The present invention relates to a process to make a nano-structured emitter element for light sources, which can be led to incandescence through the passage of electric current.
Metal components having nanometric surface structures or reliefs, arranged according to specific shapes or geometries, are currently used in some technological fields, such as micro electro-mechanical systems or MEMS, so as to obtain diffractive optical arrangements, medical devices, mlcroturbines, and so on.
The present invention is based on the acknowledgement that nano-structured filaments can find important applications in the field of incandescence lamps. In said light, the present invention aims at suggesting a new process to make in a simple and economical way filaments or similar emitters for incandescence light sources, having nanometric reliefs or structures.
Said aim is achieved according to the present invention by a process to make an emitter as referred to above, characterized in that it envisages the use of a layer made of anodized porous alumina as sacrificial element for the selective structuring of the emitter.
The use of the aforesaid alumina layer enables to obtain a plurality of reliefs on at least a surface of the emitter, or a plurality of cavities within the emitter. Said nanometric reliefs or cavities are arranged on the emitter according to a predefined geometry.
Preferred characteristics of the process according to the invention are referred to in the appended claims, which are an integral part of the present description.
Further aims, characteristics and advantages of the present invention will be evident from the following detailed description and from the accompanying drawings, provided as a mere illustrative, non-limiting example, in which:
In all its possible implementations, the process according to the present invention envisages the use of a highly regular film made of anodized porous alumina as sacrificial element or template; depending on the case, said alumina layer is used directly to obtain the desired nano-structured emitter, or indirectly to make a further sacrificial element required to obtain the aforesaid emitter.
Porous alumina films have attracted attention in the past for applications such as dielectric films in aluminum capacitors, films for the retention of organic coatings and for the protection of aluminum substrates.
The structure of porous alumina can be ideally schematized as a network of hollow columns immersed in an alumina matrix. Porous alumina can be obtained by anodization of highly pure aluminum sheets or of aluminum films on substrates like glass, quartz, silicon, tungsten, and so on.
As is known from the prior art, the film 1 can be developed with a controlled morphology by suitably selecting the electrolyte and process physical and electrochemical parameters: in acid electrolytes (such as phosphoric acid, oxalic acid and sulfuric acid) and under suitable process conditions (voltage, current, stirring and temperature), highly regular porous films can be obtained. To said purpose the size and density of cells 3, the diameter of pores 4 and the height of film 1 can be varied; for instance the diameter of pores 4, which is typically of 50-500 nm, can be increased or decreased through chemical treatments.
As schematically shown in
The step including the deposition of the aluminum layer 6 is followed by a step in which said layer is anodized. The anodization process of the layer 6 can be carried out by using different electrolytic solutions depending on the desired size and distance of pores 4.
Should the electrolyte be the same, concentration, current density and temperature are the parameters that greater affect the size of pores 4. The configuration of the electrolytic cell is also important in order to obtain a correct distribution of the shape lines of the electric field with a corresponding uniformity of the anodic process.
i) a first anodization process, whose result can be seen in
ii) a reduction step through etching of the irreqular alumina film 6, carried out by means of acid solutions (for instance CrO3 and H3PO4);
iii) a second anodization of the part of alumina film 1A that has not been removed through etching.
The etching step referred to in ii) is important so as to define on the residual alumina part 1A preferential areas for alumina growth in the second anodization step.
By performing several times the consecutive operations involving etching and anodization, the structure improves until it becomes uniform, as schematically shown in
As shall be seen below, in some implementations of the process according to the invention, after obtaining the regular porous alumina film 1, a step involving a total or local removal of the barrier layer 5 is carried out. The barrier layer 5 insulates the alumina structure and protects the underlying substrate 2: the reduction of said layer 5 is therefore fundamental so as to perform, if necessary, consecutive electrodeposition processes requiring an electric contact, and etching processes, in case three-dimensional nano-structures should be obtained directly on the substrate 2.
The aforesaid process involving the removal or reduction of the barrier layer 5 can include two consecutive stages:
widening of pores 4, performed in the same electrolyte as in previous anodization, without passage of current;
reduction of the barrier layer 5, performed by passage of very low current in the same electrolyte as in previous anodization; at this stage the typical balance of anodization is not achieved, thus favoring etching process with respect to alumina-building process.
As mentioned above, according to the invention the alumina film 1 generated through the process previously described is used as template for nano-structuring, i.e. as a base to make structures reproducing the same pattern of alumina. As shall be seen, depending on the selected implementation, it is thus possible to make negative nano-structures, i.e. basically complementary to alumina and therefore having columns on the pores of the film 1, or positive nano-structures, i.e. basically identical to alumina and therefore with cavities on the pores 4 of the film 1.
The techniques suggested to make structured filaments 10, 13 as in
To this purpose some possible implementations of the process according to the invention are now described in the following.
First Implementation
The first four steps of the process include at least a first and a second anodization of a corresponding aluminum layer on a suitable substrate, as previously described with reference to
After obtaining the film 1 having a regular alumina structure (as can be seen in
This is followed by the removal of alumina 1 and of its substrate 2 through etching, as shown in part b) of
Sputtering technique consists in depositing films of highly pure material 20 with a thickness of 1 to 30 micron, but does not enable to reproduce structures having a high aspect ratio in an ideal way; the implementation described above is therefore used when the diameter of alumina pores 4 is at its maximum.
Therefore, instead of sputtering, the deposition of material 20 can be performed through Chemical Vapor Deposition or CVD, which is regarded as the most suitable technique for making structures of highly pure or conveniently doped metal. The main feature of this technique is the use of a reaction chamber containing reducing gases, which enable metal penetration into the hollow pores of alumina and the deposit of a continuous layer onto the surface. This ensures a faithful reproduction of high aspect ratio structures.
Second Implementation
As for the previous case, this implementation consists in making negative structures, as the one of filament 10 in
The thick alumina film 1 is then taken off its support 2 and opened at its base, so as to remove the barrier layer previously referred to with number 5, in a known way. The resulting structure of film 1 without its barrier layer can be seen in part a) of
The following step, as in part b) of
Third Implementation
This implementation consists in making negative structures as the one of filament 10 in
As shown in part a) of
This is followed by a step in which said paste 23 is sintered, as in part b) of
This implementation enables to exploit low-cost technologies and ensures flexibility in the choice of materials. The preparation of the serigraphic paste is the first step of the process; the correct choice of the metal nano-powder, for instance comprising tungsten, solvent and binder, is fundamental to obtain a paste having ideal granulometric and rheologic properties for different types of substrates 2.
Fourth Implementation
This implementation of the process according to the invention aims at making positive structures as the one of filament 13 of
Basically, therefore, one of previous implementations is first used to obtain a substrate having the same structure as the one of filaments previously referred to with number 10; onto said substrate, referred to with number 10A in part a) of
Then the substrate 10A is taken off through selective etching, so as to obtain the filament 13 with positive nano-porous structure, as can be seen in part d) of
The substrate 10A, obtained according to the first three implementations described above, is not necessarily made of tungsten. In a possible variant, onto the substrate 10A, obtained as in
Fifth Implementation
Also this implementation of the process according to the invention aims at carrying out positive nano-structures as the one of the filament previously referred to with number 13, and includes the same initial steps as those shown in
The barrier layer 5 of alumina 1 is then removed, thus opening the pores 4, as can be seen in part a) of
The residual alumina 1 is eventually removed, so that the tungsten substrate forms a body 14 with regular nanometric cavities 15, thus obtaining the desired filament 13.
The Reactive Ion Etching step can be replaced, if necessary, by a selective wet etching step or by an electrochemical etching step.
Sixth Implementation
This implementation of the process aims at making negative structures as the one of filament 10 of
The process 6 first consists in preparing the concentrated electrolytic solution for tungsten deposition into the pores 4 of alumina 1; the electrolyte is very important for correctly filling the pores, since it ensures a sufficient concentration of ions in solution. The pulsed current step enables to carry out the copy of structures with high aspect ratio, and sequentially includes
i) the deposition of the tungsten alloy 26 by applying a positive current; this results in a given impoverishment of the solution close to the cathode made of alumina 1 and its substrate 2;
ii) a relax time, without current application, so as to let the solution be re-mixed close to the cathode;
iii) the application of negative current, designed to remove a part of the alloy 26 previously deposited onto the cathode, thus enabling a better leveling of deposited surface.
Steps I), ii) and iii), each lasting for a few milliseconds, are cyclically repeated until the desired structure is obtained.
Seventh Implementation
This implementation aims at making positive nano-structures as the one of filament 13 starting from a substrate with negative structure, obtained through previous implementation, though not necessarily made of tungsten; the aforesaid substrate with negative structure acting as template is referred to with number 10A in part a) of
A tungsten layer 27 is deposited onto said substrate 10A through CVD or sputtering, as can be seen in part b) of
Eighth Implementation
This implementation aims at making negative nano-structures as the one of filament 10 of
This is followed by a step including the anodization of the tungsten substrate 2, so as to induce the localized growth of the latter, which occurs below the pores 4 of alumina 1. Said step, as shown in part a) of
Through a selective etching with W/W oxide alumina 1 is then removed, so as to obtain the desired filament 10 with negative nano-structure as in part b) of
It should be noted that this implementation is based on a typical feature of some metals, such as tungsten and tantalum, which anodize under the same chemical and electric conditions as aluminum; as mentioned above, said anodization occurs in the lower portion of the pores 4 of alumina 1, thus directly structuring the surface of the substrate 2.
Ninth Implementation
This implementation aims at carrying out positive nano-porous structures as the one of filament 13 of
A tungsten alloy 27 is deposited onto said substrate 10A through electrochemical deposition, CVD or sputtering, as shown in part b) of
From the above description it can be inferred that in all described implementations the process according to the invention includes the use of an alumina layer 1 which, depending on the case, directly acts as template so as to obtain the desired filament with nanometric structure 10, or which is used to obtain a template 10A for the subsequent structuring of the desired filament 13.
The invention proves particularly advantageous for the structuring of filaments for incandescence light sources, and more generally of components also under a different form with respect to a filament which can be led to incandescence through a passage of electric current. It should be noticed that an emitter made according to the invention can also be formed by plurality of layers structured by means of porous alumina according to the above describes techniques, in the form of superimposed structured layers.
The described process enables for instance to easily define, on one or more surfaces of a filament, for instance made of tungsten, an antireflection micro-structure comprising a plurality of microreliefs, so as to maximize electromagnetic emission from filament into visible spectrum. The invention can be advantageously applied also to make other photon crystal structures, i.e. in structures made of tungsten or other suitable materials characterized by the presence of series of regular microcavities, which contain a medium with a refractive index differing from the one of tungsten or other material used.
Obviously, though the basic idea of the invention remains the same, construction details and embodiments can widely vary with respect to what has been described and shown by mere way of example.
Number | Date | Country | Kind |
---|---|---|---|
TO2003A000167 | Mar 2003 | IT | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB03/06338 | 12/23/2003 | WO | 1/27/2005 |