Process of selling in electronic shop accessible from the mobile communication device

Information

  • Patent Grant
  • 9098845
  • Patent Number
    9,098,845
  • Date Filed
    Tuesday, November 30, 2010
    14 years ago
  • Date Issued
    Tuesday, August 4, 2015
    9 years ago
Abstract
The process encompasses the communication between trade system accessible over GUI of the mobile communication device (4), when after the item being purchased is selected, the acquirer's (12) identification is loaded from the removable memory card (1). The acquirer's (12) identification is sent to the trade system's (2) headquarters, where after it is approved, the transaction payment parameters are created and these enter the removable memory card (1) as an initiator of the payment terminal application. The payment terminal application runs on the removable memory card (1) and it creates a payment cryptogram. This one is sent into the trade system's (2) headquarters, where it can be handled as a common cryptogram of usual POS terminals. The process can encompass even a preparation and pre-preparation phase, thanks to which corresponding applications of individual participants of the system are installed, configured and activated. The online payment can preferably realize even the reset of the counter on the payment device.
Description
TECHNOLOGY

The solution refers to cooperation between the virtual shop systems, payment system and clearing system that can be assured by different entities. The solution also describes the way of installation, activation of the selected hardware elements, the way of user registration in the system and the process of realization of payment-terminal operations by which it is possible to ensure a reliable and secure process of payment and sales.


PRESENT TECHNOLOGY

The users of the mobile communication devices that can be in different forms such as the mobile phones, PDA tablets, notebooks have available an electronic trade system (e.g. in the form of OVI store by Nokia), in which they can buy various electronic items such as ring tone downloads, songs, maps, games and other applications. The user must register before the first purchase and log into the trade system and usually he also has to install a corresponding application, which communicates with the corresponding trade system in the headquarters, into his mobile communication device. The user can be asked to enter user name and password, under which he will be always recognized. After the creation of his own account in the trade system, the user is informed of the result of the registration and he can also be then logged into the trade system. For the verification of registration, an e-mail or SMS message with an activation link can be sent from the trade system to a selected e-mail address or phone number. By clicking on the activation link the entered e-mail or phone number is verified in the trade system. The user's registration can also be linked to the confirmation of acceptance of the trade conditions of the trade system's provider.


After successful creation of the user's account, the user can select the goods he wants to buy, e.g. MP3. By clicking on the “buy” item, the trade system requests that the password be entered. After successful verification of the user, there is the selection of the payment card by which the user wants to pay. According to the selection of the payment card, the user is asked to enter PAN, the card's number, date, card expiration and also the CVC2/CVV2 code. The information inserted in such a way IS sent TO the trade systems headquarters, where it is processed as a common payment by a payment card. In order to increase comfort, this data of the payment card or several payment cards can be stored even in the mobile communication device. The disadvantage of this configuration is that in case of remote verification of the payment card there comes to the transfer of sensitive data into the trade system headquarters. Even though the amount paid for the items in the trade system accessible from the mobile communication device is relatively low, in general in small units of euro or dollars, there exists a risk of payment card's data misuse during any unauthorized withdrawal by a third person. So the system should offer a higher level of security, however it should not increase transaction costs or decrease the comfort because in case of small payments and purchases, the user is not willing to deal with complicated procedures.


SUBJECT MATTER OF THE INVENTION

The disadvantages mentioned are to a great extent eliminated by a process during selling in the electronic shop accessible from the mobile communication device according to this technical solution, which encompasses above all these FOLLOWING steps:


A1. insertion of the removable memory card into the corresponding slot of the mobile communication device, where the insertion starts self-installation of the corresponding application software.


A2. setting up of the application's configuration data, where this step can encompass even the selection and insertion of the user password. During configuration there can also come to the pairing of the removable memory card with the specific mobile communication device and that e.g. to the SIM card or to the mobile communication device's hardware. At this point, the user's registration can encompass also the communication with the remote headquarters of the trade system, where the identification data of the user will be stored.


A3. activation of the removable memory card through the activation key, which will be assigned by the card's issuer and/or the user's bank After entering the correct activation key, the removable memory card and also the payment application associated with it become ready for use.


In case there is no program for the communication with the trade system installed in the mobile communication device, then the installation of such a program can start now along with the registration of the user with the trade system. During this installation, the payment terminal on the removable memory card can be set as the preferred way of payment. In case the payment application is installed at a time when the application for the communication with the trade system is already installed and the user is already registered, the possibility of supplementary setting of the preferred way of payment is used.


The steps described so far represent a preparation phase, for which it is enough to be realized only once during the given hardware connection between the removable memory card and the specific mobile communication device. The next phase represents the execution of a trade, which includes in it the run of the payment terminal application according this solution with the following steps:


B1. After deciding to purchase an item from the trade system, the user goes to the menu of the mobile communication device and runs the corresponding user application for the trade system. In this step the stored parameters of the user's account are loaded and the user is enabled to select the desired item by looking through the items in the remote headquarters of the trade system.


B2. The user agrees to purchase the selected item. The trade system asks him to enter the password that belongs to the given account of the user. (Alternatively, the password can be provided automatically from a secure location on the memory card.)


B3. On the display of the mobile communication device there appears the possibility of payment where the preferred way can be the preset payment possibility described in this description above. The application waits for the confirmation from the user. After the confirmation, the payment-terminal application runs directly on the removable memory card. After the selection of the payment application according to this solution, the controller and the interface between the removable memory card and the mobile communication device is activated. In case the check of the entered password (if optionally required) of the payment terminal application is positive then the acquirer's configuration data are loaded into the payment-terminal application. By this the general generic payment terminal becomes a specific terminal with the acquirer's identity. The payment terminal unit could have the acquirer's identification data pre-inserted and loaded as the basic data and only data of the payment terminal, however by this the otherwise wide possibilities of the usability of the payment terminal on the removable memory card would be narrowed. Subsequently, the acquirer's identification data are sent into the headquarters of the trade system over communication tools that are offered by the mobile communication device itself, this means e.g. over GPRS (General Packet Radio Service) channel. In the headquarters of the trade system it is checked whether these identification data of the acquirer belong to a contract partner of the trade system operator. Positive evaluation causes that a file with payment parameters, including the amount being paid, is sent from the trade system to the mobile communication device. The evaluation of the acquirer's status basically means to find out the pertinence to the given trade system.


The data set with payment parameters may or may not be encrypted. After its reception into the mobile communication device, the file with input parameters is sent over the corresponding interface and controller to the payment terminal unit on the removable memory card. The payment terminal unit starts the communication with the payment card unit. The communication between them is the same as if it was a connection between the POS (point of sale) terminal and ICC (integrated circuit card) payment card inserted in a payment card reader. The result of the transaction is encrypted by the acquirer's private key and is sent over the removable memory card's interface to the mobile communication device, which sends the payment cryptogram to the trade system's headquarters.


In the trade system's headquarters the payment cryptogram is decrypted by the acquirer's public key and its status is evaluated. The payment can be processed as offline or online payment. In case of offline payment the trade system's headquarters does not have to be always connected to the acquirer. In case of declining response in a common ACC (Application Authentication Cryptogram) the user is sent the information of the fact that the payment was declined. In case the offline payment is evaluated positively, the user is sent a confirmative response in the TC (Transaction Certificate) form.


The online payment is evaluated through the connection with the acquirer. In case of requesting the response in the ARQC form (Authorization Request Cryptogram), the trade system is connected to the acquirer's system with the question and task for authorization of the payment. The authorization is realized in connection with the payment card's issuer's system. The response to the ARQC request file is a cryptogram in the ARPC (Authorization Response Cryptogram) form, which contains a confirmation or declination of the payment. The message is encrypted by the acquirer's private key.


The acquirer sends the cryptogram to the trade system's headquarters, where the final decision act is realized according to the type of the cryptogram and the user is informed on its result in the form of AAC/TC (or a corresponding message) on the display of the mobile communication device. In this way the payment terminal application runs as an online application, which enables the terminal to realize a preset number of the offline payments according to the settings on the payment card. In order to ensure the reset of the counter it is appropriate if the ARPC payment cryptogram is sent over the interface to the removable memory card after it is received by the mobile communication device. There the payment terminal unit receives this cryptogram and sends an instruction for the reset of the counter into the payment card unit.


The acquirer creates payment files, which from the cooperating banks' point of view have the same structure as if they were created during a payment on a common POS terminal. Given that, the settlement of the transaction and subtraction of the amount form the user's account is the same as in case of normal current cashless transactions.


B4. After successful completion and confirmation of the payment application, the confirmation of payment is displayed to the user and subsequently data which represent the item purchased are transferred from the trade system. In principle, the transfer is possible into the user's mobile communication device or even to a third person's device to whom the user sends the purchased item as e.g. a gift. After this phase is over, the application in the mobile communication device offers the possibility to return directly to the point B1 for the realization of the purchase of further item or it returns to the common menu on the display.


In order to assure the run of individual above mention steps the following units can be located on the removable memory card: payment terminal application unit, especially of the EMV standard (Europay, MasterCard, VISA), the payment card unit, microcontroller, cryptographic unit, the unit of self installation. A NFC communication element with an antenna can also be part of the removable memory card, thanks to which the removable memory card becomes capable of communication with standard POS terminals, and it will be possible to use it not only for payments in a remote trade system where the communication is assured by the mobile communications device, e.g. over GPRS The removable memory card is inserted in the corresponding slot of the mobile communication device representing an element that is held by the user. This removable memory card has corresponding software was provided by the acquirer, which has a contractual relationship with the operator of the trade system. The acquirer's system is connected with the trade system on a remote location outside the mobile communication device and the acquirer's system encompasses the unit with the payment terminal's configuration data and also the encryption and decryption unit. In case of agreement between the operator of the trade system and the acquirer the package with a program for communication with the trade system can be a part of the removable memory card.


The issuer of the card, e.g. the bank that provides the corresponding data into the payment card unit located on the removable memory card, is part of assurance of the run of the cashless payments. The acquirer and the card's issuer may be, but do not have to be the same entity.


The suitable arrangement of relations between the user and individual operators of trade systems will include a contract between the user and the card's issuer, a contract between the acquirer and the operator of the trade system and a contract between the acquirer and the card's issuer. The operator of the trade system does not have to have his bank account at the payment card issuer but he can have his money sent to an account in another bank. The solution described allows some participants to merge, e.g. the payment card's issuer can be even an acquirer, but the advantage of the solution presented is in the fact that it enables to use the existing systems and relations between the card issuer, banks and operators of trade systems. In the communication protocols between existing participants of such systems, the existing standards are used and the increased comfort and safety is assured thanks to the acquirer's system which is distributed on the removable memory cards to the users in accordance with this solution. This system ensures a high level of security when even for small payments (several Euro or dollars), which run through standard payment terminal application and the sensitive data are not provided to a remote location, such as a central trade system, Internet browsers and similar.


After implementation of the systems and process here described into practice it can be supposed that the mobile communication device can become attack target with the goal of stealing the data of payment card, which is constantly prepared for the cooperation with the mobile communication device's circuits. In ideal configuration it will be possible to lower this risk in case the removable card had two independent access modes. One access mode is designed and set for the common function of the removable memory card which rests in the extension of the memory capacity of the mobile communication device, such as a mobile phone. This access mode prevents access to the unit with the payment card and to the contactless communication element on the removable memory card. Basically in this access mode on the removable memory card's interface this card appears to be a common removable card without the secure element and without the communication element on the removable memory card.


The second access mode is designed and set for the payment function of the removable memory card, where the access to the unit with the payment card and also to the contactless communication element on the removable memory card is allowed from the mobile communication device's circuits over an interface. In case there is even the unit with the payment terminal located on the removable memory card, then this unit is also accessible just and only in the access mode for the payment function.


The two modes are alternatively selectable, it is important, that the access mode for the payment function of the removable memory card can be active only after physical press of the hardware payment button.


The removable memory card, on which at least one payment card unit is located, appears to be a removable memory card for the extension of the memory capacity of the mobile communication device on the interface and that up until the moment when the purpose payment button is physically pushed. Then the removable memory card is made accessible on the interface as a card with Secure Element and at least one payment card unit.


During common usage of the mobile communication device, the removable memory card behaves as if it contained only a flash memory for the extension of the memory capacity with a corresponding microcontroller. In this state the reading and writing of files is enabled in the memory of the removable memory card, however other elements, e.g. the Secure Element, the NFC communication element are hidden and cannot be managed or run in this mode.


The existence of the purpose hardware payment button enables the change of the removable payment card's character on its interface level to be tied exclusively to the physical press of the payment button. The necessity of physical press of the button excludes the possibility to run the payment application by some undesirable software or script imitating the will of the user.


By this configuration we will exclude the risk that the removable memory card's interface will be misused for the trials to overcome the security elements without the user's knowledge. The connection between the physical press of the button and run of the corresponding Firmware can be stored in the memory in such a way that it is either never possible to rewrite it, change it or update it or it is not possible to do it without the corresponding password. The unauthorized program then cannot emulate the signal from the physical payment button in such a way so this signal could appear as a real physical press of the button to the other steps of the application's run. Since the intruder will not have the possibility to physically press the button described on the remote mobile communication device, it is excluded that he could gain uncontrollable access to the payment card's unit or to the unit of the payment terminal on the removable memory card. The removable memory card will behave as a standard memory card and only after physical press of the payment button will switch into the payment card mode. The end of payment application will automatically switch the card's mode into the common card extending the memory capacity mode.





FIGURES OVERVIEW

The solution is described in more detail on the FIGS. 1 to 45.


On the FIGS. 1 to 3 there are diagrams which gradually show the four steps of the preparatory phase with the installation of the payment application, which occurs after the insertion of removable memory card into the mobile phone's slot. On FIG. 2 there is also an example of how the personal data are entered during the configuration of the payment application. On FIG. 3 there is the step with entering a password from the supplier of the removable memory card.


On FIG. 4 there is an example of the mobile phone's display in case there is the possibility of pairing the mobile communication device with the removable memory card.



FIG. 5 demonstrates the way how the activation key, which belongs to the specific removable memory card, is entered.


On FIG. 6 a successful completion of the installation of removable memory card is shown.



FIG. 7 contains the step with the proposition to install the application, which is designed for communication with the trade system.



FIG. 8 shows the procedure diagram for the case, when after the payment application is installed there runs the installation of the application for the communication with the trade system.



FIG. 9 shows the presetting of the preferential payment method in the application for the communication with the trade system


On FIG. 10 there is a process of user registration in the trade system.


On FIG. 11 there is an example of successful completion of the registration in the trade system, which is connected with an offer to start shopping.


On FIG. 12 there is a block scheme showing the first insertion of the removable memory card into the mobile communication device, after which self installation begins.


On FIG. 13 there is an example of the structure of the data entered into the payment application by the user.


On FIG. 14 there is the possibility that the data entered by the user before are used even during the installation and registration of the application for the communication with the trade system.


On FIG. 15 there is a transmission of user data into the trade system's headquarters.


On FIGS. 16 to 19 there are diagrams showing the steps taken during the purchase in the trade system from the user's point of view. On FIG. 16 there is the step with the offer to purchase a specific item. On FIG. 17 there is an example of the selection of the payment method. On FIG. 18 there is the payment application's run. FIG. 19 demonstrates the download of the purchased item into the mobile communication device.



FIG. 20 shows the structure of elements, where the system encompasses a mobile phone, a removable memory card and then the headquarters of trade systems connected to acquirer, which is also connected to the cardissuer. On this figure we can also see how the acquirer's identificators, acquirer's public key and the terminal's identification are transferred to the database of the trade system's operator on the basis of the contract between the trade system's operator and the acquirer.


On FIG. 21 there is a pre-preparation phase with the step that lies in the fact that the trade system's files and applications are loaded into the removable memory card, which is managed by the acquirer. On FIG. 22 there is again the pre-preparation phase, now with the step during which the acquirer's and payment card's issuer's data are loaded into the removable memory card.



FIGS. 23 and 24 show the state after the pre-preparation phase when the necessary data and applications from all participants of the system are loaded on the removable memory card.



FIG. 25 shows a procedure of operations carried out in the preparatory phase within the mobile communication device.


On FIG. 26 there is depicted the transfer of data from the mobile communication device to the trade system's headquarters during the preparatory phase.


On FIG. 27 there are shown the relationships between individual elements during the start of the payment terminal application on the removable memory card. This activity is started by the offer to purchase selected item. On this picture we can see how after the correct password is entered, the payment terminal's identification data are requested.


On FIG. 28 there is a step in which acquirer's identification is sent to the trade system's headquarters.


On FIG. 29 there is a step in which the payment parameters are sent from the trade system's headquarters to the mobile communication device.


On FIG. 30 there is shown the way in which the payment parameters are transferred over the interface to the removable memory card, the payment parameters being used as an input into the payment-terminal application.



FIG. 31 depicts the course of processing and the encryption in the payment terminal unit using the acquirer's private key.



FIG. 32 shows how the payment cryptogram is transferred from the mobile communication device to the trade system's headquarters, while the payment cryptogram uses the card issuer's MasterKey and also the acquirer's private key.


On FIG. 33 there is a step in which the payment cryptogram is evaluated during an offline payment.


On FIG. 34 there is a example of declined payment.


On FIG. 35 there is a example of online confirmation of the payment.


On FIG. 36 there is the beginning of the payment cryptogram's evaluation during online payment with the communication with the acquirer and with the card issuer.



FIG. 37 depicts the relations between the card's issuer and the acquirer during online authorization.



FIG. 38 depicts the way the encrypted ARPC response is sent from the acquirer into the trade system's headquarters, where the command is decrypted and evaluated.



FIG. 39 depicts the course of resetting the counter on the payment card unit after a successful online payment.



FIG. 40 depicts the possibilities of cryptograms on the acquirer's side.



FIG. 41 depicts the acquirer's position with received cryptograms in relation to other participants involved in the trade system.



FIG. 42 is an example of communication during the settlement of realized payments with further participant, which is the bank of the trade system's operator.





On FIGS. 43 and 44 we can see the clearing between the card issuer's bank account and trade system's bank account, where the relationship between the user, payment card's issuer, acquirer, trade system's operator's home account and the trade system's operator itself is shown.


On the FIG. 45 there is a schematically displayed diagram showing the successiveness of the payment application's run with the press of the hardware payment button, where it is possible to see the localization of the individual tasks and processes during the launch of the application on the level phone hardware/phone firmware/removable memory card.


EXAMPLE

The trade system 2 known as OVI store, which is operated by the NOKIA company is described in this example according to FIGS. 1 to 44. The submitted technical solution is capable of cooperation with any other trade system 2 on the same principle and it is not necessary to consider the usage of the OVI store designation, which is registered mark of the NOKIA company as narrowing the scope of the protection. Also the usage of the image of the mobile communication device 4 in the form of the NOKIA E71 mobile phone is only an example that should facilitate understanding of relationships and processes in the system described and cannot be regarded as a narrowing of the required scope of protection.


The user 3 of the mobile communication device 4 Nokia E71 inserts a removable memory card, which he received from the issuer into his phone. The LGM acquirer 12 has a contract with the card's issuer 13 and also with the operator of the trade system 2 OVI store. Thanks to this cooperation, during the pre-preparation phase, the acquirer 12 stored the payment card unit 5, which contains the data in the same structure of existing ICC payment cards including the payment card's personal data unit 18 into the removable memory card 1. In the same time, even the program necessary for the communication with the trade system 2 is loaded on the removable memory card 1 and it is stored in the trade application installation unit 17. The user 3 could download this program into his mobile communication device 4 even from the OVI store trade system's 2 headquarters over the mobile network 14, however, for which he would have to pay as for common data transfer and therefore it is suitable if the corresponding software was located directly on the removable memory card 1.


After the insertion of the removable memory card 1 into the slot that is accessible from the outside, the payment application's installation, which in this example is labeled as LGM payment application, is started automatically according to the FIGS. 12, 25 and 1. The run of the installation (FIGS. 1 to 6) is gradually shown on the display 10 of the mobile communication device 4 and the user 3 confirms the process and enters personal data and passwords through the keyboard 9 of the mobile communication device 4. Within the activation (FIG. 5), the user uses even the password from the card's issuer 13. After entering the correct password he is shown on the display 10 that the LGM payment application was installed and is prepared for usage (FIG. 6).


In this example, the software necessary for the communication with the trade system was not yet installed in the mobile communication device 4 and therefore the user 3 is offered the possibility to install (FIG. 7). In another example, the trade system can be preset in such a way that no communication program is required directly in the mobile communication device 4 and it uses only a common internet explorer. The pre-preparation phase is depicted on the FIGS. 20 to 24.


The trade system's 2 operator and acquirer 12 signed a contract, on the basis of which the operator receives the parameters for the run of the transaction (identification of the acquirer 12 through ID, his public encryption key and the payment terminal's identificator set). In case of agreement, the acquirer 12 can ensure the placement of the trade application installation unit 17.


During the pre-preparation phase, within the part we can label as prepersonalization of the removable memory card 1 (e.g. with the LgmPayCard name), the configuration data for the payment terminal (e.g. in the EMVP structure) unit 6 placed into the configuration data unit 11, which is usually in the form of a protected Secure Element. The payment terminal unit 6 will fulfill the role of the virtual POS terminal for the payments in the trade system 2. During the personalization the LgmPayCard parameters are placed into the Secure Element.


During the installation of the trade system 2 it is preset, that the preferential way of payment is the payment over the LGM payment application (FIG. 9). In principle, it is possible to use even other types of payments, where the payment card units 5 are located within the mobile communication device 4 and the removable memory card 1. After the trade system 2 software, in this case in the form of OVI store, installation is finished, the user 3 is offered the possibility to shop (FIG. 11) in the trade system 2. From the user's 3 point the course of payment in the trade system 2 is almost the same as in case of existing way of payment (FIGS. 16 to 19). After the selection of the purchased item the possibilities of payment appear on the display 10 of the mobile communication device 4. In this case three possibilities appeared on the display 10 and these are payment by the VISA card, payment by the MasterCard card and payment over the LGM Pay payment terminal. The controller 7 manages the communication between the LGM payment application and the LgmPayCard.


The user 3 selected LGM Pay and entered the correct password. Subsequently, the task—request for the acquirer's identification 12—runs over the microSD controller 7 (FIG. 27) in the removable memory card 1. The acquirer's identification 12 is loaded from the configuration data unit 11 into the EMV processor unit, which represents the payment terminal 6 unit. From there the acquirer's identification 12 is sent over the microSD controller 7 and the mobile data network 14 (FIG. 28) into the trade system's headquarters 2. There it is evaluated if the acquirer's identification 12 belongs to any of the entities with which the the trade system's 2 operator has a contract. The positive response runs a task on the side of the trade system 2 during which transaction payment parameters are sent back into mobile communication device 4. These include even the payment amount, in this example in the form of TermID+TrxNo+TrxDet. The LGM payment application sends request for transaction with corresponding parameters to the payment terminal 6 unit, where it is evaluated in cooperation with the payment card application (e.g. PayPass risk management) and the transaction in EMV standard is prepared. The encryption runs over the card issuer's 13 masterkey.


The data are sent over the microSD controller 7 into the payment terminal 6 unit, which in this phase (FIG. 30) operates as a payment terminal of the acquirer 12. The communication between the payment terminal 6 unit and the payment card 5 unit now runs within the removable memory card 1 during which a cryptogram is created using MasterKey of the card's issuer 13, e.g. in the form of Trx=RS(IssMKey[TrxDet])+AAC/TC/ARQC. The payment cryptogram, in this example in the form of EMV as Trx=RSA(AcqPrivKey[AcqID+TermID+TrxNo+RS(IssMKey[TrxDet])+AAC/TC/ARQC]) is sent from the mobile communication device 4 into the headquarters of the trade system 2. This payment cryptogram was created by being encrypted by the acquirer's 12 private key and where the part of the encrypted file is a cryptogram encrypted using the card issuer's 13 MasterKey (FIG. 32). The encryption and decryption on the platform of the removable memory card 1 is ensured by an encryption unit 15.


Its status is evaluated in the trade system's 2 headquarters using the acquirer's 12 public key (FIG. 33). The evaluation of the offline payment is depicted in FIGS. 33 and 35. If the result contains the file in the form of AAC, the payment and by that the entire business transaction is declined, the situation of which the user 3 is informed subsequently (FIG. 34) on the display 10. In case of a positive offline response (FIG. 35) the result of the payment TC is decided without a communication with the acquirer 12. TC means that the user 3 will be informed that the payment was successful and that the items which were paid for are prepared to be downloaded.


The decryption of the payment cryptogram is possible thanks to the fact that the trade system 2 operator has previously stored public encryption keys from the acquirer 12. The operator evaluates further proceedings according to the decrypted message.


The approved online payments are depicted in FIGS. 36 to 38. This kind of procedure is necessary in case when higher amount is being paid or after the preset number of offline payment is realized. The request ARQC file is sent (FIG. 37) from the trade system's 2 headquarters to the acquirer 12, which sends the task for online authorization to the card's issuer 13. The authorization of the status runs there and a response is created. In this response there is a response encrypted e.g. in the form Trx=RSA(Acq PrivKey[ARPC]) by the acquirer's 12 private key. The acquirer 12 sends this response into the trade system's headquarters 2, where the response is decrypted (FIG. 38) by the acquirer's 12 public key and sends the result in the form of AAC or TC into the mobile communication device 4. The card's issuer 13 returns the result of the on-line verification (ARPC=(AAC or TC)+further data, that can be additional above the data from the trade system 2.


On the side of the trade system 2 the successful payment starts download of the data paid for into the mobile communication device 4. By this the entire business case is ended from the outside point of the view of the user 3. On FIG. 39 it is shown how it is possible to reset the counter on the payment card unit 5 after the successful realization of the online payment. The ARPC file is sent into the payment terminal 6 unit over microSD controller 7, where it is evaluated as an instruction to reset the counter since the APRC response file represents the confirmation on the successful realization of the online payment. The specific parameters, the number of newly possibile offline payments is controlled by the Risk management preset by the payment card's issuer 13 in the payment card's unit 5. The reset of the counter enables to realize a preset number of offline payments.


The subsequent clearing heading to the billing of money is realized using the stored cryptograms, e.g. in the form Trx=RSA(AcqPrivKey[AcqID+TermID+TrxNo+RS(IssMKey[TrxDet])+AAC]), Trx=RSA(AcqPrivKey[AcqID+TermID+TrxNo+RS(IssMKey[TrxDet])+TC]), Trx=RSA(Acq PrivKey[AcqID+TermID+TrxNo+RS(IssMKey[TrxDet])+ARQC]). According to FIG. 40, these are located at the acquirer's 12 server and according to the processes that were agreed on and contracted beforehand (FIGS. 41 to 44) the acquirer sends it to be settled between the card's issuer 13 bank and the trade system's 2 operator bank. All the transactions (offline and online) are sent in time intervals that were pre-agreed. The billing of transactions and the payments are realized in accordance with the standards of the participating banks and they are of the same form as in case of physical POS terminals at standard merchants.


In this case, there is also a NFC communication element 8 with an antenna on the removable memory card 1 even though it was not active in any of the steps decribed here. It is designed on the realization of payments over NFC readers of the standard POS terminals, which considerably extends the possibilities of usage of the payment devices on the removable memory card 1.


All the labels used as OVI store, NOKIA, Logomotion are registered marks of the corresponding owners and do not set the scope of protection according to the solution described. In principle the submitted solution is usable in any trade system 2 with the same or similar structures.


INDUSTRIAL USABILITY

The industrial usability is obvious. According to this solution it is possible to industrially and repeatedly install, configure and use the way and process while selling in the trade system that is accessible from the mobile communication device. During this the payment terminal located on the removable memory card is used. The advantage is a high security while retaining current data standards of the payment transactions.


LIST OF RELATED SYMBOLS


1—removable memory card



2—trade system



3—user



4—mobile communication device



5—payment card unit



6—payment terminal unit



7—controller



8—communication element



9—keyboard



10—display



11—configuration data unit



12—acquirer



13—card's issuer



14—mobile data network



15—encryption unit



16—payment application installation unit



17—trade application installation unit



18—payment card personal data unit


GPRS—General packet radio service


ICC—integrated circuit card


EMV—Europay, MasterCard, VISA


AAC—Application Authentication Cryptogram


ARQC—Authorization Request Cryptogram


ARPC—Authorization Response Cryptogram


POS—point of sale


TC—Transaction Certificate


GUI—Graphical user interface

Claims
  • 1. A method for purchasing from an electronic store that is accessible from a mobile communication device via a mobile data network, wherein purchased items are downloaded from a trade system's headquarters into the mobile communication device, the method comprising: sending an activation command to a removable memory card in the mobile communication device in response to the selection of an item to be purchased from the electronic store, the removable memory card including payment terminal data and applications for implementing a payment terminal, payment card data and applications associated with a payment card issued by a payment card issuer, and configuration data;transferring identification data associated with an acquirer from a portion of the removable memory card storing the configuration data to a portion of the memory card storing the payment terminal data;sending identification data associated with the acquirer via the mobile network from the mobile communication device to the trade system's headquarters;receiving a determination that the identification data associated with the acquirer corresponds to identification data associated with a permitted acquirer that are stored at the trade system's headquarters and receiving a set of payment parameters initialized for a transaction by the payment terminal in the mobile communication device,the mobile communication device processing the received payment parameters,creating a payment cryptogram on the removable memory card using a master key associated with the payment card issuer of the payment card, andsending the payment cryptogram to the trade system's headquarters for evaluation.
  • 2. The method of claim 1, further comprising: requiring a user of the mobile communication device to enter a correct password before the activation command is sent to the removable memory card.
  • 3. The method of claim 1, wherein the evaluation of the payment cryptogram comprises decrypting the payment cryptogram using a public key associated with the acquirer and subsequent evaluation of the decrypted cryptogram according to rules of online or offline payment.
  • 4. The method of claim 3, wherein the decrypted cryptogram is evaluated as an offline decline or confirmation of a payment and a user is informed about an unsuccessful or successful result of a requested purchase on a display of the mobile communication device.
  • 5. The method of claim 3, wherein, after the evaluation of the cryptogram, an authorization request cryptogram (ARQC) task is sent to the payment card issuer from the trade system's headquarters, wherein an authorization request cryptogram (ARPC) response file, which is encrypted by a private key associated with the acquirer, is created at the payment card issuer and sent to the trade system's headquarters, andwherein the encrypted ARPC response file is decrypted in the trade system's headquarters using a public key associated with the acquirer, and the decrypted ARPC response file, in the form of an application authentication cryptogram (AAC) decline or a transaction certificate (TC) approval, is sent into the mobile communication device.
  • 6. The method of claim 5, wherein, after an approval of online payment in the form of an ARPC is received by the mobile communication device, the payment terminal causes a counter on the removable memory card to be reset.
  • 7. The method of claim 1, wherein, during a preparation phase, a payment terminal application located on the removable memory card is installed, and personal data associated with a user is entered either during or after the installation of the payment terminal application.
  • 8. The method of claim 7, wherein, during the preparation phase, the removable memory card is paired with the mobile communication device over a SIM card or a phone number.
  • 9. The method of claim 7, wherein user data entered during the installation of the payment terminal application are available to be transferred to the trade system's headquarters during subsequent installation and registration of an application for communication with the trade system.
  • 10. The method of claim 7, wherein user data entered during installation of the payment terminal application are ready to be transferred into the trade system's headquarters during the following installation and registration of the application for the communication with the trade system.
  • 11. The method of claim 1, wherein, during a preparation phase, software devices associated with the payment card issuer are stored to the removable memory card.
  • 12. The method of claim 1, wherein, during a preparation phase, software devices associated with the trade system's operator are stored to a trade application installation unit on the removable memory card.
  • 13. The method of claim 1, wherein, during a preparation phase, software devices associated with the trade system's operator are stored to the configuration data on the removable memory card.
  • 14. The method of claim 1, wherein the removable memory card encrypts stored data.
  • 15. The method of claim 1, wherein the acquirer provides a received payment cryptogram for settlement between a bank associated with the trade system and the issuer of the payment card or a bank associated with a user.
  • 16. The method of claim 1, wherein a user is enabled to control an installation run of the removable memory card with the payment terminal over a graphical user interface of the mobile communication device.
  • 17. The method of claim 1, wherein software associated with the acquirer is activated after the removable memory card is first inserted into the mobile communication device.
  • 18. The method of claim 1, wherein an activation of the removable memory card in the mobile communication device causes a preferential presetting of a payment process using a payment terminal associated with the acquirer.
  • 19. The method of claim 1, wherein, after a payment hardware button on the mobile communication device is pressed, the removable memory card switches into an access mode for the payment function wherein access to the payment card is allowed, and wherein, before the payment hardware button on the mobile communication device is pressed, the removable memory card is in an access mode for a memory capacity extension function and the payment card is inaccessible.
  • 20. The method of claim 19, wherein, if the payment process is ended and/or interrupted while the removable memory card is in the access mode for the payment function, the removable memory card switches into the access mode for the memory capacity extension function.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation-in-part of PCT application no. PCT/IB2010/054229, filed Sep. 17, 2010, which claims priority from Slovak patent application no. PP50021-2010, filed May 12, 2010, a continuation-in-part of U.S. patent application Ser. No. 12/747,114, filed Jun. 9, 2010, which is a U.S. National Stage filing of PCT application no. PCT/IB2009/054097, filed Sep. 18, 2009, which claims priority from Slovak patent application no. PP5085-2008, filed Sep. 19, 2008, a continuation-in-part of U.S. patent application Ser. No. 12/746,867, filed Jun. 8, 2010, which is a U.S. National Stage filing of PCT application no. PCT/IB2009/054101, filed Sep. 18, 2009, which claims priority from Slovak patent application no. PP5086-2008, filed Sep. 19, 2008, a continuation-in-part of U.S. patent application Ser. No. 12/866,774, filed Aug. 9, 2010, which is a U.S. National Stage filing of PCT application no. PCT/IB2010/051779, filed Apr. 23, 2010, which claims priority from Slovak patent application no. PP50024-2009, filed Apr. 24, 2009, a continuation-in-part of U.S. patent application Ser. No. 12/898,976, filed Oct. 6, 2010, which is a continuation of PCT application no. PCT/IB2010/051915, filed May 1, 2010, which claims priority from Slovak patent applications PP00032-2009, filed May 3, 2009, PP50009-2010, filed Mar. 27, 2010, PP50016-2010, filed Apr. 19, 2010, and PP50012-2010, filed Apr. 8, 2010, a continuation-in-part of U.S. patent application Ser. No. 12/899,346, filed Oct. 6, 2010, which is a continuation of PCT application no. PCT/IB2010/051915, filed May 1, 2010, which claims priority from Slovak patent applications PP00032-2009, filed May 3, 2009, PP50009-2010, filed Mar. 27, 2010, PP50016-2010, filed Apr. 19, 2010, and PP50012-2010, filed Apr. 8, 2010, and a continuation-in-part of U.S. patent application Ser. No. 12/899,378, filed Oct. 6, 2010, which is a continuation of PCT application no. PCT/IB2010/051915, filed May 1, 2010, which claims priority from Slovak patent applications PP00032-2009, filed May 3, 2009, PP50009-2010, filed Mar. 27, 2010, PP50016-2010, filed Apr. 19, 2010, and PP50012-2010, filed Apr. 8, 2010. Each of the above-referenced patent applications is hereby incorporated herein by reference.

US Referenced Citations (144)
Number Name Date Kind
5288979 Kreft Feb 1994 A
5303198 Adachi et al. Apr 1994 A
5574470 de Vall Nov 1996 A
5578808 Taylor Nov 1996 A
5608417 de Vall Mar 1997 A
5671279 Elgamal Sep 1997 A
6062472 Cheung May 2000 A
6070795 Feiken Jun 2000 A
6070796 Sirbu Jun 2000 A
6154181 Hu-Guo et al. Nov 2000 A
6323064 Lee et al. Nov 2001 B1
6450407 Freeman et al. Sep 2002 B1
6615243 Meggeid et al. Sep 2003 B1
6745935 Grieu et al. Jun 2004 B1
6828670 Hayana et al. Dec 2004 B2
6976011 Capitant et al. Dec 2005 B1
7051429 Kerr et al. May 2006 B2
7083085 Daniels et al. Aug 2006 B1
7103575 Linehan Sep 2006 B1
7357309 Ghosh et al. Apr 2008 B2
7364092 Narendra et al. Apr 2008 B2
7374100 Jei et al. May 2008 B2
7436965 Sherman Oct 2008 B2
7458518 Fukuda et al. Dec 2008 B2
7481358 Honjo et al. Jan 2009 B2
7568065 D'Athis Jul 2009 B2
7581678 Narendra et al. Sep 2009 B2
7689932 Maktedar Mar 2010 B2
7775442 Saarisalo Aug 2010 B2
7805615 Narendra et al. Sep 2010 B2
7828214 Narendra et al. Nov 2010 B2
8055184 DiMartino et al. Nov 2011 B1
8127999 Diamond Mar 2012 B2
8355670 White Jan 2013 B2
20010005832 Cofta et al. Jun 2001 A1
20010033013 Lee Oct 2001 A1
20020038287 Villaret et al. Mar 2002 A1
20020062249 Iannacci May 2002 A1
20020147658 Kwan Oct 2002 A1
20020163479 Lin Nov 2002 A1
20030055738 Alie Mar 2003 A1
20030105930 Okamoto Jun 2003 A1
20030138135 Chung et al. Jul 2003 A1
20040019564 Goldthwaite et al. Jan 2004 A1
20040066278 Hughes et al. Apr 2004 A1
20040087339 Goldthwaite et al. May 2004 A1
20040127256 Goldthwaite et al. Jul 2004 A1
20050011960 Koike et al. Jan 2005 A1
20050072595 Cho Apr 2005 A1
20050092835 Chung et al. May 2005 A1
20050116050 Jei et al. Jun 2005 A1
20050125745 Engestrom Jun 2005 A1
20050222949 Inotay et al. Oct 2005 A1
20050269401 Spitzer et al. Dec 2005 A1
20050269402 Spitzer et al. Dec 2005 A1
20060143578 Maktedar Jun 2006 A1
20060146023 Kidron Jul 2006 A1
20060152288 Peng et al. Jul 2006 A1
20060186209 Narendra et al. Aug 2006 A1
20060219776 Finn Oct 2006 A1
20060224470 Garcia Ruano et al. Oct 2006 A1
20060226217 Narendra et al. Oct 2006 A1
20060255160 Winkler Nov 2006 A1
20070014407 Narendra et al. Jan 2007 A1
20070014408 Narendra et al. Jan 2007 A1
20070016957 Seaward et al. Jan 2007 A1
20070050871 Mashhour Mar 2007 A1
20070083772 Harada et al. Apr 2007 A1
20070106564 Matotek et al. May 2007 A1
20070106619 Holdsworth May 2007 A1
20070125840 Law et al. Jun 2007 A1
20070152035 Adams et al. Jul 2007 A1
20070158438 Fukuda et al. Jul 2007 A1
20070171079 Saito Jul 2007 A1
20070233615 Tumminaro Oct 2007 A1
20070235539 Sevanto et al. Oct 2007 A1
20070241180 Park et al. Oct 2007 A1
20070278290 Messerges et al. Dec 2007 A1
20070293155 Liao et al. Dec 2007 A1
20080011833 Saarisalo Jan 2008 A1
20080048036 Matsumoto et al. Feb 2008 A1
20080059375 Abifaker Mar 2008 A1
20080093467 Narendra et al. Apr 2008 A1
20080103972 Lanc May 2008 A1
20080111756 Ochi et al. May 2008 A1
20080120129 Seubert et al. May 2008 A1
20080129629 Kimura et al. Jun 2008 A1
20080207124 Raisanen et al. Aug 2008 A1
20080233906 Mitomo et al. Sep 2008 A1
20080245851 Kowalski Oct 2008 A1
20080250244 Baentsch et al. Oct 2008 A1
20080270246 Chen Oct 2008 A1
20080306828 Chao Dec 2008 A1
20090063312 Hurst Mar 2009 A1
20090065571 Jain Mar 2009 A1
20090065572 Jain Mar 2009 A1
20090069049 Jain Mar 2009 A1
20090069050 Jain et al. Mar 2009 A1
20090069051 Jain et al. Mar 2009 A1
20090069052 Jain et al. Mar 2009 A1
20090070272 Jain Mar 2009 A1
20090070691 Jain Mar 2009 A1
20090070861 Jain Mar 2009 A1
20090088077 Brown et al. Apr 2009 A1
20090098825 Huomo et al. Apr 2009 A1
20090108063 Jain et al. Apr 2009 A1
20090119190 Realini May 2009 A1
20090124273 Back May 2009 A1
20090132418 Morsillo et al. May 2009 A1
20090143104 Loh et al. Jun 2009 A1
20090144456 Gelf et al. Jun 2009 A1
20090157936 Goss et al. Jun 2009 A1
20090191812 Teruyama et al. Jul 2009 A1
20090193491 Rao Jul 2009 A1
20090199206 Finkenzeller et al. Aug 2009 A1
20090199283 Jain Aug 2009 A1
20090200371 Kean et al. Aug 2009 A1
20090261172 Kumar et al. Oct 2009 A1
20090265544 Moona et al. Oct 2009 A1
20090265552 Moshir et al. Oct 2009 A1
20090298540 Narendra et al. Dec 2009 A1
20090307139 Mardikar et al. Dec 2009 A1
20090307142 Mardikar Dec 2009 A1
20090319287 Hammad et al. Dec 2009 A1
20100012721 Jain et al. Jan 2010 A1
20100023449 Skowronek et al. Jan 2010 A1
20100044444 Jain et al. Feb 2010 A1
20100045425 Chivallier Feb 2010 A1
20100062808 Cha et al. Mar 2010 A1
20100063893 Townsend Mar 2010 A1
20100082490 Rosenblatt et al. Apr 2010 A1
20100181377 Chen et al. Jul 2010 A1
20100197224 Lahdenniemi et al. Aug 2010 A1
20100203870 Hubinak et al. Aug 2010 A1
20100205432 Corda et al. Aug 2010 A1
20100213265 Narendra et al. Aug 2010 A1
20100258639 Florek et al. Oct 2010 A1
20100262503 Florek et al. Oct 2010 A1
20100274677 Florek et al. Oct 2010 A1
20100274726 Florek et al. Oct 2010 A1
20100323617 Hubinak et al. Dec 2010 A1
20110196796 Florek et al. Aug 2011 A1
20110264543 Taveau et al. Oct 2011 A1
20110282753 Mullen et al. Nov 2011 A1
Foreign Referenced Citations (71)
Number Date Country
1450782 Oct 2003 CN
1627321 Jun 2005 CN
1835007 Sep 2006 CN
1870012 Nov 2006 CN
101013903 Aug 2007 CN
101136123 Mar 2008 CN
101329801 Dec 2008 CN
101339685 Jan 2009 CN
101351819 Jan 2009 CN
10130019 Jan 2003 DE
10 2005 026435 Dec 2006 DE
10 2006 019628 Oct 2007 DE
10 2007 019272 Oct 2007 DE
0704928 Apr 1996 EP
601091 Dec 1997 EP
1365451 Nov 2003 EP
1450233 Aug 2004 EP
1536573 Jun 2005 EP
1729253 Dec 2006 EP
1752902 Feb 2007 EP
1752903 Feb 2007 EP
1785915 May 2007 EP
1943606 Jul 2008 EP
2390817 Nov 2011 EP
0611189 Sep 1926 FR
0611190 Sep 1926 FR
2390509 Jan 2004 GB
2424151 Sep 2006 GB
2432031 Sep 2007 GB
980562 Feb 2000 IE
2003-131808 May 2003 JP
2004-348235 Dec 2004 JP
2005-284862 Oct 2005 JP
2006-033229 Feb 2006 JP
2007-060076 Mar 2007 JP
2007-166379 Jun 2007 JP
2007-304910 Nov 2007 JP
2008-083867 Apr 2008 JP
2002-0012738 Feb 2002 KR
2002-0051696 Jun 2002 KR
2002-0073106 Sep 2002 KR
2003-0005088 Jan 2003 KR
2004-0012401 Feb 2004 KR
2004-0060249 Jul 2004 KR
2004-0089800 Oct 2004 KR
2005-0008622 Jan 2005 KR
2007-0093133 Sep 2007 KR
22595 Feb 2009 SI
WO 03012717 Feb 2003 WO
WO 2005057316 Jun 2005 WO
WO 2005086456 Sep 2005 WO
WO 2006009460 Jan 2006 WO
WO 2007076456 Jul 2007 WO
WO 2007136939 Nov 2007 WO
WO 2008012416 Jan 2008 WO
WO 2008041861 Apr 2008 WO
WO 2008063990 May 2008 WO
WO 2008105703 Sep 2008 WO
WO 2009014502 Jan 2009 WO
WO 2009087539 Jul 2009 WO
WO 2009118681 Oct 2009 WO
WO 2010011670 Jan 2010 WO
WO 2010023574 Mar 2010 WO
WO 2010032215 Mar 2010 WO
WO 2010032216 Mar 2010 WO
WO 2010041245 Apr 2010 WO
WO 2010044041 Apr 2010 WO
WO 2010097777 Sep 2010 WO
WO 2010122520 Oct 2010 WO
WO 2010128442 Nov 2010 WO
WO 2010131226 Nov 2010 WO
Non-Patent Literature Citations (12)
Entry
Khu-Smith et al., Using EMV Cards to Protect E-commerce Transactions, Springer, EC-Web 2002, LNCS 2455, pp. 388-399.
Balfe et al., Augmenting Internet-based Card Not Present Transactions with Trusted Computing: An Analysis, 2006, all pages.
Balfe et al., e-EMV: Emulating EMV for Internet Payments with Trusted Computing Technologies, Oct. 31, 2008, all pages.
Madlmayar et al., “Management of Multiple Cards in NFC-Deivces”, LNCS, 2008, 21 pages.
Wikipedia, “Bluetooth”, Wikipedia, The Free Encyclopedia, http://enwikipedia.org/wiki/bluetooth, accessed Apr. 8, 2012, 19 pages.
Wikipedia, “Cellular Frequencies” Wikipedia, The Free Encyclopedia, http://en.wikipedia.org/wiki/cellular—frequencies, accessed Apr. 8, 2012, 5 pages.
“EMV Mobile Contactless Payment: Technical Issues and Position Paper”, www.emvco.com/mobile.aspx, © Oct. 11, 2007, accessed Apr. 20, 2009, 37 pages.
“NFC Frequently Asked Questions,” NFC for Customers, www.nfc-forum.org., Retrieved from the internet on Nov. 7, 2008, 5 pages.
Smart Card Alliance, “RF-Enabled Applications and Technology: Comparing and Contrasting RFID and RF-Enabled Smart Cards”, Smart Card Alliance Identity Council, Jan. 2007, 7 pages.
Smart Card Alliance: “Proximity Mobile Payments: Leveraging NFC and the Contactless Financial Payments Infrastructure a Smart Card Alliance Contactless Payments Council White Paper”, www.smartcardalliance.org, © Sep. 1, 2007, accessed Nov. 7, 2008, 10 pages.
“Intelligent Mouse”, IBM Technical Disclosure Bulletin, International Business Machines Corp., Thornwood, US, Feb. 1, 1995, 38(2), p. 463.
Finkenzeller (Ed.), “RFID-Handbuch: Grundlagen und praktische Anwendungen Induktiver Funkanlagen, Transponder und kontaktloser Chipkarten”, Jan. 1, 2002, 225-231 (English abstract attached).
Related Publications (1)
Number Date Country
20110196796 A1 Aug 2011 US
Continuations (5)
Number Date Country
Parent PCT/IB2010/051915 May 2010 US
Child 12898976 US
Parent 12957130 US
Child 12898976 US
Parent PCT/IB2010/051915 May 2010 US
Child 12899346 US
Parent 12957130 US
Child 12899346 US
Parent PCT/IB2010/051915 May 2010 US
Child 12899378 US
Continuation in Parts (10)
Number Date Country
Parent PCT/IB2010/054229 Sep 2010 US
Child 12957130 US
Parent 12747114 US
Child PCT/IB2010/054229 US
Parent 12957130 US
Child PCT/IB2010/054229 US
Parent 12746867 US
Child 12957130 US
Parent 12957130 US
Child 12957130 US
Parent 12866774 US
Child 12957130 US
Parent 12957130 US
Child 12957130 US
Parent 12898976 Oct 2010 US
Child 12957130 US
Parent 12899346 Oct 2010 US
Child 12957130 US
Parent 12899378 Oct 2010 US
Child 12957130 US