. to afford 9.170 g of SPT1384API with white to off white solid.
Idelalisib in MeOH solution (˜10 g dissolved in 5 vol MeOH, 1.0 equiv) and MeOH (30-40 mL, 3-4 vol) were charged into a suitable vessel. The mixture was stirred at room temperature (20 to 35° C.) to achieve a homogeneous solution. The resulting solution was filtered followed by washed with MeOH (10 mL, 1 vol) through filter paper and added into PPW (400 mL, 40 vol) for NLT 0.5 hr at 25° C., and then stirred for NLT 1 hr. The resulting mixture was cooled to 0-5° C. and then stirred for NLT 1 hr. Afterward, the solids were filtered by vacuum suction and washed with a pre-cooled MeOH/PPW co-solution (v/v=1/4, 50 mL, 5 vol) twice. The wet cake was purged with nitrogen for NLT 1 hr, and vacuum drying (about 100 torr) at NMT 60° C. to afford 7.803 g of amorphous idelalisib with white to off white solid.
Idelalisib (0.503 g, 1.0 equiv) and DMSO (2 mL, 4 vol) were charged into a suitable vessel. The mixture was stirred at RT to achieve a homogeneous solution. The resulting solution was added into PPW (25 mL, 50 vol) at 25° C., and then stirred for NLT 1 hr. Afterward, the solids were filtered by vacuum suction and washed with PPW (5 mL, 10 vol) for five times. The wet cake was purged with nitrogen for NLT 1 hr, and vacuum drying (about 150 torr) at NMT 60° C. to afford amorphous idelalisib with white to off white solid.
Idelalisib (1.02 g, 1.0 equiv) and DMSO (4 mL, 4 vol) were charged into a suitable vessel. The mixture was stirred at RT to achieve a homogeneous solution. The resulting solution was added into PPW (50 mL, 50 vol) at 25° C., rinse with DMSO (2 mL, 2 vol), and then stirred for NLT 1 hr. Afterward, the solids were filtered by vacuum suction and washed with PPW (5 mL, 10 vol). The wet cake was purged with nitrogen for NLT 1 hr to afford 0.916 g of amorphous idelalisib with white to off white solid.
This application claims priority from U.S. Provisional Patent Application Ser. No. 62/305,592, which was filed on Mar. 9, 2016. The entire content of these two provisional applications is incorporated herein as reference.
Number | Date | Country | |
---|---|---|---|
62305592 | Mar 2016 | US |