Process scheme for sequentially hydrotreating-hydrocracking diesel and vacuum gas oil

Information

  • Patent Grant
  • 6444116
  • Patent Number
    6,444,116
  • Date Filed
    Tuesday, October 10, 2000
    24 years ago
  • Date Issued
    Tuesday, September 3, 2002
    22 years ago
Abstract
An integrated process for treating a vacuum gas oil, kerosene, naphtha and Diesel-containing feed, includes the steps of providing a reaction feed containing residue, vacuum gas oil, kerosene, naphtha, Diesel, hydrogen sulfide, ammonia, and C1-C4 gas phase compounds; providing a stripping gas; providing a washing feed; and feeding the reaction feed, the stripping gas and the washing feed to a stripping and washing zone so as to obtain a gas phase containing the hydrogen sulfide, the ammonia, the C1-C4 gas phase compounds, the naphtha, the kerosene, the Diesel and the vacuum gas oil and a liquid phase, wherein the reaction feed is provided at a reaction feed pressure of between bout 700 psig and about 3500 psig, and wherein the stripping and washing zone is operated at a pressure within about 80 psig of the reaction feed pressure.
Description




BACKGROUND OF THE INVENTION




The invention relates to hydrotreating and hydrocracking vacuum gas oil, Diesel, kerosene and naphtha fractions obtained from a vacuum residue hydrocracking (VRHCK,) using a high temperature and high pressure stripping and washing stage for connecting two high pressure reaction zones. More particularly, the invention relates to a hydrotreating and/or hydrocracking process using a high pressure, high temperature stripping and washing process which is well suited as an intermediate step integrated into a high temperature and high pressure loop of a vacuum residue hydrocracking (VRHCK) process wherein the VRHCK process and stripping-washing step produce kerosene, naphtha, Diesel and vacuum gas oil feeds to a hydrotreating-hydrocracking reactor for reducing sulfur content and improving naphtha, kerosene and Diesel yields and quality; in particular to produce a high smoke point kerosene, high cetane number and low sulfur Diesel and a low sulfur naphtha fractions.




Many refineries hydrotreat virgin and cracked feedstocks in order to obtain upgraded gasoline and Diesel products. These refineries utilize high-pressure units. High pressure hydrodesulfurization (HDS) units can be utilized with cracked vacuum gas oil (VGO), and when operated between 700-1200 psig, can achieve HDS conversion rates of greater than 99% so as provide a product having a sulfur content between 0.002 and 0.12% wt. This product can then be fed to a fluid catalytic cracking (FCC) process to produce gasoline and Diesel fuel with sulfur content less than 150 ppm and 600 ppm respectively. Unfortunately, the Diesel fraction produced in an FCC process from such a VGO feed typically has a cetane number of only about 20-30, which is considered “out of spec” and prevents this product from being incorporated into the Diesel pools. In order to be used, this Diesel fraction must be treated with additional hydrotreating steps. In addition, numerous other Diesel streams are readily available in the refineries such as straight run kerosene and Diesel, thermal cracked Diesel and the like, all of which have high sulfur content and typically medium cetane number that will require an additional deep hydrotreatment.




Conventional low-medium pressure Diesel hydrotreatment can satisfactorily reduce the sulfur content, but provides only small improvements in cetane number, in the range of 2-4 point increments.




Some refineries have installed residue hydrocracking units to convert the heaviest part of the oil into distillates. All of these technologies produce a medium quality product that requires an additional high pressure hydrotreating stage in a separate unit to fulfill the pool specifications. They also produce a large amount of VGO that needs to be converted in standard fluid catalytic cracking or hydrocracking units.




Typical catalysts for use in hydrotreating-hydrocracking processes to increase cetane number and smoke point and to reduce sulfur to very low level are extremely sensitive to even small amounts of sulfur and ammonia, and therefore cannot readily be incorporated into hydrotreating-hydrocracking reactors.




Alternatives for processing all the naphtha, kerosene, Diesel and VGO to solve the yield and quality problem identified above include integrating a high pressure hydrotreating and hydrocracking reactor into an existing or new vacuum residue hydrocracking technology for sequentially hydroprocessing-hydrocracking the available “out of spec” products. That effort attempts to address the yield, sulfur, smoke point and cetane number objectives by using two or more stages of hydroprocessing. Unfortunately, conventional vacuum residue hydrocracking units require a conventional separation process where the products are cooled and depressurized to be able to separate and then treat those products in a stand alone hydrotreating or hydrocracking or FCC unit. These conventional separation processes are carried out at low temperature, low pressure, or both, resulting in the need for additional compression systems, one for each stage, which can double equipment and operation costs. Even then, a complete and potentially very expensive hydrotreating-hydrocracking-FCC unit is required.




It is clear that the need remains for a method for treating feedstocks such as vacuum gas oil, kerosene, Diesel and naphtha, “out of spec” product from primary conversion (VRHCK), and others such as Diesel and naphtha fractions available in the refinery, so as to advantageously improve yields and reduce sulfur content while improving smoke point and cetane number. Further, the need remains for a process whereby separation of components is achieved at high temperature and pressure so as to avoid the need for additional compression equipment and the like. Still further, the need remains for a process to hydrofinish the product without the need to buy additional complete hydrotreating-hydrocracking units.




It is therefore the primary object of the present invention to provide a process whereby VGO, kerosene, Diesel, and naphtha “out of spec” feedstocks can advantageously and economically be converted into valuable end products.




It is another object of the invention to provide a process which can advantageously find use in revamping existing facilities or building new ones.




It is a further object of the invention to provide a process for high pressure and high temperature separation to produce an intermediate feedstock that can be blended with an external VGO, Diesel and naphtha “out of spec” component to be sequentially hydrotreated or hydrocracked in subsequent hydrotreating-hydrocracking reaction stages.




It is still another object of the present invention to utilize the existing high pressure and temperature loop in a vacuum residue hydrocracking unit or process to provide an integrated process which sequentially integrates a hot separation-stripping washing system into a vacuum residue hydrocracking process with a further hydrotreating-hydrocracking stage or stages so as to advantageously and efficiently provide for excellent conversion rates in converting the VGO, kerosene, Diesel and naphtha feeds to desirable end product, while nevertheless minimizing expense due to equipment costs and efficiently utilizing high pressure and temperature conditions.




Other objects and advantages will appear herein below.




SUMMARY OF THE INVENTION




In accordance with the present invention, the foregoing objects and advantages have been readily attained.




According to the invention, a process is provided for sequentially hydrotreating vacuum gas oil, kerosene, Diesel and naphtha, which process comprises the steps of providing a reaction feed containing residue, vacuum gas oil, kerosene, naphtha, Diesel, hydrogen sulfide, ammonia, and C


1


-C


4


gas phase compounds; providing a stripping gas; providing a washing feed; and feeding said reaction feed, said stripping gas and said washing feed to a stripping and washing zone so as to obtain a gas phase containing said hydrogen sulfide, said ammonia, said C


1


-C


4


gas phase compounds, said naphtha, said kerosene, said Diesel and said vacuum gas oil and a liquid phase, wherein said reaction feed is provided at a reaction feed pressure of between about 700 psig and about 3500 psig, and wherein said stripping and washing zone is operated at a pressure within about 80 psig of said reaction feed pressure. The hydrotreating-hydrocracking reactors, as well as the stripping/washing separator, are advantageously operated at substantially the same pressure, and preferably substantially the same temperature, thereby avoiding the need for additional compressor equipment between stages and limiting the need for additional heating between stages as well, while utilizing the already established temperature and pressure from the VRHCK loop to carry out further improvement as desired.




The inventive separation-reaction process can advantageously be used to integrate hydrotreatment-hydrocracking processes which occur at high temperatures and pressures so as to sequentially treat vacuum gas oil, kerosene, Diesel, naphtha and other feeds to obtain high conversion to desirable products at reduced cost.











BRIEF DESCRIPTION OF THE DRAWINGS




A detailed description of preferred embodiments of the present invention follows, with reference to the attached drawings, wherein:





FIG. 1

schematically illustrates a system and process in accordance with the present invention;





FIG. 2

further illustrates the integration of

FIG. 1

in a vacuum residue hydrocracking unit;





FIG. 3

illustrates stripping and washing steps in accordance with one embodiment of the invention;





FIG. 4

illustrates stripping and washing steps in accordance with another embodiment of the invention;





FIG. 5

illustrates still another embodiment of stripping and washing steps of the present invention;





FIG. 6

schematically illustrates the integration of a two stage hot separation washing and stripping in a vacuum residue hydrocracking process in accordance with the present invention;





FIG. 7

illustrates an integrated process in accordance with the present invention which is oriented to naphtha production;





FIG. 8

illustrates an integrated process in accordance with the present invention which is oriented toward production of high quality Diesel;





FIG. 9

illustrates an integrated process in accordance with the present invention wherein the system is oriented to hydrocracking for production of jet fuel and Diesel fuel;





FIG. 10

illustrates a basic configuration of an integrated process in accordance with the present invention for hydrodesulfurization of VGO and mild hydrocracking;





FIG. 11

presents a mass and energy balance example of HSSW in accordance with the invention; and





FIGS. 12 and 13

comparatively illustrate a separate conventional process (

FIG. 12

) and an integrated process in accordance with the present invention (FIG.


13


).











DETAILED DESCRIPTION




The invention relates to a process for sequentially treating vacuum gas oil, kerosene, Diesel and naphtha so as to provide a final product fraction including components having satisfactorily low sulfur content, kerosene and/or jet fuel fraction with high smoke point and Diesel fractions having cetane numbers sufficiently improved to allow incorporation into the Diesel pools. The process utilizes a stripping and washing step (HSSW) to accomplish a high temperature and high pressure separation of an intermediate feedstock for example from a vacuum residue hydrocracking process, so as to avoid the need for intermediate compression and/or reheating of the separated phases and thereby allow direct feed to subsequent hydrotreating-hydrocracking stages and the like which utilize the high pressure and temperature.




The invention further relates to an integrated processing method which integrates a hydrotreating-hydrocracking stage or system into a vacuum residue hydrocracking process having a high-pressure and high-temperature circuit and utilizing the aforesaid stripping and washing step between stages.




As will be further discussed below, the process of the present invention advantageously maintains the pressure of the product of the initial hydrotreating or hydrocracking step through separation of that product into portions, and through feed of some portions into a subsequent step such as a hydrotreating-hydrocracking step so as to provide the desired hydrotreating-hydrocracking conditions and reactions without the need for multiple compressors and the like, and to provide more efficient energy utilization. Conventionally, the intermediate feed, for example from a VGO reactor product, is cooled and the pressure reduced, to provide a separate hydrogen rich phase and a hydrocarbon rich phase. This creates the need for additional compressors and/or heating equipment to re-pressurize and re-heat at least some portions of the intermediate feed.




One process in which a hot separation-stripping and washing (HSSW) step according to the present invention is particularly advantageous is a process for sequentially treating a combined vacuum gas oil (VGO), kerosene, Diesel and naphtha feedstock. In such a process, the initial feed composed of hydrogen and vacuum residue is hydrocracked into a reaction feed containing VGO, Diesel, naphtha, C


1


-C


4


, hydrogen sulfide, ammonia and hydrogen. This reaction feed is preferably treated under high pressure and high temperature conditions utilizing a hot separation-stripping and washing (HSSW) zone as discussed further below, so as to obtain a gas phase which can advantageously be passed to a hydrotreatment-hydrocracking zone and a liquid phase which may suitably be treated through distillation to recover vacuum gas oil to be recycled to the process and a bottom that is ideal for feed to delayed coking processes or the like. The following description will be given in terms of this type of process. It should readily be appreciated, however, that the intermediate hot separation, stripping and washing steps and process of the present invention would be readily applicable to other types of processes as well and can be varied without departing from the scope of the present invention.




Typical feed for the overall process of this embodiment includes vacuum residue and various distillate products, one suitable example of which is vacuum gas oil (VGO), Diesel (DO) and naphtha (N). VGO streams are readily available in refineries but frequently have unacceptably high sulfur content. These streams do include portions which can advantageously be converted into useful gasoline, jet fuel and Diesel fractions in a stand alone hydrocracker, but at great expense. The VGO can also be treated in a Fluid Catalytic Cracking process but, unfortunately, the Diesel fraction produced typically has a cetane number which is too low to be useful without further treatment.




Additional feedstocks which can find advantageous use in the overall process of the present invention include other refinery streams including kerosene, Diesel and naphtha streams such as straight run kerosene and Diesel, thermal cracked Diesel and naphtha (for example from a delayed coker) and the like, each of which typically has high sulfur content, and Diesel having a medium cetane number which will require improvement in order to be added to the Diesel pool.




In accordance with the process of the present invention, a first hydrocracking reaction zone is established, for advantageously converting the vacuum residue into a product stream containing residue, VGO, kerosene, Diesel, naphtha, C


1


-C


4


gas phase compounds, hydrogen sulfide, and ammonia. Product fractions from the hydrocracking are used as reaction feed to a high pressure separation-stripping-washing (HSSW) zone operating at substantially the same pressure as the outlet from the hydrocracking step. The hot separation-stripping and washing step advantageously produces a gas phase advantageously containing hydrogen, naphtha, kerosene, Diesel, light and heavy vacuum gas oil, C


1


-C


4


containing compounds, H


2


S and NH


3


fractions, and a liquid phase including small amounts of Diesel and light vacuum gas oil, heavy vacuum gas oil and residue. The gas phase is advantageously still at a pressure and temperature which is sufficiently high that the gas phase can be fed directly to a second high pressure reaction zone, for example hydrotreating-hydrocracking, to convert the vacuum gas oil into high quality distillates and improve the quality of the Diesel, kerosene and naphtha, without the need for additional compressors or heaters and the like.




Thus, the stripping and washing step of the present invention provides the desired liquid and gas phases without substantially changing the pressure between the hydrocracking and subsequent hydrotreating-hydrocracking steps. The pressure at the hydrocracking or first stage, the separating stage and the hydrotreating-hydrocracking or second stage may advantageously be between about 900 psig and about 3500 psig, more preferably between bout 1300 psig and about 3000 psig. The pressure is preferably between about 900 psig and about 3000 psig at the outlet of the vacuum residue hydrocracking stage, and is maintained within about 80 psig, more preferably about 50 psig, of the pressure of the second hydrotreating-hydrocracking stage reaction inlet through the hot separation stripping and washing zone.




As set forth above, the feed to the hydrocracking reactor is preferably a vacuum residue oil feed that is to be converted to more valuable distillates products. The vacuum residue feed may be heated before entering the hydrocracking reactor, preferably to a temperature of between about 400° F. and about 800° F., and more preferably between about 500° F. and about 650° F. The vacuum residue may be blended with hydrogen and catalyst and fed to the hydrocracking reactor. The hydrocracking reactor may suitably be an up flow bubble type reactor or other suitable reactor, and the catalyst used may be any iron based or coke based catalyst having activity toward the desired reaction.




The product of the hydrocracking reactor typically includes hydrogen, naphtha, kerosene, Diesel, LVGO, HVGO, C


1


-C


4


hydrocarbons, hydrogen sulfide and ammonia and where the Diesel, kerosene and naphtha fractions are frequently “out of spec”, or have inappropriate characteristics for final blending in the refinery pool.




As used herein, the term “out of spec” refers to a hydrocarbon product or composition having characteristics which do not meet standards set for use of such a composition as a fuel.




This product stream, or at least a portion of the stream, is fed alone or combined with external VGO, Diesel, and/or naphtha, as a reaction feed to the high temperature and high pressure hot separation-stripping-washing zone for separation into phases as desired in accordance with the invention. An embodiment of a high pressure hot separation-stripping washing zone is illustrated in

FIG. 1

, which will be further discussed below.





FIG. 1

shows a hot separation-stripping-washing zone


10


, wherein the reaction feed


12


from the hydrocracking reactor is preferably introduced into a stripping and washing (HSSW) vessel or vessels


14


,


15


along with a stripping gas


16


such as hydrogen and a washing feed or medium


18


such as additional external feed of Diesel, LVGO and the like. A portion of washing feed in

FIG. 1

is shown passing from an external VGO source


19


through a furnace


20


and then being blended with a gas phase from vessel


15


, while another portion is fed to vessel


15


. Ideally, the reaction feed, washing feed and stripping gas are fed to the reactor or vessel each at different vertical heights, and the HSSW vessels


14


,


15


have a gas phase outlet


21


and a liquid phase outlet


22


.




The stripping gas serves to enhance high temperature and high pressure separation of hydrogen, hydrogen sulfide, ammonia, C


1-


C


4


and naphtha compounds into the gas phase. The hydrogen stripping also serves to enhance separation of the gas phase, and is itself present in the gas phase which is produced and which is useful as a feed to later hydrotreatment processes. In the vacuum residue hydrocracking (VRHCK) example of the present embodiment, the gas phase product of the stripping and washing step preferably includes hydrogen, naphtha, kerosene, Diesel, LVGO, C


1-C




4


hydrocarbons, H


2


S and NH


3


. The remaining liquid phase from the stripping and washing step mainly includes solid catalyst from the VRHCK process, HVGO and unconverted residue.




The liquid phase can advantageously be fed to further fractionation to recover VGO, which can be recycled, and catalyst plus unconverted residue that can be further processed, for example in a delayed coking process or the like. In the VRHCK embodiment of the present invention, this liquid phase may typically include a small amount of Diesel and LVGO, as well as HVGO and vacuum residue. A significant benefit provided by the present invention is that the washing step controls and/or avoids asphaltene and catalyst carry over into the gas phase which is beneficial for allowing further trickle bed processing.




It should readily be appreciated that the hot separation-stripping and washing steps of the present invention provide for advantageous separating of the gas and liquid phases, and the components present in each, without cooling and de-pressurization of the reaction feed which therefore does not require re-pressurization in order to be treated in subsequent high-pressure reactions.




It should also be noted that the use of externally obtained feed as washing and/or stripping feed allows for the adjustment or fine-tuning of temperature in the stripping and washing (HSSW) vessel, if desired. This is accomplished by feeding the external feed and/or stripping gas in greater or lesser amounts, and/or at different temperatures, so as to provide a desired resulting temperature of the combined mixture.




The stripping gas may suitably be hydrogen which is well suited for the desired stripping function and which can readily be recycled from the gas phase product of the stripping and washing step. Of course, other sources of hydrogen or other stripping gas could be used if desired.




The washing feed may suitably be Diesel, hydrotreated naphtha, LVGO or any other suitable washing substance, which could advantageously be provided from storage, from VGO liquid fractions separation (VGO), or from other treatment units such as DC, FCC, distillation, low pressure HDS units and other units or processes. In this regard, any of these sources could be regarded as external feed sources.




In accordance with the invention, the reaction feed, stripping gas and washing feed are preferably each fed to the stripping and washing zone in amounts sufficient to provide the desired separation of gas and liquid phases. Stripping gas may suitably be fed to the stripping and washing zone in an amount between about 10 and about 100 ft


3


of gas per barrel of reaction feed. Washing feed may advantageously be fed in an amount between about 5% v/v and about 25% v/v with respect to the reaction feed.




It is particularly advantageous that the gas phase produced from the separating and washing step is produced at a pressure which is within about 80 psig and more preferably is within about 50 psig of the pressure of the upstream or VR hydrocracking reaction zone, and is further therefore still at a pressure sufficiently elevated that desirable second reactions such as hydrotreatment-hydrocracking and the like can be carried out without needing to feed the gas phase to a compressor.




In accordance with the hydrocracking/hydrotreating-hydrocracking embodiment of the present invention, the gas phase from the hot separator-stripper-washing zone is fed to a second reactor for carrying out hydrotreating-hydrocracking so as to improve the distillate fraction yields and quality. The product of the hydrotreating-hydrocracking reaction step includes a kerosene or jet fuel having a smoke point between 20 and 28, which is substantially increased, by between 5 to 8 numbers in comparison with the first reaction stage product, a Diesel fraction having a cetane number between 45 and 60, which is substantially increased, by at least about 13 numbers in comparison with first reaction stage or imported fraction, and jet fuel and Diesel with a sulfur content less than or equal to about 20 ppm. The gasoline fraction is provided having a sulfur content of less than or equal to about 5 ppm.




Additional liquid product fractions from the separation-stripping-washing zone can advantageously be fractionated to recover VGO for further recycling and processing, and the liquid phase contains remaining catalyst and vacuum residue which advantageously allows the second reaction zone to be a trickle bed hydrogenating-hydrocracking reactor preferably containing effective amounts of a suitable catalyst, preferably a sulfur-nitrogen resistant catalyst selective toward aromatic saturation and alkylparaffin forming reactions. Of course, the second reaction may be any desirable high pressure reaction, and the catalyst should be selected having activity toward the desired reaction.




Turning now to

FIG. 2

, a process in accordance with the present invention is schematically illustrated.

FIG. 2

shows a first reactor system


24


for carrying out an initial hydrocracking reaction, second and third reactors


26


and


28


for carrying out a hydrotreating-hydrocracking reaction, and a high-pressure hot separation-stripping-washing unit


30


connected between reactor


24


and reactors


26


,


28


for advantageously separating the product of reactor


24


into a high pressure gas phase for treatment in reactors


26


,


28


according to the invention, and a liquid phase for further fractionation and VGO recycle.




As shown, the process advantageously begins through providing a vacuum residue feed


32


which can be fed to a heater if desired and which is then fed to first reactor


24


. The converted products from first reactor


24


are conveyed through various stages and then as feed to an inlet to hot separation-stripping-washing unit (HSSW)


30


, along with additional VGO and Diesel from an external source, hydrotreated naphtha and a feed of hydrogen as stripping gas. This combination of components forms the feed blend to unit


30


. Unit


30


produces a gas phase


34


containing, ideally, hydrogen, naphtha and Diesel fractions as well as LVGO, C


1


-C


4


hydrocarbons, H


2


S and NH


3


. The gas phase


34


, or a portion thereof, is then fed directly to second and third reactors


26


,


28


where VGO, kerosene, Diesel and naphtha fractions are subjected to hydrotreating-hydrocracking so as to increase the distillate yields and quality such us smoke point, cetane number and sulfur as desired. Product


36


from second and third reactors


20


,


21


can then be separated into gasoline, jet fuel, Diesel, unconverted VGO that is recycled, and other fractions.




A portion of unconverted vacuum residue may be separated off as fuel for heater(s), if desired, so as to provide for desired heating of the vacuum residue feed. Of course, other heating mechanisms and methods could also be used.




In addition, hydrogen is in this embodiment separated from the gas phase of product of second-third reactors


26


,


28


, preferably downstream of reactors


26


,


28


, and is purged and recycled for mixing with vacuum residue to form the


00-152


feed blend for the hydrocracking reactor system


24


, and could also be recycled as stripping gas.




The H


2


S and the NH


3


portions of gas phase


34


can be separated prior to feed to reactors


26


,


28


, if desired.




A particular advantage of the present invention is that hydrocracking reactor system


24


(R


1


), hydrotreating-hydrocracking reactors


26


,


28


(R


2


, R


3


) and stripping/washing unit


30


are all operated at substantially the same pressure such that no additional compressor equipment is required along the process stream from first reactor system


24


through unit


30


to second and third reactors


26


,


28


. Thus, equipment and other overhead costs in connection with the process of the present invention are significantly reduced while end products are advantageously low in sulfur content while nevertheless including jet fuel and Diesel fractions possessing increased smoke point and cetane number respectively.




Referring now back to

FIG. 1

, the hot separation-stripping-washing steps of the present invention are further discussed. Input to these steps includes external Diesel or VGO mixture as a washing feed, a converted Diesel fraction


12


from a first reactor (VRHCK) as a reaction feed, a liquid hydrotreated naphtha phase


38


and makeup hydrogen


16


as stripping gas. Also as shown and discussed above, HSSW zone


10


may have two zones


14


,


15


, and the gas phase


40


from zone


32


may be fed to zone


15


with gas phase


21


serving as feed to a hydrotreatment-hydrocracking or other process such as reactors of

FIG. 2

or the like. The product stream from HSSW zone


10


also includes a liquid phase


22


containing stripped VGO, vacuum residue and catalyst, as well as other liquid products which are preferably conveyed to a fractionator or vacuum distillation to recover VGO and other distillable products. The unconverted vacuum residue plus catalyst is ideal for processing at a delayed coker and the like.




The operating conditions for the hydrocracking (VRHCK) reactor system and subsequent hydrotreating-hydrocracking reactors are advantageously selected so as to maintain and utilize the pressure from the first reactor system (VRHCK) in the subsequent reactors and thereby enhance efficiency and avoid the need for additional compressor equipment therebetween. The process operating conditions for the initial reactor may be selected based upon the characteristics of the feed, for example, and these operating conditions can then be determinative of the operating conditions in the subsequent reactors. Table 1 set forth below provides examples of typical operating conditions for a VRHCK reactor (R


1


) and subsequent hydrotreatment reactors (R


2


) and (R


3


) for start of run (SOR) and end of run (EOR).















TABLE 1













R1




R2-R3















Condition




SOR




EOR




SOR




EOR









Pressure psig




3000/2900




3000/2900




2850/2800




2850/2750






inlet-outlet






LHSV h-1




  1-0.7




  1-0.7




0.75-1.5 




0.75-1.5 






Temperature o




400-450




400-450




380-350




360-380






range






Beds with




2-3




2-3




2-3




2-3






Quench






H2 partial pres.




2000-2400




2000-2400




1700-2000




1650-1950






Psig














An example of typical feed for the Hydrocracking reactor system for the process of the present invention is set forth in the last column below in Table 2. An example of typical feeds to hydrotreating and hydrocracking reactors are set forth in Table 2 columns 2 to 6.













TABLE 2











Component of the Feed to R2/R3--




Feed R1


















HCN




HCGO




AGO




LVGO




HVGO




VR





















API GRAVITY




52.4




20.8




23




20.2




16.5




3






NITROGEN,




280




4433




541




846




1513




0.4






wppm






SULFUR,




1.23




3.80




2.00




2.30




2.70




4.3






wt %






CONRADSON









0.14




0.01




0.13




0.52




23






CARBON,






wt %






DISTILL-




TBP




TBP




TBP




TBP




TBP




TBP






ATION






IBP




163




623




570




418




588




530






 5




182




634




680




495




702




570






10




200




644




705




527




748




630






30




247




688




746




608




829






50




289




744




775




671




883






70




328




809




815




733




938






90




363




887




885




816




1011






95




380




911




927




859




1046






FBP




397




937




962




928




1067














As set forth above, the feed to the VRHCK reactor system preferably includes a vacuum residue, and feed to the hydrotreating-hydrocracking reactors may typically include a blend of VGO, Diesel and other components. Table 3 below sets forth characteristics of a typical VGO feed blend, and Diesel blend for the hydrotreating-hydrocracking reactors (R


2


-R


3


) in accordance with the present invention. The R


2


and R


3


feedstock could be composed of different proportions of product coming from first reactor R


1


and from external sources of components. To provide a specific example, Table 3 groups the VGO, Diesel and kerosene fractions.















TABLE 3









Reactor stages




R2/R3




R2/R3




R2/R3











INLET




VGO blend




Diesel




Kerosene








blend






API GRAVITY




16-22




28-33




27-34






SULFUR, wt %




1.0-3  




0.02-2  




0.01-0.1 






NITROGEN, wppm




 3000-15000




 200-1500




0.001-0.01 






CONRADSON CARBON,




0.1-0.5
















wt %






BROMINE NUMBER,




 4-20




0.1-20 




0.1-3  






cg/g






METALS CONTENT




0.01-4  
















(Ni + V) wppm






CETANE NUMBER









30-40




30-40






AROMATICS CONTENT




 3-50




20-75




10-18






wt %






Smoke point














15-17














As shown, the typical reactor feed to the hydrotreating-hydrocracking reactors will have an unacceptably high sulfur content, the Diesel blend will have a cetane number of between about 30 and about 40, which is unacceptable for incorporating into the Diesel pool, and the kerosene blend will have a smoke point between about 15 and about 17, which is unacceptable for incorporating in the jet fuel pool. These fractions are therefore “out of spec” and need to be improved.




Table 4 below sets forth characteristics of a typical unconverted VGO fraction, a typical jet fuel fraction, and a Diesel fraction which are products of the hydrotreating-hydrocracking reactors.















TABLE 4









Reactor stages




R2/R3




R2/R3




R2/R3











OUTLET




VGO




Diesel




Kerosene






API GRAVITY




19-24




30-35




33-36






SULFUR, wt %




0.002-0.02 




0.0001




0.00002






NITROGEN, wppm




10-20




 1-10




1-2






CONRADSON CARBON,




0.01-0.05
















wt %






BROMINE NUMBER, cg/g




˜0




˜0




0






METALS CONTENT




˜0
















(Ni + V) wppm






CETANE NUMBER









45-58




48-53






AROMATICS CONTENT




 3-30




20-45






wt %






Smoke point














22-25














The final process product includes VGO which is useful for FCC or lube, Diesel for the Diesel pool, kerosene for jet fuel, and naphtha for reforming units. The fractions advantageously have significantly reduced sulfur content, and the Diesel fractions have cetane number which has been increased substantially thereby making the Diesel fraction acceptable for incorporation into the Diesel pool. The kerosene fraction has smoke point and cetane number which have been increased substantially thereby making the kerosene fraction acceptable for incorporation into the jet fuel pool or the Diesel pool.




In light of the foregoing, it should be appreciated that a process has been provided for advantageously treating vacuum residue, VGO and Diesel and naphtha feed so as to sequentially remove sulfur from all the streams and increase the cetane number of Diesel fractions and smoke point in the kerosene in a process which is efficient in terms of both energy and equipment. The process therefore provides for converting readily available feeds into valuable end products.




Turning now to

FIGS. 3

,


4


and


5


, several additional embodiments of the stripping and washing (HSSW) zone


10


of the present invention, previously shown in

FIG. 1

, are described.





FIG. 3

shows a hot separation-stripping-washing unit


30


in accordance with the present invention receiving a reaction feed


12


from a hydrocracking process (R


1


). The reaction feed includes hydrogen, naphtha, kerosene, Diesel, LVGO, HVGO, vacuum residue, C


1


-C


4


hydrocarbons, hydrogen sulfide, ammonium, catalysts and contaminants. Reaction feed


12


is introduced into unit


30


, typically at an intermediate vertical position such that stripping gas


42


can be introduced vertically lower than reaction feed


12


, and washing feed


44


is introduced at a vertically higher position than reaction feed


12


. Counter-current flow occurs within unit


30


, with stripping gas


42


proceeding upwardly through the unit and washing feed


44


flowing downwardly, each performing the desired function so as to assist in producing the desired separated gas phase


34


including hydrogen, naphtha, Diesel, LVGO,HVGO, C


1


-C


4


, H


2


S and NH


3


. Also produced is liquid portion or phase


46


containing small amounts of LVGO, HVGO and particularly vacuum residue plus catalyst, that can advantageously be passed as feed to a vacuum distillation column to produce VGO to be recycled, and a vacuum residue and catalyst fraction that can be advantageously fed to a delayed coker unit or the like for further processing.




Still referring to

FIG. 3

, stripping and washing unit


30


in this embodiment is provided as two units


48


,


50


, with reaction feed


12


introduced into unit


48


. Stripping gas


42


in this embodiment is fed to a lower portion of unit


48


, and washing feed


44


is introduced to an upper portion of unit


48


. Additional stripping gas


52


is also fed to a lower portion of unit


50


, and units


48


,


50


each produce a gas phase fraction


54


,


56


which is combined to form gas phase


34


. Further, liquid


58


exiting upstream unit


48


is introduced to downstream unit


50


and, after further stripping results in liquid phase


46


identified above, suitable as feed to a vacuum distillation column


60


for separating different fractions for further treatment.





FIG. 4

also illustrates another alternative embodiment of HSSW zone


10


according to the invention. As shown, reaction feed


12


is fed to unit


30


which in this embodiment is, like in other embodiments, provided in two units


48


,


50


.




Washing feed


44


is introduced to unit


50


as shown, and stripping gas


42


in this embodiment is introduced to a lower portion of upstream unit


48


. Unit


48


produces a gas phase fraction


54


including the desired components as discussed above that are sent to unit


50


for further separation, and a liquid phase


58


which is fed to vacuum fractionation


62


. Unit


50


produces an additional liquid phase


64


which is combined with liquid phase


58


and sent to vacuum fractionation


62


, and gas phase


34


for further hydrotreatment-hydrocracking. The downstream reaction could for example be a hydrotreating reaction or a second separator zone plus a hydrotreating reaction, and in such an embodiment, additional naphtha/Diesel may be mixed with gas phase


34


to produce the desired hydrotreating reaction feed. Washing feed


44


can be from external source as shown or may be recycled from vacuum fractionation


62


if desired.

FIG. 4

shows recycled VGO


68


being mixed with external VGO, naphtha and/or Diesel to form an additional component of feed to the downstream reactors. Diesel could also be used for this purpose.





FIG. 5

illustrates a further embodiment of the process of the present invention wherein a downstream hot separator


70


is used to further treat gas phase


34


from units


48


,


50


. Hot separator


70


produces a gas phase


72


which can be fed to a hydrocracking reactor. Gas phase


72


from hot separator


70


would include hydrogen, hydrogen sulfide, ammonia, C


1


-C


4


, naphtha, kerosene, Diesel and LVGO. Liquid phase


74


is composed mainly of LVGO and HVGO. Hot separator


70


serves to further enhance the separation of phases while still maintaining the desired temperature and pressure through to the downstream hydrotreatment and hydrocracking reactors. External VGO and/or external Diesel


76


in this embodiment may be useful to mix with gas phase


34


or gas phase


72


in order to control reaction temperature in downstream reactor. External VGO and/or Diesel may also serve as washing feed, either alone or with recycled VGO as shown in FIG.


5


.




In accordance with another embodiment of the present invention, the stripping and washing zone and steps as described above can advantageously be used to integrate one or more hydroprocessing stages or reactors into other high-pressure and high-temperature circuits including but not limited to residue hydrocracking circuits and the like, thereby obtaining further benefits from the already established high-pressure and high-temperature conditions and utilizing one sequential treatment without cold separating or conventional hot separating. This is particularly advantageous as compared to conventional systems that treat products of a first reaction to obtain an intermediate product, and then separately treat this intermediate product to obtain final product.





FIG. 6

illustrates a residue hydrocracking scheme incorporating an HSSW zone


10


similar to the embodiment of FIG.


5


.

FIG. 6

shows HSSW zone


10


, a hot separator


70


, a gas phase reactor


78


, and hydrotreating and hydrocracking reactors


80


,


82


.




In this embodiment, a sequential process is established utilizing vacuum residue hydrocracking (R


1


) followed by hot separation stripping and washing


10


, conventional hot separation


70


, and gas phase hydrotreatment-hydrocracking reactors


78


(R


2


),


80


(R


3


) and


82


(R


4


), so as to produce desired products.

FIG. 6

shows a vacuum residue feed to a VR hydrocracking reactor R


1


which produces reaction feed


12


to HSSW zone


10


. Liquid phase


46


from zone


10


is fed to fractionator


62


for separating a VGO fraction


68


for recycling as washing feed to zone


10


. Hydrogen stripping gas


42


is also fed to zone


10


as shown. Gas phase


34


from zone


10


is fed to hot separator


70


for further treatment at gas phase reactor (GPR)


78


so as to produce an upgraded gas product


84


, while a liquid phase


74


from hot separator


70


is fed to reactors


80


(R


3


) and


82


(R


4


) for producing an upgraded liquid product


86


which is advantageously combined with gas phase


84


and fed to a series of separators


88


for separating a gas phase


90


, a liquid product phase


92


for additional processing, for example in a fractionation or distillation unit


95


, and a final liquid phase or bottoms


94


. As shown, gas phase


90


may be treated in separator


96


to obtain recycled hydrogen


98


for use as recycled stripping gas and to satisfy any hydrogen needs at reactor R


2


, R


3


and/or R


4


. Unreacted vacuum gas oil (DVGO) is recycled from unit


95


and may be further treated in reactor


82


(R


4


) as shown so as to enhance conversion rates to desired products. This scheme is applied in Examples 1 and 2 discussed below.




In accordance with the present invention, and as further illustrated in

FIGS. 7-10

, a large number of different systems or configurations can be established for the second, third and any additional reactors or hydrotreatment reactor systems for use in treating the gas and liquid phases from HSSW zone


10


in accordance with the present invention.





FIG. 7

shows an HSSW zone


10


product gas phase


34


which is treated in a manner selected and adapted to accomplish naphtha production from the first vacuum residue hydrocracking product.

FIG. 7

shows gas phase and reaction product


34


from hot separation-stripping and washing zone


10


being fed to a first hydrotreatment reactor


100


. First hydrotreatment reactor


100


is preferably a trickle bed reactor, and inlet


102


to reactor


100


may advantageously be a liquid-gas contactor inlet adapted to provide for trickle bed operation as desired. Further, first hydrotreatment reactor


100


is provided with catalyst, preferably several different catalysts in different beds, for obtaining a desired end result. The product stream


104


from first hydrotreatment reactor


100


may suitably be fed to a second hydrotreatment reactor


106


.




Second hydrotreatment reactor


106


in this embodiment is also preferably provided with several catalyst beds and adapted to provide a final product stream


108


which may advantageously include hydrogen, naphtha, jet fuel, Diesel fuel, and unconverted vacuum gas oil fractions. The catalyst beds for reactors


100


and


106


are labeled B


1


, B


2


, B


3


and B


4


, and these beds may advantageously contain the following types of catalysts for maximizing naphtha production: B


1


—metal trapping and coke resistant catalyst; B


2


—HDS-HDN-HAD catalysts; B


3


—KCK catalyst; and B


4


—deep naphtha desulfurization catalyst. As will be further discussed below, the catalyst beds for such a system can advantageously be selected so as to provide the highest possible conversion of vacuum gas oil to desirable naphtha product as in this embodiment, or to other desirable products.




In the system shown in

FIG. 7

, the product stream from second hydrotreatment-hydrocracking reactor


106


is advantageously fed to a cold separator (not shown) wherein unconverted gas oil (UCVGO or DVGO) is recycled for further treatment. In the embodiment of

FIG. 7

, unconverted gas oil is recycled and mixed with the intermediate product stream from first hydrotreatment reactor


100


for further treatment in second hydrotreatment reactor


106


, thereby providing for higher total conversion rates of the initial gas oil feed.




In the embodiment of

FIG. 7

, wherein maximized naphtha production is desired, it may be desirable in accordance with the present invention to provide first hydrotreatment reactor


100


and second hydrotreatment reactor


106


each with two distinct catalyst bed arrangements as disclosed.




It should be appreciated that the catalyst system as illustrated in FIG.


7


and described above is tailored to tolerate some carryover of metallic or asphaltene-type material, and also to desulfurize and hydrogenate distillates so as to provide the desired product. One example of suitable types of catalyst for use in this type of process includes those catalysts described in U.S. Pat. No. 4,520,128, which catalyst is active to help reduce the affects of asphaltene carryover. The second hydrotreatment reactor


106


in this embodiment has also been tailored to be sulfur and nitrogen tolerant and the hydrocracking catalyst for us in first bed B


3


may for example be catalyst as described in U.S. Pat. No. 5,558,766.




A system as illustrated in

FIG. 7

can be operated to provide for 80% or more conversion (by volume) of the combined vacuum gas oil from the HSSW zone


10


and external VGO, and conversion is primarily to naphtha products. Such a process would consume a large amount of hydrogen, but would also produce an extremely high quality product.





FIG. 8

illustrates an alternative embodiment of the integrated process scheme of the present invention, wherein first and second hydrotreatment reactors


110


,


112


are provided and operate or tailored to obtain a high quality Diesel oil final product. In this case and HSSW zone


10


and two hot separator


114


,


116


are used.




In the embodiment of

FIG. 8

, first reactor


110


has a first catalytic bed B


1


and a second catalytic bed B


2


, and second hydrotreatment reactor


112


also has a first catalytic bed B


3


and a second catalytic bed B


4


. In this embodiment, additional hot separators


114


,


116


are provided, each as described in connection with the stripping and washing zones and embodiment of

FIG. 5

described above, for further enhancing the desired outcome of this process.




As shown, first reactor


110


accepts as a reaction feed a portion of external VGO


118


and the liquid fraction


120


from hot separator or


114


. First reactor


110


produces an intermediate product stream


122


which is advantageously fed to second hot separator


116


as shown.




First and second additional hot separators


114


,


116


each also produce a gas phase as described above, and these gas phases are advantageously combined with an external Diesel feed


124


and fed to second hydrotreatment reactor


112


. These gas phases, as described above, advantageously contain hydrogen, naphtha, Diesel and LVGO fractions, and hydrogen sulfide and ammonia contaminants. The final product stream from second hydrotreatment reactor


112


, along with the liquid phase from second additional hot separation system


116


, may suitably then be fed to a fractionation unit and the like for obtaining the desired separate product fractions. Hydrogen obtained from this step may advantageously be recycled to various points in the process as illustrated in FIG.


8


.




It should be appreciated that the embodiment of

FIG. 8

is dedicated or tailored for the production of high quality Diesel fuel with moderate VGO conversion rates (MHCK). In this scheme, two additional hot separator systems are use, and provide for additional benefits in the first and second hydrotreatment reactor


110


,


112


.




As with the embodiment of

FIG. 7

, the catalytic beds provided in first and second hydrotreatment reactors


110


,


112


are preferably provided having specific particular functions and catalysts.




First hydrotreatment reactor


110


preferably has first catalytic bed B


1


provided with a similar metal trapping and coke resistant catalyst as the embodiment of

FIG. 7

described above. Second bed B


2


of first hydrotreatment reactor


110


may suitably have a mild hydrocracking catalyst, typically having a 50% VGO conversion rate, and this catalyst is preferably sulfur and nitrogen resistant.




Second hydrotreatment reactor


112


is also preferably provided as described above with first and second catalytic beds B


3


, B


4


, and first catalytic bed B


3


may advantageously be provided having a catalyst active toward hydrodearomatization as well as sulfur and nitrogen removal, and second catalytic bed B


4


may advantageously be a catalyst selected from naphtha hydrodesulfurization. Diesel and naphtha produced in first hydrotreatment reactor


112


are then improved in second hydrotreatment reactor


114


and conversion of VGO for such a process would typically be approximately 50% volume in first hydrotreatment reactor


112


, and between about 20 and about 30% volume in second hydrotreatment reactor


114


.




Turning now to

FIG. 9

, still another alternative embodiment of the integrated hydroprocessing scheme of the present invention is illustrated. In this embodiment, three hydrotreatment reactors


126


,


128


,


130


are provided and tailored to hydrocract for conversion to jet fuel and Diesel fuel fractions.




In this embodiment, the product stream


34


from and HSSW zone


10


as described above is fed to first reactor


126


and results in first intermediate product stream


132


. First intermediate product stream


132


may advantageously be mixed with an external or recycled vacuum gas oil feed (VGO), and this mixture can be fed to a hot separation system


134


as described above. Liquid phase


136


from hot separation system


134


can advantageously be fed to second reactor


128


, while the gas phase


138


from additional hot separation system


134


can advantageously be mixed with external Diesel and utilized as a portion of feed to third reactor


130


. A second intermediate product stream


140


results from second hydrotreatment reactor


128


, and this second intermediate product stream may suitably be fed to a second hot separation system


142


where a gas phase is produced and mixed with the gas phase of first additional hot separation system


134


and external Diesel for input to third hydrotreatment reactor


130


as desired.




The liquid phase


144


from second hot separation system


142


may be set aside for feed to a fractionation unit or the like, preferably along with liquid phase product


146


from third reactor


130


as desired.




It should be also noted that hydrogen is obtained from the final product, for example at the fractionation unit, and in this embodiment this hydrogen is preferably recycled as feed to second hydrotreatment reactor


128


as shown.




The scheme as illustrated in

FIG. 9

is ideally used for deeply hydrocracking VGO into jet and Diesel fuel, and can provide for excellent results with or without recycling of unconverted VGO. The preferred catalytic beds of reactors


126


,


128


and


130


include a metal trapping catalyst B


1


followed by a sulfur and nitrogen resistant mild hydrocracking catalyst B


2


in first reactor


126


, hydrocracking catalyst B


3


which can be the same or different in second hydrotreatment reactor


128


, and sulfur and nitrogen resistant catalyst for improving Diesel fuel B


4


and desulfurizing naphtha B


5


can advantageously be provided in the beds of third hydrotreatment reactor


130


.




In this embodiment, first and second hydrotreatment reactors


126


,


128


both include hydrocracking stages, while the third hydrotreatment reactor


130


is dedicated to hydrofinishing of jet and Diesel fuel.




Turning now to

FIG. 10

, still another alternative embodiment in accordance with the integrated processing scheme of the present invention is illustrated.




In this embodiment, products


34


from HSSW zone


10


are fed to an additional hot separation system


148


, wherein a liquid phase


150


is obtained for feeding to a hydrotreatment reactor


152


, and a gas phase


154


is separated. The liquid phase fed to reactor


152


can suitably be contacted with recycled hydrogen gas, and the product


156


of reactor


152


is mixed with gas phase


154


from hot separator


148


and sent to an additional hot separation system


158


so as to provide a gas phase


160


composed hydrogen, naphtha, kerosene, Diesel, and light VGO that are treated in a finishing reactor


162


. The liquid


164


from second hot separator


158


is mixed with product


166


of reactor


162


and sent to a separation stage to recover medium-high quality products or syncrude as desired.




In accordance with this alternative embodiment, catalysts are selected for obtaining a medium-high quality syncrude production integrating a HSSW system and a mild-hydrocracking reaction system in a vacuum residue high pressure high temperature loop. Specifically, reactor


152


has a first bed B


1


of metal trapping coke resistant catalyst, and a second bed B


2


of HDS-HDN MHCK catalyst, while reactor


162


has a finishing catalyst B


3


such as HDS-HDN (Diesel and naphtha finishing) catalyst. In this process, VGO is also converted into distillates. The resulting product quality is excellent, although somewhat lower than quality obtained utilizing other embodiments of the invention.




The systems as illustrated in

FIGS. 6-10

above are various embodiments which advantageously integrate one hydrotreatment-hydrocracking process into residue hydrocracking circuit utilizing the hot separation stripping and washing (HSSW) method of the present invention. These different processes each advantageously provide for savings in economy through utilization of already existing high pressure and high temperature conditions, and through treating various fractions in a single reactor, thereby providing for savings in equipment as well.




It should be readily appreciated that

FIGS. 3

,


4


and


5


illustrate variations of the stripping and washing steps which are all well within the broad scope of the present invention, and which all advantageously provide for high temperature and high pressure separation of a reaction feed into a gas phase and liquid phase containing the desired components for subsequent processing in one, two or more stages of hydrotreatment-hydrocracking, and that

FIGS. 7-10

illustrate variations of sequentially integrated hydrotreatment-hydrocracking stages using the hot separation-stripping and washing systems of

FIGS. 1

,


3


,


4


and/or


5


or variations thereof.




EXAMPLE 1




In order to illustrate the advantageous results obtained in accordance with the present invention, two processes were run. The first process used a vacuum residue hydrocracking reaction zone followed by hot separation-washing, and a sequentially hydrotreat-hydrocrack of the gas phase produced by the HSSW system. Liquid phase from the HSSW system was stored for further use. In this first process, naphtha, Diesel and VGO fractions were produced and then treated in second and third reaction stages to upgrade yields and quality. This scheme was call SEHP


1


.




The second process used the same vacuum residue hydrocracking stage (R


1


) (same operating severity). The product was fed to an HSSW system; the liquid product from the bottom of the HSSW system was stored, and the gas phase produced from the top of the HSSW zone was fed to a second separation system at the same pressure and at 40° C. less temperature, as shown in FIG.


5


.




Gas phase from the second high pressure hot separation system (HSSW) containing hydrogen, naphtha, Diesel, LVGO, C


1


-C


4


hydrocarbon, H


2


S and NH


3


, was fed to a hydrotreating zone (R


2


). The pressure of the gas phase was within about 80 psig of the pressure of the residue hydrocracking reactor outlet (R


1


); the liquid phase from the second hot separation system (bottom) contained small amounts of Diesel, LVGO and HVGO and was blended with recycled hydrogen and fed to a hydrocracking reactor zone (R


3


) operated within about 80 psig of the pressure of the residue hydrocracking reactor outlet (R


1


). The products from the hydrotreating reactor and hydrocracking reactor were combined and fed to a fractionation tower. This scheme is called SEHP


2


.




Table 5 sets forth the results of these two process schemes using the same temperature space velocity and reactor volume, but using one or two stage of high pressure and high temperature separation. In the second case (two high pressure separators) a high purity of hydrogen makes up gas if needed, are recycled to the hydrocracking reactors. Table 5 shows that yield and quality are improved from the yield and quality fed to the HSSW system. Using one or two stages of separation improve the yield and quality of naphtha, kerosene and Diesel.
















TABLE 5










Without




With









SEHP




SEHP1





with SEPH2



























Naphtha yields wt %




10




18





15






Jet Fuel wt %




5




13





12






Jet Fuel smoke point




16




22





24






Diesel yields wt %




13




20





29






Diesel Cetane Number




44




55





58






VGO yields




56




28





24






650° F.+ Conversion (R2/R3)




0




50




(+R4)




56






950° F.+ Conversion (R1)




90




90





90














SEPH


1


HSSW (

FIG. 2

without External Feedstock)




SEPH


2


HSSW+HSS (

FIG. 6

without External Feedstock)




As shown, the process conducted with high temperature and high pressure stripping and washing followed by a simple hydrotreating and hydrocracking stage (SEPH


1


) produced more C


1


-C


4


/naphtha and VGO and less kerosene-Diesel products than the scheme with HSSW followed by a hot separation system (SEPH


2


). In addition the product quality is better in the latter process. These processes in accordance with the present invention produced an increase in smoke point of 6-8 numbers, and produced an increase in cetane of 11-14 number (second and third columns) in comparison to the vacuum residue hydrocracking product without integrating the SEHP technology (first column).




EXAMPLE 2




In order to further illustrate the advantageous results obtained in accordance with the present invention, two modes of application HSSW with hydrotreating and hydrocracking processes were run with the same initial vacuum residue hydrocracking reaction stage, but with different ways of hydrotreating the reaction feedstock and the external feedstock. SEHP


3


designates one mode where the gas phase produced in the stripping-washing separation stage is blended with 20% vol. external VGO, 15% vol. external Diesel and 10% vol. naphtha fractions, relative to the VGO Diesel and naphtha leaving the hydrocracking reactor and entering the HSSW system. Then the gas phase is slightly cooled (but at the same pressure) by blending outside feeds, and the blend, is sent to hydrotreating-hydrocracking reactors (R


2


/R


3


). In the second process or mode (called SEHP


4


), the same vacuum residue hydrocracking severity is used in the initial reactor, otherwise the same amount of naphtha, kerosene, Diesel and VGO are sent to the HSSW system as in the previous case (SEHP


3


) and the same amount of external CGO Diesel and naphtha is added but in different way.




The gas phase produced in the HSSW system is partially cooled by adding 20% vol. external VGO (same pressure) sent to a second high pressure, hot separation system. From there a gas phase is separated from the top and blended with the 15% vol. external Diesel and 10% external naphtha. That gas phase stream, rich in hydrogen, naphtha, kerosene, Diesel and light VGO, is sent to a hydrotreating reactor. The liquid phase obtained from the second hot separation system is blended with recycled hydrogen and sent to hydrotreating-hydrocracking reactors (R


2


/R


3


) operating at substantially the same pressure as the previous reactor (R


4


). In addition, the volume of all the reactors (R


2


/R


3


/R


4


) and the temperature are the same as the previous case (SEHP


3


). Table 6 sets forth the results of this process, identifying the SEHP


3


process with one hydrotreating-hydrocracking stage and “SEHP


4


” as the two stage hydrotreating-hydrocracking process. Notice that both schemes use the same feedstock and the same operating conditions and the same separation-stripping and washing stages.

















TABLE 6












Blend*




SEHP3




SEHP4





























Naphtha sulfur wt ppm




1000




30




2







Kerosene smoke point




16




22




24







Diesel CI




41




47




52







VGO Sulfur wt %




3.41




700




400







VGO conversion wt %




0




82




87







SEHP3 according to FIG.




2







SEHP4 according to FIG.




6













*The blend is produced by mixing the vacuum residue hydrocracking products plus the external VGO, Diesel and naphtha.













Most of the blend properties are better than the products from vacuum residue conversion (R


1


outlet). By sequentially integrating the HSSW plus the hydrocracking reactor, the VGO conversion increases and the quality of the unconverted VGO is improved. The same is true for naphtha and Diesel as shown in Table 6.




The process conducted with high pressure stripping and washing and one hydrotreating stage accomplished and important reduction in sulfur content and improved Diesel, cetane number and kerosene smoke point. However, the process carried out utilizing two hydrotreating stages resulted in a greater sulfur reduction and higher cetane number and smoke point. The SEHP


4


mode also experienced a greater conversion rate for the VGO fraction.




EXAMPLE 3




This example illustrates washing and stripping separation (HSSW) in accordance with the present invention.

FIG. 11

shows a mass and energy balance of an HSSW zone or vessel according to the invention, showing flowrate S (tons/hour) and temperature for reaction feed, stripping gas, washing feed, gas-phase product and liquid phase product. This shows beneficial separation without cooling, or loss of pressure.




Top and bottom streams were analyzed from this process utilizing 50 ton/hour of hydrogen stripping (approximately 10% wt.) and using 209 ton/hour of washing feed (approximately 15% vol.) and using for comparison a hot separation process with no stripping or washing. Table 7 sets forth the results.

















TABLE 7










Inlet




Top




Bottom




Top*




Wash Oil




























HS System/Streams




23




303




45




x







H


2


S




193




200




1




160




0






NH


3






26




26




0




14




0






H


2


O




46




46




0




34




0






C1/C2




348




378




3




345




0






C3/C4




236




234




2




212




0






Naphtha C5-200 C.




884




878




6




856




0






Mid Dist 200-350 C.




1638




1686




95




1334




143






VGO 350-500 C.




1327




1131




362




967




166






residue 500 C.+




273




12




261




106




0






solids




114




0




114




0.1




0











Top* is the gas phase using just a hot separation













Table 7 shows hydrogen stripping and washing resulted in more gas phase production. The H


2


S, ammonia, C


1


-C


4


, naphtha and Diesel are stripped from the bottom (liquid) to the top (gas phase), and the vacuum residue and the solid are washed out from the gas phase. The total amount of products leaving the HSSW system include the amount of Diesel and VGO used for washing and the hydrogen employed for stripping. Comparing the column “Top” and “Top*”, the difference is highlighted as between the HSSW system of the present invention and conventional hot separator. The results prove that the process of the present invention HSSW reduces the vacuum residue and catalyst carryover into the gas phase, and reduces the H


2


S, ammonia, C


1


-C


4


and the naphtha going into the bottom or liquid phase to the vacuum fractionation tower. This reduces the cost of the latter. The Diesel and VGO are advantageously fractionated in the vacuum tower and partially pumped back to the stripping zone in the HSSW system in a closed loop.




EXAMPLE 4




This example demonstrates the difference between separate or stand-alone processes and the integrated processes of the present invention. A conventional scheme was established, and is illustrated in

FIG. 12

, wherein a first vacuum-residue hydrocracking, with distillation step, is carried out to obtain VGO which, along with external VGO, is treated in a stand alone hydrocracking process (reactors and all other units). Diesel from the initial vacuum residue hydrocracking step is mixed with other Diesel for hydrotreatment. The properties of products from the initial hydrocracking stages for this scheme are illustrated in Table 8 below under the heading “Scheme II”.

















TABLE 8












Scheme I





Scheme II


























Feed Components, BPD
















Naphtha from VRHCK




15,142





0







Middle Distillates from VRHCK




23,476





0







VGO from VRHCK




17,864





17,864







Straight run HVGO




40,940





40,940







Total Feed Throughput




97,422





58,804







Fuel properties







API Gravity




23.9





14.3







Sulfur, wt %




2.12





2.78







Nitrogen, ppm




4060





3542







Conradson Carbon, wt %




0.25





0.56







Metals (Ni + V), ppm




1.5





3.6







TBP Distillation, C.







10 vol. %




157





375







30 vol. %




286





436







50 vol. %




389





478







70 vol. %




445





519







90 vol. %




516





604







Total Pressure R


1


Inlet, psig




2,800





2,400







H


2


Pressure R


1


Inlet, psig




2,050





2,200







Total Recycle Gas Rate, scfb




15,030





20,000







LHSV HDT Reactors, v/v/h




0.9





0.9







LHSV HCK Reactors, v/v/h




0.33





0.98







Cycle Length, months




24





24















A scheme was also established for comparing the process of the present invention to the conventional process. In this scheme, schematically illustrated in

FIG. 13

, all the product from vacuum residue hydrocracking plus external Diesel and VGO (same amount as in Scheme II), is sent to an HSSW system, and then the gas phase is sent to hydrotreating-hydrocracking reactors (just the reactors and nothing else) to be processed. The combined product stream from the sequentially integrated process that includes distillation steps is also set forth in Table 8 above under the heading “Scheme I”.




The Scheme II process treats all naphtha and Diesel separately from the hydrocracking process, while the Scheme I process treats all distillates in a single integrated reactor system (with a single investment in equipment). Table 9 below sets forth final results in terms of conversion, and Table 10 below sets forth final results in terms of product quality.














TABLE 9










SHP Scheme I




Scheme II

























Performance








VGO Conversion, vol. %




86.7




97






Hydrogen Consumption, scfb




2177




2350






C5+ Liquid Yield, vol. %




109.7




114.8






Product Yields (based on Feed), wt. %






Hydrogen Consumption




3.62




3.66






H


2


S




2.25




2.96






NH


3






0.49




0.44






H


2


O




0.46




0






C


1


-C


2






0.61




0.72






C


3


-C


4






2.64




3.97






Light Naphtha




5.49




6.86






Heavy Naphtha




16.46




17.21






Jet Fuel




38.54




38.3






Diesel




28.68




30.03






VGO




8.02




2.7
























TABLE 10










SHP Scheme I




HCK Scheme II

























Light Naphtha (C5-85° C.)








API Gravity




81.5




80.5






Sulfur, ppm




0.5




0.5






Nitrogen, ppm




1




1






Octane Number, RON


c






78




78






P/N/A, vol. %




84/14/2




83/14/3






Heavy Naphtha (85-150° C.)






API Gravity




52.2




57.8






Sulfur, ppm




0.5




0.5






Nitrogen, ppm




1




1






Octane Number, RON


c






60




61






P/N/A, vol. %




40/54/6




43/49/8






Jet Fuel (150-265° C.)






API Gravity




42.5




42.8






Sulfur, ppm




5




2






Nitrogen, ppm




1




1






Aromatics, vol. %




25-21




27-23






Flash Point, F




115




120






Freeze Point, F




−63




−60






Diesel (265-350° C.)






API Gravity




37.7




35






Sulfur, ppm




10




5






Nitrogen, ppm




1




1






Cetane Number




58




50






Cetane Index




58




53






VGO (350 C.+)






API Gravity




26




26.6






Sulfur, ppm




20




10






Nitrogen, ppm




5




5






UOP K




12.8




12.6














Table 9 shows that the use of a stand alone hydrocracking unit results in a higher conversion (Scheme II 97% VGO conversion) than in the integrated system (Scheme I:86.7% VGO conversion). This is due to conversion in Scheme I process of all the product, and the results are limited by the maximum commercial vessel size available. Scheme I also provides a higher conversion to gasoline, while Scheme II provides a higher conversion to kerosene Diesel. Hydrogen consumption is greater in the stand-alone system of Scheme II.




From Table 10, it should readily be appreciated that both products have outstanding qualities. Of course, the product obtained utilizing Scheme I in accordance with the present invention is obtained along with a cost savings due to efficient utilization of high pressure and temperature conditions and further through less equipment costs.




Light naphtha properties for Scheme I and Scheme II were almost identical. In most cases, this naphtha product could be blended directly into the low octane pool. If additional octane is required, the light naphtha stream is an excellent feed to isomerization processes. Sulfur and nitrogen contents of the heavy naphtha fractions are very low in both schemes, and the naphthalene plus aromatics content is almost 60%, making these streams excellent feedstocks for naphtha reformers and the like.




The kerosene streams, Diesel streams and VGO streams from both schemes also have very desirable properties. Of course, as set forth above, the process of the present invention provides for substantial savings in operating cost and equipment investment cost as compared to the non-integrated Scheme II process.




This invention may be embodied in other forms or carried out in other ways without departing from the spirit or essential characteristics thereof. The present embodiment is therefore to be considered as in all respects illustrative and not restrictive, the scope of the invention being indicated by the appended claims, and all changes which come within the meaning and range of equivalency are intended to be embraced therein.



Claims
  • 1. An integrated process for treating a vacuum gas oil, kerosene, naphtha and Diesel-containing feed, comprising the steps of:providing a reaction feed containing residue, vacuum gas oil, kerosene, naphtha, Diesel, hydrogen sulfide, ammonia, and C1-C4 gas phase compounds; providing a stripping gas; providing a washing feed; and feeding said reaction feed, said stripping gas and said washing feed to a stripping and washing zone so as to obtain a gas phase containing said hydrogen sulfide, said ammonia, said C1-C4 gas phase compounds, said naphtha, said kerosene, said Diesel and said vacuum gas oil and a liquid phase, wherein said reaction feed is provided at a reaction feed pressure of between about 700 psig and about 3500 psig, and wherein said stripping and washing zone is operated at a pressure within about 80 psig of said reaction feed pressure.
  • 2. The process according to claim 1, wherein said reaction feed comprises hydrogen, hydrogen sulfide, naphtha, kerosene, Diesel, light vacuum gas oil, heavy vacuum gas oil, and C1-C4 hydrocarbons, vacuum residue and catalyst and wherein said liquid phase includes said vacuum residue and said catalyst.
  • 3. The process according to claim 1, wherein said stripping gas is hydrogen gas.
  • 4. The process according to claim 1, wherein said washing feed is selected from the group consisting of Diesel, light vacuum gas oil and mixtures thereof.
  • 5. The process according to claim 4, wherein said washing feed is obtained from an external source.
  • 6. The process according to claim 4, wherein said washing feed comprises a Diesel fraction and a light vacuum gas oil fraction.
  • 7. The process according to claim 1, wherein said gas phase is provided at a pressure within about 80 psig of said reaction feed pressure.
  • 8. The process according to claim 1, wherein said reaction feed is a product of a vacuum residue hydrocracking reaction, and wherein said gas phase is provided as a feed to a hydrotreating-hydrocracking reaction zone.
  • 9. The process according to claim 8, wherein said gas phase is blended with an external naphtha and Diesel fraction at substantially the same pressure as said gas phase to provide a combined phase, and wherein said combined phase is provided as feed to said hydrotreating-hydrocracking reaction zone.
  • 10. The process according to claim 9, wherein said reaction feed contains vacuum residue and catalyst from said vacuum residue hydrocracking reaction, and further comprising feeding said liquid phase to a vacuum distillation unit to recover a Diesel and gas oil fraction that is recycled as said washing feed, and a vacuum residue fraction containing said catalyst.
  • 11. The process according to claim 10, further comprising feeding said vacuum residue fraction to a delayed coking process.
  • 12. The process according to claim 9, further comprising maintaining said gas phase and said combined phase at a pressure within about 50 psig of said reaction feed pressure from said stripping and washing zone to said hydrotreating-hydrocracking reaction zone, whereby compressors are not required between said stripping and washing zone and said hydrotreating-hydrocracking reaction zone.
  • 13. The process according to claim 1, wherein said reaction feed is provided at a reaction feed temperature, and further comprising the steps of providing at least one of said stripping gas and said washing feed at a temperature different from said reaction feed temperature, and mixing said reaction feed, said striping gas and said washing feed in proportions selected to provide a desired resulting temperature.
  • 14. The process according to claim 1, wherein said stripping gas is mixed with said reaction feed at a ratio of said stripping gas to said reaction feed of between about 10 and about 100 ft3 of gas per barrel of feed.
  • 15. The process according to claim 1, wherein said washing feed is mixed with said reaction feed in an amount between about 5% v/v and about 15% v/v with respect to volume of said reaction feed.
  • 16. The process according to claim 1, wherein said stripping and washing zone comprises a reactor having an inlet for said reaction feed, wherein said stripping gas is fed to said reactor below said inlet, and wherein said washing feed is fed to said reactor above said inlet.
  • 17. The process according to claim 1, wherein said reaction feed is obtained from a vacuum residue hydrocracking process, and wherein said gas phase is fed to a hydroprocessing-hydrocracking reactor system.
  • 18. The process according to claim 17, wherein said hydroprocessing-hydrocracking reactor system comprises at least one reactor selected from the group consisting of hydrocracking reactors, hydrotreating reactors and combinations thereof.
  • 19. The process according to claim 17, wherein said hydroprocessing-hydrotreating reactor system comprises a hydrocracking reactor system.
  • 20. The process according to claim 17, wherein said hydrocracking reactor system comprises a first reactor and a second reactor, and further comprising the steps of feeding said gas phase to said first reactor so as to obtain an intermediate product stream, and feeding said intermediate product stream to said second reactor to produce a final product stream comprising hydrogen, naphtha, jet fuel, Diesel and remaining vacuum gas oil.
  • 21. The process according to claim 20, further comprising the step of recycling said remaining vacuum gas oil to at least one of said first reactor and said second reactor.
  • 22. The process according to claim 20, further comprising the step of recycling said hydrogen to at least one of said first reactor and said second reactor.
  • 23. The process according to claim 20, further comprising the steps of defining an additional stripping and washing zone between said first reactor and said second reactor, feeding said intermediate product stream, an additional stripping gas and an additional washing feed to said additional stripping and washing zone so as to obtain an intermediate gas phase and an intermediate liquid phase, and feeding said intermediate gas phase to said second reactor.
  • 24. The process according to claim 17, wherein said hydroprocessing-hydrocracking reactor system is a trickle bed reactor.
  • 25. The process according to claim 17, further comprising feeding said gas phase to said hydroprocessing-hydrocracking reactor system comprises a plurality of catalyst zones arranged serially to be exposed to said gas phase, and wherein an initial one of said plurality of zones has a metal trapping catalyst for removing metal carried by said gas phase into said hydroprocessing-hydrocracking reactor system.
  • 26. A process for upgrading a vacuum residue feed, comprising:mixing said vacuum residue feed with a vacuum residue hydrocracking catalyst so as to provide a VR reaction feedstock; subjecting said VR reaction feedstock to hydrocracking conditions so as to produce a VR product containing vacuum gas oil, kerosene, naphtha, Diesel, hydrogen sulfide, ammonia, C1-C4 gas phase compounds, vacuum residue and said catalyst at a VR pressure; providing a stripping gas; providing a washing feed; feeding said VR product, said stripping gas and said washing feed to a stripping and washing zone so as to obtain a gas phase containing said hydrogen sulfide, said ammonia, said C1-C4 gas phase compounds, said naphtha, said kerosene, said Diesel and said vacuum gas oil, and a liquid phase containing said vacuum residue and said catalyst, said gas phase being at a gas phase pressure within about 80 psig of said VR pressure; feeding said gas phase at said gas phase pressure to a further hydrotreating-hydrocracking zone so as to produce a product stream having upgraded kerosene, naphtha and Diesel fractions; and feeding said vacuum residue and said catalyst to a vacuum residue upgrading process.
  • 27. The process according to claim 26, wherein said gas phase is substantially free of said catalyst and said vacuum residue, and wherein said further hydrotreating-hydrocracking zone comprises a trickle bed reactor.
US Referenced Citations (15)
Number Name Date Kind
3365388 Scott, Jr. Jan 1968 A
3607734 Stafford, Sr. Sep 1971 A
3733260 Davis et al. May 1973 A
3806444 Crouch et al. Apr 1974 A
4010010 Ward Mar 1977 A
4414103 Farrell Nov 1983 A
4422927 Kowalczyk et al. Dec 1983 A
4822480 Harandi et al. Apr 1989 A
4954241 Kukes et al. Sep 1990 A
5110444 Haun et al. May 1992 A
5110562 Haun et al. May 1992 A
5447621 Hunter Sep 1995 A
6106694 Kalnes et al. Aug 2000 A
6190535 Kalnes et al. Feb 2001 B1
6296758 Kalnes et al. Oct 2001 B1