This patent application is based on and claims priority pursuant to 35 U.S.C. §119(a) to Japanese Patent Application Nos. 2013-220979, filed on Oct. 24, 2013, and 2013-239982, filed on Nov. 20, 2013, in the Japan Patent Office, the entire disclosure of each of which is hereby incorporated by reference herein.
1. Technical Field
Embodiments of the present invention generally relate to a process unit and an image forming apparatus, such as a copier, a printer, a plotter, or a multifunction peripheral (MFP) having at least two of copying, printing, facsimile transmission, plotting, and scanning capabilities, that incorporates the process unit.
2. Description of the Related Art
Image forming apparatuses, such as copiers, facsimile machines, and MFPs (or multifunction machines) having such capabilities, typically include a rotatable image bearer, such as a photoconductor drum, to bear a toner image and a developing device provided with a developing roller to supply toner, as developer, to the photoconductor drum. The toner image on the photoconductor drum is transferred onto a recording medium such as a sheet of paper. The developing device further includes a supply roller to supply toner to the developing roller.
The developing roller rotates while contacting the photoconductor drum and the supply roller. Since friction is thus generated on a surface thereof, it is preferred that the developing roller have relatively high degrees of slidability and durability. Preferable image formation can be attained when the developing roller supplies toner uniformly to the photoconductor drum.
Additionally, an edge of a regulation blade and a seal member to inhibit leak of toner contact axial end portions of the developing roller. Since friction is generated between the developing roller and these components, it is preferred that the slidability and durability are higher in the axial end portions of the developing roller.
To attain reliable image formation, slidability and abrasion resistance of the developing roller may be enhanced by, for example, surface treatment, coating, or machining of the entire developing roller or such processing of the axial end portions.
An embodiment of the present invention provides a process unit that includes a rotatable image bearer to bear a toner image on a surface thereof, a developer bearer to supply developer to the image bearer, a cleaning member to remove residual developer from the surface of the image bearer, and an abutment part disposed to contact the surface of the image bearer to remove a foreign substance from the image bearer. The developer bearer includes a first range, a second range different in property from the first range and adjacent to the first range outside in an axial direction of the developer bearer via a first boundary, and a second boundary positioned on an outer side of the first boundary in the axial direction of the developer bearer. The abutment part is disposed astride at least one of a first position and a second position on the image bearer. The first position corresponds to the first boundary of the developer bearer, and the second position corresponds to the second boundary of the developer bearer.
Another embodiment provides an image forming apparatus that includes the process unit described above and a transfer device to transfer an image formed by the process unit onto a recording media.
Another embodiment provides a process unit that includes the above-described image bearer, a developer bearer to supply developer to the image bearer, the developer bearer, the above-described cleaning member, and an abutment part disposed to contact the surface of the image bearer to remove a foreign substance from the image bearer. The developer bearer includes a first range, a second range different in property from the first range and adjacent to and outside the first range in an axial direction of the developer bearer via a first boundary, and a second boundary to define an end of a developer layer range in the axial direction of the developer to bear a layer of developer. The abutment part is disposed on at least one of a first line extending to the image bearer from the first boundary of the developer bearer, and a line extending to the image bearer from the second boundary of the developer bearer.
A more complete appreciation of the disclosure and many of the attendant advantages thereof will be readily obtained as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings, wherein:
In describing preferred embodiments illustrated in the drawings, specific terminology is employed for the sake of clarity. However, the disclosure of this patent specification is not intended to be limited to the specific terminology so selected, and it is to be understood that each specific element includes all technical equivalents that operate in a similar manner and achieve a similar result.
Referring now to the drawings, wherein like reference numerals designate identical or corresponding parts throughout the several views thereof, and particularly to
It is to be understood that and redundant descriptions are omitted or simplified below.
An image forming apparatus 1 shown in
The exposure unit 2 is positioned in an upper portion of the image forming apparatus 1 and includes a light source to emit laser beams and various optical system components. Specifically, image data obtained from an image capture such as a scanner is decomposed into color separation components. The exposure unit 2 includes an optical writing device to irradiate photoconductor drums 32 of the image forming unit 3 with laser beams according to the respective color separation components, thereby exposing surfaces thereof.
The image forming unit 3 is positioned beneath the exposure unit 2 and includes multiple process units 31Y, 31C, 31M, and 31Bk removably installable in the image forming apparatus 1. Each process unit 31 includes the photoconductor drum 32 serving as a rotatable image bearer to bear a toner image, a charging roller 33 to uniformly charge the surface of the photoconductor drum 32, a developing device 34 to supply toner to the photoconductor drum 32, and a cleaning blade 35 serving as a cleaning member to remove residual toner (i.e., residual developer) to clean the surface of the photoconductor drum 32.
It is to be noted that the process units 31Y, 31C, 31M, and 31Bk respectively correspond to yellow (Y), cyan (C), magenta (M), and black (Bk) toner corresponding to decomposed color components of full-color images and have a similar configuration except the color of developer contained therein. Accordingly, subscript representing the color attached to the reference numeral thereof and related components may be omitted when color discrimination is not necessary.
The transfer device 4 is positioned vertically beneath the image forming unit 3. The transfer device 4 includes an endless intermediate transfer belt 43 rotatably stretched around a driving roller 41 and a driven roller 42, a belt cleaning blade 44 to remove toner from the intermediate transfer belt 43 to clean the surface of the intermediate transfer belt 43, a cleaning backup roller 48 made of metal, disposed facing the belt cleaning blade 44, primary-transfer rollers 45, and the like. The primary-transfer rollers 45 face, via the intermediate transfer belt 43, the respective photoconductor drums 32 of the process units 31. Each primary-transfer roller 45 is pressed against an inner circumferential face of the intermediate transfer belt 43, and a nip between the intermediate transfer belt 43 and the corresponding photoconductor drum 32 is called a primary-transfer nip. The driving roller 41 and the driven roller 42 are supported by a side plate.
Additionally, a secondary-transfer roller 46 is disposed facing the driving roller 41 via the intermediate transfer belt 43. The secondary-transfer roller 46 is pressed against an outer circumferential face of the intermediate transfer belt 43, and a nip therebetween is called a secondary-transfer nip. Toner removed by the belt cleaning blade 44 is transported through a waste-toner conveying hose and contained in a waste-toner box 47 disposed beneath the intermediate transfer belt 43.
The sheet feeding unit 5 is positioned in a lower portion of the image forming apparatus 1 and includes a sheet feeding tray 51 that contains sheets P of recording media and a feed roller 52 to send out the sheets P.
The sheet P sent from the sheet feeding unit 5 is transported through the conveyance channel 6. A pair of registration rollers 61 and pairs of conveyance rollers are disposed along the conveyance channel 6 up to the discharge section 8.
The fixing device 7 includes a fixing roller 72 heated by a heat source 71 and a pressure roller 73 to press against the fixing roller 72.
The discharge section 8 is provided at extreme downstream in the conveyance channel 6. The discharge section 8 includes a pair of paper ejection rollers 81 and a sheet tray 82 on which the discharged sheet P is stacked.
Referring to
In the image forming apparatus 1, when image formation is started, the photoconductor drum 32 in each process unit 31 is uniformly charged with a bias applied from a high-pressure power source of the charging roller 33. The bias includes direct-current (DC) voltage or a DC component superimposed with an alternating-current (AC) component. The charged photoconductor drum 32 is then exposed according to image data by the optical writing device of the exposure unit 2. Thus, an electrostatic latent image is formed thereon. Each photoconductor drum 32 is exposed accordingly single color data, namely, yellow, cyan, magenta, or black color data decomposed from full-color image data to be recorded. The electrostatic latent images formed on the photoconductor drums 32 are developed into toner images with toner supplied by respective developing rollers 36 of the developing devices 34. For example, in exposure, a laser beam scanner using a laser diode or a light-emitting diode (LED) serving as a light-emitting element is used.
Subsequently, as the driving roller 41 of the transfer device 4 rotates counterclockwise in
Meanwhile, when image formation is started, in the lower portion of the image forming apparatus 1, the feed roller 52 of the sheet feeding unit 5 starts rotating, sending out the sheet P from the sheet feeding tray 51 to the conveyance channel 6. Then, the registration rollers 61 forward the sheet P to the secondary-transfer nip between the secondary-transfer roller 46 and the driving roller 41 opposed thereto, timed to coincide with the toner image on the intermediate transfer belt 43. At that time, the transfer bias voltage whose polarity is opposite that of the toner image on the intermediate transfer belt 43 is applied to the secondary-transfer roller 46, and thus the transfer electrical field is generated in the secondary-transfer nip. The transfer electrical field generated in the secondary-transfer nip transfers the superimposed toner images from the intermediate transfer belt 43 onto the sheet P at a time.
The sheet P carrying the toner image is separated from the intermediate transfer belt 43 due to curvature of the secondary-transfer roller 46 and transported to the fixing device 7. In the fixing device 7, the sheet P is heated and pressed by the fixing roller 72 heated by the heat source 71 and the pressure roller 73. Thus, the toner image is fixed thereon. Subsequently, the sheet P is separated from the fixing roller 72 and transported by a pair of conveyance rollers to the discharge section 8, where the paper ejection rollers 81 discharge the sheet P to the sheet tray 82. The belt cleaning blade 44 removes toner remaining on the intermediate transfer belt 43 after image transfer. The toner thus removed is transported by a screw and the like through the waste-toner conveying hose to the waste-toner box 47.
The intermediate transfer belt 43 is preferably an endless belt made of resin film produced by dispersing a conductive material such as carbon black in a material such as polyvinylidene fluoride (PVDF), ethylene tetrafluoroethylene copolymer (ETFE), polyimide (PI), polycarbonate (PC), thermoplastic elastomer (TPE), and the like.
Additionally, urethane rubber can be used for the belt cleaning blade 44. The primary-transfer roller 45 can be a conductive sponge roller, a metal roller, or the like. A conductive blade may be used instead. The secondary-transfer roller 46 includes a metal core and a conductive, elastic body overlying the metal core. The secondary-transfer roller 46 can include a conductive roller, an electron conductive type roller, and the like.
It is to be noted that, although the description above concerns multicolor (i.e., full-color) image formation, alternatively, single color, bicolor, and three color images may be formed using one, two, or three out of the four process units 31.
As shown in
As described above, the photoconductor drum 32 is charged by the charging roller 33, exposed by the exposure unit 2, supplied with toner by the developing roller 36 to develop a latent image thereon into a toner image, and cleaned by the cleaning blade 35. Then, the toner image is transferred onto the intermediate transfer belt 43. The regulation blade 103 contacts the developing roller 36 and regulates the thickness of toner on the surface of the developing roller 36. Then, a layer of toner is borne on the developing roller 36.
In
For example, the surface property of the second range 36b can be varied by coating the second range 36b, changing surface roughness, or the like. Such approach can improve the abrasion resistance of the second range 36b, and the process unit 31 becomes capable of reliable image formation for a long time.
However, the inventors of the present invention recognize that, when the surface property, state, or structure of the developing roller is different in the axial direction thereof (for example, between end portions and a center portion), the amount of toner supplied from the developing roller 36 to the photoconductor drum 32 and the amount of charge of toner transported differ between areas divided by the boundary at which the state or property differs. That is, the boundary serves as a base of change. In the configuration shown in
This can increase the possibility of inconveniences such as firm adherence of substances such as toner, free substances such as silica released from toner, paper dust, and talc component (i.e., foreign substances) to the photoconductor drum 32. In this case, there is a risk that the substances adhering to the photoconductor drum 32 abrade the cleaning blade 35 and the developing roller 36. Then, insufficient cleaning and image failure can arise.
Additionally, typically, developing rollers include a range where a toner layer is formed (i.e., a toner layer range) and a no toner range where the toner layer is not formed, is positioned outside the toner layer range in the axial direction. Substances such as toner and free substances released therefrom can adhere to a position on the photoconductor drum corresponding to the boundary of the toner layer range of the developing roller.
Referring to
Thus, although durability of the developing roller and fluidity of toner can be enhanced by surface property of the developing roller as described above, there is a risk that the difference in surface property of the developing roller causes toner and the like to adhere to the photoconductor drum and disturbs image formation.
In view of the foregoing, embodiments described in this specification can provide a process unit capable of reliable image formation, in particular, a process unit capable of inhibiting adherence of substances a photoconductor drum in areas adjacent to the above-described boundary.
As shown in
The abutment part 100 is disposed in a range B1 of the surface of the photoconductor drum 32 in the direction indicated by arrow A, in which the photoconductor drum 32 rotates (hereinafter “rotation direction A”). The range B1 is downstream from the cleaning blade 35 and upstream from the developing roller 36 in the rotation direction A. In particular, the abutment part 100 is positioned between the developing roller 36 and the position irradiated by the exposure unit 2 in the rotation direction A as shown in
When the abutment part 100 is in the range from the position cleaned by the cleaning blade 35 to the position supplied with toner from the developing roller 36, collision of toner against the abutment part 100 can be reduced, thus inhibiting soil inside the process unit 31 caused by scattering of toner or the like.
As shown in
The abutment part 100 is disposed to contact the surface of the photoconductor drum 32 and astride a first position opposed to a boundary C1 (first boundary) between the first range 36a and the second range 36b of the developing roller 36.
In other words, referring to
As described above, at the boundary C1, the amount of toner transported from the developing roller 36 to the photoconductor drum 32 and the amount of toner charge tend to change, thus increasing the possibility of adherence of substances to the photoconductor drum 32.
The abutment part 100 is provided to remove the adhering substances. Disposing the abutment part 100 astride the extended line D1 of the boundary C1 is advantageous in efficiently removing the substances adhering to the photoconductor drum 32.
Examples materials of the abutment part 100 include polyacetal (POM). It is to be noted that, although the abutment part 100 is provided on one side in the process unit 31 according to the first embodiment, alternatively, the abutment part 100 may be provided on the line extending from the boundary C1 in each of the end portions. This applies to the subsequent drawings as well.
As shown in
In the first embodiment described above, collision of toner against the abutment part 100 is avoided by disposing the abutment part 100 upstream from the developing roller 36. By contrast, in the second embodiment, since the abutment part 100 is disposed outside the image area in which the photoconductor drum 32 bears a toner image, the abutment part 100 does not disturb the toner image even when the abutment part 100 is positioned downstream from the developing roller 36.
In the process unit 31 according to the third embodiment, the abutment part 100 is disposed in a range B3 downstream from the developing roller 36 and upstream from a transfer position facing the primary-transfer roller 45. A wedgewise space M is defined between the range B3 of the photoconductor drum 32 and the intermediate transfer belt 43.
When the abutment part 100 is disposed downstream from the developing roller 36 and upstream from the cleaning blade 35, the abutment part 100 can be in the space M. With effective use of dead space, the image forming apparatus 1 can become more compact. Not only in image forming apparatuses employing intermediate image transfer but also those employing direct image transfer, the space M is present upstream from the transfer position and between the photoconductor drum 32 and a conveying member such as a conveyance belt to transport sheets to which toner images are transferred. Accordingly, the abutment part 100 can be disposed in the space M similarly.
Additionally, in tandem image forming apparatuses such as the image forming apparatus 1 shown in
At that time, since the abutment part 100 is upstream in the rotation direction A from the transfer position in the third embodiment, the toner TR reversely transferred and remaining on the photoconductor drum 32 can be inhibited from colliding against the abutment part 100, thus inhibiting scattering of toner.
As shown in
The possibility of adherence of substances, such as free substances released from toner, to the photoconductor drum 32 is higher also at a position corresponding to a boundary C2 (second boundary) that defines an end of the toner layer range L2.
Therefore, in the process unit 31 according to the fourth embodiment, the abutment part 100 is disposed on the surface of the photoconductor drum 32 astride a position corresponding to the boundary C2 (on an extended line D2 extending from the boundary C2 to the photoconductor drum 32 in
As shown in
As shown in
For example, the LED head 111 includes a light-emitting element employing an LED or an organic LED. The LED head 111 irradiates the photoconductor drum 32 with the laser beam from the light-emitting element according to each color separation component, thereby exposing the photoconductor drum 32.
When the LED head 111 exposes the photoconductor drum 32, it is necessary to keep a predetermined distance between the LED head 111 and the photoconductor drum 32 to set a focal length therebetween. When the abutment parts 100 serve as the spacers between the photoconductor drum 32 and the holder 110, the LED head 111 held by the holder 110 can keep a preferable focal length to the photoconductor drum 32. This configuration is also advantageous in inhibiting deviations in relative positions of the photoconductor drum 32 and the LED head 111 even if the position of the photoconductor drum 32 deviates due to rotation or the like.
Additionally, the number of components can be reduced by using the abutment parts 100 to remove substances adhering to the photoconductor drum 32 as the spacers.
Referring to
In such a configuration, as an approach to remove the foreign substances FS that fill the gap between the photoconductor drum 32 and cleaning blade 35, the photoconductor drum 32 may be rotated in reverse. As shown in
As shown in
While the photoconductor drum 32 repeats the normal rotation and the reverse rotation indicated by arrows A and A′, the amount of substances adhering to the surface of the charging roller 33 increases as shown in
In view of the foregoing, a countermeasure therefore is taken in the following embodiment to maintain reliable image formation for a long time.
As shown in
Specifically, in each abutment part 100, the inner end 100B faces the upstream side in the rotation direction A, and the outer end 100C faces the downstream side in the rotation direction A. In other words, the outer end 100C is downstream from the inner end 100B in the rotation direction A of the photoconductor drum 32. As the photoconductor drum 32 rotates in the rotation direction A, the substances adhering to the surface of the photoconductor drum 32 flow downstream in that direction and are removed by the abutment part 100 from the photoconductor drum 32. Due to the inclination of the abutment part 100, the substances thus removed flow, as indicated by arrow E shown in
As shown in
It is to be noted that, although the abutment parts 100 and the blocking members 120 are on both sides in the axial direction of the photoconductor drum 32 in FIG. 15B+, alternatively, the abutment part 100 and the blocking member 120 may be provided to only one side in the axial direction. Additionally, as shown in
Referring to
As shown in
Referring to
As the photoconductor drum 32 rotates in the rotation direction A, the foreign substances again accumulate on the abutment part 100, and a part of those foreign substances flows to the outer side on the photoconductor drum 32 in the axial direction.
Thus, even if the photoconductor drum 32 repeats the normal rotation and the reverse rotation indicated by arrows A and A′, the substances removed from the photoconductor drum 32 by the abutment part 100 reciprocate between the abutment part 100 and the blocking member 120 and do not adhere to the charging roller 33. Additionally, the inclination of the abutment part 100 can cause the accumulation on the abutment part 100 to flow to the axial outer side of the photoconductor drum 32. Thus, with the blocking member 120 disposed on the circumference on which the abutment part 100 is positioned, separately from the abutment part 100, the substances removed from the abutment part 100 can be inhibited from accumulating on the surface of the charging roller 33 when the photoconductor drum 32 rotates in reverse. Then, the foreign substances can be blocked by the blocking member 120 and again flow to the abutment part 100 while the photoconductor drum 32 makes normal rotation.
In the above-described sixth embodiment, although the foreign substances accumulating on the abutment part 100 can flow to the outer side due to the inclination of the abutment part 100, there in a risk that, when the photoconductor drum 32 rotates in reverse, the foreign substances accumulating on the abutment part 100 flow to the charging roller 33 and accumulate thereon.
By contrast, in the seventh embodiment, since the blocking member 120 can block the passage of foreign substances, the foreign substances can be inhibited from accumulating on the charging roller 33, and preferable image formation can be maintained. Additionally, it is preferable that the blocking member 120 is positioned at least in a range of the abutment part 100 in the axial direction of the photoconductor drum 32 to secure prevention of accumulation of foreign substances on the charging roller 33.
According to the seventh embodiment, the process unit 31 is provided with three countermeasures, namely, the cleaning blade 35, the blocking member 120, and the abutment part 100, to remove foreign substances such as toner adhering on the photoconductor drum 32. When C100 represents a capability of the abutment part 100 to remove the foreign substances, C35 represents that of the cleaning blade 35, and C120 represents that of the cleaning blade 35, these elements are designed to satisfy the relation of C100>C35>C120.
With such order in the removing capability, in the normal direction of the photoconductor drum 32, the blocking member 120 allows passage of most of foreign substances that are not removed by the cleaning blade 35, and the abutment part 100 on the downstream side can remove those foreign substances.
This configuration is adopted because the blocking member 120 is expected to block passage of foreign substances and cause the foreign substances to accumulate thereon only in the reverse rotation of the photoconductor drum 32. In such a configuration, it is preferred that the blocking member 120 be made of fibers or include a fiber.
Additionally, in this configuration, foreign substances rarely accumulate on the face 120a of the blocking member 120 on the upstream side in the rotation direction A while the photoconductor drum 32 rotates in the rotation direction A (i.e., the normal rotation direction). Accordingly, this configuration can reduce the amount of foreign substance that flow from the blocking member 120 toward the charging roller 33 while the photoconductor drum 32 rotates in reverse.
In
In the process unit 31 according to the eighth embodiment, not only the abutment parts 100, but also the blocking members 120 are disposed oblique to the axial direction of the photoconductor drum 32. The blocking members 120 are inclined reversely to the abutment parts 100 so that the inner end 120D of the blocking member 120 faces the downstream side in the rotation direction A and the outer end 120C faces the upstream side in the rotation direction A. In other words, the outer end 120C of the blocking member 120 is downstream in the reverse rotation direction A′ from the inner end 120D of the blocking member 120.
In the blocking member 120, since foreign substances accumulate on the face 120b on the downstream in the rotation direction A, this inclination can direct the foreign substances accumulating thereon to the axial outer side of the photoconductor drum 32. Not only the abutment part 100 but also the blocking member 120 can direct the foreign substances to the axial outer side of the photoconductor drum 32. Accordingly, compared with the seventh embodiment, a greater amount of foreign substances can flow to the outer side, thus better inhibiting accumulation of foreign substances.
Additionally, to ensure that the blocking members 120 direct the foreign substances to the outer side beyond the charging roller 33 in the axial direction, it is preferred that, in the axial direction of the photoconductor drum 32, the outer end 120C of the blocking member 120 be positioned at or beyond an axial end of the charging roller 33 in the axial direction of the photoconductor drum 32.
It is to be noted that, although the abutment parts 100 and the blocking members 120 are oblique to the axial direction of the photoconductor drum 32 in the process units 31 according to the seventh and eighth embodiments, alternatively, both or one of the abutment parts 100 and the blocking members 120 may be parallel to the axial direction. Although the effect of directing foreign substances to the axial outer side of the photoconductor drum 32 is limited, such a configuration can inhibit the inconvenience that the foreign substances once removed accumulate on the charging roller 33 in the reverse rotation of the photoconductor drum 32.
Additionally, the blocking member 120 and the abutment part 100 may be united together although they are separate in the process units 31 according to the seventh and eighth embodiments. That is, a single component having multiple abutment portions against the photoconductor drum 32 may be used instead.
Yet additionally, regarding the placement of the abutment parts 100, although the multiple abutment parts 100 are provided upstream from the developing roller 36 and downstream from the charging roller 33 in the seventh and eighth embodiments, the placement of abutment parts 100 are not limited thereto. For example, one or multiple abutment parts 100 may be disposed between the cleaning blade 35 and the charging roller 33 or disposed in the range B2 shown in
In the process unit 31 according to the ninth embodiment shown in
In
As shown in
Additionally, the abutment part 100-1 is pressed toward the photoconductor drum 32 by a bias member such as a spring, and thus the first and second abutment portions 150 and 151 abut against the photoconductor drum 32, conforming to the surface of the photoconductor drum 32.
The first and second abutment portions 150 and 151 are oblique to the axial direction of the photoconductor drum 32 and inclination thereof are opposite to each other. Specifically, the first abutment portion 150 is inclined so that the inner end 150c (i.e., a downstream end) faces the downstream side in the rotation direction A, and the outer end 150d faces the upstream side in the rotation direction A. In other words, the inner end 150c is downstream from the outer end 150d in the rotation direction A. By contrast, the second abutment portion 151 is inclined so that the inner end 151c faces the upstream side in the rotation direction A, and the outer end 151d faces the downstream side in the rotation direction A. In other words, the inner end 151c is upstream from the outer end 151d in the rotation direction A.
Additionally, the first and second abutment portions 150 and 151 respectively include upstream guide faces 150a and 151a to guide foreign substances while the photoconductor drum 32 rotates in the rotation direction A (i.e., normal rotation). The upstream guide faces 150a and 151a face the upstream side in the rotation direction A of the photoconductor drum 32. In the rotation direction A of the photoconductor drum 32, the upstream guide face 150a of the first abutment portion 150 is inclined to the axial inner side of the photoconductor drum 32. By contrast, in the rotation direction A of the photoconductor drum 32, the upstream guide face 151a of the second abutment portion 151 is inclined to the axial outer side of the photoconductor drum 32. The first abutment portion 150 further includes a downstream guide face 150b to guide foreign substance in the reverse rotation of the photoconductor drum 32. The downstream guide face 150b faces the downstream side in the rotation direction A of the photoconductor drum 32. Similar to the upstream guide face 150a thereof, in the rotation direction A, the downstream guide face 150b is inclined to the axial inner side of the photoconductor drum 32.
Additionally, the inner end 150c on the downstream side in the rotation direction is disposed adjacent to the second abutment portion 151 across a clearance, and the inner end 150c and the second abutment portion 151 are on an identical circumference of rotation. When the photoconductor drum 32 rotates in the rotation direction A (i.e., normal rotation), the foreign substances removed by the first abutment portion 150 can flow to the second abutment portion 151 efficiently, guided by the upstream guide face 150a. The foreign substances accumulating on the second abutment portion 151 can flow to the axial outer side of the photoconductor drum 32 along the upstream guide face 151a due to the above-described placement.
As shown in
Referring to
When the photoconductor drum 32 rotates in the direction reverse to the direction indicated by arrow A′, the foreign substances accumulating in the width J on the first abutment portion 150 flow toward the charging roller 33. Additionally, out of the foreign substances accumulating on the second abutment portion 151 (the upstream guide face 151a in particular), the foreign substances accumulating in the width K flow toward the charging roller 33, but the rest accumulates on the downstream guide face 150b of the first abutment portion 150.
By contrast, if the first abutment portion 150 serving as the blocking member is not provided, not only the foreign substances accumulating in the width K but also the foreign substances accumulating in the entire width L flow to the charging roller 33 (shown in
From the description above, providing the first abutment portion 150 to satisfy the relation J+K<L can reduce the amount of foreign substances that flow to the charging roller 33 in the reverse rotation compared with the case where the first abutment portion 150 is not provided.
Numerous additional modifications to the above-described embodiments and variations are possible. It is therefore to be understood that, within the scope of the appended claims, the disclosure of this patent specification may be practiced otherwise than as specifically described herein.
Although the above-described embodiments concerns the developing roller in which the surface state or surface property is different over the axial direction, various aspects of the present specification adapt to configurations in which the surface state or surface property is uniform in the axial direction. Specifically, in such developing rollers, it is possible that foreign substances adhere to a position (on the photoconductor drum 32) corresponding to the boundary (C2 in
The Image forming apparatus to which various aspects of the present specification are applicable are not limited to the multicolor image forming apparatus shown in
Number | Date | Country | Kind |
---|---|---|---|
2013-220979 | Oct 2013 | JP | national |
2013-239982 | Nov 2013 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
6564034 | Abe | May 2003 | B1 |
20070036569 | Taguchi et al. | Feb 2007 | A1 |
20090052960 | Tanaka et al. | Feb 2009 | A1 |
20090190939 | Satoh et al. | Jul 2009 | A1 |
20120099898 | Ochi et al. | Apr 2012 | A1 |
20120114348 | Suzuki et al. | May 2012 | A1 |
20130236217 | Nagatomo et al. | Sep 2013 | A1 |
Number | Date | Country |
---|---|---|
2006-003733 | Jan 2006 | JP |
Number | Date | Country | |
---|---|---|---|
20150117901 A1 | Apr 2015 | US |