Process variable transmitter with diagnostics

Information

  • Patent Grant
  • 7949495
  • Patent Number
    7,949,495
  • Date Filed
    Wednesday, August 17, 2005
    19 years ago
  • Date Issued
    Tuesday, May 24, 2011
    13 years ago
Abstract
A process variable transmitter with diagnostics based on power spectral density (PSD) analysis of a process variable sensor signal is provided. In one embodiment, the process variable transmitter is a pressure transmitter and the diagnostics are used to diagnose impulse line obstruction or impending obstruction. Other diagnostics are also useful such as diagnosing primary element degradation. The sensor signal is digitized and the digitized signal is transferred into the frequency domain. The power of the frequencies on the sensor signal is examined to provide the enhanced diagnostics. In one aspect diagnostics are generated directly with the sensor PSD data. In another aspect, the PSD analysis is used to tune a filter in order to enhance traditional diagnostic algorithms.
Description
BACKGROUND OF THE INVENTION

Process variable transmitters are used in industrial process control environments and couple to the process fluid and provide measurements relative to the process. Process variable transmitters can be configured to monitor one or more process variables associated with fluids in a process plant such as slurries, liquids, vapors and gasses in chemical, pulp, petroleum, gas, pharmaceutical, food and other fluid processing plants. The monitored process variables can be pressure, temperature, flow, level, pH, conductivity, turbidity, density, concentration, chemical composition or other properties of fluids. Process variable transmitter includes one or more sensors that can be either internal to the transmitter or external to the transmitter, depending on the installation needs of the process plant. Process variable transmitters generate one or more transmitter outputs that represent the sensed process variable. Transmitter outputs are configured for transmission over long distances to a controller or indicator via communication buses 242. In typical fluid processing plants, a communication bus 242 can be a 4-20 mA current loop that powers the transmitter, or a fieldbus connection, a HART protocol communication or a fiber optic connection to a controller, a control system or a readout. In transmitters powered by a 2 wire loop, power must be kept low to provide intrinsic safety in explosive atmospheres.


One type of process variable transmitter is known as a pressure transmitter. Typically, a pressure transmitter will be coupled to the process fluid through impulse lines. Pressure transmitter operation can easily deteriorate if one or both of the impulse lines becomes plugged.


Disassembly and inspection of the impulse lines is one method used to detect and correct plugging of lines. Another known method for detecting plugging is to periodically add a “check pulse” to the measurement signal from a pressure transmitter. This check pulse causes a control system connected to the transmitter to disturb the flow. If the pressure transmitter fails to accurately sense the flow disturbance, an alarm signal is generated indicating line plugging. Another known method for detecting plugging is sensing of both static and differential pressures. If there is inadequate correlation between oscillations in the static and differential pressures, then an alarm signal is generated indicating line plugging. Still another known method for detecting line plugging is to sense static pressures and pass them through high pass and low pass filters. Noise signals obtained from the filters are compared to a threshold, and if variance in the noise is less than the threshold, then an alarm signal indicates that the line is blocked.


These known methods use techniques which can increase the complexity and reduce reliability of the devices. Moreover, while these methods can sometimes detect a plugged impulse line, they generally cannot detect when deposits begin to collect within the impulse line, but do not yet plug the impulse line. Thus, operation may continue even though the pressure transmitter's ability to sense pressure has been compromised to some extent. There is thus a need for a better diagnostic technology providing more predictive, less reactive maintenance for reducing cost or improving reliability.


SUMMARY OF THE INVENTION

A process variable transmitter with diagnostics based on power spectral density (PSD) analysis of a process variable sensor signal is provided. In one embodiment, the process variable transmitter is a pressure transmitter and the diagnostics are used to diagnose impulse line obstruction or impending obstruction. Other diagnostics are also useful such as diagnosing primary element degradation. The sensor signal is digitized and the digitized signal is transferred into the frequency domain. The power of the frequencies on the sensor signal is examined to provide the enhanced diagnostics. In one aspect diagnostics are generated directly with the sensor PSD data. In another aspect, the PSD analysis is used to tune a filter in order to enhance traditional diagnostic algorithms.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is an illustration of a typical fluid processing environment for a diagnostic pressure transmitter.



FIG. 2 is a pictorial illustration of an embodiment of a differential pressure transmitter used in a fluid flow meter that diagnoses the condition of its impulse lines and/or primary element.



FIG. 3 is a block diagram of a fluid flow meter that provides diagnostics in accordance with embodiments of the present invention.



FIGS. 4-6 are graphs illustrating PSD analysis of sensor data being indicative of impulse piping obstruction.



FIG. 7 is a flow chart of a method of training a process variable transmitter for PSD-based diagnostics in accordance with embodiments of the present invention.



FIG. 8 is a flow chart of a method of selecting digital filter characteristics based upon a PSD analysis in accordance with an embodiment of the present invention.



FIG. 9 is a flow chart of a method of performing PSD-based diagnostics in accordance with embodiments of the present invention.



FIG. 10 is a graph of amplitude versus frequency versus time of a process variable signal.



FIG. 11 is a block diagram of a discrete wavelet transformation.



FIG. 12 is a graph showing signals output from a discrete wavelet transformation.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Embodiments of the present invention generally perform a spectral analysis to generate diagnostic information relative to a process variable transmitter. This analysis is described as occurring within a microprocessor system within the process variable transmitter, but can be performed by any suitable processing system. The processing system 88 can perform a wavelet transformation, discrete wavelet transformation, Fourier transformation, or use other techniques to determine the spectrum of the sensor signal. The power of the distributed frequencies is determined by monitoring such a converted signal over time. One example of this is the power spectral density (PSD). The power spectral density can be defined as the power (or variance) of a time series and can be described as how the power (or variance) of a time series is distributed with frequency. For example, this can be defined as the Fourier transform of an auto-correlation sequence of the time series. Another definition of power spectral density is the squared modulus of the Fourier transform of the time series, scaled by an appropriate constant term.


In FIG. 1, a typical environment for diagnostic flow or pressure measurement is illustrated at 220. Process variable transmitters such as flow meter 230, level (pressure) transmitters 232, 234 on tank 236 and integral orifice flow meter 238 are shown connected to control system 240.


In FIG. 1, integral orifice flow meter 238 is provided with a diagnostic output which is also coupled along the communication bus 242 connected to it. Control system 240 can be programmed to display the diagnostic output for a human operator, or can be programmed to alter its operation when there is a diagnostic warning from flow meter 238. Control system 240 controls the operation of output devices such as control valve 244, pump motors or other controlling devices.


In FIG. 2, an exploded view of a typical diagnostic transmitter 82 according to the present invention is shown generally. Transmitter 82 includes a flange 83 for receiving a differential pressure, a differential pressure sensor 31, electronics including an analog to digital converter 84, a microprocessor system 88, a digital to analog converter 96, and a digital communications circuit 100. Transmitter 82 is bolted to flange adapter 87. In embodiments shown herein, sensor 31 can comprise an absolute, gage, differential or other type of pressure sensor. Embodiments of the invention are useful in a number of applications, but are particularly advantageous where a process device is coupled to the process through impulse piping. Microprocessor 88 is programmed with diagnostic algorithms, which will be explained in greater detail below. Flange adapter 87 connects to impulse pipes which, in turn, connect to flow around a primary flow element (not shown in FIG. 2). The arrangement of transmitter 82 of FIG. 2 is explained in more detail in FIG. 3.



FIG. 3 is a block diagram showing a fluid flow meter 60 adapted to sense fluid flow 22 in pipe 24. Fluid flow meter 60 includes a pressure generator 26 that includes a primary element 28 and impulse lines 30 that couple pressures generated in the fluid flow around the primary element 28 to a differential pressure sensor 31 in a pressure transmitter 82. The term “pressure generator” as used in this application means a primary element (e.g., an orifice plate, a pitot tube averaging pitot tubing, a nozzle, a venturi, a shedding bar, a bend in a pipe or other flow discontinuity adapted to cause a pressure drop in flow) together with impulse pipes or impulse passageways that couple the pressure drop from locations near the primary element to a location outside the flow pipe. The spectral characteristics of this pressure presented by this defined “pressure generator” at a location outside the flow pipe to a connected pressure transmitter 82 can be affected by the condition of the primary element as well as by the condition of the impulse pipes. The connected pressure transmitter 82 can be a self-contained unit, or it can be fitted with remote seals as needed to fit the application. A flange 83 on the pressure transmitter 82 (or its remote seals) couples to a flange adapter 87 on the impulse lines 30 to complete the pressure connections. Pressure transmitter 82 couples to a primary flow element 28 via impulse lines 30 to sense flow. The pressure transmitter 82 comprises a differential pressure sensor 31 adapted to couple to the impulse lines 30 via a flange arrangement. An analog to digital converter 84 couples to the pressure sensor 31 and generates a series of digital representations of the sensed pressure. These digital representations are used by flow circuit 34 to compute flow and provide an indication of flow along line 36.


In one embodiment of the present invention, analog-to-digital converter is a known Sigma-Delta converter providing 22 conversions per second. In this embodiment, each converted digital representation of the process variable becomes a data point for Power Spectral Density (PSD) analysis. Preferably, a 32 point Fast Fourier Transform (FFT) is applied to the digital process data points to generate PSD information. Since the PSD analysis operates using a known analog-to-digital converter operating in a known manner, this embodiment of the present invention can be implemented wholly in software by adapting the operation of microprocessor system 88. Thus, embodiments of the present invention can be applied to process variable transmitters that are currently installed in the field, or already manufactured, without having to modify their circuitry. Algorithms for performing the PSD analysis are set forth below.


Sigma-Delta converters are often used in the process measurement and control industry due to their fast conversion times and high accuracy. Sigma-Delta converters generally employ an internal capacitor charge pumping scheme that generates a digital bitstream that is analyzed, generally by counting positive 1's over a set interval. For example, one Sigma-Delta converter currently in use provides a bitstream signal consisting of 50% 1's to indicate the minimum pressure measurement, and 75% 1's to indicate the maximum pressure measurement. The digital bitstream is generally filtered to remove or attenuate fluctuating components prior to determination of the flow rate. The filtered data is then used with well-known equations to compute either the mass flow rate or the volumetric flow rate.


In accordance with another embodiment of the present invention, the digital bitstream within the analog-to-digital converter is used directly for PSD analysis. This bitstream usually has a frequency that is many orders of magnitude higher than the conversion frequency. The digital bitstream can have a frequency in excess of about 55 kHz. For example, a known Sigma-Delta converter provides a digital bitstream that has a frequency of approximately 57 kHz. While those skilled in the art will recognize many ways in which PSD analysis can be performed upon the digital bitstream, a preferred method is as follows. For a given interval, such as ten seconds, digital data from the bitstream is collected and saved. In the example above, 10 seconds of 57 kHz data yields 570,000 stored bits. The DC component can be optionally removed from the stored data by subtracting the average bit value (Number of 1's divided by the total number of bits) from each stored bit. Next, power spectral density is computed on the adjusted data. This is preferably done using a 65536 point FFT and a Hanning Window size of 65536. The size of the FFT was chosen because it is the power of 2 closest to the sampling bit frequency, and given a duration of ten seconds, it provides acceptable averaging of the spectrum. However, other sizes may be used in accordance with embodiments of the present invention.


Power spectral density, Fi, can be calculated using Welch's method of averaged periodograms for a given data set. The method uses a measurement sequence x(n) sampled at fs samples per second, where n=1, 2, . . . N. A front end filter with a filter frequency less than fs/2 is used to reduce aliasing in the spectral calculations. The data set is divided into Fk,i as shown in Eq. 1:










F

k
,
i


=


(

1
/
M

)













n
=
1

M





x
k



(
n
)











-
j







2
Π


i





Δ





fn






2






Eq
.




1








There are Fk,i overlapping data segments and for each segment, a periodogram is calculated where M is the number of points in the current segment. After all periodograms for all segments are evaluated, all of them are averaged to calculate the power spectrum:









Fi
=


(

1
/
L

)










k
=
1

L



F

k
,
i








Eq
.




2








Once a power spectrum is obtained for a training mode, this sequence is stored in memory, preferably EEPROM, as the baseline power spectrum for comparison to real time power spectrums. Fi is thus the power spectrum sequence and i goes from 1 to N which is the total number of points in the original data sequence. N, usually a power of 2, also sets the frequency resolution of the spectrum estimation. Therefore, Fi is also known as the signal strength at the ith frequency. The power spectrum typically includes a large number points at predefined frequency intervals, defining a shape of the spectral power distribution as a function of frequency.


In the performance of diagnostics using power spectral density, a relatively larger sample of the spectral density at baseline historical conditions and a relatively smaller sample of the spectral density at monitoring conditions are compared. The relatively smaller sample allows for a real time indication of problems in about 1 second. An increase in the related frequency components of the power spectrum can indicate the degradation of one or both impulse lines, and/or of the primary element. FIGS. 4-6 illustrate PSD data from a digital bitstream. These figures show three different impulse line conditions: fully open; partially obstructed with 0.0135 inch diameter holes; and substantially obstructed with 0.005 inch holes. As can be seen from FIGS. 5 and 6, integrating the bitstream data from 1 to 10 Hertz, and/or from 10-30 Hertz provides an effective indication of impulse line plugging.


Microprocessor system 88 receives the series of digital representations (either individual digital conversions, or digital bitstream, or any combination thereof. Microprocessor system 88 has an algorithm stored therein that compares PSD data during a monitoring mode with PSD data acquired during a training mode. This comparison allows the process variable transmitter to detect fault that can affect the process variable measurement. This fault can be the plugging of impulse lines in a pressure transmitter, the deterioration of a primary element, or any other factor. System 88 generates diagnostic data 62 as a function of the current data set relative to the historical. A digital to analog converter 96 coupled to the microprocessor system 88 generates an analog transmitter output 98 indicative of the sensed flow rate. A digital communication circuit 100 receives the diagnostic data 94 from the microprocessor system 88 and generates a transmitter output 102 indicating the diagnostic data. The analog output 98 and the diagnostic data 102 can be coupled to indicators or controllers as desired.



FIG. 7 is a flow diagram of a method of training a process variable transmitter for diagnostics in accordance with embodiments of the present invention. Method 250 begins at Start block 252. Block 252 can be executed anytime that there is a relative certainty that the process variable transmitter is fully functional and coupled to a process that is operating within specifications. Usually block 252 will be initiated by a technician, but block 252, in some circumstances, may be initiated remotely. Method 250 continues at block 254 where process value data is received. This data can include a plurality of digital indications. These indications can be individually converted process variable conversions; bits in a bitstream within an analog-to-digital converter; or any combination thereof. At block 256, an FFT is performed on the digital data. This FFT can be done in accordance with any known methods. Moreover, alternate methods for analyzing spectral components of the data can be performed instead of, or in addition to, FFT at block 256. At block 258, the power of the FFT's is calculated. This power information is then stored in the process variable transmitter. At step 260, the method determines if sufficient training has occurred. This can be done by checking whether sufficient time has passed, whether sufficient training data has been acquired, or any other suitable method. If training is not done, method 260 returns to block 254 and training continues. However, if training is determined to be complete at step 260, method 250 will end and the final set of power data Fi will be stored in nonvolatile memory within the process variable transmitter.


While many embodiments of the present invention employ PSD analysis of process sensor data for providing diagnostics directly, one embodiment does not. FIG. 8 illustrates a method of selecting digital filter parameters using PSD analysis. Method 270 begins by executing a training method 272, which is preferably identical to method 250. At block 274, the power of the frequencies is examined. At block 276, digital filter frequencies are chosen based upon an analysis of the power spectral density. The choice of frequencies includes selecting which “bins” in the FFT to use. The question is not only which bins to use, but also how many bins to use. This choice can be as simple as selecting one bin, or more complex. For example, non-adjoining bins could be selected; adjoining bins could be selected; all bins that contribute to the whole could be selected and weighed based on their respective magnitudes; or any combination thereof. Choosing bins can be done using a number of criteria. For example, the bin(s) with the most power could be selected; the bin(s) with the most variance in power could be selected; the bin(s) with the least variance in power could be selected; the bin(s) with the least magnitude could be selected; the bin(s) with the highest standard deviation could be selected; the bin(s) with the lowest standard deviation could be selected; or a group of adjacent bins with similar magnitudes could be selected. Once the bins are selected, the corresponding filter characteristics are used to digitally filter the sensor data, as indicated at block 278. The so filtered data can then be used for more effective process measurement and/or diagnostics. Thus, the filter characteristics can be chosen dynamically based upon PSD analysis of the sensor data. The filtered data could even be used with known statistical line plugging algorithms and techniques in accordance with embodiments of the present invention.



FIG. 9 is a flow chart of a method of performing PSD-based diagnostics in accordance with embodiments of the present invention. Many factors can affect the digital bitstream and thus the process variable. The impulse lines can become clogged and/or the primary element can become eroded or fouled. Method 280 begins at block 282, where training occurs. Block 282 is preferably identical to training method 250 described with respect to FIG. 7. Once training has completed, method 280 moves to block 284 where the process value data is calculated. Again, this data can be a set of individual analog-to-digital converted readings from converter 84, or the data include all or part of a digital bitstream generated within converter 84. At block 286, the data is converted into the frequency domain, preferably using FFT. At block 288, the power of the FFT's is calculated yielding a set Fi of power spectral data related to the process variable. At block 290, the set Fi is compared to the stored training data set Fi. This comparison can take many forms. For example, the comparison can include examining the sum of the magnitudes for selected spectral ranges. The comparison can also include comparing the standard deviation and mean of Fi compared to the standard deviation and mean of Fi. Yet another comparison includes comparing frequency ranges that are consistently of a higher or lower magnitude. Yet another comparison includes comparing the deviation of a sum of the magnitudes over the selected frequencies. Referring back to FIG. 6, using digital bitstream data, the “fully open” condition would correspond to the training set Fi. Thus, comparing the integral of the bitstream spectrum from a selected frequency range can show that when the impulse lines are beginning to clog, the integral of the spectrum drops substantially. One frequency range that has worked well in testing is between 10 and 40 Hz. However, a range between 10 and 30 Hz is also believed to be beneficial. Finally, there appears to be useful information provided in the 30-40 Hz range that may also be useful for detecting partial, or full, impulse line plugging. The difference between Fi and Fi as indicated by the integral of a selected spectrum can be compared to a preselected threshold to determine if a fault exists. At block 292, fault determination is performed based upon the comparison(s) in block 290. If a fault is revealed, control passes to block 294 where the fault is indicated, and process variable transmitter operation can be optionally halted. This fault indication can be a local indication such as a device alarm, or an indication communicated to a remote entity such as a control room or operator. The fault indication may indicate a current critical fault, or it may indicate an impending fault. If no fault is found, control returns to block 284 and the method continues to monitor the process device operation.


Any of the methods can be stored on a computer-readable medium as a plurality of sequences of instructions, the plurality of sequences of instructions including sequences that, when executed by a microprocessor system in a pressure transmitter cause the pressure transmitter to perform a diagnostic method relative to a primary element and impulse lines couplable to the transmitter.


In one embodiment, microprocessor system 88 includes signal preprocessor which is coupled to sensor 31 through analog to digital converter 84 which isolates signal components in the sensor signal such as frequencies, amplitudes or signal characteristics which are related to a plugged impulse line 30 or degraded primary element 28. The signal preprocessor provides an isolated signal output to a signal evaluator in microprocessor 88. The signal preprocessor isolates a portion of the signal by filtering, performing a wavelet transform, performing a Fourier transform, use of a neural network, statistical analysis, or other signal evaluation techniques. Such preprocessing is preferably implemented in microprocessor 88 or in a specialized digital signal processor. The isolated signal output is related to a plugged or plugging impulse line 30 or degraded primary element 28 sensed by sensor 31.


The signal components are isolated through signal processing techniques in which only desired frequencies or other signal characteristics such as amplitude are identified and an indication of their identification is provided. Depending upon the strength signals to be detected and their frequency, signal preprocessor can comprise a filter, for example a band pass filter, to generate the isolated signal output. For more sensitive isolation, advanced signal processing techniques are utilized such as a Fast Fourier transform (FFT) to obtain the spectrum of the sensor signal. In one embodiment, the signal preprocessor comprises a wavelet processor which performs a wavelet analysis on the sensor signal as shown in FIGS. 10, 11 and 12 using a discrete wavelet transform. Wavelet analysis is well suited for analyzing signals which have transients or other non-stationary characteristics in the time domain. In contrast to Fourier transforms, wavelet analysis retains information in the time domain, i.e., when the event occurred.


Wavelet analysis is a technique for transforming a time domain signal into the frequency domain which, like a Fourier transformation, allows the frequency components to be identified. However, unlike a Fourier transformation, in a wavelet transformation the output includes information related to time. This may be expressed in the form of a three dimensional graph with time shown on one axis, frequency on a second axis and signal amplitude on a third axis. A discussion of wavelet analysis is given in On-Line Tool Condition Monitoring System With Wavelet Fuzzy Neural Network, by L. Xiaoli et al., 8 JOURNAL OF INTELLIGENT MANUFACTURING pgs. 271-276 (1997). In performing a continuous wavelet transformation, a portion of the sensor signal is windowed and convolved with a wavelet function. This convolution is performed by superimposing the wavelet function at the beginning of a sample, multiplying the wavelet function with the signal and then integrating the result over the sample period. The result of the integration is scaled and provides the first value for continuous wavelet transform at time equals zero. This point may be then mapped onto a three dimensional plane. The wavelet function is then shifted right (forward in time) and the multiplication and integration steps are repeated to obtain another set of data points which are mapped onto the 3-D space. This process is repeated and the wavelet is moved (convolved) through the entire signal. The wavelet function is then scaled, which changes the frequency resolution of the transformation, and the above steps are repeated.


Data from a wavelet transformation of a sensor signal from sensor 31 is shown in FIG. 10. The data is graphed in three dimensions and forms a surface 300. As shown in the graph of FIG. 10, the sensor signal includes a small signal peak at about 1 kHz at time t1 and another peak at about 100 Hz at time t2. Through subsequent processing by the signal evaluator, surface 300 or portions of surface 300 are evaluated to determine impulse piping or primary element degradation.


The continuous wavelet transformation described above requires extensive computations. Therefore, in one embodiment, microprocessor system 88 performs a discrete wavelet transform (DWT) which is well suited for implementation in microprocessor system. One efficient discrete wavelet transform uses the Mallat algorithm, which is a two channel sub-band coder. The Mallet algorithm provides a series of separated or decomposed signals which are representative of individual frequency components of the original signal. FIG. 11 shows an example of such a system in which an original sensor signal S is decomposed using a sub-band coder of a Mallet algorithm. The signal S has a frequency range from 0 to a maximum of fMAX. The signal is passed simultaneously through a first high pass filter having a frequency range from ½ fMAX to fMAX, and a low pass filter having a frequency range from 0 to ½ fMAX. This process is called decomposition. The output from the high pass filter provides “level 1” discrete wavelet transform coefficients. The level 1 coefficients represent the amplitude as a function of time of that portion of the input signal which is between ½ fmax and fMAX. The output from the 0-½ fmax low pass filter is passed through subsequent high pass (¼ fmax−½ fmax) and low pass (0−¼ fmax) filters, as desired, to provide additional levels (beyond “level 1”) of discrete wavelet transform coefficients. The outputs from each low pass filter can be subjected to further decompositions offering additional levels of discrete wavelet transformation coefficients as desired. This process continues until the desired resolution is achieved or the number of remaining data samples after a decomposition yields no additional information. The resolution of the wavelet transform is chosen to be approximately the same as the sensor or the same as the minimum signal resolution required to monitor the signal. Each level of DWT coefficients is representative of signal amplitude as a function of time for a given frequency range. Coefficients for each frequency range are concatenated to form a graph such as that shown in FIG. 10.


In some embodiments, padding is added to the signal by adding data to the sensor signal near the borders of windows used in the wavelet analysis. This padding reduces distortions in the frequency domain output. This technique can be used with a continuous wavelet transform or a discrete wavelet transform. “Padding” is defined as appending extra data on either side of the current active data window, for example, extra data points are added which extend 25% of the current window beyond either window edge. In one embodiment, the padding is generated by repeating a portion of the data in the current window so that the added data “pads” the existing signal on either side. The entire data set is then fit to a quadratic equation which is used to extrapolate the signal 25% beyond the active data window.



FIG. 12 is an example showing a signal S generated by sensor 31 and the resultant approximation signals yielded in seven decomposition levels labeled level 1 through level 7. In this example, signal level 7 is representative of the lowest frequency DWT coefficient which can be generated. Any further decomposition yields noise. All levels, or only those levels which relate impulse piping or primary element degradation are provided.


Microprocessor 88 evaluates the isolated signal received from the signal preprocessing and in one embodiment, monitors an amplitude of a certain frequency or range of frequencies identified and provides a diagnostic output if a threshold is exceeded. Signal evaluator can also comprise more advanced decision making algorithms such as fuzzy logic, neural networks, expert systems, rule based systems, etc. Commonly assigned U.S. Pat. No. 6,017,143 describes various decision making systems which can be implemented in signal evaluator 154 and is incorporated herein by reference.


Microprocessor 88 performs diagnostics related to the impulse piping or primary element using information derived from the differential pressure sensor 31. The following describes a number of embodiments for realizing a diagnostic circuit. The diagnostic circuit can provide a residual lifetime estimate, an indication of a failure, an indication of an impending failure or a calibration output which is used to correct for errors in the sensed process variable.


Although the present invention has been described with reference to preferred embodiments, workers skilled in the art will recognize that changes can be made in form and detail without departing from the spirit and scope of the invention. For example, various function blocks of the invention have been described in terms of circuitry, however, many function blocks may be implemented in other forms such as digital and analog circuits, software and their hybrids. When implemented in software, a microprocessor performs the functions and the signals comprise digital values on which the software operates. A general purpose processor programmed with instructions that cause the processor to perform the desired process elements, application specific hardware components that contain circuit wired to perform the desired elements and any combination of programming a general purpose processor and hardware components can be used. Deterministic or fuzzy logic techniques can be used as needed to make decisions in the circuitry or software. Because of the nature of complex digital circuitry, circuit elements may not be partitioned into separate blocks as shown, but components used for various functional blocks can be intermingled and shared. Likewise with software, some instructions can be shared as part of several functions and be intermingled with unrelated instructions within the scope of the invention. The diagnostic output can be a predictive indicator of a future failure, such as the future partial or complete plugging of an impulse line. The diagnostics can be applied to impulse piping and/or primary elements. Finally, although various embodiments of the present invention have been described with respect to a pressure transmitter, embodiments of the present invention can be practiced with any process device where a sensor is coupled to the process device through an analog-to-digital converter.

Claims
  • 1. A process variable transmitter for coupling to a process and providing an indication of a variable of the process over a communication bus, the process variable transmitter comprising: a process variable sensor coupleable to the process to provide an analog indication of the variable;an analog-to-digital converter coupled to the process variable sensor and providing digital information indicative of the analog indication provided by the sensor and providing digital bitstream information;output circuitry configured to provide an output related to the process variable;a microprocessor system coupled to the analog-to-digital converter and configured to calculate power spectral density of the digital bitstream information using a Hanning window size of 65536 samples and responsively generate diagnostic information based on the power spectral density;wherein the digital information includes the digital bitstream information data having a frequency in excess of about 55 kHz; andwherein the digital bitstream information is transferred to the frequency domain using a Fast Fourier Transform (FFT).
  • 2. The transmitter of claim 1, wherein the diagnostic information is based on an integral of a spectrum ranging from about 1 to about 10 Hz.
  • 3. The transmitter of claim 1, wherein the diagnostic information is based on an integral of a spectrum ranging from about 10 to about 30 Hz.
  • 4. The transmitter of claim 1, wherein the diagnostic information is based on an integral of a spectrum ranging from about 10 to about 40 Hz.
  • 5. The transmitter of claim 1, wherein the diagnostic information is based on an integral of a spectrum ranging from about 30 to about 40 Hz.
  • 6. The transmitter of claim 1, wherein the Fast Fourier Transform has a size within a power of 2 of the frequency.
Parent Case Info

This is a Continuation-In-Part of application Ser. No. 10/801,073, now U.S. Pat. No. 7,254,518, filed Mar. 15, 2004 entitled Pressure Transmitter With Diagnostics, which application is a Continuation-In-Part of U.S. application Ser. No. 09/852,102, now U.S. Pat. No. 6,907,383, filed May 9, 2001, which is a Continuation-In-Part of U.S. application Ser. No. 09/257,896, now abandoned, filed Feb. 25, 1999, which is a Continuation-In-Part of U.S. application Ser. No. 08/623,569, filed Mar. 28, 1996, now U.S. Pat. No. 6,017,143; application Ser. No. 09/852,102 now U.S. Pat. No. 6,907,383, is also a Continuation-In-Part of U.S. application Ser. No. 09/383,828, now U.S. Pat. No. 6,654,697, which is a Continuation-In-Part of U.S. application Ser. No. 09/257,896, now abandoned, filed Feb. 25, 1999 which is a Continuation-In-Part of U.S. application Ser. No. 08/623,569, filed Mar. 28, 1996, now U.S. Pat. No. 6,017,143.

US Referenced Citations (310)
Number Name Date Kind
3096434 King Jul 1963 A
3404264 Kugler Oct 1968 A
3468164 Sutherland Sep 1969 A
3590370 Fleischer Jun 1971 A
3618592 Stewart Nov 1971 A
3688190 Blum Aug 1972 A
3691842 Akeley Sep 1972 A
3701280 Stroman Oct 1972 A
3849637 Caruso et al. Nov 1974 A
3855858 Cushing Dec 1974 A
3948098 Richardson et al. Apr 1976 A
3952759 Ottenstein Apr 1976 A
3973184 Raber Aug 1976 A
RE29383 Gallatin et al. Sep 1977 E
4058975 Gilbert et al. Nov 1977 A
4099413 Ohte et al. Jul 1978 A
4102199 Talpouras Jul 1978 A
4122719 Carlson et al. Oct 1978 A
4249164 Tivy Feb 1981 A
4250490 Dahlke Feb 1981 A
4279013 Cameron et al. Jul 1981 A
4337516 Murphy et al. Jun 1982 A
4399824 Davidson Aug 1983 A
4417312 Cronin et al. Nov 1983 A
4459858 Marsh Jul 1984 A
4463612 Thompson Aug 1984 A
4517468 Kemper et al. May 1985 A
4528869 Kubo et al. Jul 1985 A
4530234 Cullick et al. Jul 1985 A
4536753 Parker Aug 1985 A
4540468 Genco et al. Sep 1985 A
4571689 Hildebrand et al. Feb 1986 A
4630265 Sexton Dec 1986 A
4635214 Kasai et al. Jan 1987 A
4642782 Kemper et al. Feb 1987 A
4644479 Kemper et al. Feb 1987 A
4649515 Thompson et al. Mar 1987 A
4668473 Agarwal May 1987 A
4686638 Furuse Aug 1987 A
4707796 Calabro et al. Nov 1987 A
4720806 Schippers et al. Jan 1988 A
4736367 Wroblewski et al. Apr 1988 A
4736763 Britton et al. Apr 1988 A
4758308 Carr Jul 1988 A
4777585 Kokawa et al. Oct 1988 A
4807151 Citron Feb 1989 A
4818994 Orth et al. Apr 1989 A
4831564 Suga May 1989 A
4841286 Kummer Jun 1989 A
4853693 Eaton-Williams Aug 1989 A
4873655 Kondraske Oct 1989 A
4907167 Skeirik Mar 1990 A
4924418 Backman et al. May 1990 A
4926364 Brotherton May 1990 A
4934196 Romano Jun 1990 A
4939753 Olson Jul 1990 A
4964125 Kim Oct 1990 A
4988990 Warrior Jan 1991 A
4992965 Holter et al. Feb 1991 A
5005142 Lipchak et al. Apr 1991 A
5019760 Chu et al. May 1991 A
5025344 Maly et al. Jun 1991 A
5043862 Takahashi et al. Aug 1991 A
5053815 Wendell Oct 1991 A
5057774 Verhelst et al. Oct 1991 A
5067099 McCown et al. Nov 1991 A
5081598 Bellows et al. Jan 1992 A
5083091 Frick et al. Jan 1992 A
5089979 McEachern et al. Feb 1992 A
5089984 Struger et al. Feb 1992 A
5098197 Shepard et al. Mar 1992 A
5099436 McCown et al. Mar 1992 A
5103409 Shimizu et al. Apr 1992 A
5111531 Grayson et al. May 1992 A
5121467 Skeirik Jun 1992 A
5122794 Warrior Jun 1992 A
5122976 Bellows et al. Jun 1992 A
5130936 Sheppard et al. Jul 1992 A
5134574 Beaverstock et al. Jul 1992 A
5137370 McCullock et al. Aug 1992 A
5142612 Skeirik Aug 1992 A
5143452 Maxedon et al. Sep 1992 A
5148378 Shibayama et al. Sep 1992 A
5150289 Badavas Sep 1992 A
5167009 Skeirik Nov 1992 A
5175678 Frerichs et al. Dec 1992 A
5193143 Kaemmerer et al. Mar 1993 A
5197114 Skeirik Mar 1993 A
5197328 Fitzgerald Mar 1993 A
5212765 Skeirik May 1993 A
5214582 Gray May 1993 A
5216226 Miyoshi Jun 1993 A
5224203 Skeirik Jun 1993 A
5228780 Shepard et al. Jul 1993 A
5235527 Ogawa et al. Aug 1993 A
5265031 Malczewski Nov 1993 A
5265222 Nishiya et al. Nov 1993 A
5269311 Kirchner et al. Dec 1993 A
5274572 O'Neill et al. Dec 1993 A
5282131 Rudd et al. Jan 1994 A
5282261 Skeirik Jan 1994 A
5293585 Morita Mar 1994 A
5303181 Stockton Apr 1994 A
5305230 Matsumoto et al. Apr 1994 A
5311421 Nomura et al. May 1994 A
5317520 Castle May 1994 A
5327357 Feinstein et al. Jul 1994 A
5333240 Matsumoto et al. Jul 1994 A
5340271 Freeman et al. Aug 1994 A
5347843 Orr et al. Sep 1994 A
5349541 Alexandro, Jr. et al. Sep 1994 A
5357449 Oh Oct 1994 A
5361628 Marko et al. Nov 1994 A
5365423 Chand Nov 1994 A
5365787 Hernandez et al. Nov 1994 A
5367612 Bozich et al. Nov 1994 A
5384699 Levy et al. Jan 1995 A
5386373 Keeler et al. Jan 1995 A
5388465 Okaniwa et al. Feb 1995 A
5392293 Hsue Feb 1995 A
5394341 Kepner Feb 1995 A
5394543 Hill et al. Feb 1995 A
5404064 Mermelstein et al. Apr 1995 A
5408406 Mathur et al. Apr 1995 A
5408586 Skeirik Apr 1995 A
5410495 Ramamurthi Apr 1995 A
5414645 Hirano May 1995 A
5419197 Ogi et al. May 1995 A
5430642 Nakajima et al. Jul 1995 A
5434774 Seberger Jul 1995 A
5436705 Raj Jul 1995 A
5440478 Fisher et al. Aug 1995 A
5442639 Crowder et al. Aug 1995 A
5467355 Umeda et al. Nov 1995 A
5469070 Koluvek Nov 1995 A
5469156 Kogura Nov 1995 A
5469735 Watanabe Nov 1995 A
5469749 Shimada et al. Nov 1995 A
5481199 Anderson et al. Jan 1996 A
5481200 Voegele et al. Jan 1996 A
5483387 Bauhahn et al. Jan 1996 A
5485753 Burns et al. Jan 1996 A
5486996 Samad et al. Jan 1996 A
5488697 Kaemmerer et al. Jan 1996 A
5489831 Harris Feb 1996 A
5495769 Broden et al. Mar 1996 A
5510779 Maltby et al. Apr 1996 A
5511004 Dubost et al. Apr 1996 A
5526293 Mozumder et al. Jun 1996 A
5539638 Keeler et al. Jul 1996 A
5548528 Keeler et al. Aug 1996 A
5555190 Derby et al. Sep 1996 A
5560246 Bottinger et al. Oct 1996 A
5561599 Lu Oct 1996 A
5570034 Needham et al. Oct 1996 A
5570300 Henry et al. Oct 1996 A
5572420 Lu Nov 1996 A
5573032 Lenz et al. Nov 1996 A
5578763 Spencer et al. Nov 1996 A
5591922 Segeral et al. Jan 1997 A
5598521 Kilgore et al. Jan 1997 A
5600148 Cole et al. Feb 1997 A
5608650 McClendon et al. Mar 1997 A
5623605 Keshav et al. Apr 1997 A
5629870 Farag et al. May 1997 A
5633809 Wissenbach et al. May 1997 A
5637802 Frick et al. Jun 1997 A
5640491 Bhat et al. Jun 1997 A
5644240 Brugger Jul 1997 A
5654869 Ohi et al. Aug 1997 A
5661668 Yemini et al. Aug 1997 A
5665899 Willcox Sep 1997 A
5669713 Schwartz et al. Sep 1997 A
5671335 Davis et al. Sep 1997 A
5672247 Pangalos et al. Sep 1997 A
5675504 Serodes et al. Oct 1997 A
5675724 Beal et al. Oct 1997 A
5680109 Lowe et al. Oct 1997 A
5682317 Keeler et al. Oct 1997 A
5700090 Eryurek Dec 1997 A
5703575 Kirkpatrick Dec 1997 A
5704011 Hansen et al. Dec 1997 A
5705754 Keita et al. Jan 1998 A
5705978 Frick et al. Jan 1998 A
5708211 Jepson et al. Jan 1998 A
5708585 Kushion Jan 1998 A
5710370 Shanahan et al. Jan 1998 A
5710708 Wiegand Jan 1998 A
5713668 Lunghofer et al. Feb 1998 A
5719378 Jackson, Jr. et al. Feb 1998 A
5736649 Kawasaki et al. Apr 1998 A
5741074 Wang et al. Apr 1998 A
5742845 Wagner Apr 1998 A
5746511 Eryurek et al. May 1998 A
5747701 Marsh et al. May 1998 A
5752008 Bowling May 1998 A
5764539 Rani Jun 1998 A
5764891 Warrior Jun 1998 A
5781024 Blomberg et al. Jul 1998 A
5781878 Mizoguchi et al. Jul 1998 A
5790413 Bartusiak et al. Aug 1998 A
5801689 Huntsman Sep 1998 A
5805442 Crater et al. Sep 1998 A
5817950 Wiklund et al. Oct 1998 A
5825664 Warrior et al. Oct 1998 A
5828567 Eryurek et al. Oct 1998 A
5829876 Schwartz et al. Nov 1998 A
5848383 Yuuns Dec 1998 A
5854993 Crichnik Dec 1998 A
5859964 Wang et al. Jan 1999 A
5869772 Storer Feb 1999 A
5876122 Eryurek Mar 1999 A
5880376 Sai et al. Mar 1999 A
5887978 Lunghofer et al. Mar 1999 A
5908990 Cummings Jun 1999 A
5923557 Eidson Jul 1999 A
5924086 Mathur et al. Jul 1999 A
5926778 Pöppel Jul 1999 A
5934371 Bussear et al. Aug 1999 A
5936514 Anderson et al. Aug 1999 A
5940290 Dixon Aug 1999 A
5956663 Eryurek et al. Sep 1999 A
5970430 Burns et al. Oct 1999 A
6002952 Diab et al. Dec 1999 A
6004017 Madhavan Dec 1999 A
6014612 Larson et al. Jan 2000 A
6014902 Lewis et al. Jan 2000 A
6016523 Zimmerman et al. Jan 2000 A
6016706 Yamamoto et al. Jan 2000 A
6017143 Eryurek et al. Jan 2000 A
6023399 Kogure Feb 2000 A
6026352 Burns et al. Feb 2000 A
6038579 Sekine Mar 2000 A
6045260 Schwartz et al. Apr 2000 A
6046642 Brayton et al. Apr 2000 A
6047220 Eryurek et al. Apr 2000 A
6047222 Burns et al. Apr 2000 A
6052655 Kobayashi et al. Apr 2000 A
6061603 Papadopoulos et al. May 2000 A
6072150 Sheffer Jun 2000 A
6094600 Sharpe, Jr. et al. Jul 2000 A
6112131 Ghorashi et al. Aug 2000 A
6119047 Eryurek et al. Sep 2000 A
6119529 Di Marco et al. Sep 2000 A
6139180 Usher et al. Oct 2000 A
6144924 Dowling et al. Nov 2000 A
6151560 Jones Nov 2000 A
6179964 Begemann et al. Jan 2001 B1
6182501 Furuse et al. Feb 2001 B1
6192281 Brown et al. Feb 2001 B1
6195591 Nixon et al. Feb 2001 B1
6199018 Quist et al. Mar 2001 B1
6209048 Wolff Mar 2001 B1
6236948 Eck et al. May 2001 B1
6237424 Salmasi et al. May 2001 B1
6263487 Stripf et al. Jul 2001 B1
6272438 Cunningham et al. Aug 2001 B1
6289735 Dister et al. Sep 2001 B1
6298377 Hartikainen et al. Oct 2001 B1
6307483 Westfield et al. Oct 2001 B1
6311136 Henry et al. Oct 2001 B1
6317701 Pyostsia et al. Nov 2001 B1
6327914 Dutton Dec 2001 B1
6347252 Behr et al. Feb 2002 B1
6356191 Kirkpatrick et al. Mar 2002 B1
6360277 Ruckley et al. Mar 2002 B1
6370448 Eryurek et al. Apr 2002 B1
6377859 Brown et al. Apr 2002 B1
6396426 Balard et al. May 2002 B1
6397114 Eryurek et al. May 2002 B1
6405099 Nagai et al. Jun 2002 B1
6425038 Sprecher Jul 2002 B1
6434504 Eryurek et al. Aug 2002 B1
6449574 Eryurek et al. Sep 2002 B1
6473656 Langels et al. Oct 2002 B1
6473710 Eryurek Oct 2002 B1
6480793 Martin Nov 2002 B1
6492921 Kunitani et al. Dec 2002 B1
6493689 Kotoulas et al. Dec 2002 B2
6505517 Eryurek et al. Jan 2003 B1
6519546 Eryurek et al. Feb 2003 B1
6532392 Eryurek et al. Mar 2003 B1
6539267 Eryurek et al. Mar 2003 B1
6546814 Choe et al. Apr 2003 B1
6556145 Kirkpatrick et al. Apr 2003 B1
6594603 Eryurek et al. Jul 2003 B1
6601005 Eryurek et al. Jul 2003 B1
6611775 Coursolle et al. Aug 2003 B1
6615149 Wehrs Sep 2003 B1
6654697 Eryurek et al. Nov 2003 B1
6701274 Eryurek et al. Mar 2004 B1
6758168 Koskinen et al. Jul 2004 B2
6907383 Eryurek et al. Jun 2005 B2
6915237 Hashemian Jul 2005 B2
7010459 Eryurek et al. Mar 2006 B2
7222049 Schumacher May 2007 B2
7254518 Eryurek et al. Aug 2007 B2
20020013629 Nixon et al. Jan 2002 A1
20020029130 Eryurek et al. Mar 2002 A1
20020032544 Reid et al. Mar 2002 A1
20020077711 Nixon Jun 2002 A1
20020121910 Rome et al. Sep 2002 A1
20020145568 Winter Oct 2002 A1
20020148644 Schultz et al. Oct 2002 A1
20030033040 Billings Feb 2003 A1
20030045962 Eryurek et al. Mar 2003 A1
20040249583 Eryurek et al. Dec 2004 A1
20050173112 Kavaklioglu et al. Aug 2005 A1
20050189017 Eryurek Sep 2005 A1
20070163362 Wehrs et al. Jul 2007 A1
Foreign Referenced Citations (108)
Number Date Country
999950 Nov 1976 CA
1196811 Oct 1998 CN
32 13 866 Oct 1983 DE
35 40 204 Sep 1986 DE
40 08 560 Sep 1990 DE
43 43 747 Jun 1994 DE
44 33 593 Jun 1995 DE
195 02 499 Aug 1996 DE
296 00 609 Mar 1997 DE
197 04 694 Aug 1997 DE
19930660 Jul 1999 DE
199 05 071 Aug 2000 DE
19905071 Aug 2000 DE
299 17 651 Dec 2000 DE
199 47 129 Apr 2001 DE
100 36 971 Feb 2002 DE
102 23 725 Apr 2003 DE
0 122 622 Oct 1984 EP
0 413 814 Feb 1991 EP
0 487 419 May 1992 EP
0 512 794 Nov 1992 EP
0 594 227 Apr 1994 EP
0 624 847 Nov 1994 EP
0 644 470 Mar 1995 EP
0 697 586 Feb 1996 EP
0 749 057 Dec 1996 EP
0 825 506 Jul 1997 EP
0 827 096 Sep 1997 EP
0 838 768 Sep 1997 EP
0 807 804 Nov 1997 EP
1 058 093 May 1999 EP
0 335 957 Nov 1999 EP
1 022 626 Jul 2000 EP
1 298 511 Feb 2003 EP
2 302 514 Sep 1976 FR
2 334 827 Jul 1977 FR
928704 Jun 1963 GB
1 534 280 Nov 1978 GB
1 534 288 Nov 1978 GB
2 310 346 Aug 1997 GB
2 317 969 Apr 1998 GB
2 342 453 Apr 2000 GB
2 347 232 Aug 2000 GB
56-031573 Mar 1981 JP
57196619 Feb 1982 JP
58-129316 Aug 1983 JP
59-116811 Jul 1984 JP
59-163520 Sep 1984 JP
59-176643 Oct 1984 JP
59-211196 Nov 1984 JP
59-211896 Nov 1984 JP
60-000507 Jan 1985 JP
60-76619 May 1985 JP
60-131495 Jul 1985 JP
60-174915 Sep 1985 JP
62-30915 Feb 1987 JP
62050901 Mar 1987 JP
62-080535 Apr 1987 JP
63-169532 Jul 1988 JP
64-01914 Jan 1989 JP
64-72699 Mar 1989 JP
11-87430 Jul 1989 JP
2-05105 Jan 1990 JP
3-229124 Oct 1991 JP
4070906 Mar 1992 JP
5-122768 May 1993 JP
6095882 Apr 1994 JP
06242192 Sep 1994 JP
06-248224 Oct 1994 JP
7-063586 Mar 1995 JP
07234988 Sep 1995 JP
8-054923 Feb 1996 JP
8-102241 Apr 1996 JP
08-114638 May 1996 JP
8-136386 May 1996 JP
8-166309 Jun 1996 JP
8-247076 Sep 1996 JP
8-313466 Nov 1996 JP
2712625 Oct 1997 JP
2712701 Oct 1997 JP
2753592 Mar 1998 JP
07225530 May 1998 JP
10-232170 Sep 1998 JP
11-083575 Mar 1999 JP
WO 9425933 Nov 1994 WO
WO 9523361 Aug 1995 WO
WO 9611389 Apr 1996 WO
WO 9612993 May 1996 WO
WO 9639617 Dec 1996 WO
WO 9721157 Jun 1997 WO
WO 9725603 Jul 1997 WO
WO 9806024 Feb 1998 WO
WO 9813677 Apr 1998 WO
WO 9814855 Apr 1998 WO
WO 9820469 May 1998 WO
WO 9839718 Sep 1998 WO
WO 9919782 Apr 1999 WO
WO 0041050 Jul 2000 WO
WO 0050851 Aug 2000 WO
WO 0055700 Sep 2000 WO
WO 0070531 Nov 2000 WO
WO 0101213 Jan 2001 WO
WO 0119440 Mar 2001 WO
WO 0177766 Oct 2001 WO
WO 0190704 Nov 2001 WO
WO 0227418 Apr 2002 WO
WO 03081002 Oct 2003 WO
WO 2007021419 Feb 2007 WO
Related Publications (1)
Number Date Country
20060036404 A1 Feb 2006 US
Continuation in Parts (7)
Number Date Country
Parent 10801073 Mar 2004 US
Child 11205745 US
Parent 09852102 May 2001 US
Child 10801073 US
Parent 09257896 Feb 1999 US
Child 09852102 US
Parent 08623569 Mar 1996 US
Child 09257896 US
Parent 09383828 Aug 1999 US
Child 09852102 US
Parent 09257896 US
Child 09383828 US
Parent 08623569 US
Child 09257896 US