This application is based upon, claims the benefit of, priority of, and incorporates by reference, the contents of Brazilian Patent Application No. PI PI 0605006-9 filed Nov. 30, 2006.
This invention belongs in the field of hydroconversion processing, more specifically to the hydroconversion of wax mixture loads obtained from renewable resources such as waxes of vegetable or animal origin, combined or not with waxes of mineral origin, such as waxes obtained from petroleum, to obtain products with biodegradable characteristics, that may be called biolubricant oils and bioparaffins.
Growing concerns about the environment and the ever more restrictive regulations to control environmental pollution have caused researchers to search for innovative and economically viable alternative raw materials to use in the industrial and energy production context, for the purpose of obtaining raw materials to generate products that pollute less ant and that have biodegradable characteristics in comparison to those obtained from currently employed industrial technologies, and this search for alternatives has opened many routes of research in which the use of raw materials from renewable resources has been of particular interest.
In Brazil, due to its large expanse of territory, agriculture is a factor of great importance in promoting its socio-economic development, and in this way, for the purpose of improving environmental conditions worldwide that have been greatly affected by the economic activities of modern civilization, renewable resources are being used more and more.
In this context, agricultural raw materials have been the object of rising interest, in as far as the exploration of new ways to use them, or with other traditional raw materials, make them economically attractive, besides contributing to the improvement of the environment, they may become an extra source for supplies for some Brazilian regions.
Thus, there is a great effort in Brazil to make the use of vegetable raw materials viable in the prevailing energy situation as currently practiced in the country, which in many cases besides being economically more favorable, produce significant advantages for the environment by producing products that are environmentally less aggressive and less polluting, which has required the development of new technologies, such as for example, as referenced as the use of products of vegetable origin, which make up the so-called “synthetic vegetable based” products, for application in the industrial sector, such as for example, in the preparation of lubricant oils.
Research and the use of lubricants prepared from vegetable oils have greatly advanced in the last years, notably caused by the enforcement of strict environmental legislation in various parts of the world, that, thus, stimulate a broader use of renewable energy resources.
However, development of this technology has still not advanced much and this invention offers an innovative alternative for this purpose.
The adoption of hydrorefinery technology in the production of basic lubricating oils will allow a higher quality level to be attained, in respect of the requirements of the performance and cost demands in automotive motors as well as compliance with environmental restrictions.
Among hydrorefining process for the existing basic oils, hydroisodewaxing catalytic processing have been used to great advantage, since by substituting conventional deparaffination, it becomes a very flexible and effective alternative. Instead of physically separating paraffin crystals, the paraffin molecules are transformed into isoparaffins with low fluidity point, which contributes to increased performance in lubricants.
Research on hydroisomerization and paraffin hydrocracking show possibilities in obtaining basic oils of high quality.
In this way, hydroisomerization of highly paraffinic fractions of petroleum allow obtaining oils with low fluidity point with excellent viscosity characteristics in terms of temperature, in other words, with a high viscosity index.
Also, the evolution of specifications performance for lubricants has encouraged the change from production of basic oils to others that do not produce paraffins. As a result, there is a tendency to reduce the production of paraffin, and in this way, paraffin has become a high value product and is considered critical for profitability of industrial units that produce oil from Group I. The reduction in supply has allowed synthetic and natural paraffins to enter into the market.
Thus, as has been observed in Brazil, there is an increase in industrial and government interest in several parts of the world of turning to formulations of lubricants with technical characteristics that surpass those of mineral origin and that significantly reduce costs. Notably, the European Community has been supporting a growing number of projects that propose research activities as well as disseminating knowledge in this field.
As stated, it is noted that the need for the development of new technologies that use raw materials and that will result in the production of products that meet the needs of the ever increasingly strict requirements of environmental regulations, that come from renewable sources, and that have biodegradable characteristics.
In the process of this invention, high quality oil, such as oils from Group II and Group III, is produced using hydrotreatment under moderate temperature and pressure conditions. More specifically, this invention refers to a hydrotreatment/hydroisomerization process which leads to obtaining a lubricant oil with high viscosity index and low fluidity point, through contact with a load containing a mixture made up of waxes obtained from a renewable source, such as a wax of vegetable origin or a wax of animal origin, or even a mixture of both, together with a load of wax of mineral origin, such as of petroleum origin, in a catalytic bed made up of a hydrotreatment (HDT) catalyst, a hydroisodewaxing catalyst (HIDW), and a hydrofinishing catalyst (HDF).
By using the process presented by this invention, it is also possible to obtain a paraffin that complies with FDA (Food and Drug Administration) regulations, using only the hydrotreatment stage, which is the first stage of this process.
This study resulted in the development of an innovative process for hydrotreating and hydroisodewaxing of waxes of vegetable origin or waxes of animal origin, or even a mixture of both, together with a load of wax of mineral origin, in which hydrocracking reactions are used to reduce the number of carbon atoms in the chain, hydrotreatment for removing oxygenated compounds and hydrogenation of unsaturated fats to remove double bonds, that may or may not be followed by isomerization to remove paraffins, and hydrofinishing.
More specifically, this invention includes a process to prepare lubricating oils of high quality, that are biodegradable, the so-called biolubricants and bioparaffins that are classified for food grade use (“food grade”), from a load of wax of vegetable origin or wax of animal origin, or a mixture of both, together with a load of waxes of mineral origin, using a mild hydrotreatment, that may be followed by hydroisomerization to remove paraffins in the case of producing biolubricants, and followed by hydrofinishing using a hydrogenation catalyst.
In this way, this invention provides a hydrotreating process of waxes of vegetable origin or waxes of animal origin, or of a mixture of both, together with a load of wax of mineral origin, that may be followed by hydroisodewaxing/hydrofinishing, in which a flow made up of a mixture constituted of waxes obtained from renewable sources and treated together with waxes of mineral origin.
In the context of this invention, waxes from renewable sources are to be understood as those coming from waxes of vegetable origin or waxes of animal origin, or even a mixture of both in any proportion, and waxes of mineral origin are understood to be those coming from hydrocarbon sources of mineral origin, such as those obtained from petroleum.
In this process, a mixture made up of 1% to 100% wt/wt of waxes obtained from renewable sources and 99% to 0% wt/wt of mineral wax, is hydrotreated and hydroisodewaxed under hydrotreatment conditions, in order to obtain basic lubricating oil with a high viscosity index and low fluidity point and/or a bioparaffin.
Important examples for use in this process are waxes of vegetable origin or waxes obtained from plants, which include esters of fatty acid and fatty alcohols. These waxes have a greater linearity than petroleum paraffins obtained by conventional processing. This characteristic, when combined with greater purity, may provide additional formulation options according to the demand of desired applications.
One of the waxes from plants used in this process is from Carnauba, which is a plant with high economical and social value, low cost and potentially high profitability. Native palm acclimated to the region of northeast Brazil referenced to as a semi-arid region, is being explored especially on large properties through traditional association with subsistence cultures.
Carnauba wax is obtained from the leaves of a palm known as Copernica Cerifera. The color and quality of the wax obtained is influenced by the age of the leaves and by the refining process. The wax is mainly made up of esters formed by long chain acids and alcohols and small amounts of fatty acid, free alcohols, and resins.
Besides Carnauba, raw materials that are additionally suitable to the application of this invention may be those made from Jojoba, Ouricuri, among others, and may also be from any type of animal source, such as beeswax and whale spermaceti, inasmuch as they satisfy the conditions of use for the process of this invention.
The best Carnauba waxes available on the market contain between 20% and 50% of Carnauba in combination with clarifying agents and natural oils, offering lubrication, good electrical properties and are in conformity with FDA (Food and Drug Administration) regulations. Its melting point is within a range of 83° C. and 86° C. Its principal application is in additives to increase the melting point and reduce plasticity.
A characteristic of this invention refers to the nature of the paraffin load used which is from waxes obtained from renewable sources, mixed with mineral waxes.
The wax load obtained from a renewable source is submitted to successive treatments over different types of catalysts, each destined to perform a specific function in each stage of the process.
In a broad sense, the process of the invention for hydroconversion of a mixture of loads of waxes from renewable sources treated together with a load of mineral waxes includes the following procedures and operational conditions:
The operational process of the invention will be described below by referencing the annexed
In the simplified flow chart presented in
The bioparaffin obtained at the end of this process in (F) possesses excellent use characteristics, and is called non-conventional paraffin, and is able to be in compliance with the FDA (Food and Drug Administration) regulations.
Furthermore, hydroconversion of waxes from renewable sources mixed with mineral waxes within ranges used in operational conditions is also associated with cases in which the low availability of mineral paraffin prevents the full answer of production demands and of the market demands.
In reference to the simplified flow chart in
The basic oil obtained at the end of this process answers the growing interest in obtaining formulations of basic lubricants with technical characteristics which surpass mineral origin lubricants and that reduce costs significantly, even to obtain a 360° C. cutting (by cracking), that may be incorporated into diesel to improve its quality, due to the elevated cetane number in said basic oil obtained.
Although this invention has been presented and described in reference to a preferred implementation, and the specification described be considered sufficient to enable those well acquainted with the technology to be able to see that variations and modifications may be made to the present invention, without distracting from its spirit and scope, which are defined by the following claims.
In this way, loads of waxes of vegetable origin or waxes of animal origin, or a mixture of both, that for the purpose of this invention is made up of waxes from renewable sources which have been mentioned above, as well as other natural renewable sources that are functionally equivalent and fulfill the fundamental requirements for usage in this process, are considered to be covered by the scope of this invention and are considered to be part and parcel of the spirit and scope of this invention.
Number | Date | Country | Kind |
---|---|---|---|
PI 0605006-9 | Nov 2006 | BR | national |