The present invention relates to a process of producing a multilayer lignocellulosic composite comprising one or more lignocellulosic composite layers or a single-layer lignocellulosic composite. The invention also relates to a lignocellulosic composite, which is preparable according to a process of the invention, and to a construction product comprising such lignocellulosic composite. Furthermore, the invention relates to the use of a lignocellulosic composite of the present invention as a building element in a construction product and to a binder for producing a lignocellulosic composite.
More specifically, the present invention relates to a process of producing a multilayer lignocellulosic composite or a single-layer lignocellulosic composite, wherein a high-frequency electrical field is applied, typically for heating an intermediate material mixture, and in many cases for hardening the binder present in such mixture.
EP 3230028 B1 and WO 2016/091918 A1 (BASF SE) disclose a method for producing single or multi-layer lignocellulose (i.e., lignocellulosic) materials by hardening in a high frequency electric field.
WO 2015/104349 A2 (BASF SE) discloses a method for the production of lignocellulose materials.
WO 2016/091797 A1 (BASF SE) discloses a method for producing multi-layered lignocellulose materials having a core and an upper and a lower cover layer.
EP 2885116 B1 (Knauf Insulation) discloses a process for production of wood boards, more particularly particle boards, with excellent swelling properties.
WO 2008/089847 A1 (Knauf Insulation) discloses a composite wood board comprising wood particles and an organic binder.
WO 2008/127936 A2 (Knauf Insulation) discloses composite Maillard-resole binders to produce or promote cohesion in non-assembled or loosely assembled matter.
Document US 2020/0017688 A1 deals with a method for producing lignocellulosic materials.
JP 2004/230736 A describes a manufacturing method for a wooden formed board.
Further publications that might be of interest in the context of the present invention are: EP 0583086 B2, EP 1225193 B2, EP 1578879 B1, EP 1700883 B1, EP 2399956 B1, EP 2485989 B1, EP 2867292 B1, WO 1997/031059 A1, WO 1999/002591 A1, WO 2007/014236 A2, WO 2009/006356 A1, WO 2015/084372 A1, WO 2016/009062 A1, and WO 2017/072186 A1.
Generally, in a process of producing a multilayer or single-layer lignocellulosic composite, a mixture of lignocellulosic particles (i.e. particles consisting essentially of lignocellulose) and a binder is provided or prepared. This mixture is typically scattered, e.g. to give a first layer of a multilayer mat or to give a single-layer mat. When producing a multilayer composite, successively two or more mixtures of lignocellulosic particles are scattered to give a mat with two or more individual layers. The resulting mat is then compacted, and the compacted mat or mixture is hardened during or after compaction, i.e. the mixture is treated in a manner so that the binder undergoes a hardening process. When a high-frequency electrical field is used in such process, it mainly serves to heat the mixture so that the binder hardens due to this heat treatment.
EP 3230028 B1 (BASF) discloses specific processes for batchwise or continuous production of single-layer lignocellulose-based (lignocellulosic) boards or of multilayer lignocellulose-based (lignocellulosic) boards, wherein the process comprises the application of a high-frequency electrical field during and/or after the compaction and thermal hardening of the binder(s) employed.
However, although the use of high-frequency electrical fields for heating (and hardening) binders of a mixture also comprising lignocellulosic particles is known for a considerable time, and although the corresponding processes and products possess valuable advantages over other processes of producing lignocellulosic composites, it is considered to be a disadvantage of such processes that the binder systems used in the production process contain hazardous substances like formaldehyde and isocyanates. Furthermore, in industrial production processes for making lignocellulosic composites when a high-frequency electrical field is applied in a production step, the binders used are typically based on petrochemical substances.
There is a demand in industry for an improved process of producing a multilayer or single-layer lignocellulosic composite, wherein preferably a high-frequency electrical field is applied to a mixture comprising lignocellulosic particles and a binder, wherein binder components are used which can be obtained from non-petrochemical resources and which do not contain hazardous substances like formaldehyde and isocyanates or substances which emit formaldehyde during the production process of the composites, like N-methylol compounds.
It was a primary object of the present invention to provide for such an improved process of producing a multilayer lignocellulosic composite comprising one or more, preferably two or more, lignocellulosic composite layers or a single-layer lignocellulosic composite. The improved process should preferably include a step of applying a high-frequency electrical field in order to cause or assist hardening of the binder. Furthermore, the improved process should use different binder components or different combinations of binder components in comparison with the prior art so that at least some of the binder components can be obtained from renewable resources and/or so that the binder components and/or the lignocellulosic composite emit a reduced amount of toxic or otherwise undesired volatile organic substances (“VOCs”) and/or formaldehyde in the production process.
The present invention concerns in its categories a process of producing a multilayer lignocellulosic composite comprising one, two, three or more, preferably three or more, lignocellulosic composite layers or a single-layer lignocellulosic composite, a lignocellulosic composite, which is preparable according to a process of the invention, a construction product comprising such lignocellulosic composite, the use of such lignocellulosic composite, as well as a binder and a binder composition for producing a lignocellulosic composite. Embodiments, aspects or features disclosed for or in connection with one of these categories in each case analogously apply for the other categories of the invention.
If not stated otherwise, preferred embodiments, aspects or features of the present invention can be combined with other embodiments, aspects or features, especially with other preferred embodiments, aspects or features, irrespectively of the categories to which the embodiments, aspects or features relate. The combination of preferred embodiments, aspects or features with other preferred embodiments, aspects or features in each case again results in preferred embodiments, aspects or features.
It has now been found that the primary object of the invention as stated above, and other objects of the present invention, can be accomplished by a process of producing a multilayer lignocellulosic composite comprising one or more, preferably two or more, lignocellulosic composite layers, or a single-layer lignocellulosic composite, comprising at least the following steps:
In particular, it has been found that the process according to the present invention allows the production of lignocellulosic composites comprising an increased proportion of biobased binder components when compared with binders known from the prior art, while similar amounts of binder components are required and similar or better values for relevant quality-related parameters (e.g. for internal bond strength or for 24 hour swelling of the lignocellulosic composite in the presence of water) are observed. In preferred variants of the process according to the present invention, the amount of emissions of toxic or otherwise undesired VOCs and/or of formaldehyde of a so produced lignocellulosic composite can be reduced, including when compared with known processes for producing lignocellulosic composites from the prior art.
The invention as well as preferred variants and preferred combinations of parameters, properties and elements thereof are defined in the appended claims. Preferred aspects, details, modifications and advantages of the present invention are also defined and explained in the following description and in the examples shown below.
Herein, and throughout the present text, the term “compound(s) having two or more carboxyl groups” designates compound(s) having in their protonated form two or more carboxyl groups. Preferably, the term “compound(s) having two or more carboxyl groups” as used herein comprises in its meaning “compound(s) (including “polymers” and “polymer compounds”) comprising multiple carboxyl groups” and “polyesters having two or more carboxyl groups”. E.g., succinic acid in its protonated form has two carboxyl groups (COOH). Mono sodium succinate has only one carboxyl group, but falls under the present definition because in its protonated form it has two carboxyl groups. Typically, in the present text reference is made to the respective acid. In such cases a reference to the corresponding (partially) neutralized/deprotonated form is incorporated. E.g, a reference to citric acid incorporates a reference to its (partially) neutralized/deprotonated forms (citrates).
In order to allow for esterification hydroxy groups and acidic carboxyl groups (COOH) must be present. Thus, the skilled person in accordance with the requirements of the individual technical situation and in accordance with the present invention will adjust the pH of the binder in order to provide for the required reactivity.
Thus, according to the process of the present invention in step a) there is provided or prepared a mixture comprising lignocellulosic particles and a specific binder. According to step c), a high-frequency electrical field is applied to the mixture during and/or after compacting (see step b)). The high-frequency electrical field is applied so that the binder hardens via esterification. An esterification reaction is possible because the binder used in step a) comprises one, two or more compounds having two or more hydroxy groups and additionally comprises one, two or more compounds having two or more carboxyl groups. Esterification is the reaction of said hydroxy groups and said carboxyl groups. When said hydroxy groups and said carboxyl groups react with each other in an esterification reaction, the corresponding compounds are (cross)linked, and correspondingly the binder hardens and binds the lignocellulosic particles, so that a lignocellulosic composite or a layer of a lignocellulosic composite results.
It is a major achievement of the present inventors that they have recognized that a high-frequency electrical field can be applied to a mixture comprising a binder composition comprising compounds having two or more hydroxy groups as well as compounds having two or more carboxyl groups so that, via esterification, the binder hardens and can bind lignocellulosic particles.
Binder compositions comprising compounds having two or more hydroxy groups as well as compounds having two or more carboxyl groups which can be hardened via esterification of said groups are known from the prior art, but were typically considered to be rather delicate when subjected to a high-frequency electrical field.
Certain specific binder systems comprising hydroxy compounds and carboxyl compounds have been disclosed before (see list of publications below), but not specifically in combination with the use of a high-frequency electrical field:
EP 2485989 B1 discloses binder systems for use in manufacturing both fiberglass insulation and non-woven mats, which are cross-linked through an esterification reaction.
EP 0583086 B2 discloses a curable aqueous composition comprising a polymeric polyacid containing at least two carboxylic acid groups, anhydride groups, or the salts thereof; a polyol containing at least two hydroxyl groups; and a phosphorous-containing accelerator.
EP 1578879 B1 discloses an aqueous binder composition for coating glass fibers comprising: a polycarboxy polymer; a poly alcohol having at least two hydroxyl groups; and a water-soluble extender, the extender being present in an amount sufficient to establish an extender-polycarboxy polymer weight ratio of at least 1:10.
EP 1700883 B1 discloses a composition comprising a polycarboxy polymer and a polyol or a hydroxy-functional, carboxy-functional polymer; and a polybasic carboxylic acid, or an anhydride or salt thereof; and a strong acid; and water.
EP 2399956 B1 discloses an aqueous binder composition comprising one or more polymeric polyacid and a carbohydrate component.
EP 2867292 B1 discloses an aqueous binder composition in the form of a dispersion comprising starch; and one or more acrylic component(s).
WO 1997/031059 A1 discloses a binder containing a polymer obtained by radical polymerization consisting to the extent of 5 to 100 wt % of an ethylenically unsaturated acid anhydride or bicarboxylic acid, the carboxylic acid groups of which can form an anhydride group; and an alkanol amine with at least two hydroxyl groups.
WO 2009/006356 A1 discloses a polymer composition suitable for wood treatment or binding, said composition comprising a reaction product of at least a polyol and at least a crosslinking agent; said crosslinking agent having at least 2 carboxylic acid groups per molecule.
WO 2016/009062 A1 discloses an aqueous curable binder composition comprising starting materials required for forming a thermoset resin upon curing and a matrix polymer, wherein the starting materials comprise a polyhydroxy component and a polycarboxylic acid component, or an anhydride, ester or salt derivative thereof and/or reaction product thereof.
WO 2017/072186 A1 discloses an aqueous curable binder composition comprising a carbohydrate compound, a first cross linker and a second cross linker, wherein the first cross linker is selected from carboxyl function bearing compounds, which form esters with the carbohydrate compound.
EP 2697293 B1 discloses a composite material comprising 10-95 wt. % of a particulate or fibrous filler derived from plant- or animal based materials and at least 5 wt. % of a polyester derived from an aliphatic polyalcohol with 2-15 carbon atoms and a polyacid, wherein the polyacid comprises at least 10 wt. % of citric acid as tricarboxylic acid.
When describing or defining the present invention and preferred embodiments thereof, the meaning of certain specific terms is as follows:
The term “lignocellulosic particles” used herein designates and includes any type, size and shape of lignocellulosic particles, such as fibres, chips, strands, flakes, sawmill shavings and saw dust or mixtures thereof. In addition, any type of lignocellulosic biomass such as birch, beech, alder, pine, spruce, larch, eucalyptus, linden, poplar, ash, fir, tropical wood, sisal, jute, flax, coconut, kenaf, hemp, banana, straw, cotton stalks, bamboo and the like can be used as a source for said lignocellulosic particles. Lignocellulosic particles from both virgin wood and/or waste wood, such as old furniture, can be used to produce the lignocellulosic composite of the present invention. According to the present invention, it is further possible to use mixtures of different types of lignocellulosic particles in the production of a lignocellulosic composite.
The term “high-frequency electrical field” used herein designates and includes any kind of high-frequency electrical or electromagnetic field such as microwave irradiation or a high-frequency electrical field, which results after applying a high-frequency alternating voltage at a plate capacitor between two capacitor plates. Suitable frequencies for the high-frequency electrical field are in the range of from 100 kHz to 30 GHZ, preferably 6 MHz to 3 GHz, more preferably 13 MHz to 41 MHz. Especially suitable and preferred are the respective nationally and internationally approved frequencies such as 13,56 MHZ, 27,12 MHZ, 40,68 MHZ, 2.45 GHZ, 5.80 GHZ, 24.12 GHZ, more preferably 13,56 und 27.12 MHz. The electrical power used to create such a high-frequency electrical field in the processes of the present invention preferably is in the range of from 10 to 10.000 kWh, more preferably of from 100 to 5.000 kWh, most preferably of from 500 to 2.000 kWh.
The term “single-layer lignocellulosic composite” used herein designates and includes any single-layered composite material, which contains lignocellulosic particles and a hardened binder that binds the lignocellulosic particles. Furthermore, the term “single-layer” specifies that the lignocellulosic composite comprises only one layer of lignocellulosic material and binder, wherein the single layer preferably is produced by a process comprising a single step of scattering lignocellulosic particles. The “single-layer lignocellulosic composite” can be of any shape such as rectangular, square, round, triangular and the like. The “single-layer lignocellulosic composite” can also be of any thickness, density and colour as long as it contains lignocellulosic particles and a hardened binder. The “single-layer lignocellulosic composite” can also comprise several other compounds different from lignocellulosic particles and binders. The lignocellulosic particles used in the production of a “single-layer lignocellulosic composite” are of the same type or of different types of lignocellulosic biomass (see above for preferred types).
The term “multilayer lignocellulosic composite” used herein designates and includes any multi layered composite, which contains lignocellulosic particles and a hardened binder that binds the lignocellulosic particles, and wherein distinguishable (individual) layers are present within the composite. The multilayer lignocellulosic composite preferably comprises at least two distinguishable (individual) layers, in particular a core layer and an upper and a lower surface layer; or four or more layers within the same composite material. The adjacent layers of the multilayer lignocellulosic composite are distinguishable in terms of their composition, density, colour or any other properties and adjacent layers comprise identical types of lignocellulosic particles and/or binders or different types of lignocellulosic particles and/or binders. The (individual) layers may also comprise or consist of different materials than lignocellulosic particles and/or binders, such as plastics, fabrics, paint coat or the like, for examples derived from foreign matter in waste wood. The lignocellulosic particles used in the production of an individual layer of a “multilayer lignocellulosic composite” are of the same type or of different types of lignocellulosic biomass (see above for preferred types). The lignocellulosic particles used in the production of separate (individual) layers of a “multilayer lignocellulosic composite” are of the same type or of different types of lignocellulosic biomass (see above for preferred types) or are identical or different mixtures of two or more of such types of lignocellulosic biomass. Furthermore, the term “multilayer” specifies that the lignocellulosic composite comprises at least two individual layers, wherein at least one, preferably two or more, of these individual layers comprise lignocellulosic material and binder, wherein one or more or all of said layers preferably are produced in a multi-step-process comprising for each (individual) layer of lignocellulosic material and binder a step of scattering lignocellulosic particles.
Thus, the present invention relates to a process of producing a multilayer lignocellulosic composite comprising one or more lignocellulosic composite layers or a single-layer lignocellulosic composite, wherein preferably
Other terms used herein for describing the present invention have their typical meanings in the field concerned or are explained or defined in the present description.
Preferred is a process of the present invention wherein the binder as components for hardening via esterification at least comprises:
Herein, and throughout the present text, the term “one, two or more polymers comprising multiple carboxyl groups” designates polymers having in their protonated form multiple (preferably two or more) carboxyl groups. Preferably, the term “polymers comprising multiple carboxyl groups” as used herein comprises in its meaning “polyesters having two or more carboxyl groups”. Throughout the text, when referring to a polymer having (multiple) carboxyl groups a reference to the corresponding (partially) neutralized/deprotonated form is incorporated. Again, the skilled person in accordance with the requirements of the individual technical situation and in accordance with the present invention will adjust the pH of the binder in order to provide for the required reactivity.
According to preferred aspect (c1), the binder as components for hardening via esterification at least comprises one, two or more polymers comprising multiple carboxyl groups (including one, two or more polyesters having two or more carboxyl groups). This means, the compounds present in step a) of the process of the present invention which have two or more carboxyl groups are specifically polymers. According to preferred aspect (c1), for crosslinking said polymers the binder at least comprises one, two or more polymer or monomer compounds having two or more hydroxy groups. Thus, for crosslinking said polymers comprising multiple carboxyl groups, the binder comprises at least one polymer compound having two or more hydroxy groups or comprises at least one monomer compound having two or more hydroxy groups or comprises both at least one polymer compound and at least one monomer compound, both having two or more hydroxy groups.
According to preferred aspect (c1), the polymers comprising multiple carboxyl groups (to the extent they are not polyesters having two or more carboxyl groups) are selected from the group consisting of polymers of one or more unsaturated carboxylic acid, preferably acrylic acid, and mixtures thereof, preferably copolymers of acrylic acid and more preferably copolymers of acrylic acid and maleic anhydride. These polymers comprising multiple carboxyl groups preferably are partially neutralized. Partially neutralized means that (i) at least some, preferably more than 10%, more preferably more than 20% and (ii) less than 50%, preferably less than 35%, of the acidic carboxyl groups (COOH) of the polymers comprising multiple carboxyl groups are neutralized by reaction with basic compounds, wherein neutralization refers to the conversion of carboxyl groups (COOH) into carboxylate groups (COO) (acid-base reaction). Basic compounds for partial neutralization may be hydroxides like sodium hydroxide, potassium hydroxide, calcium hydroxide, or carbonates, like sodium carbonate, or ammonia, or primary, secondary and tertiary amines, like ethylamine, propylamine, isoproylamine, butylamine, hexylamine, ethanolamine, dimethylamine, diethylamine, Di-n-propylamine, tributylamine, triethanolamine, dimethoxyethylamine, 2-ethoxyethylamine, 3-ethoxypropylamine, dimethylethenanolamine, diisopropanolamine and morpoholine. Preferred basic compounds are hydroxides, more preferably sodium hydroxide is used as basic compound.
Preferably, and in accordance with aspect (c1), the binder prepared or provided in step (a) has a pH in the range of from 0.5 to 3.5, more preferably in the range of from 1.0 to 3.2 and even more preferably in the range of from 2.0 to 2.9. It has been found in own experiments that a binder prepared in step (a) which has a pH in the range or preferred range provided here before, contributes to a reduced amount of emissions of toxic or otherwise undesired VOCs and/or formaldehyde of a so produced multilayer or single-layer lignocellulosic composite.
Insofar, it is preferred that for preparing said binder in step (a) binder components for hardening via esterification—where necessary—are mixed with a basic compound, preferably sodium hydroxide. In another preferred embodiment, and in accordance with aspect (c1), partially neutralized polymers comprising multiple carboxyl groups are used as starting material for adjusting the pH of the binder as stated above. By adjusting the pH of the binder, the molar ratio of COOH groups to COO groups (in particular in the components present for hardening the binder via esterification) is influenced in the usual manner.
According to preferred aspect (c2), the binder as components for hardening via esterification at least comprises one, two or more polymers comprising multiple hydroxy groups. This means, the compounds present in step a) of the process of the present invention which have two or more hydroxy groups are specifically polymers. According to preferred aspect (c2), for crosslinking said polymers the binder at least comprises one, two or more polymer (and optionally monomer) compounds having two or more carboxyl groups, comprising one, two or more polyesters having two or more carboxyl groups. Thus, for crosslinking said polymers having two or more hydroxy groups, the binder comprises at least one polymer compound having two or more carboxyl groups or comprises both at least one polymer compound and at least one monomer compound, both having two or more carboxyl groups. In any case, for crosslinking said polymers the binder at least comprises one, two or more polyesters having two or more carboxyl groups.
The process according to the present invention as described herein according to aspect (c1) is particularly preferred.
According to both preferred aspects (c1) and (c2), the binder as components for hardening via esterification at least comprises one, two or more polymers. The use of polymers having multiple carboxyl (see c1) or hydroxy groups (see c2), respectively, is generally preferable in comparison to the use of non-polymeric compounds as after hardening the resulting bonding strength is typically higher. Preferred polymers are defined below.
In accordance with both aspects (c1) and (c2) the binder as components for hardening via esterification preferably at least comprises one, two or more polymers comprising multiple carboxyl groups.
Preferably, and in accordance with both aspects (c1) and (c2), all or a part of the respective carboxyl or hydroxy groups of a respective polymer belong to repeat units of the polymer.
Preferred is a process of the present invention (preferably a process as defined herein as being preferred), wherein the binder as components for hardening via esterification at least comprises
In the preferred process according to (preferred) aspect (c1), the binder as components for hardening via esterification at least comprises one, two or more polymers comprising multiple carboxyl groups (comprising or further comprising one, two or more polyesters having two or more carboxyl groups). Furthermore, the binder for crosslinking said polymers comprises one, two or more polymer or monomer compounds, preferably one, two or more biobased polymer or biobased monomer compounds, having two or more hydroxy groups.
Herein, the term “biobased” means that the respective polymer or monomer is at least partially preparable or prepared from substances that are present in biological products. Preferably, the polymer or monomer is completely preparable or prepared from such substances. More preferably, the (biobased) polymers or monomers are plant-based, i.e. they are at least partially preparable or prepared from substances that are present in plants. Even more preferably, the term “biobased” in the context of the present invention means that the respective polymer or monomer is at least partially preparable or prepared (preferably prepared) from substances obtained from plants. And yet even more preferably, the term “biobased” in the context of the present invention means that the respective polymer or monomer is entirely preparable or prepared (preferably prepared) from substances obtained from plants.
Herein the term “starch” designates a carbohydrate, namely a polysaccharide or an oligosaccharide, consisting of two or more glucose units joined by glycosidic bonds. The term “starch” is the generic term for non-hydrolyzed starch (native starch as contained in large amounts in potatoes, corn, rice, wheat and cassava) and modified starch or starch derivatives, obtained upon physical, enzymatic or chemical treatment of non-hydrolyzed starch (native starch). A preferred example of modified starch is hydrolyzed starch, which is produced from non-hydrolyzed starch (native starch) by partial hydrolysis. A preferred example of hydrolyzed starch is maltodextrin.
According to preferred aspect (c1), the polymer or monomer, preferably biobased (more preferably plant-based), compounds having two or more hydroxy groups are selected from the group consisting of (i) carbohydrates, (ii) sugar alcohols, and preferably (iii) compounds selected from the group consisting of triols, tetrols, pentols and hexols, wherein the latter compounds are not carbohydrates and not sugar alcohols. Particularly preferred carbohydrates, sugar alcohols and (preferably) compounds selected from the group consisting of triols, tetrols, pentols and hexols are identified above. Even more particularly preferred one of the one, two or more polymer or monomer, preferably biobased (more preferably plantbased), compounds having two or more hydroxy groups is glycerol. Two or more of said preferred, particularly preferred or even more particularly preferred compounds can be used in combination with each other.
According to aspect (c1), preferably the total amount of said one, two or more polymer or monomer, preferably biobased (more preferably plant-based), compounds having two or more hydroxy groups for crosslinking said polymers comprising multiple carboxyl groups is above 5 wt. %, more preferably above 10 wt. %, even more preferably above 20 wt. % and most preferably above 30 wt. %, based on the solid content of all binder components present for hardening via esterification.
The “solid content of all binder components present for hardening via esterification” refers to the solid content of all binder components present for hardening the binder via esterification. Such components are polymer or monomer compounds having two or more hydroxy groups, polymer or monomer compounds having two or more carboxyl groups and compounds having at least one carboxyl group and at least one hydroxy group. The hydroxy groups and carboxyl groups of such components can react with each other in an esterification reaction so that (cross)links are formed, and correspondingly the binder hardens. Other additional compounds such as alkali salts and alkaline earth salts, hydrophobizing agents, dyes, pigments, antifungal agents, antibacterial agents, rheology modifiers, fillers, release agents, surfactants and tensides are not included in the “solid content of all binder components present for hardening via esterification”.
In the preferred process according to (preferred) aspect (c2), the binder as components for hardening via esterification at least comprises one, two or more polymers comprising multiple hydroxy groups. Furthermore, the binder for crosslinking said polymers comprises one, two or more polymer or monomer, preferably biobased (more preferably plant-based), compounds having two or more carboxyl groups.
According to preferred aspect (c2), the polymer or monomer, preferably biobased (more preferably plant-based), compounds having two or more carboxyl groups are preferably selected from the group consisting of alpha-hydroxy carboxylic acids and reaction products thereof. Particularly preferred alpha-hydroxy carboxylic acids are citric acid, malic acid and tartaric acid, more preferably citric acid. Particularly preferred reaction products of such alpha-hydroxy carboxylic acids are polyesters. Two or more of said preferred or particularly preferred compounds can be used in combination with each other.
According to preferred aspect (c2) preferably the total amount of said one, two or more polymer and optionally monomer, preferably biobased (more preferably plant-based), compounds having two or more carboxyl groups for crosslinking said polymers comprising multiple hydroxy groups is above 5 wt. %, more preferably above 10 wt. %, even more preferably above 20 wt. % and most preferably above 30 wt. %, based on the solid content of all binder components present for hardening via esterification.
Preferred is a process of the present invention (preferably a process as defined herein as being preferred), wherein the binder as components for hardening via esterification at least comprises
In the preferred process according to (preferred) aspect (c1), the binder as components for hardening via esterification at least comprises one, two or more polymers comprising multiple carboxyl groups. According to aspect (c1), the one, two or more polymers comprising multiple carboxyl groups which are not polyesters having two or more carboxyl groups are preferably selected from the group consisting of polymers of one or more unsaturated carboxylic acid and mixtures thereof. Particularly preferred polymers of one or more unsaturated carboxylic acid are polymers of acrylic acid, more preferably copolymers of acrylic acid, and even more preferably copolymers of acrylic acid and maleic anhydride. Two or more of said preferred or particularly preferred polymers can be used in combination with each other.
According to preferred aspect (c1), for crosslinking said polymers the binder at least comprises one, two or more polymer or monomer compounds having two or more hydroxy groups. Thus, for crosslinking said polymers comprising multiple carboxyl groups, the binder comprises at least one polymer compound having two or more hydroxy groups or comprises at least one monomer compound having two or more hydroxy groups or comprises both at least one polymer compound and at least one monomer compound, both having two or more hydroxy groups.
In the preferred process according to (preferred) aspect (c2), the binder as components for hardening via esterification at least comprises one, two or more, preferably biobased (more preferably plant-based), polymers comprising multiple hydroxy groups. According to aspect (c2), the one, two or more, preferably biobased (more preferably plant-based), polymers comprising multiple hydroxy groups are preferably selected from the group consisting of carbohydrates, polyvinylalcohol, and mixtures and copolymers thereof. Particularly preferred carbohydrates are non-hydrolyzed starch and hydrolyzed starch, more preferably the carbohydrate is maltodextrin. Two or more of said preferred or particularly preferred polymers can be used in combination with each other.
According to preferred aspect (c2), for crosslinking said polymers the binder at least comprises one, two or more polymer (and optionally monomer) compounds having two or more carboxyl groups, comprising one, two or more polyesters having two or more carboxyl groups. Thus, for crosslinking said polymers having two or more hydroxy groups, the binder comprises at least one polymer compound having two or more carboxyl groups or comprises both at least one polymer compound and at least one monomer compound, both having two or more carboxyl groups. In any case, for crosslinking said polymers having two or more hydroxy groups, the binder at least comprises one, two or more polyesters having two or more carboxyl groups.
Preferred is a process of the present invention (preferably a process as defined herein as being preferred), wherein the binder as components for hardening via esterification at least comprises
In the preferred process according to (preferred) aspect (c1), the binder as components for hardening via esterification at least comprises one, two or more polymers comprising multiple carboxyl groups. According to aspect (c1), said one, two or more polymers comprising multiple carboxyl groups which are not polyesters having two or more carboxyl groups are preferably selected from the group consisting of polymers of one or more unsaturated carboxylic acid and mixtures thereof. Particularly preferred polymers of one or more unsaturated carboxylic acid are polymers of acrylic acid, more preferably copolymers of acrylic acid, and even more preferably copolymers of acrylic acid and maleic anhydride. Two or more of said preferred or particularly preferred polymers can be used in combination with each other.
According to preferred aspect (c1), the one, two or more polymer or monomer, preferably biobased (more preferably plant-based), compounds having two or more hydroxy groups are selected from the group consisting of (i) carbohydrates, (ii) sugar alcohols, and (iii) compounds selected from the group consisting of triols, tetrols, pentols and hexols, wherein the latter compounds are not carbohydrates and not sugar alcohols. Particularly preferred (i) carbohydrates, (ii) sugar alcohols and preferably (iii) compounds selected from the group consisting of triols, tetrols, pentols and hexols are identified above. Even more particularly preferred one of the one, two or more polymer or monomer, preferably biobased (more preferably plant-based), compounds having two or more hydroxy groups is glycerol. Two or more of said preferred, particularly preferred or even more particularly preferred compounds can be used in combination with each other.
According to aspect (c1), preferably the total amount of said one, two or more polymer or monomer, preferably biobased (more preferably plant-based), compounds having two or more hydroxy groups for crosslinking said polymers comprising multiple carboxyl groups is above 5 wt. %, more preferably above 10 wt. %, even more preferably above 20 wt. % and most preferably above 30 wt. %, based on the solid content of all binder components present for hardening via esterification.
In the preferred process according to (preferred) aspect (c2), the binder as components for hardening via esterification at least comprises one, two or more, preferably biobased (more preferably plant-based), polymers comprising multiple hydroxy groups. According to aspect (c2), the one, two or more, preferably biobased (more preferably plant-based), polymers comprising multiple hydroxy groups are preferably selected from the group consisting of carbohydrates, polyvinylalcohol, and mixtures and copolymers thereof. Particularly preferred carbohydrates are non-hydrolyzed starch and hydrolyzed starch, more preferably the carbohydrate is maltodextrin. Two or more of said preferred or particularly preferred polymers can be used in combination with each other.
According to preferred aspect (c2), the polymer or monomer, preferably biobased (more preferably plant-based), compounds having two or more carboxyl groups are preferably selected from the group consisting of alpha-hydroxy carboxylic acids and reaction products thereof. Particularly preferred alpha-hydroxy carboxylic acids are citric acid, malic acid and tartaric acid, more preferably citric acid. Particularly preferred reaction products of such alpha-hydroxy carboxylic acids are polyesters. Two or more of said preferred or particularly preferred compounds can be used in combination with each other.
According to preferred aspect (c2) preferably the total amount of said one, two or more polymer and optionally monomer, preferably biobased (more preferably plant-based), compounds having two or more carboxyl groups for crosslinking said polymers comprising multiple hydroxy groups is above 5 wt. %, more preferably above 10 wt. %, even more preferably above 20 wt. % and most preferably above 30 wt. %, based on the solid content of all binder components present for hardening via esterification.
Preferred is a process of the invention (preferably a process as defined herein above as being preferred), wherein the binder as components for hardening via esterification at least comprises
Herein, and throughout the present text, the term “compounds having at least one carboxyl group and at least one hydroxy group” designates compounds having (i) in their protonated form at least one carboxyl group, and (ii) at least one hydroxy group. E.g., lactic acid in its protonated form has one carboxyl group (COOH). Sodium lactate has no carboxyl group, but falls under the present definition because in its protonated form it has one carboxyl group. Typically, in the present text reference is made to the respective acid. In such cases a reference to the corresponding (partially) neutralized/deprotonated form is incorporated. E.g, a reference to lactic acid incorporates a reference to its neutralized/deprotonated form (lactates).
According to aspect (c1) of this preferred process the binder comprises as an additional component for hardening the binder via esterification one or more non-polymeric, preferably non-polymeric biobased (more preferably plant-based), compounds having two or more carboxyl groups and/or (preferably “and”) comprises as an additional component for hardening the binder via esterification one or more non-polymeric, preferably non-polymeric biobased (more preferably plant-based) compounds having at least one carboxyl group and at least one hydroxy group. More preferred specific compounds are defined above. Citric acid and/or lactic acid are particularly preferred. Two or more of said preferred or particularly preferred additional compounds can be used in combination with each other.
In accordance with aspect (c1), the skilled person will select the respective individual and relative amounts of said polymers comprising multiple carboxyl groups, said compounds having two or more hydroxy groups (present for crosslinking said polymers), and said additional compounds having at least one carboxyl group and at least one hydroxy group, so that the properties of the resulting binder mixture and of the hardened binder are tailored according to the individual requirements. Preferred total amounts of the one, two or more polymer or monomer, preferably biobased, compounds for crosslinking said polymers are stated above.
According to aspect (c2) of this preferred process the binder comprises as an additional component for hardening the binder via esterification one or more non-polymeric, preferably non-polymeric biobased (more preferably plant-based) compounds having at least one carboxyl group and at least one hydroxy group. More preferred specific compounds are defined above. Lactic acid is particularly preferred. Two or more of said preferred or particularly preferred compounds can be used in combination with each other.
In accordance with aspect (c2), the skilled person will select the respective individual and relative amounts of said polymers comprising multiple hydroxy groups, said compounds having two or more carboxyl groups (present for crosslinking said polymers), and said additional compounds having at least one carboxyl group and at least one hydroxy group, so that the properties of the resulting binder mixture and of the hardened binder are tailored according to the individual requirements. Preferred total amounts of the one, two or more polymer or monomer, preferably biobased, compounds for crosslinking said polymers are stated above.
Preferred is a process of the invention (preferably a process as defined herein as being preferred), wherein the binder as compound(s) having two or more carboxyl groups comprises one, two or more, preferably biobased (more preferably plant-based), polyesters having two or more carboxyl groups,
According to this preferred aspect of the present invention, the binder as compound(s) having two or more carboxyl groups comprises one, two or more, preferably biobased (more preferably plant-based), polyester having two or more carboxyl groups. Herein, preferably one, two or more of said, preferably biobased (more preferably plant-based), polyesters are prepared by reacting one or more alpha-hydroxy carboxylic acids (preferably citric acid) and one, two or more compounds comprising reactive hydroxy groups (preferably glycerol) as defined above. The preparation of said polyesters is a specific part of a preferred process of the present invention which is conducted before step a).
Preferred is a process of the present invention (preferably a process as defined herein above as being preferred), wherein the binder as components for hardening via esterification at least comprises
In a preferred process of the present invention the binder as components for hardening via esterification at least comprises polymers of component (c1-A) and glycerol (as preferred example of component (c1-B)), wherein the ratio of the total mass of said polymers of component (c1-A) to the mass of glycerol is in the range of from 80:20 to 50:50. Glycerol has proven as a particularly suitable (crosslinking) monomer compound having two or more hydroxy groups, as it is advantageous in terms of environmental aspects (as it can be obtained from renewable resources) and its crosslinking properties, which lead to an effective hardening of the binder via esterification by applying a high-frequency electrical field. The presence of an additional non-polymeric, preferably non-polymeric biobased, component for hardening the binder via esterification in a range of from 5 wt.-% to 30 wt.-%, based on the solid content of all binder components present for hardening via esterification, has also proven particularly advantageous.
According to the present invention it is thus preferred to provide or prepare a binder comprising at least i) one, two or more polymers comprising multiple carboxyl groups (as specified above, including polyesters having two or more carboxyl groups), ii) glycerol and iii) one or more non-polymeric, preferably non-polymeric biobased, compounds having two or more carboxyl groups and/or one or more non-polymeric, preferably non-polymeric biobased, compounds having at least one carboxyl group and at least one hydroxy group. More preferably said binder comprises at least i) polymers of acrylic acid and/or copolymers of acrylic acid, preferably copolymers of acrylic acid and maleic anhydride and polyesters having two or more carboxyl groups, ii) glycerol and iii) citric acid and/or lactic acid. Even more preferably the ratio of the total mass of said components i) and ii), and the total amount of said additional component iii) are selected as indicated above. Some examples of said preferred binders are as follows:
Preferred is a process of the present invention (preferably a process as defined herein above as being preferred), wherein the binder prepared or provided in step (a) of the process has a pH in the range of from 1.0 to 3.2, preferably in the range of from 2.0 to 2.9.
Preferred is a process of the present invention (preferably a process as defined herein as being preferred), wherein the binder additionally comprises one, two or more compounds independently selected from the group consisting of:
These additional binder compounds are not components for hardening the binder via esterification.
Advantageously, in a process of the present invention (preferably a process as defined herein above as being preferred) the addition of alkali salts and alkaline earth salts, preferably sodium nitrate, to the binder often leads to improved properties of the resulting lignocellulosic composite. In particular, the addition of alkali salts and alkaline earth salts, preferably sodium nitrate, to the binder often improves the internal bond strength and/or the thickness swelling after 24 hours in water at 20° C. of a resulting lignocellulosic composite or a layer of a lignocellulosic composite. Furthermore, the presence of alkali salts and alkaline earth salts, preferably sodium nitrate, in the binder often reduces the time needed for applying a high-frequency electrical field to the mixture during and/or after compacting to reach the target temperature, so that the binder hardens via esterification and binds the lignocellulosic particles. Thus, the addition of alkali salts and alkaline earth salts, preferably sodium nitrate, may improve the product properties and/or the process parameters, i.e. less time may be needed and energy consumption may be reduced.
In a preferred process of the present invention the total amount of alkali and alkaline earth ions, preferably sodium ions (Nat), in the binder is in a range of from 25-250 mmol/g, preferably in a range of from 50-250 mmol/g, more preferably in a range of from 75-250 mmol/g, based on the total amount of the solid content of all binder components present for hardening via esterification plus the total amount of all alkali salts and alkaline earth salts.
Another preferred additive in a process of the present invention are hydrophobizing agents, preferably paraffin and mixtures comprising paraffin, more preferably paraffin emulsions. In particular, the addition of hydrophobizing agents, preferably paraffin and mixtures comprising paraffin, more preferably paraffin emulsions, to the binder often improves the internal bond strength and/or the thickness swelling after 24 hours in water at 20° C. of a resulting lignocellulosic composite or a layer of a lignocellulosic composite. It is preferred that in step a) of the process of the present invention the mass ratio of the weight of paraffin to the weight of the lignocellulosic particles in an oven-dry state (paraffin amount) is in the range of from 0.2% to 1.5%. It is also preferred that the mass ratio of the weight of paraffin to the weight of all binder components present for hardening via esterification (paraffin/binder ratio) is in the range of from 5% to 30%, more preferably in the range of from 10% to 25%, even more preferably in the range of from 15% to 25%.
Further preferred additives in a process of the present invention are described above. The skilled person will select the respective amounts of said additional compounds so that the properties of the resulting binder mixture and/or of the hardened binder and/or the resulting lignocellulosic composite are tailored according to the individual requirements. In particular, the addition of such compounds leads to improved properties of the binder so that the desired viscosity, reactivity, stability and the like can be set. Furthermore, additives are selected in order to improve the properties of the resulting hardened binder and/or the resulting lignocellulosic composite. These properties preferably are, but are not limited to, the colour, durability, density and the like.
Two or more of the preferred or particularly preferred additional compounds (additives) can be used in combination with each other.
For the reasons discussed above, a process is preferred, wherein the binder additionally comprises one, two or more compounds selected from the group consisting of:
Preferably, one or more hydrophobizing agents (preferably comprising paraffin) are present in combination with one or more of said alkali salts and alkaline earth salts (preferably sodium nitrate).
Preferred is a process of the present invention (preferably a process as defined herein above as being preferred), wherein the binder comprises
wherein the total amount of such biobased, preferably plant-based, compounds is above 5 wt.-%, more preferably above 10 wt.-%, even more preferably above 20 wt.-% and most preferably above 30 wt.-%, based on the total amount of the solid content of all binder components present for hardening via esterification.
According to this preferred aspect of the present invention binder components are used, which are not obtained from petrochemical resources, but are biobased (preferably plantbased), and which emit a reduced amount of toxic or otherwise undesired VOCs and/or formaldehyde for a process of producing a multilayer or single-layer lignocellulosic composite. In particular, the amount of biobased, preferably plant-based, compounds in the preferred binder leads to lignocellulosic composites which are preferable in terms of sustainability and toxicity of emissions, in comparison with other state of the art lignocellulosic composites.
Preferred is a process of the present invention (preferably as defined herein above as being preferred), wherein in the mixture provided or prepared in step a) the ratio of the weight of the solid content of all binder components present for hardening via esterification to the weight of the lignocellulosic particles in an oven-dry state is below 10%, preferably below 8%, more preferably below 6%, and is preferably higher than 1%, more preferably higher than 1.5%, most preferably higher than 2.0%.
According to this preferred aspect of the present invention, the mixture provided or prepared in step a) comprises a relatively low amount of binder components present for hardening via esterification in relation to the amount of the lignocellulosic particles. More particularly, the ratio of the weight of the solid content of all binder components present for hardening via esterification to the weight of the lignocellulosic particles in an oven-dry state is below 10%, preferably below 8%, more preferably below 6%, even more preferably below 5%, most preferably below 4.5%. The relatively low preferred amounts of the solid content of all binder components present for hardening via esterification is advantageous as it leads to sustainable processes and/or sustainable products, i.e. multilayer lignocellulosic composite comprising one or more, preferably two or more, lignocellulosic composite layers or a single-layer lignocellulosic composite.
Surprisingly, in the process of the present invention a relatively low amount of binder suffices to bind a large amount of lignocellulosic particles, as in step c) of the process a high-frequency electrical field is applied which allows for a perfect hardening of the mixture also in the center of the compacted mixture, in contrast to other hardening treatments (e.g. the use of a hot press). In other words, the binder is used more efficiently in the process of the present invention.
Preferred is a process of the present invention (preferably as defined herein as being preferred), wherein the process of producing a lignocellulosic composite comprises steps that are carried out batchwise and/or steps that are carried out continuously. Thus, the process of the present invention is suitable for a large variety of different production facilities and offers numerous options for the production of the desired lignocellulosic composite, i.e. multilayer lignocellulosic composite comprising one or more, preferably two or more, lignocellulosic composite layers or a single-layer lignocellulosic composite. As a preferred process of the present invention a batchwise production is chosen to produce individual lignocellulosic composites, e.g. having different shapes, thicknesses and the like, while a completely continuous process is preferably chosen for the production of more uniform lignocellulosic composites, e.g. having similar shapes, thicknesses and the like.
The preferred process of the present invention can also, and preferably, comprise one or more steps that are carried out batchwise, and one or more steps that are carried out continuously. One preferred example of such a combined process is the production of a single-layer lignocellulosic composite in continuously conducted process steps, and the subsequent batchwise (and preferably individual) production of a multilayer lignocellulosic composite using said continuously produced single-layer lignocellulosic composite as a starting material, e.g. as a core layer of said multilayer lignocellulosic composite.
Preferred is a process of the present invention (preferably as defined herein as being preferred), wherein the lignocellulosic composite is a lignocellulosic board selected from the group consisting of
wherein the lignocellulosic board is a
and/or
wherein the lignocellulosic composite is a board having a core, wherein in a cross section oriented perpendicularly to the plane of the board the difference between density maximum of the board and density minimum in the core of the board is at most 100 kg/m3.
According to this preferred aspect of the present invention, the lignocellulosic composite produced in a process of the present invention—i.e. the lignocellulosic composite obtained after step a) of providing or preparing a mixture at least comprising lignocellulosic particles and a binder, step b) of compacting the mixture, and step c) of applying a high-frequency electrical field to the mixture during and/or after compacting, so that the binder hardens via esterification of said compounds and binds the lignocellulosic particles—is a board as listed above. Thus, any type of lignocellulosic particles such as fibers, chips, strands, flakes, sawmill shavings and saw dust or mixtures thereof as well as any type of lignocellulosic biomass such as birch, beech, alder, pine, spruce, larch, eucalyptus, linden, poplar, ash, fir, tropical wood, sisal, jute, flax, coconut, kenaf, hemp, banana, straw, cotton stalks, bamboo and the like or mixtures thereof can be used as a source for the production of said boards listed above.
According to this preferred aspect the production process results in a lignocellulosic composite, that is preferably a single-layer lignocellulosic board or a multilayer lignocellulosic board, more preferably is a multilayer lignocellulosic board. The multilayer lignocellulosic board is more preferably a board having at least a core layer as well as an upper surface layer and a lower surface layer. The total number of layers is then three or more. If the number of layers is four or more, there are one or more intermediate layers. Preferred is a three-layer board having one core layer, an upper surface layer and a lower surface layer.
Consequently, a preferred aspect of the present invention relates to a process for the production of a high-density fiberboard (HDF), a medium-density fiberboard (MDF), a low-density fiberboard (LDF), a wood fiber insulation board, an oriented strand board (OSB), a chipboard or a natural fiber board, wherein the board preferably is either a single-layer lignocellulosic board or a multilayer lignocellulosic board, more preferably a multi-layer lignocellulosic board, most preferably a three-layer lignocellulosic board.
According to a particularly preferred aspect of the present invention, the production process results in a lignocellulosic composite that is a board having a core (core layer of multilayer lignocellulosic composite or core of single-layer lignocellulosic composite), wherein in a cross section oriented perpendicularly to the plane of the board the difference between density maximum of the board and density minimum in the core of the board is at most 100 kg/m3, preferably is at most 80 kg/m3, and more preferably is at most 60 kg/m3. Thus, from the perspective of the skilled person the density distribution within the board is almost homogeneous, which is considered to be an advantage over boards having a (heterogeneous) large difference of more than 100 kg/m3 between the density maximum of the board and the density minimum in the core of the board. A density difference below 100 kg/m3, preferably below 80 kg/m3, and more preferably below 60 kg/m3, in above described preferred boards has several advantages, such as consistent and reliable mechanical properties in every cross section of the board.
In the process of the present invention, step c) of applying a high-frequency electrical field to the mixture during and/or after compacting, so that the binder hardens via esterification of said compounds and binds the lignocellulosic particles, so that a lignocellulosic composite or a layer of a lignocellulosic composite results, is relevant for achieving the homogeneous density distribution characterized by a difference of at most 100 kg/m3 between the density maximum of the board and the density minimum in the core of the board. The advantageous property is attributed to a fast and even heating between the surfaces (and including the core) when using a high-frequency electrical field. In contrast to that, a conventional hot press process results in a slow heat transfer from surface to core and consequently leads to boards having large density differences between the core layer or section and the outer layers or sections.
Preferred is a process of the present invention (preferably as defined herein as being preferred), wherein the process of producing a lignocellulosic composite comprises one, two, three, more than three or all of the following steps
According to these preferred aspects the process of producing a lignocellulosic composite comprises one, two, three or more preferred steps, which are either specific embodiments of steps a), b), or c), respectively, or are additional steps. Each of these preferred steps is optional and can be conducted individually or in combination with one or more of the other preferred steps.
One of the preferred steps relates to step a) of preparing said mixture consisting of said lignocellulosic particles and said binder. According to this preferred aspect, the lignocellulosic particles are blended with one or more or all ingredients of the binder or one or more or all ingredients of the binder are sprayed onto said lignocellulosic particles. Specifically, ingredients of the binder are blended with or sprayed onto the lignocellulosic particles simultaneously (e.g. in a mixture with each other) or successively, preferably successively. A sequential addition of ingredients of the binder is conducted in any order and in any combination of the respective binder ingredients. Specific ingredients of the binder are premixed or not pre-mixed, preferably two or more of the ingredients of the binder are premixed, before blending with or spraying onto said lignocellulosic particles in said step a). More preferably, all binder components for hardening the binder via esterification are premixed and even more preferably all binder components for hardening the binder via esterification and, if applicable, all alkali salts and/or alkaline earth salts are premixed. According to this preferred aspect the skilled person selects (i) a desired sequence for the addition of binder ingredients (simultaneously or successively), preferably successively, (ii) a desired method for mixing ingredients of the binder, such as blending or spraying, preferably spraying, and the skilled person (iii) provides or prepares one, two or more pre-mixtures with any kind of combination of specific binder ingredients.
Another preferred step of the present invention is the step of preparing, preferably preparing by scattering, a layer of the mixture provided or prepared in step a), and in step b) compacting this layer. The preparation of a layer by scattering is a preferred additional step for the production of a lignocellulosic composite.
According to a preferred aspect of the present invention, for preparing a multilayer lignocellulosic composite, at least a first and a second individual mixture are provided or prepared. Said first and second individual mixtures are then used for making a first and a second layer of the multilayer lignocellulosic composite. Preferably, the first and the second layer are in contact with each other. According to this preferred aspect, the first and the second individual mixture have the same or a different composition, even more preferably the first and the second individual mixture have a different composition. Thus, the different individual mixtures and/or layers of the prepared multilayer lignocellulosic composite preferably differ in specific properties such as density, color, and the like and/or they differ in terms of their composition, wherein differing compositions are obtained by using different binders, lignocellulosic particles and/or other (additional) components such as plastics, fabrics, paint coat or the like, for example derived from foreign matter in waste wood. Individual layers preferably (i) comprise different binders and different lignocellulosic particles or (ii) comprise identical binders, but different lignocellulosic particles or (iii) comprise identical binders and identical lignocellulosic particles, but in different ratios.
According to a technically related preferred process of the present invention the preparation of a multilayer lignocellulosic composite comprises the preparation of two, three or more layers, each layer comprising lignocellulosic particles and a binder. Preferably the lignocellulosic particles and/or the binders in said two, three or more layers are the same or different, even more preferably the lignocellulosic particles are different and the binders are different.
Preferably, in step b) of compacting the mixture provided or prepared in step a), the compacting of the mixture is conducted in two stages. This means, that in a first stage the mixture is pre-compacted to give a pre-compacted mat, and in a second stage this precompacted mat is further compacted. Preferably, the first stage of pre-compacting the mixture to give a pre-compacted mat is carried out before step c) of applying a high-frequency electrical field. The second stage of further compacting the pre-compacted mat is preferably carried out during step c) of applying a high-frequency electrical field. This two-stage compacting allows for a flexible process for the production of a lignocellulosic composite or a layer of a lignocellulosic composite.
In a preferred process of the present invention the preparation of a single-layer lignocellulosic composite or a multilayer lignocellulosic composite comprises the following steps:
Preferably, the pre-compacted (single-layer or multilayer) mat obtained in the first compacting step is pre-heated (i) with vapor, preferably with water vapor, and/or (ii) by applying microwave radiation and/or (iii) by applying a high-frequency electrical field before the second compacting step.
In the second compacting step the binder present in the mat is hardened, partially or completely.
Hot pressing the mixture during or after compacting in step b), and/or during or after, more preferably during, applying a high-frequency electrical field in step c), is another process step that in specific cases is preferred in the process of the present invention.
According to the present invention hot pressing is a process step, in which an optionally pre-compacted mat is in contact with heated press surfaces which have temperatures in the range of from 80 to 300° C. When hot pressing is conducted after applying a high-frequency electrical field in step c) the heated press surfaces preferably have temperatures from 80 to 300° C., more preferably from 120 to 280° C., most preferably from 150 to 250° C. When hot pressing is conducted during applying a high-frequency electrical field in step c) the heated press surfaces preferably have temperatures in the range of from 80 to 200° C., more preferably from 90 to 180° C., most preferably from 100 to 150° C.
Preferably, in a preferred process of the present invention the temperature at the center of said mixture is monitored and/or controlled, preferably controlled, in step c) of applying a high-frequency electrical field. It is particularly preferred to control the temperature at the center of said mixture, so that the binder hardens via esterification of said compounds and binds the lignocellulosic particles in a controlled manner. The temperature, which is preferably monitored and/or controlled, more preferably controlled, is preferably adjusted to allow the binder to harden via esterification in a controlled manner. The monitored and/or controlled, preferably controlled, temperature at the center of said mixture is preferably adjusted to be in a range of from 110° C. to 220° C., more preferably in a range of from 130° C. to 200° C., even more preferably in a range of from 140° C. to 180° C. and most preferably in a range of from 150° C. to 170° C.
The term “center of (said) mixture” as used in this text designates the location which is approximately in the middle between the surfaces of the three-dimensional object defined by said mixture in step c) of the process of the present invention.
Preferred is a process of the present invention (preferably as defined herein as being preferred), wherein in said step c) of applying a high-frequency electrical field the temperature at the center of said mixture
More preferably said temperature at the center of said mixture (i) is increased to a maximum temperature as specified and (ii) is controlled, preferably automatically controlled, so that said binder hardens via esterification and binds the lignocellulosic particles.
When according to aspect (i) the temperature at the center of said mixture is increased to a maximum temperature in the range of from 130° C. to 200° C., preferably in the range of from 140° C. to 180° C., the maximum temperature is preferably reached in less than 40 s·d/mm), more preferably in less than 30 s·(d/mm), even more preferably in less than 20 s·(d/mm), most preferably in less than 15 s·(d/mm) after the start of applying a high-frequency electrical field, where d is the thickness of the compacted mixture in mm at the end of step c). E.g., if the thickness d of the compacted mixture in mm at the end of step c) is 10 mm, the maximum temperature is preferably reached in less than 400 s, more preferably in less than 300 s, even more preferably in less than 200 s, most preferably in less than 150 s after the start of applying a high-frequency electrical field.
Preferably, the temperature at the center of said mixture in accordance with aspect (i) is increased to a maximum temperature in the range of from 130° C. to 200° C., more preferably in the range of from 140° C. to 180° C. and most preferably in the range of from 150° C. to 170° C., wherein the temperature increase is controlled, preferably automatically controlled, and preferably (ii) is also controlled so that said binder hardens via esterification and binds the lignocellulosic particles.
The above described preferred processes of the present invention which relate to the temperature at the center of said mixture allow for a fast and/or effective production of a multilayer lignocellulosic composite comprising one or more, preferably two or more, lignocellulosic composite layers or a single-layer lignocellulosic composite.
The present invention also relates to a lignocellulosic composite, preparable according to a process of the present invention (preferably a process of the invention as defined above or in the attached claims as being preferred), and to a construction product (for a definition see below) comprising such lignocellulosic composite.
The lignocellulosic composite of the present invention preferably is a lignocellulosic board selected from the group consisting of
wherein the lignocellulosic board is a
and/or (preferably “and”)
the lignocellulosic composite of the present invention is a board having a core, wherein in a cross section oriented perpendicularly to the plane of the board the difference between density maximum of the board and density minimum in the core of the board is at most 100 kg/m3.
Generally, all aspects of the present invention discussed herein in the context of the process of producing a lignocellulosic composite according to the present invention apply mutatis mutandis to the lignocellulosic composite of the present invention, as defined here above and below. And vice versa, all aspects of the present invention discussed herein in the context of the lignocellulosic composite of the present invention apply mutatis mutandis to the process of producing a lignocellulosic composite according to the present invention.
The lignocellulosic composite, specifically board, of the present invention, in particular if it is an element of a construction product of the present invention, preferably comprises lignocellulosic particles selected from the group consisting of fibres, chips, strands, flakes, sawmill shavings and saw dust or mixtures thereof. These lignocellulosic particles are preferably derived from any type of lignocellulosic biomass such as birch, beech, alder, pine, spruce, larch, eucalyptus, linden, poplar, ash, fir, tropical wood, sisal, jute, flax, coconut, kenaf, hemp, banana, straw, cotton stalks, bamboo and the like or mixtures thereof.
A lignocellulosic composite, preferably board, of the present invention, preparable according to a process of the present invention, preferably is a single-layer lignocellulosic board or a multilayer lignocellulosic board, more preferably is a single-layer lignocellulosic board. A multilayer lignocellulosic board of the present invention is a board comprising at least two distinguishable (individual) layers. The multilayer lignocellulosic board is preferably a board having at least a core layer as well as an upper surface layer and a lower surface layer. The total number of layers is then three or more. If the number of layers is four or more, there are one or more intermediate layers. Preferred is a three-layer board having one core layer, an upper surface layer and a lower surface layer. This is specifically relevant if the lignocellulosic composite, preferably board, of the present invention is an element of a construction product of the present invention.
Particularly preferred are a single-layer lignocellulosic board of the present invention that is a medium-density fiberboard (MDF) or a chipboard, even more preferably is a medium-density fiberboard (MDF), and a corresponding construction product comprising such single-layer lignocellulosic board.
In another preferred aspect of the present invention, the lignocellulosic composite, or construction product comprising such lignocellulosic composite is a board having a core, wherein in a cross section oriented perpendicularly to the plane of the board the difference between the density maximum of the board and the density minimum in the core of the board is at most 100 kg/m3, preferably is at most 80 kg/m3, and more preferably is at most 60 kg/m3.
Preferred are a lignocellulosic composite of the present invention, preparable according to a process of the present invention (preferably as defined herein as being preferred), and a construction product comprising such lignocellulosic composite, wherein the lignocellulosic composite has
This is specifically relevant if the lignocellulosic composite, preferably board, of the present invention is a building element in a construction product and even more relevant if the lignocellulosic composite, preferably board, of the present invention is a building element in furniture or parts of furniture.
Preferred are a lignocellulosic composite of the present invention, preparable according to a process of the present invention (preferably as defined herein as being preferred), and a construction product comprising such lignocellulosic composite, wherein the lignocellulosic composite is a lignocellulosic board, and wherein said lignocellulosic board
Preferably said lignocellulosic board is characterized by at least two, three, four or five of these features.
Particularly preferred is a lignocellulosic board of the present invention which has a thickness in the range of from 3 to 30 mm, preferably in the range of from 5 to 20 mm. The preferred lignocellulosic board of the present invention preferably is a component (building element) in a construction product, more preferably is a building element in furniture or parts of furniture, and most preferably is a building element in a hollow construction in furniture or parts of furniture.
A preferred board of the present invention (i.e., a preferred lignocellulosic composite of the present invention) has an internal bond strength, determined according to DIN EN 319:1993-08, of at least 0.1 N/mm2, preferably of at least 0.2 N/mm2, more preferably of at least 0.3 N/mm2, and even more preferably of at least 0.4 N/mm2.
A preferred board of the present invention has a thickness swelling after 24 hours in water at 20° C., determined according to DIN EN 317:1993-08, of less than 60%, preferably less than 50%, more preferably less than 40%, and most preferably less than 35%.
The present invention also pertains to a binder for producing a lignocellulosic composite, as defined herein in the context of step a) of the process according to the present invention of producing a multilayer lignocellulosic composite comprising one or more lignocellulosic composite layers or a single-layer lignocellulosic composite, or as defined herein in the context of a preferred variant of said process according to the present invention.
Generally, all aspects of the present invention discussed herein in the context of the process of producing a lignocellulosic composite according to the present invention and/or in the context of the lignocellulosic composite of the present invention apply mutatis mutandis to the binder of the present invention, as defined herein. And vice versa, all aspects of the present invention discussed herein in the context of the binder of the present invention apply mutatis mutandis to the process of producing a lignocellulosic composite according to the present invention and/or to the lignocellulosic composite of the present invention.
Preferred is a binder according to the present invention as described herein, wherein the binder
The present invention also relates to the use of a lignocellulosic composite of the present invention (as defined above or preparable according to a process of the present invention, preferably as defined herein above as being preferred) as a building element in a construction product, preferably as a building element in furniture or parts of furniture, more preferably as a building element in a hollow construction in furniture or parts of furniture.
Generally, all aspects of the present invention discussed herein in the context of the process of producing a lignocellulosic composite according to the present invention and/or in the context of the lignocellulosic composite of the present invention and/or in the context of the binder of the present invention apply mutatis mutandis to the use of a lignocellulosic composite of the present invention, as defined here above and below. And vice versa, all aspects of the present invention discussed herein in the context of the use of a lignocellulosic composite of the present invention apply mutatis mutandis to the process of producing a lignocellulosic composite according to the present invention and/or to the lignocellulosic composite of the present invention and/or to the binder of the present invention.
The term “construction product” as used in this text designates products used for constructions such as decking, doors, windows, floors, panels, furniture or parts of furniture. The construction product of the present invention is preferably selected from the group consisting of furniture and parts of furniture.
The term “furniture” as used in this text designates all kinds of furniture. In the context of the present invention, furniture is preferably selected from the group consisting of chairs, tables, desks, closets, beds and shelves.
The term “building element” as used in this text designates lignocellulosic composite products (e.g., boards, see above) which constitute a part (element) of a construction product (e.g., a part of furniture). Such building elements preferably are parts of furniture, and more preferably such parts of furniture are selected from the group consisting of shelves, table plates, side boards or shelves or doors of cabinets, and side walls of beds.
The term “hollow construction” as used in this text designates construction products, preferably furniture, and building elements, preferably parts of furniture, comprising an amount of enclosed empty space that is not filled with construction material. Such hollow constructions allow for the making of construction products, preferably furniture, and building elements, preferably parts of furniture, which are exceptionally light and strong, although a low amount (by weight) of construction material is used. Board-on-frame (BoF) products are typical examples for such hollow constructions. In a BoF product a frame made from lignocellulosic composite products (e.g. chipboards) is covered with lignocellulosic boards (e.g. thin high-density fiberboard). A further hollow construction is a board-on-stile (BoS) product, in which stripes of lignocellulosic composite products are used instead of a complete frame.
The disclosure of the present invention and/or of the present application text also comprises the following aspects A1 to A15:
The following examples according to the present invention are meant to further explain and illustrate the present invention without limiting its scope.
1.1 Determination of the Weight Average Molecular Weight Mw of Polymers Comprising Multiple Carboxyl Groups, Selected from the Group Consisting of Polymers of One (Homopolymer) or More (Copolymer) Unsaturated Carboxylic Acids:
The Mw of acrylic acid homopolymers and copolymers (polymers comprising multiple carboxyl groups, selected from the group consisting of polymers of one (homopolymer) or more (copolymer) unsaturated carboxylic acids) was determined by gel permeation chromatography under the following conditions:
The Mw of polyesters of citric acid (polyesters having two or more carboxyl groups) was determined by gel permeation chromatography under the following conditions:
The moisture content of the lignocellulosic particles before providing or preparing a mixture comprising lignocellulosic particles and a binder was measured according to DIN EN 322:1993-08 by placing the lignocellulosic particles in a drying oven at a temperature of 103±2° C. until constant mass has been reached, i.e. an oven-dry state of the lignocellulosic particles. This method is also be used to check the water content of the resulting mixtures comprising lignocellulosic particles and a binder.
The solid content of amino resins (UF or MUF) was determined by weighing out 1 g of the amino resin in a weighing dish, drying it in a drying cabinet at 120º C for 2 hours and weighing the residue in a desiccator after it has been equilibrated to room temperature as described in Zeppenfeld, Grunwald, Klebstoffe in der Holz-und Mö-belindustrie [Adhesives in the Wood and Furniture Industry], DRW Verlag, 2nd edition, 2005, page 286.
The thickness and the density of the lignocellulosic composites (boards) were measured according to DIN EN 323:1993-08 and is reported as the arithmetic average of ten 50×50 mm samples of the same board.
The transverse tensile strength of the lignocellulosic composites (boards) (“internal bond strength”) was determined according to DIN EN 319:1993-08 and is reported as the arithmetic average of ten 50×50 mm samples of the same lignocellulosic composite (board).
The swelling in thickness after 24 h (“24 h swelling”) of the lignocellulosic composites (boards) was determined according to DIN EN 317:1993-08 and is reported as the arithmetic average of ten 50×50 mm samples of the same lignocellulosic composite (board).
The lightness of the lignocellulosic composites (boards) was determined with Minolta Spectrophotometer CM-3610A according to the CIELAB color system of DIN EN ISO 11664-4 under the following parameters (reported values are average values of 5 measurements at different points of each board):
The surface screw holding and the edge screw holding of the lignocellulosic composites (boards) were determined according to IKEA's Test Method: specification no. IOS-TM-0057, Date: 2018 Jul. 13, Version no: AA-2120821-1.
The ratio of the weight of the solid content of all binder components present for hardening via esterification to the weight of the lignocellulosic particles in an oven-dry state (binder amounts) in the examples according to the present invention are reported as the total weight of the sum of the respective binder components present for hardening the binder via esterification. Such components are polymer or monomer compounds having two or more hydroxy groups, polymer or monomer compounds having two or more carboxyl groups and compounds having at least one carboxyl group and at least one hydroxy group. Other additional compounds such as alkali salts and alkaline earth salts, hydrophobizing agents, dyes, pigments, antifungal agents, antibacterial agents, rheology modifiers, fillers, release agents, surfactants and tensides are not included. The ratios of the weight of the solid content of all binder components present for hardening via esterification to the weight of the lignocellulosic particles in an oven-dry state (binder amounts) are given in wt.-% based on the weight of the lignocellulosic particles in an oven-dry state.
The ratios of the weight of the solid content of the binder components to the weight of the lignocellulosic particles in an oven-dry state (binder amounts) in the comparative examples with UF/MUF resins (Kaurit® glues) are reported as the weight of the UF/MUF resin solids in wt.-% based on the weight of the lignocellulosic particles in an oven-dry state.
The pH values of the binders 28 as prepared according to the method provided under item 5.2.5 below, and its mixtures with NaOH and/or NaNO3 (as listed in table 3 below) were measured at 23±2° C. using an ISFET electrode (CPS441D) from Endres+Hauser.
The spruce wood chips were produced in a disc chipper. Spruce trunk sections (length 250 mm) from Germany were pressed with the long side against a rotating steel disc, into which radially and evenly distributed knife boxes are inserted, each of which consists of a radially arranged cutting knife and several scoring knives positioned at right angles to it. The cutting knife separates the chip from the round wood and the scoring knives simultaneously limit the chip length. Afterwards the produced chips were collected in a bunker and from there they were transported to a cross beater mill (with sieve insert) for reshredding with regard to chip width. Afterwards the reshredded chips were conveyed to a flash drier and dried at approx. 120° C. The spruce wood chips were then screened into two useful fractions (B: ≤2.0 mm×2.0 mm and >0.32 mm×0.5 mm; C: ≤4.0 mm×4.0 mm and >2.0 mm×2.0 mm), a coarse fraction (D: >4.0 mm×4.0 mm), which is reshredded, and a fine fraction (A: ≤0.32 mm×0.5 mm).
Fraction B of the spruce wood chips (hereafter referred to as “spruce surface layer chips”) is used in the surface layer of three-layered chipboards. A mixture of 60 wt. % of fraction B and 40 wt.-% of fraction C of the spruce wood chips (hereafter referred to as “spruce core layer chips”) is either used in the core layer of three-layered chipboards or in single-layered chipboards.
The industrial wood chips (“industrial surface layer chips” and “industrial core layer chips”) were produced in a Slovakian industrial chipboard production plant. The industrial wood chips were dried at approx. 120° C. before use in a convection oven.
The spruce pulp was produced in a laboratory refining plant. An integrated steep conveyor transported the chips made from German spruce into the plant's preheater. Directly from the preheater, a continuously operating plug screw with integrated dewatering (MSD-Multi Screw Device) conveyed the material to be defibered into the pressure area of the plant. The material to be defibered was then plasticized in the digester at a digestion pressure of 9 bar under constant movement (3-4 min dwell time) and continuously conveyed to the refiner via a discharge screw and defibered. From the refiner, the spruce wood fibers came via the tangential outlet and the blowline to the flash tube dryer and were dried.
A mixture of 1750 g of citric acid monohydrate and 450 g of glycerol was stirred under nitrogen atmosphere and heated (oil bath temperature: 142° C.). Water was distilled off for one hour. Vacuum was applied (600 mbar) and distillation of water was continued for another hour. The residue was analyzed (acid number: 364 mg KOH/g and Mw: 770 g/mol). Water was added to get a 50 wt.-% solution of CA/Gly polyester in water.
Binder 1 (comparative); A solution of 4.02 g ammonium nitrate dissolved in 93.8 g of water was added under stirring at room temperature to 200 g of Kaurit Glue 347. The resulting concentration of binder solids is 45.0 wt.-% (ammonium nitrate is not counted as binder solid).
5.2 Preparation of Binders Comprising as Components for Hardening the Binder Via Esterification at Least One, Two or More Compounds Having Two or More Hydroxy Groups and Additionally One, Two or More Compounds Having Two or More Carboxyl Groups:
10 mm single-layer chipboards (Boards No. 1 to 30) were prepared with 0.5 wt.-% paraffin amount (mass ratio of the weight of paraffin to the weight of the lignocellulosic particles in an oven-dry state).
A mixture of 6.70 g of Hydrowax 138 (60 wt.-% paraffin in water) and 12.7 g of water was sprayed within 1 min to 816 g (800 g dry weight) of spruce core layer chips (moisture content 2.0%) while mixing in a paddle mixer. Subsequently, for a binder amount of 6.0 wt.-% (ratio of the weight of the solid content of all binder components present for hardening via esterification to the weight of the lignocellulosic particles in an oven-dry state) 107 g of the respective binder (with a solid content of all binder components present for hardening via esterification of 45 wt.-%) was sprayed to this mixture within 1 min while mixing. Alternatively, for a binder amount of 4.0 wt.-% (ratio of the weight of the solid content of all binder components present for hardening via esterification to the weight of the lignocellulosic particles in an oven-dry state) a mixture of 71.1 g of binder (with a solid content of all binder components present for hardening via esterification of 45 wt.-%) and 17.9 g of water was sprayed to this mixture within 1 min while mixing. After completion of the spraying, mixing in the mixer was continued for 15 see and the respective mixtures comprising lignocellulosic particles and a binder were obtained.
After 30 min, 834 g of the resulting mixtures comprising lignocellulosic particles and a binder were scattered into a 320 mm×380 mm mold and pre-pressed (compacted) under ambient conditions and a pressure of 1.2 N/mm2 resulting in a pre-pressed chip mat (compacted mixture).
6.1.c Applying a High-Frequency Electrical Field to the Mixture During and/or after Compacting, so that the Binder Hardens Via Esterification of Said Compounds and Binds the Lignocellulosic Particles, so that a Single-Layer Lignocellulosic Composite Results:
Subsequently, the pre-pressed chip mat (compacted mixture) thus obtained was removed from the mold. For monitoring the temperature in the center of said (compacted) mixture, i.e. in the approximate middle of the mat, a temperature sensor was introduced into the center of said pre-pressed chip mat. Nonwoven separators were then provided to the upper and lower side of the pre-pressed chip mat. The pre-prepressed chip mat was inserted in a HLOP 170 press from Hoefer Presstechnik GmbH, whereby a birch plywood (thickness 6 mm) was placed between the nonwoven separator and the press plate on each side of the mat.
The pre-pressed chip mat was then compacted to 10 mm thickness in a in the press within a period of 2 s, and then heated by applying a high-frequency electrical field (27.12 MHZ) while the press was remaining closed. When 170° C. (“HF temperature”) was reached in the center, the press was opened.
6.1.d After 3 d at ambient conditions the resulting single-layer chipboards (single-layer lignocellulosic composites) were sanded. 0.25 mm were sanded off on both the top and bottom side of the single-layer chipboard. After conditioning (at 65% humidity and 20° C.) to constant mass, the thickness and density, the internal bond and the 24 h swelling of the resulting single-layer chipboards were determined (according to the measuring methods described above).
Table 1 shows the respective binder composition and binder amount (ratio of the weight of the solid content of all binder components present for hardening via esterification to the weight of the lignocellulosic particles in an oven-dry state) used, the press time (time until 170° C. (“HF temperature”) was reached in the center of the mixture), the thickness, the density, the internal bond and the 24 h swelling of the resulting 10 mm single-layer chipboards No. 1-30, wherein boards No. 1 and 2 are comparative examples.
The results show that a lignocellulosic composite was prepared according to a process of the present invention, wherein the lignocellulosic composite is a 10 mm single-layer chipboard (Boards No. 3-30). This single-layer lignocellulosic composite i) has a thickness in the range of from 5 to 20 mm and ii) has an internal bond strength, determined according to DIN EN 319:1993-08, of at least 0.3 N/mm2 and iii) has a thickness swelling after 24 hours in water at 20° C., determined according to DIN EN 317:1993-08, of less than 60%.
Comparative examples (Boards No. 1 and 2), which have been prepared with a urea formaldehyde resin as a binder and thus comprise binder components solely obtained from petrochemical resources and wherein the binder contains hazardous substances (in particular formaldehyde as toxic VOCs) require similar or longer press times (up to 223 s for Board No. 2) and also feature low internal bond strengths, determined according to DIN EN 319:1993-08 (only 0.25 N/mm2 for Board No. 2).
Further 10 mm single-layer chipboards (Boards No. 31 to 36) were prepared without paraffin (Boards No. 31, 33 and 35) and with a paraffin amount of 1.0 wt.-% (Boards No. 32, 34 and 36) (mass ratio of the weight of paraffin to the weight of the lignocellulosic particles in an oven-dry state).
Therefore, for the examples with a paraffin amount of 1.0 wt.-% a mixture of 13.3 g of Hydrowax 138 (60 wt.-% paraffin in water) and 16.2 g of water was sprayed within 1 min to 816 g (800 g dry weight) of spruce core layer chips (moisture content 2.0%) while mixing in a paddle mixer. Alternatively, for the examples without paraffin 19.5 g of water was sprayed within 1 min to 816 g (800 g dry weight) of spruce core layer chips (moisture content 2.0%) while mixing in a paddle mixer.
Subsequently, a mixture of 71.1 g of the respective binder (with a solid content of all binder components present for hardening via esterification of 45 wt.-%) and 12.7 g of water was sprayed to this mixture within 1 min while mixing. After completion of the spraying, mixing in the mixer was continued for 15 see and the respective mixtures comprising lignocellulosic particles and a binder were obtained.
6.2.b/c Compacting the Mixture and Applying a High-Frequency Electrical Field to the Mixture During and/or after Compacting, so that the Binder Hardens Via Esterification of Said Compounds and Binds the Lignocellulosic Particles, so that a Single-Layer Lignocellulosic Composite Results:
After 30 min, 834 g of this the resulting mixtures comprising lignocellulosic particles and a binder were pre-pressed and subsequently pressed to single-layer chipboards as described above (cf. procedure for Boards No. 1-30 described under 6.1.b and 6.1.c).
6.3 Comparison of Lignocellulosic Composites with Varying Paraffin Amounts (0.0 wt.-%. 0.5 wt.-% and 1.0 wt.-% Respectively):
Table 2 shows the respective binder composition and binder amount (ratio of the weight of the solid content of all binder components present for hardening via esterification to the weight of the lignocellulosic particles in an oven-dry state) used, the press time (time until 170° C. (“HF temperature”) was reached in the center of the mixture), the thickness, the density, the internal bond and the 24 h swelling (determined according to the measuring methods described above) of the resulting 10 mm single-layer chipboards No. 2, 6, 11 and 31-36, wherein boards No. 2, 31 and 32 are comparative examples.
The results show that a lignocellulosic composite was prepared, wherein the lignocellulosic composite is a 10 mm single-layer chipboard (Boards No. 6, 11 and 33-36). This single-layer lignocellulosic composite i) has a thickness in the range of from 5 to 20 mm and ii) has an internal bond strength, determined according to DIN EN 319:1993-08, of at least 0.5 N/mm2 and iii) has a thickness swelling after 24 hours in water at 20° C., determined according to DIN EN 317:1993-08, of less than 40%.
The results of Boards No. 6, 11 and 33-36 further show that the ratio of the weight of the solid content of all binder components present for hardening via esterification to the weight of the lignocellulosic particles in an oven-dry state can be as low as 4.0%, still resulting in a lignocellulosic composite prepared according to a process of the present invention, i.e. by applying a high-frequency electrical field, with excellent properties.
The results also show that a mass ratio of the weight of paraffin to the weight of the lignocellulosic particles in an oven-dry state (paraffin amount) of 0.5 wt.-% and 1.0 wt.-% respectively, surprisingly leads to excellent properties of the resulting lignocellulosic composite, i.e. higher internal bond strength and lower thickness swelling.
Comparative examples (Boards No. 2, 31 and 32), which have been prepared with urea formaldehyde resin as a binder (in the same amount as the examples according to the present invention) and thus comprise binder components solely obtained from petrochemical resources and wherein the binder contains hazardous substances (in particular formaldehyde as toxic VOCs) require relatively long press times (217-223 s), feature relatively low internal bond strengths, determined according to DIN EN 319:1993-08 of only 0.22-0.27 N/mm2 and relatively high thickness swelling values of up to 40.4%.
Further 10 mm single-layer chipboards (Boards No. 37-44) were prepared with 0.5 wt.-% paraffin amount (mass ratio of the weight of paraffin to the weight of the lignocellulosic particles in an oven-dry state) and sodium hydroxide and/or sodium nitrate as additive (additional binder compound).
For board No. 37 6.70 g of Hydrowax 138 (60 wt.-% paraffin in water) and 12.7 g of water was sprayed within 1 min to 816 g (800 g dry weight) of spruce core layer chips (moisture content 2.0%) while mixing in a paddle mixer. Subsequently, 107 g of binder 28 (with a solid content of all binder components present for hardening via esterification of 45 wt.-%) was sprayed to this mixture within 1 min while mixing.
For board No. 38 6.70 g of Hydrowax 138 (60 wt.-% paraffin in water) and 11.8 g of water was sprayed within 1 min to 816 g (800 g dry weight) of spruce core layer chips (moisture content 2.0%) while mixing in a paddle mixer. Subsequently, a mixture of 107 g of binder 28 (with a solid content of all binder components present for hardening via esterification of 45 wt.-%) and 2.06 g of a sodium hydroxide (NaOH) solution (50 wt.-% NaOH in water) was sprayed to this mixture within 1 min while mixing.
For board No. 39 6.70 g of Hydrowax 138 (60 wt.-% paraffin in water) and 10.8 g of water was sprayed within 1 min to 816 g (800 g dry weight) of spruce core layer chips (moisture content 2.0%) while mixing in a paddle mixer. Subsequently, a mixture of 107 g of binder 28 (with a solid content of all binder components present for hardening via esterification of 45 wt.-%) and 4.12 g of a sodium hydroxide (NaOH) solution (50 wt.-% NaOH in water) was sprayed to this mixture within 1 min while mixing.
For board No. 40 6.70 g of Hydrowax 138 (60 wt.-% paraffin in water) and 9.91 g of water was sprayed within 1 min to 816 g (800 g dry weight) of spruce core layer chips (moisture content 2.0%) while mixing in a paddle mixer. Subsequently, a mixture of 107 g of binder 28 (with a solid content of all binder components present for hardening via esterification of 45 wt.-%) and 6.18 g of a sodium hydroxide (NaOH) solution (50 wt.-% NaOH in water) was sprayed to this mixture within 1 min while mixing.
For board No. 41 6.70 g of Hydrowax 138 (60 wt.-% paraffin in water) and 8.51 g of water was sprayed within 1 min to 816 g (800 g dry weight) of spruce core layer chips (moisture content 2.0%) while mixing in a paddle mixer. Subsequently, a mixture of 107 g of binder 28 (with a solid content of all binder components present for hardening via esterification of 45 wt.-%) and 9.30 g of a sodium hydroxide (NaOH) solution (50 wt.-% NaOH in water) was sprayed to this mixture within 1 min while mixing.
For board No. 42 6.70 g of Hydrowax 138 (60 wt.-% paraffin in water) and 6.02 g of water was sprayed within 1 min to 816 g (800 g dry weight) of spruce core layer chips (moisture content 2.0%) while mixing in a paddle mixer. Subsequently, a mixture of 107 g of binder 28 (with a solid content of all binder components present for hardening via esterification of 45 wt.-%), 6.18 g of a sodium hydroxide (NaOH) solution (50 wt.-% NaOH in water) and 8.70 g of a sodium nitrate (NaNO3) solution (50 wt.-% NaNO3 in water) was sprayed to this mixture within 1 min while mixing.
For board No. 43 6.70 g of Hydrowax 138 (60 wt.-% paraffin in water) and 8.79 g of water was sprayed within 1 min to 816 g (800 g dry weight) of spruce core layer chips (moisture content 2.0%) while mixing in a paddle mixer. Subsequently, a mixture of 107 g of binder 28 (with a solid content of all binder components present for hardening via esterification of 45 wt.-%) and 8.70 g of a sodium nitrate (NaNO3) solution (50 wt.-% NaNO3 in water) was sprayed to this mixture within 1 min while mixing.
For board No. 44 6.70 g of Hydrowax 138 (60 wt.-% paraffin in water) and 4.91 g of water was sprayed within 1 min to 816 g (800 g dry weight) of spruce core layer chips (moisture content 2.0%) while mixing in a paddle mixer. Subsequently, a mixture of 107 g of binder 28 (with a solid content of all binder components present for hardening via esterification of 45 wt.-%) and 17.4 g of a sodium nitrate (NaNO3) solution (50 wt.-% NaNO3 in water) was sprayed to this mixture within 1 min while mixing.
6.4.b/c Compacting the Mixture and Applying a High-Frequency Electrical Field to the Mixture During and/or after Compacting, so that the Binder Hardens Via Esterification of Said Compounds and Binds the Lignocellulosic Particles, so that a Single-Layer Lignocellulosic Composite Results:
30 min after completion of mixing, 834 g of the resulting mixtures comprising lignocellulosic particles and a binder were pressed to a chipboard as described above (cf. procedure for Boards No. 1-30 described under 6.1.b and 6.1.c).
Table 3 shows the respective binder composition and binder amount (ratio of the weight of the solid content of all binder components present for hardening via esterification to the weight of the lignocellulosic particles in an oven-dry state) used, the respective additive and additive amount used, the pH of the binder/additive mixture the press time (time until 170° C. (“HF temperature”) was reached in the center of the mixture), the thickness, the density, the internal bond and the 24 h swelling (determined according to the measuring methods described above) of the resulting 10 mm one-layered chipboards No. 37-44
a)amount of additive is also given in wt.-% of solids per dry wood
b)pH of the used mixture of binder 28 and additive(s)
The results show that a lignocellulosic composite was prepared, wherein the lignocellulosic composite is a 10 mm single-layer chipboard (Boards No. 37-44). This single-layer lignocellulosic composite i) has a thickness in the range of from 5 to 20 mm and ii) has an internal bond strength, determined according to DIN EN 319:1993-08, of at least 0.5 N/mm2 and iii) has a thickness swelling after 24 hours in water at 20° C., determined according to DIN EN 317:1993-08, of less than 40%.
The results of Boards No. 37-44 further show that the binder mixture preferably has a pH in a range of from 0.5 to 3.5, and that the addition of sodium nitrate and/or sodium hydroxide to the binder leads to improved properties of the resulting lignocellulosic composite, especially in terms of a reduced press time of only 98-149 s.
A mixture of 22.6 g of Hydrowax 138 (60 wt.-% paraffin in water) and 41.2 g of water was sprayed within 1 min to 2754 g (2700 g dry weight) of spruce core layer chips (moisture content 2.0%) while mixing in a paddle mixer. Subsequently, a mixture of an amount x of binder 29 and an amount y of water were sprayed to this mixture within 1 min while mixing, the respective amounts x and y as well as the resulting binder amount (ratio of the weight of the solid content of all binder components present for hardening via esterification to the weight of the lignocellulosic particles in an oven-dry state) are shown in the following Table 4. After completion of the spraying, mixing in the mixer was continued for 15 sec and the respective mixtures comprising lignocellulosic particles and a binder were obtained.
After 30 min, 1370 g of the resulting mixtures comprising lignocellulosic particles and a binder were scattered into a 320 mm×380 mm mold and pre-pressed (compacted) under ambient conditions and a pressure of 1.2 N/mm2 resulting in a pre-pressed chip mat (compacted mixture).
6.5.c HF Pressing Vs. Hot Pressing;
Subsequently, the pre-pressed chip mat (compacted mixture) thus obtained was removed from the mold and pressed to a board either by a) applying a high-frequency electrical field (HF pressing) or b) hot pressing the (compacted) mixture, wherein b) is a comparative process.
For monitoring the temperature in the center of said (compacted) mixture, i.e. in the approximate middle of the mat a temperature sensor was introduced into the center of said mat. Nonwoven separators were then provided to the upper and lower side of the pre-pressed chip mat. The pre-pressed chip mat was inserted in a HLOP 170 press from Hoefer Presstechnik Gmbh, whereby birch plywood boards (thickness 6 mm) were placed between the nonwoven separator and the press plate on each side of the mat. The pre-pressed chip mat was then compacted to 18.5 mm thickness in the press within a period of 2 s, and then heated by applying a high-frequency electrical field (27.12 MHz) while the press was remaining closed. When 170° C. (“HF temperature”) was reached in the center, the press was opened.
Nonwoven separators were provided to the upper and lower side of the pre-pressed chip mat. The pre-pressed chip mat was further compacted to 18.5 mm thickness in a lab hot press from Hoefer Presstechnik Gmbh at a temperature of 220° C. (press plate temperature). The press was opened after 333 sec.
6.5.d after 3 d at Ambient Conditions the Resulting Single-Layer Chipboards (Single-Layer Lignocellulosic Composites) were Sanded. 0.15 mm were Sanded Off on Both the Top and Bottom Side of the Single-Layer Chipboard. After Conditioning (at 65% Humidity and 20° C.) to Constant Mass, the Thickness and Density, the Internal Bond and the 24 h Swelling of the Resulting Single-Layer Chipboards were Determined.
Table 5 shows the respective binder composition and binder amount (ratio of the weight of the solid content of all binder components present for hardening via esterification to the weight of the lignocellulosic particles in an oven-dry state) used, the pressing method used, the thickness, the density, the internal bond and the 24 h swelling (determined according to measuring methods described above) of the resulting 18 mm single-layer chipboards No. 45-47 (HF pressing) and comparative examples 48-50 (hot pressing).
a) HF temperature of 170° C. was reached after 230-240 sec
b) “no board” means that the resulting material after pressing was not a sound chipboard and showed fractures, blows and/or bursts
The results show that a lignocellulosic composite was prepared, wherein the lignocellulosic composite is a 18 mm single-layer chipboard (Boards No. 45-47). This single-layer lignocellulosic composite i) has a thickness in the range of from 5 to 20 mm and ii) has an internal bond strength, determined according to DIN EN 319:1993-08, of at least 0.3 N/mm2 and iii) has a thickness swelling after 24 hours in water at 20° C., determined according to DIN EN 317:1993-08, of less than 40%.
Comparative Examples No. 48-50 (hot pressing instead of applying a high-frequency electrical field) resulted in fractured, blowed and/or bursted materials
Comparison of the lignocellulosic composites (Boards No. 45-47), and the comparative examples of Boards No. 48-50 shows that the respective process is advantageous.
A mixture of 6.70 g of Hydrowax 138 (60 wt.-% paraffin in water) and 12.2 g of water was sprayed within 1 min to 816 g (800 g dry weight) of spruce core layer chips (moisture content 2.0%) while mixing in a paddle mixer. Subsequently, 107 g of binder 30 (with a solid content of all binder components present for hardening via esterification of 45 wt.-%) was sprayed to this mixture within 1 min while mixing. After completion of the spraying, mixing in the mixer was continued for 15 see and the respective mixtures comprising lignocellulosic particles and a binder were obtained.
After 30 min, 456 g of the resulting mixtures comprising lignocellulosic particles and a binder were scattered into a 320 mm×380 mm mold and pre-pressed (compacted) under ambient conditions and a pressure of 1.2 N/mm2 resulting in a pre-pressed chip mat (compacted mixture).
6.6.c HF Pressing Vs. Hot Pressing:
Subsequently, the pre-pressed chip mat (compacted mixture) thus obtained was removed from the mold and pressed to a board either by a) applying a high-frequency electrical field (HF pressing) or b) hot pressing the (compacted) mixture, wherein b) is a comparative process.
For monitoring the temperature in the center of said (compacted) mixture, i.e. in the approximate middle of the mat, a temperature sensor was introduced into the center of said mat. Nonwoven separators were then provided to the upper and lower side of the pre-pressed chip mat. The pre-pressed chip mat was inserted in a HLOP 170 press from Hoefer Presstechnik GmbH, whereby birch plywood boards (thickness 6 mm) were placed between the nonwoven separator and the press plate on each side of the mat. The pre-pressed chip mat was then compacted to 6 mm thickness in the press within a period of 2 s, and then heated by applying a high-frequency electrical field (27.12 MHZ) while the press was remaining closed. When 170° C. (“HF temperature”) was reached in the center, the press was opened.
For monitoring the temperature in the center of said (compacted) mixture, i.e. in the approximate middle of the mat, a temperature sensor was introduced into the center of said mat. Nonwoven separators were then provided to the upper and lower side of the pre-pressed chip mat. The pre-pressed chip mat was further compacted to 6 mm thickness in a lab hot press HLOP 350 from Hoefer Presstechnik GmbH at a temperature of 178° ° C. (press plate temperature). When a temperature of 170° C. was reached in the center, the press was opened.
6.6.d after 3 d at Ambient Conditions the Lightness of the Resulting Single-Layer Chipboards (Single-Layer Lignocellulosic Composite) were Measured. Then the Single-Layer Chipboards were Sanded. 0.25 mm were Sanded Off on Both the Top and Bottom Side of the Single-Layer Chipboard. After Conditioning (at 65% Humidity and 20° C.) to Constant Mass, the Thickness and Density, the Internal Bond and the 24 h Swelling of the Resulting Single-Layer Chipboards were Determined (According to the Measuring Methods Described Above).
Table 6 shows the respective binder composition used, the pressing method used, the press time (time until 170° C. (“HF temperature”) or 178° C. (“hot press temperature”) was reached in the center of the mixture), the thickness, the density, the internal bond, the 24 h swelling and the lightness of the resulting 6 mm single-layer chipboards No. 51 and 53 (HF pressing) and comparative examples 52 and 54 (hot pressing).
a)time after which 170° C. (“HF temperature”) or 178° C. (“hot press temperature”) was reached in the core
The results show that a lignocellulosic composite was prepared, wherein the lignocellulosic composite is a 6 mm single-layer chipboard (Boards No. 51 and 53). This single-layer lignocellulosic composite i) has a thickness in the range of from 5 to 20 mm and ii) has an internal bond strength, determined according to DIN EN 319:1993-08, of at least 0.6 N/mm2 and iii) has a thickness swelling after 24 hours in water at 20° C., determined according to DIN EN 317:1993-08, of less than 40%.
Comparative Examples No. 52 and 54 (hot pressing instead of applying a high-frequency electrical field) needed a longer press time of up to 254 s and resulted in single-layer lignocellulosic composites with inferior properties, i.e. a significantly lower internal bond strength, a higher thickness swelling after 24 h as well as lower lightness.
Comparison of the lignocellulosic composites of Boards No. 51 and 53, and the comparative examples of Boards No. 52 and 54 shows that the respective process is advantageous.
A mixture of 6.70 g of Hydrowax 138 (60 wt.-% paraffin in water) and 11.2 g of water was sprayed within 1 min to 864 g (800 g dry weight) of spruce fibers (moisture content 8.0%) while mixing in a paddle mixer. Subsequently, 107 g of binder with a solid content of all binder components present for hardening via esterification of 45 wt.-%) was sprayed to this mixture within 1 min while mixing. After completion of the spraying, mixing in the mixer was continued for 15 see and the respective mixtures comprising lignocellulosic particles (spruce fibers) and a binder were obtained.
After 30 min, 742 g of this the resulting mixtures comprising lignocellulosic particles and a binder were scattered into a 320 mm×380 mm mold and pre-pressed under ambient conditions and a pressure of 1.2 N/mm2 resulting in a pre-pressed fiber mat (compacted mixture).
6.7.c Applying a High-Frequency Electrical Field to the Mixture During and/or after Compacting, so that the Binder Hardens Via Esterification of Said Compounds and Binds the Lignocellulosic Particles, so that a Single-Layer Lignocellulosic Composite Results:
Subsequently, the pre-pressed fiber mat (compacted mixture) thus obtained was removed from the mold. For monitoring the temperature in the center of said (compacted) mixture, i.e. in the approximate middle of the mat, a temperature sensor was introduced into the center of said mat. Nonwoven separators were then provided to the upper and lower side of the pre-pressed fiber mat. The pre-pressed fiber mat was inserted in a HLOP 170 press from Hoefer Presstechnik GmbH, whereby birch plywood boards (thickness 6 mm) were placed between the nonwoven separator and the press plate on each side of the mat. The pre-pressed fiber mat was then compacted to 6 mm thickness in the press within a period of 2 s, and then heated by applying a high-frequency electrical field (27.12 MHZ) while the press was remaining closed. When 170° C. (“HF temperature”) was reached in the center, the press was opened.
6.7.d After 3 d at ambient conditions the resulting medium-density fiberboards (MDF) were sanded. 0.25 mm were sanded off on both the top and bottom side of the MDF. After conditioning (at 65% humidity and 20° C.) to constant mass, the thickness and density, the internal bond and the 24 h swelling of the resulting MDF (single-layer lignocellulosic composites) were determined (according to the measuring methods described above).
Table 7 shows the respective binder composition used, the press time (time until 170° C. (“HF temperature”) was reached in the center of the mixture), the thickness, the density, the internal bond and the 24 h swelling of the resulting 6 mm single-layer MDF Boards No. 55 and 56.
The results show that a lignocellulosic composite was prepared, wherein the lignocellulosic composite is a 6 mm single-layer MDF (Boards No. 55 and 56). This single-layer lignocellulosic composite i) has a thickness in the range of from 5 to 20 mm and ii) has an internal bond strength, determined according to DIN EN 319:1993-08, of at least 1.4 N/mm2 and iii) has a thickness swelling after 24 hours in water at 20° C., determined according to DIN EN 317:1993-08, of less than 30%.
6.8.a Providing or Preparing a First and a Second Individual Mixture, Each of these Mixtures at Least Comprising Lignocellulosic Particles and a Binder:
28.3 g of Hydrowax 138 (60 wt.-% paraffin in water) and 33.0 g of water was sprayed within 1 min to 3454 g (3400 g dry weight) of a first type of lignocellulosic particles, i.e. industrial surface layer chips (moisture content 1.6%), while mixing in a paddle mixer. Subsequently, a mixture of 453 g of binder 28 (with a solid content of all binder components present for hardening via esterification of 45 wt.-%) and 73.7 g of a 50 wt.-% aqueous solution of sodium nitrate was sprayed to this mixture within 1 min while mixing so that a first individual mixture comprising lignocellulosic particles and a binder is obtained.
29.2 g of Hydrowax 138 (60 wt.-% paraffin in water) and 4.50 g of water was sprayed within 1 min to 3584 g (3500 g dry weight) of a second type of lignocellulosic particles, i.e. industrial core layer chips (moisture content 2.4%) while mixing in a paddle mixer. Subsequently, a mixture of 467 g of binder 28 (with a solid content of all binder components present for hardening via esterification of 45 wt.-%) and 76.0 g of a 50 wt.-% aqueous solution of sodium nitrate was sprayed to this mixture within 1 min while mixing so that a second individual mixture comprising lignocellulosic particles and a binder is obtained.
274 g of the first individual mixture for the surface layers, followed by 976 g of the second individual mixture for the core layer, followed by 274 g of the first individual mixture for the surface layers, were scattered into a 320 mm×380 mm mold to give a three-layered pre-composite.
6.8.c Compacting the Layers in a First Stage so that the Mixtures are Pre-Compacted to Give a Pre-Compacted Mat:
The three-layered pre-composite obtained after 6.8.b is pre-pressed under ambient conditions and a pressure of 1.2 N/mm2 to give a three-layered pre-pressed chip mat (compacted mixture).
6.8.d HF Pressing Vs. Hot Pressing;
Subsequently, the three-layered pre-pressed chip mat thus obtained was removed from the mold and pressed to a multilayer board either by a) applying a high-frequency electrical field (HF pressing) or b) hot pressing, wherein b) is a comparative process.
For monitoring of the temperature in the center of said (compacted) mixture, i.e. in the approximate middle of the mat, a temperature sensor was introduced into the center of said mat, respectively into a horizontal hole in the center of the core. Nonwoven separators were then provided to the upper and lower side of the threelayered pre-pressed chip mat. The three-layered pre-pressed chip mat was inserted in a HLOP 170 press from Hoefer Presstechnik GmbH, whereby birch plywood boards (thickness 6 mm) were placed between the nonwoven separator and the press plate on each side of the mat. The three-layered pre-pressed chip mat was then compacted to 18.5 mm thickness in the press within a period of 2 s, and then heated by applying a high-frequency electrical field (27.12 MHZ) while the press was remaining closed. When 170° C. was reached in the center, the press was opened.
Nonwoven separators were provided to the upper and lower side of the three-layered pre-pressed chip mat. The three-layered pre-pressed chip mat was further compacted to 18.5 mm thickness in a lab hot press HLOP 350 from Hoefer Presstechnik GmbH at a temperature of 230° C. (press plate temperature). After a press time of 185 s the press was opened.
6.8.e after 3 d at Ambient Conditions the Resulting Three-Layered Chipboards (Multilayer Lignocellulosic Composites) were Sanded. 0.20 mm were Sanded Off on Both the Top and Bottom Side of the Three-Layered Chipboards. After Conditioning (at 65% Humidity and 20° C.) to Constant Mass, the Thickness and Density, the Internal Bond, Screw Holding and 24 h Swelling of the Resultant Three-Layered Chipboards were Determined According to Measuring Methods Described Above.
Table 8 shows the respective binder composition and binder amount (ratio of the weight of the solid content of all binder components present for hardening via esterification to the weight of the lignocellulosic particles in an oven-dry state) used for the core layer (CL) and the surface layers (SL), the pressing method, the thickness, the density, the internal bond, the 24 h swelling, the surface screw holding and the edge screw holding of the resulting 18 mm three-layered chipboards No. 57 and 58.
a)“no board” means that the resulting material after pressing was not a sound chipboard and showed fractures, blows and/or bursts
The results show that a lignocellulosic composite was prepared, wherein the lignocellulosic composite is a multilayer lignocellulosic composite, i.e. a 18 mm three-layered chipboard (Board No. 57). This multilayer lignocellulosic composite i) has a thickness in the range of from 5 to 20 mm and ii) has an internal bond strength, determined according to DIN EN 319:1993-08, of at least 0.5 N/mm2 and iii) has a thickness swelling after 24 hours in water at 20° C., determined according to DIN EN 317:1993-08, of less than 30%.
The multilayer lignocellulosic composite prepared furthermore has a surface screw holding, measured according to IKEA specification no. IOS-TM-0057, Date: 2018 Jul. 13, Version no: AA-2120821-1, of at least 450 N (487 N) and an edge screw holding, measured according to IKEA specification no. IOS-TM-0057, Date: 2018 Jul. 13, Version no: AA-2120821-1, of at least 800 N (1666 N).
Comparative example No. 58 (resulting material was not a sound chipboard and showed fractures, blows and/or bursts) shows that the step of applying a high-frequency electrical field to the mixture during and/or after compacting, so that the binder hardens via esterification of said compounds and binds the lignocellulosic particles is advantageous compared to a conventional hot pressing.
Number | Date | Country | Kind |
---|---|---|---|
21178063.0 | Jun 2021 | EP | regional |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2022/065170 | 6/3/2022 | WO |