The presently disclosed subject matter relates to improving the functionality and efficiency of industrial process vessels.
Many industrial process vessels include fluid process streams entering and exiting the vessel. Some vessels can have streams that migrate or recycle within or around the vessel. Commercial process vessels can be from 4 inches to 18 feet in diameter and 1 to 100 feet in height. Conventional vessels can include bed materials, which are typically 3 inches in size or less.
Materials can be loaded into process vessels as a packed bed of elements. Within a packed bed, space exists between the elements, known as “interstitial space.” Additionally, elements can have space that exists within themselves, defined as “internal void.” Fluid flow in a packed bed occurs in the interstitial spaces and internal voids unless the sizes of the individual spaces and voids are typically less than one micron. The “porosity” of the packed bed is defined as the total volume of the interstitial spaces and internal voids available for fluid flow in the packed bed divided by the total volume of the packed bed. It has been commonplace in the industry to overlap these terms, creating confusion. The definitions are created here so they can be used in interpreting the remainder of the document.
Processing elements are loaded into process vessels as packed beds. Processing elements can be catalysts, sorbents, or the like. These processing bed elements are typically formed as small kernels the size of corn or rice via extrusion or other methods. Conventional processing elements weigh in the range of 25 to 50 pounds per cubic foot. Weight per piece can be 10 to 50 mg. Porosity is an important value when considering the performance and behavior of a processing bed. Processing bed porosity is typically in the range of 30-45% and is entirely composed of interstitial space. Lacking voids available for fluid flow, processing bed internal void is 0%.
Vessels are designed and operated in cycles, that is, in a series of continuous modes each lasting for weeks, months or years. End-of-cycle vessel operations can be triggered by exhaustion of the capabilities of processing bed elements disposed within the vessels, pressure drop, shutdown for required vessel inspections, upsets (e.g., a power outage) and the like.
In a process vessel, fluids flow from entry to exit via pressure differential. This differential is referred to as pressure drop. The higher the pressure drop, the harder upstream pumps and compressors have to work. Once the pressure drop increases past a certain point the pumps and compressors can no longer keep up with the higher pressure differential and the unit must be shut down. Increased pressure drop is not desired.
Improvements in this field of technology are desired.
The following presents a simplified summary of the disclosed subject matter in order to provide a basic understanding of some aspects thereof. This summary is not an exhaustive overview of the technology disclosed herein.
In certain illustrative embodiments, a method of providing improved stability and filtration of fluid process stream flow in a process vessel is provided, which can include: passing the fluid process stream flow through a processing zone within the process vessel, the processing zone containing one or more beds of processing elements; and prior to passing the fluid process stream flow through the processing bed, passing the fluid process stream flow through an entry zone located upstream of the processing bed, wherein the entry zone contains a bed of stability-improving materials which can have a porosity in the range from 67% to 87%, which can have a density in the range from 30-60 lbs/ft3, and can have a weight per piece of 25-200 grams. The stabilizing materials can have internal void capable of capturing undesired species from the fluid process stream flow. The entry zone can include one or more layers of stability-improving materials. There can be a treating zone downstream the entry zone. The stability-improving material stabilize and prevent movement of the treating elements in the treating zone. The internal void of the stability-improving material can contain a network of interconnected pores that are able to trap and retain undesired particles. The internal void of the stability-improving material can be tortuous. The internal void can be 20%-42% of the entry zone volume. The internal void can be 20%-40% of the entry zone volume. The internal void can be 25%-42% of the entry zone volume. The internal void can be 25%-35% of the entry zone volume. The internal void can be 30%-40% of the entry zone volume. The internal void can be 30%-35% of the entry zone volume. The internal void can be 20%-35% of the entry zone volume. The weight per piece can be 30-200 grams. The weight per piece can be 65-200 grams. The weight per piece can be 70-300 grams. The weight per piece can be 70-200 grams. The weight per piece can be 35-300 grams. The weight per piece can be 12-200 grams. The weight per piece can be 12-300 grams. The weight per piece of the stability-improving material can be 2500-4000 times greater than the downstream processing elements. The weight per piece of the stability-improving material can be 2-25 times greater than the downstream treating elements. The weight per piece of the stability-improving material can be 2-10 times greater than the downstream treating elements. The stability-improving material can stabilize and prevent movement of the processing elements in the processing bed. The fluid process stream flow exiting the entry zone can flow directly into the processing bed or treating zone. The stability-improving material can stabilize and prevent movement of the process elements in the processing bed. A permeable mesh can separate the entry zone and the processing bed. A void space can present between the exit of the entry zone and the entrance to the processing bed. The composition of the stability-improving materials in the entry zone can include one or more of iron, tungsten, zirconium, titania, alumina, and the like. The composition of the stability-improving materials in the entry zone can include one or more oxides of iron, tungsten, zirconium, titania, alumina, and the like. The composition of the stability-improving materials in the entry zone can include one or more carbides of iron, tungsten, zirconium, titania, alumina, and the like. The stability-improving materials in the entry zone can be secured to the internal walls of the process vessel.
In certain illustrative embodiments, a process vessel is provided. The process vessel can include: a processing zone containing one or more beds of processing elements; and an entry zone located upstream of the processing bed, the entry zone comprising a bed of stability-improving materials having a porosity in the range from 67% to 87%, a density in the range from 30-60 lbs/ft3, a weight per piece of 25-200 grams, and an internal void capable of capturing undesired species from a fluid process stream flow passing therethrough. The process vessel can be, for example, a reformer, a hydrotreater, a naphtha hydrotreater, a fluid catalytic cracker gasoline treater unit, a hydrodesulfurization unit, an isomerization unit, or a sulfur recovery unit.
A better understanding of the presently disclosed subject matter can be obtained when the following detailed description is considered in conjunction with the following drawings, wherein:
While certain preferred illustrative embodiments will be described herein, it will be understood that this description is not intended to limit the subject matter to those embodiments. On the contrary, it is intended to cover all alternatives, modifications, and equivalents, as may be included within the spirit and scope of the subject matter as defined by the appended claims.
According to the various illustrative embodiments disclosed herein, materials and related methods for improving the functionality and efficiency of a processing bed 40 in an industrial process vessel 10 are provided.
Other mechanical devices, herein called “intrusive devices” have been known to be installed and intrude into the packed bed of the vessel where bed material is packed around them. These are devices which can allow fluid to bypass the top of the bed in the event plugging occurs. Examples of intrusive devices would be “trash baskets”, “bypass tubes”, or a “bypass device”. The bypass device, embedded in bed materials, could be a collection of bypass tubes connected to a means of distribution. Disclosed materials can be used alongside these intrusive devices.
Vessels 10 have been known to have feed rates which generate high velocities at the inlet which create vorticity and horizontal/vertical diffusion.
Common types of bed movement events include coning, dishing, gouging, impingement, and fluffing.
Some processing vessels 10 can include stabilizing zones 110 intended to stabilize beds 40 of processing materials 30 contained in the process vessel 10 and can offer protection or can eliminate these bed movement events.
Process vessels 10 can also include treating zones 150 installed to facilitate internal filtration of undesired species contained within streams. Treating zones 150 can contain treating elements 160.
The stabilizing zone 110 comprised of stabilizing elements 115 can be positioned upstream of the treating zone 150 of treating elements 160 in order to provide resistance to bed movement. In these cases, the stabilizing elements 115 can prevent bed movement, but introduce two additional undesirable constraints on the vessel 10 similar to the constraints already discussed above. The stabilizing elements 115 can require an increase in vessel volume and depth to install at the cost of the removal of processing elements 30 or other bed materials. Also, the stabilizing elements 115 can block any particles from being stored in the downstream treating zone 150, rendering the high porosity required for treating zone particle storage unusable. This can lead to an undesirable increase in pressure drop caused by particle accumulation 140 in the stabilizing zone 110.
In certain illustrative embodiments, process vessels 10 can contain one or more entry zones 170 containing stability-improving materials 175. The entry zones 170 address bed movement and filtration problems.
Bed movement problems can be characterized as a mismatch between the velocity of the process stream 20 as it enters the processing bed 40 and the material properties of the processing elements 30 at the top of the bed 40. In a packed bed with no external fluid forces applied, gravity is the only force which holds the elements 30 in place. If the fluid forces applied to the elements 30 overcome the gravitational forces, bed movement will occur. The force which a fluid can apply to a given element is proportional to the density of the fluid, the square of the velocity of the fluid, and the area of that element. Higher density fluids and higher velocities enable larger forces. The velocity at which an element in a bed can move depends largely on its surface area and weight per piece. Elements with large surface areas or low weight per piece tend to be easier to move for a given velocity. To avoid bed movement for given fluid properties of density and velocity, the weight per piece of the element must be increased and the surface area decreased. It has been thought that the low surface area requirement would preclude high porosity with high surface area materials from being used as a stabilizing material. Surprisingly, this has been shown to be incorrect and, by selecting the correct properties, high porosity, high surface area materials can be used for stabilizing while providing the filtration capacity to retain incoming particles.
Undesired species are contained in streams 20 entering the entry zone 170. Longevity of entry zone 170 is important because the useful life of the entry zone 170 is desired to out-live that of a cycle of a process vessel 10, including the activity of processing bed material 30. Pressure drop control is also important as particle deposition in the processing bed material 30 can increase the pressure through the beds in vessel 10. Increase in pressure must be minimized to ensure designed performance of the vessel 10. Additionally, entry zone 170 should be designed to withstand feed stream forces and velocities in order to avoid bed movement.
The entry zone 170 is intended to improve the stability of downstream operations. Stability-improving material 175 allows for resistance to coning, dishing, impingement, or fluffing while also providing the ability to filter particles from the process stream 20 without detriment to the operation of vessel 10.
Stability-improvement materials 175 can be differentiated by the presence of heavy chemical species, a reduced internal void space of the materials 175, and an increase in size. Another option includes fabrication of materials 175 that are adhered to the walls of the vessel 10 or spread as a sheet or mesh of materials 175 across the circumference of the vessel 10 to constrict movement of downstream materials. Alternatively, a porous, solid screen or membrane can be disposed on top of and/or below the one or more entry zones 170 to prevent movement of the materials 175 in the entry zone 170 as well as that of downstream zones. The entry zone 170 can internally filter undesired species from the incoming streams 20. The media in the entry zone 170 can include materials 175 whose porosity is capable of attracting and retaining undesired species passing through the entry zone 170. Streams can exit the entry zone 170 and enter downstream operations. Entry zone 170 can be disposed in layers reflecting different geometries and/or characteristics of the media contained in each layer. An example would be an entry zone 170 containing three layers of materials 175, each with a different size, porosity, or pore size. Such layers in entry zone 170 are intended to facilitate filtration of the fluid streams passing through them. An entry zone 170 can be layered such that the largest sizes of materials 175 are on the top, and/or the largest porosity of materials 175 is on the top, and/or the heaviest pieces of materials 175 are on top.
Entry zone 170 can provide filtration upstream of downstream processing bed operations. Filtered fluids that are removed from streams containing undesired species are referred to herein as “filtrate.” The undesired species removed from these streams are referred to herein as “filtrant.” Filtrant is trapped and retained on stability-improving material 175.
Stability-improving materials 175 can contain a network of interconnected pores that are able to trap and retain undesired particles. Elements with interconnected pores provide surface area and residence time to facilitate (i) separation of filtrate from filtrant and (ii) retention of filtrant. Such pores are typically between 2 microns and 5000 microns in size.
Stability-improving materials 175 can be tortuous porous elements. Tortuous porous elements are defined herein as those containing sinuous, winding, internal porous flow passageways which provide surface area and residence time to facilitate (i) separation of filtrate from filtrant and (ii) retention of filtrant. Such passageways are typically between 2 microns and 5000 microns in size.
The presently disclosed materials 175 in entry zone 170 can reduce the required depth of material positioned upstream of the processing beds in vessel 10 while also achieving bed stability, facilitating filtration, and allowing increased utilization of the processing bed capabilities in vessel 10.
In certain illustrative embodiments, stability-improving material can surround an intrusive device such that the intrusive device is embedded, partially or wholly, in the entry zone.
In certain illustrative embodiments, the presently disclosed materials 175 in entry zone 170 can be constructed to have a desired combination of weight, strength and porosity to enable stream stability and filtration within the entry zone 170 of the process vessel 10. The materials 175 can result in improvements in vessel 10 including reduced vertical space requirements, eliminating or significantly reducing bed movement, minimizing increase in pressure drop when capturing foulant, and improving cycle-length of the performance of vessel 10.
The use of disclosed materials 175 can achieve bed porosities which are favorable for filtration while also having material densities and weight per piece which are favorable for bed stabilization. The disclosed porosities in entry zone 170 would be in the range of 67% to 87%. In other illustrative embodiments the porosities would be in the range of 70% to 87%. In yet other illustrative embodiments, the porosities would be in the range of 75% to 87%. In yet other illustrative embodiments, the porosities would be in the range of 75% to 85%.
The disclosed density ranges in entry zone 170 would be in the range of 30-60 pounds per cubic foot.
The disclosed weight per piece for the materials 175 in the disclosed entry zone 170 would be from 2500-4000 times greater than that of the materials 30 in the downstream processing bed 40. For example, if the downstream processing bed 40 contained materials 30 having a weight per piece of 10-50 milligrams, the materials 175 in the disclosed entry zone 170 could have a weight per piece of 25-200 grams per piece. In another illustrative embodiment, the weight per piece of materials 175 could be in the range of 60-200 grams. In another illustrative embodiment, the weight per piece of materials 175 could be in the range of 65-200 grams. In another illustrative embodiment, the weight per piece of materials 175 could be in the range of 70-200 grams. In another illustrative embodiment, the weight per piece of materials 175 could be in the range of 75-200 grams. In another illustrative embodiment, the disclosed weight per piece for the materials 175 in the disclosed entry zone 170 could be from 5-10 times greater than that of the elements in the downstream treating zone. For example, if the downstream processing bed zone materials had a weight per piece of 7-30 grams, the materials 175 in the disclosed entry zone 170 could have a weight per piece of 35-300 grams per piece. In another illustrative embodiment, the disclosed weight per piece for the materials 175 in the disclosed entry zone 170 could be from 2-25 times greater than that of the elements in the downstream treating zone.
Unexpectedly, it has been found that an increase in a material's internal void space, while significantly reducing the weight per piece, improves the material's stabilizing capability. It was thought the reduced weight, combined with the additional drag added by the increased surface area from the internal void would cause the material to become easier to move. Conversely, it has been demonstrated that the permeability of the internal void helps contribute to the gravitational force already holding it in place, thus increasing the stability.
One driver of improving stabilizing zone capability is weight per piece. Another important driver for filtration is internal void. As that internal void is filled and the filtration material becomes used, it loses the permeability it derives from the internal void and can be more easily moved. The conclusion that the stability can change throughout the cycle is key in designing stable entry zone material which can also perform well in filtration. Using a material which has good stabilizing and good filtration performance turns into a balance of controlling the initial weight per piece, but also determining an internal void that will provide significant filtration capability.
In one illustrative embodiment, the disclosed stability-improving material 175 has an internal void in the range of 20-42% with the interstitial space making up the balance of the described porosity. In another illustrative embodiment, the disclosed stability-improving material 175 has an internal void in the range of 20-40% with the interstitial space making up the balance of the described porosity. In another illustrative embodiment, the disclosed stability-improving material 175 has an internal void in the range of 25-40% with the interstitial space making up the balance of the described porosity. In another illustrative embodiment, the disclosed stability-improving material 175 has an internal void in the range of 20-35% with the interstitial space making up the balance of the described porosity. In another illustrative embodiment, the disclosed stability-improving material 175 has an internal void in the range of 25-35% with the interstitial space making up the balance of the described porosity. In another illustrative embodiment, the disclosed stability-improving material 175 has an internal void in the range of 30-40% with the interstitial space making up the balance of the described porosity. In another illustrative embodiment, the disclosed stability-improving material 175 has an internal void in the range of 30-35% with the interstitial space making up the balance of the described porosity. This internal void would provide good filtration performance, while surprisingly, bolstering the stabilizing capability of the material 175. The advantage of the disclosed material 175 when compared to that of other materials with internal void is the weight per piece has been increased by the introduction of heavier materials, providing a good initial stabilizing capability, and a slight reduction in the internal void, which means the stabilizing capability remains more constant throughout the cycle while still providing the capability to store filtrant. Both additions of increased weight per piece and reduced internal void improve the ability of the material 175 to withstand bed movement in high fluid velocity applications throughout the cycle life of the vessel 10.
This disclosed combination of porosity, density range, weight per piece, and resulting functionality, is not used in existing vessels and materials. In one example of existing materials, bed porosity in the range of 40-65% is maintained to achieve a density of 55-130 pounds per cubic foot. This porosity range and density range leads to materials which have good stability performance, but lead to poor filtration performance. In another example, to achieve good filtration performance, porosity is in the range of 88-95%. To achieve this porosity, existing materials have a density in the range of 12-30 pounds per cubic foot and a weight per piece in the range of 8-30 grams. This density range, porosity range, and weight per piece range lead to materials which have good filtration performance, but lack required stability performance.
In certain illustrative embodiments, the presently disclosed materials 175 can be disposed within one or more entry zones 170 within a vessel 10 as individual zones or as a unified zone of material. Processing bed stability downstream of the entry zone 170 can be facilitated via use of weighted materials and/or by the installation of vessel 10 circumference-spanning materials. Weighting can be achieved via the use of high density, high weight per piece components in the composition of the materials 175 such as iron, tungsten, zirconium, titania, alumina, and the like, and their oxides, carbides and the like.
In certain illustrative embodiments, the presently disclosed materials 175 can include geometries such as disks, cubes, rectangular or other polyhedral shapes, eclipses, cylinders, briquettes, rings and the like. Disclosed materials 175 in entry zone 170 can be of individual sizes such that each element of material 175 fits in a space measuring from 1 cubic inch to 27 cubic inches.
The presently disclosed materials 175 can have important filtration characteristics when used in entry zone 170. In certain illustrative embodiments, the materials 175 can increasingly separate filtrates as the streams travel through the entry zone 170. Upstream filtrant removal is promoted within the porous structure of the materials 175 to the point where the individual filtration capacity of these materials 175 is exhausted. Thereafter, fluid process stream flows bypass the exhausted materials 175 and proceed thru the entry zone 170 to engage in filtrant removal with materials 175 whose filtration capacity has not been exhausted. This process proceeds through the entry zone 170 with only moderate increase in pressure within the process vessel 10.
In certain illustrative embodiments, the presently disclosed materials 175 can be utilized in vapor phase applications such as reformers, hydrotreaters including, without limitation, naphtha hydrotreaters (“NHT”), fluid catalytic cracking gasoline hydrotreater units (“GHT”), sulfur recovery units (“SRU”), hydrodesulfurization units, and isomerization units, among other potential uses. In other illustrative embodiments, the presently disclosed materials 175 can be utilized in mixed-phase applications (where liquid and gas flows are present) such as kerosene hydrotreaters (“KHT”), diesel hydrotreaters (“DHT”), cat-feed hydrotreaters (“CFHT”), gas oil hydrotreaters (“GOHT”), and other mixed phase applications.
While the presently disclosed subject matter will be described in connection with the preferred embodiment, it will be understood that it is not intended to limit the presently disclosed subject matter to that embodiment. On the contrary, it is intended to cover all alternatives, modifications, and equivalents, as may be included within the spirit and the scope of the presently disclosed subject matter as defined by the appended claims.
This application claims the benefit, and priority benefit, of U.S. Provisional Patent Application Ser. No. 63/076,226, filed Sep. 9, 2020, the disclosure and contents of which are incorporated by reference herein in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
436414 | Graham | Sep 1890 | A |
578548 | Deruelle | Mar 1897 | A |
598351 | Staub | Feb 1898 | A |
1947777 | Huff et al. | Feb 1934 | A |
2000078 | Haseltine | May 1935 | A |
2006078 | Pyzel | Jun 1935 | A |
2055162 | Friedrich | Sep 1936 | A |
2153599 | Thomas | Apr 1939 | A |
2183657 | Page | Dec 1939 | A |
2198861 | Chamberlain | Apr 1940 | A |
2212932 | Fairlie | Aug 1940 | A |
2375336 | Weitkamp | May 1945 | A |
2408164 | Foster | Sep 1946 | A |
2439021 | Quigg | Apr 1948 | A |
2546479 | Sodano | Mar 1951 | A |
2571958 | Slaughter et al. | Oct 1951 | A |
2739118 | Comte | Mar 1956 | A |
2793017 | Lake | May 1957 | A |
2819887 | Eversole et al. | Jan 1958 | A |
2867425 | Teller | Jan 1959 | A |
2893852 | Montgomery | Jul 1959 | A |
2919981 | Calva | Jan 1960 | A |
2985589 | Broughton et al. | May 1961 | A |
3090094 | Schwartzwalder et al. | May 1963 | A |
3100688 | Dess | Aug 1963 | A |
3151187 | Comte | Sep 1964 | A |
3167600 | Worman | Jan 1965 | A |
3169839 | Calva | Feb 1965 | A |
3171820 | Volz | Mar 1965 | A |
3175918 | McGahan | Mar 1965 | A |
3208833 | Carson | Sep 1965 | A |
3214247 | Broughton | Oct 1965 | A |
3219194 | Scwartzwalder | Nov 1965 | A |
3232589 | Eckert | Feb 1966 | A |
3266787 | Eckert | Aug 1966 | A |
3329271 | Ward | Jul 1967 | A |
3361839 | Lester | Jan 1968 | A |
3410057 | Lerner | Nov 1968 | A |
3423185 | Ballard et al. | Jan 1969 | A |
3431082 | Sellin | Mar 1969 | A |
3487112 | Paulik et al. | Dec 1969 | A |
3489529 | Dudych et al. | Jan 1970 | A |
3498755 | Borre | Mar 1970 | A |
3506248 | Starbuck et al. | Apr 1970 | A |
3543937 | Choun | Dec 1970 | A |
3544457 | Fredrick et al. | Dec 1970 | A |
3562800 | Carlson | Feb 1971 | A |
3563887 | Sommers et al. | Feb 1971 | A |
3618910 | Arndt | Nov 1971 | A |
3635943 | Stewart | Jan 1972 | A |
3657864 | Davis, Jr. et al. | Apr 1972 | A |
3685971 | Carson | Aug 1972 | A |
3706812 | Derosset et al. | Dec 1972 | A |
3717670 | Schultz | Feb 1973 | A |
3732078 | Kassarjian | May 1973 | A |
3752453 | Doyne | Aug 1973 | A |
3758087 | Hoon, Jr. | Sep 1973 | A |
3787188 | Lyon | Jan 1974 | A |
3787189 | Lovell et al. | Jan 1974 | A |
3789989 | Carson | Feb 1974 | A |
3796657 | Protorius et al. | Mar 1974 | A |
D232236 | La Borde | Jul 1974 | S |
3823924 | Hoon, Jr. | Jul 1974 | A |
3844936 | Newson | Oct 1974 | A |
3888633 | Grosboll et al. | Jun 1975 | A |
3892583 | Winter et al. | Jul 1975 | A |
3898180 | Crooks et al. | Aug 1975 | A |
3914351 | McKeown | Oct 1975 | A |
3924807 | Morgan | Dec 1975 | A |
3947347 | Mitchell | Mar 1976 | A |
3960508 | Bessant et al. | Jun 1976 | A |
3962078 | Hirs | Jun 1976 | A |
3992282 | Grosboll et al. | Nov 1976 | A |
4005985 | Hutson, Jr. | Feb 1977 | A |
D243531 | Strigle, Jr. | Mar 1977 | S |
4029482 | Postma et al. | Jun 1977 | A |
RE29314 | Carlson et al. | Jul 1977 | E |
RE29315 | Carlson et al. | Jul 1977 | E |
4033727 | Vautrain | Jul 1977 | A |
4041113 | McKeown | Aug 1977 | A |
4072736 | Fattinger | Feb 1978 | A |
4086307 | Glaspie | Apr 1978 | A |
4113810 | Ikawa | Sep 1978 | A |
4149862 | Sewell, Sr. | Apr 1979 | A |
4188197 | Amberkar et al. | Feb 1980 | A |
4197205 | Hirs | Apr 1980 | A |
4200532 | Iwatani | Apr 1980 | A |
4203935 | Hackenjos | May 1980 | A |
4251239 | Clyde et al. | Feb 1981 | A |
4275019 | Bednarski | Jun 1981 | A |
4285910 | Kennedy, Jr. | Aug 1981 | A |
4329318 | Le Grouyellec et al. | May 1982 | A |
4342643 | Kyan | Aug 1982 | A |
4374020 | Trevino et al. | Feb 1983 | A |
4378292 | Haase | Mar 1983 | A |
4380529 | Gupta | Apr 1983 | A |
4402832 | Gerhold | Sep 1983 | A |
4425285 | Shimoi | Jan 1984 | A |
4443559 | Smith, Jr. | Apr 1984 | A |
4457849 | Heinze | Jul 1984 | A |
4478721 | Gerhold | Oct 1984 | A |
4483771 | Koch | Nov 1984 | A |
4487727 | Ballato, Jr. | Dec 1984 | A |
4504396 | Vardi et al. | Mar 1985 | A |
4511519 | Hsia | Apr 1985 | A |
4519960 | Kitterman | May 1985 | A |
4522767 | Billet | Jun 1985 | A |
4537731 | Billet | Aug 1985 | A |
4554114 | Glen | Nov 1985 | A |
4568595 | Morris | Feb 1986 | A |
4569821 | Duperray et al. | Feb 1986 | A |
4579647 | Smith | Apr 1986 | A |
4581299 | Jager | Apr 1986 | A |
4615796 | Kramer | Oct 1986 | A |
4642089 | Zupkas et al. | Feb 1987 | A |
4642397 | Zinnen et al. | Feb 1987 | A |
4668442 | Lang | May 1987 | A |
4669890 | Peyrot | Jun 1987 | A |
4681674 | Graven et al. | Jul 1987 | A |
4691031 | Suciu et al. | Sep 1987 | A |
4708852 | Helbling, Jr. et al. | Nov 1987 | A |
4711930 | Hoelderick et al. | Dec 1987 | A |
4716066 | Wymann | Dec 1987 | A |
4719090 | Masaki | Jan 1988 | A |
4724593 | Lang | Feb 1988 | A |
4726825 | Natale | Feb 1988 | A |
4731205 | McNulty | Mar 1988 | A |
4775460 | Reno | Oct 1988 | A |
4788040 | Campagnolo et al. | Nov 1988 | A |
4798676 | Matkovich | Jan 1989 | A |
4810685 | Twigg et al. | Mar 1989 | A |
4830736 | Hung et al. | May 1989 | A |
4842920 | Banai | Jun 1989 | A |
4849569 | Smith, Jr. | Jul 1989 | A |
4859642 | Hoelderick et al. | Aug 1989 | A |
4863606 | Ryall | Sep 1989 | A |
4863712 | Twigg et al. | Sep 1989 | A |
4880541 | Chiron et al. | Nov 1989 | A |
4938422 | Koves | Jul 1990 | A |
4950834 | Arganbright et al. | Aug 1990 | A |
4954251 | Barnes et al. | Sep 1990 | A |
4968651 | Crabtree | Nov 1990 | A |
4971771 | Stahl | Nov 1990 | A |
4982022 | Smith, Jr. | Jan 1991 | A |
4985211 | Akihama et al. | Jan 1991 | A |
5013426 | Dang Vu et al. | May 1991 | A |
5017542 | Matan et al. | May 1991 | A |
5043506 | Crossland | Aug 1991 | A |
5055627 | Smith, Jr. et al. | Oct 1991 | A |
5104546 | Filson et al. | Apr 1992 | A |
5113015 | Palmer et al. | May 1992 | A |
5118873 | Smith, Jr. | Jun 1992 | A |
5122276 | Loikits | Jun 1992 | A |
5143700 | Anguil | Sep 1992 | A |
D331793 | Erwes | Dec 1992 | S |
5177961 | Whittenberger | Jan 1993 | A |
5188772 | Yu | Feb 1993 | A |
5189001 | Johnson | Feb 1993 | A |
D334970 | Tominaga | Apr 1993 | S |
D334971 | Tominaga | Apr 1993 | S |
5202027 | Stuth | Apr 1993 | A |
5202097 | Poussin | Apr 1993 | A |
5217603 | Inoue et al. | Jun 1993 | A |
5217616 | Sanyal | Jun 1993 | A |
5229015 | Keep | Jul 1993 | A |
5235102 | Palmer et al. | Aug 1993 | A |
5243115 | Smith, Jr. et al. | Sep 1993 | A |
5248415 | Masuda | Sep 1993 | A |
5248836 | Bakshi et al. | Sep 1993 | A |
D345410 | Del Prete | Mar 1994 | S |
5298226 | Nowobilski | Mar 1994 | A |
5304423 | Niknafs et al. | Apr 1994 | A |
5326512 | Stillwagon et al. | Jul 1994 | A |
5336656 | Campbell | Aug 1994 | A |
5368722 | Bartholdy | Nov 1994 | A |
5384300 | Feeley et al. | Jan 1995 | A |
5384302 | Gerdes et al. | Jan 1995 | A |
5399535 | Whitman | Mar 1995 | A |
5401398 | McManus | Mar 1995 | A |
5409375 | Butcher | Apr 1995 | A |
5411681 | Seah | May 1995 | A |
5446223 | Smith, Jr. | Aug 1995 | A |
5454947 | Olapinski et al. | Oct 1995 | A |
5476978 | Smith, Jr. et al. | Dec 1995 | A |
5510056 | Jacobs et al. | Apr 1996 | A |
5512530 | Gerdes et al. | Apr 1996 | A |
5523503 | Funk et al. | Jun 1996 | A |
5538544 | Nowobilski et al. | Jul 1996 | A |
5543088 | Halbirt | Aug 1996 | A |
5558029 | Peake | Sep 1996 | A |
5599363 | Percy | Feb 1997 | A |
5624547 | Sudhakar et al. | Apr 1997 | A |
D381394 | Lex, Jr. et al. | Jul 1997 | S |
5660715 | Trimble et al. | Aug 1997 | A |
5670095 | Southam | Sep 1997 | A |
5690819 | Chianh | Nov 1997 | A |
5707513 | Jowett | Jan 1998 | A |
5766290 | Zievers et al. | Jun 1998 | A |
5767470 | Cha | Jun 1998 | A |
5779886 | Couture | Jul 1998 | A |
5779993 | Gentry | Jul 1998 | A |
5785851 | Morris et al. | Jul 1998 | A |
5799596 | Peake | Sep 1998 | A |
5817594 | McNamara et al. | Oct 1998 | A |
5853579 | Rummier et al. | Dec 1998 | A |
5853582 | Grangeon et al. | Dec 1998 | A |
5866736 | Chen | Feb 1999 | A |
5873998 | Grangeon et al. | Feb 1999 | A |
5895572 | Joulin et al. | Apr 1999 | A |
5901575 | Sunder | May 1999 | A |
5910241 | McNamara et al. | Jun 1999 | A |
5943969 | Peake | Aug 1999 | A |
5972214 | Callebert et al. | Oct 1999 | A |
5980739 | Jowett | Nov 1999 | A |
6019810 | Phillips | Feb 2000 | A |
6024871 | Harter et al. | Feb 2000 | A |
6033629 | Friederick et al. | Mar 2000 | A |
6036743 | Butcher et al. | Mar 2000 | A |
6096278 | Gary | Aug 2000 | A |
6110389 | Horowitz | Aug 2000 | A |
6117812 | Gao et al. | Sep 2000 | A |
6153094 | Jowett | Nov 2000 | A |
6156197 | Dessapt et al. | Dec 2000 | A |
6242661 | Podrebarac et al. | Jun 2001 | B1 |
6258900 | Glover et al. | Jul 2001 | B1 |
6262131 | Arcuri et al. | Jul 2001 | B1 |
6284022 | Sachweh et al. | Sep 2001 | B1 |
6291603 | Glover et al. | Sep 2001 | B1 |
6315972 | Mehdizadeh et al. | Nov 2001 | B1 |
6352579 | Hirata et al. | Mar 2002 | B1 |
6371452 | Shojaie | Apr 2002 | B1 |
6379032 | Sorensen | Apr 2002 | B1 |
6387534 | Niknafs | May 2002 | B1 |
6402959 | Dessapt et al. | Jun 2002 | B1 |
6454948 | Ferschneider et al. | Sep 2002 | B2 |
D465257 | Van Olst | Nov 2002 | S |
6521562 | Clem et al. | Feb 2003 | B1 |
6524849 | Adams | Feb 2003 | B1 |
6583329 | Podrebarac | Jun 2003 | B1 |
6630078 | Kourtakis et al. | Oct 2003 | B2 |
6631890 | Lau | Oct 2003 | B1 |
6713772 | Goodman et al. | Mar 2004 | B2 |
6797175 | Hotier | Sep 2004 | B2 |
6811147 | Lau | Nov 2004 | B2 |
6835224 | Cheng | Dec 2004 | B2 |
6852227 | Petrone | Feb 2005 | B1 |
6890878 | Moore | May 2005 | B2 |
7014175 | Honnell | Mar 2006 | B2 |
7125490 | Clendenning et al. | Oct 2006 | B2 |
7255848 | Deluga et al. | Aug 2007 | B2 |
7255917 | Rochlin et al. | Aug 2007 | B2 |
7265189 | Glover | Sep 2007 | B2 |
7303668 | Liao | Dec 2007 | B2 |
7314551 | Frey et al. | Jan 2008 | B2 |
7390403 | Siwak | Jun 2008 | B2 |
7393510 | Glover | Jul 2008 | B2 |
7427385 | Scheirer et al. | Sep 2008 | B2 |
7488413 | Badreddine | Feb 2009 | B2 |
7527671 | Stuecker et al. | May 2009 | B1 |
7544288 | Cook | Jun 2009 | B1 |
7566428 | Warner | Jul 2009 | B2 |
7632320 | Tonkovich et al. | Dec 2009 | B2 |
7637485 | Honnell | Dec 2009 | B2 |
7722832 | Glover et al. | May 2010 | B2 |
7741502 | Lecocq et al. | Jun 2010 | B2 |
7748688 | Bessettes | Jul 2010 | B2 |
8062521 | Glover | Nov 2011 | B2 |
8241717 | Anderson | Aug 2012 | B1 |
8282890 | Niknafa et al. | Oct 2012 | B2 |
8293195 | Blanchard | Oct 2012 | B2 |
8313709 | Glover | Nov 2012 | B2 |
D672009 | Flournoy | Dec 2012 | S |
8500852 | Galbraith | Aug 2013 | B2 |
8524076 | Yang | Sep 2013 | B2 |
8524164 | Glover | Sep 2013 | B2 |
8550157 | O'Malley | Oct 2013 | B2 |
8663474 | Niazi | Mar 2014 | B2 |
D705499 | Zamarripa | May 2014 | S |
9056268 | Jones et al. | Jun 2015 | B2 |
9101863 | Glover | Aug 2015 | B2 |
9205392 | Byl et al. | Dec 2015 | B2 |
9352292 | Solantie et al. | May 2016 | B2 |
D780286 | Ausner | Feb 2017 | S |
9732774 | Glover | Aug 2017 | B1 |
10054140 | Glover et al. | Aug 2018 | B2 |
10161428 | Glover et al. | Dec 2018 | B2 |
10407348 | Osborne | Sep 2019 | B2 |
10421067 | Glover | Sep 2019 | B2 |
10421068 | Glover | Sep 2019 | B2 |
10449531 | Glover | Oct 2019 | B2 |
10500581 | Glover | Dec 2019 | B1 |
10525456 | Glover | Jan 2020 | B2 |
10543483 | Glover et al. | Jan 2020 | B2 |
10557486 | Glover et al. | Feb 2020 | B2 |
10655654 | Glover et al. | May 2020 | B2 |
10662986 | Glover | May 2020 | B2 |
10738806 | Glover | Aug 2020 | B2 |
10744426 | Glover | Aug 2020 | B2 |
10864465 | Boyd | Dec 2020 | B2 |
10876553 | Glover et al. | Dec 2020 | B2 |
10920807 | Glover et al. | Feb 2021 | B2 |
11000785 | Glover et al. | May 2021 | B2 |
11156240 | Glover et al. | Oct 2021 | B2 |
20010042928 | Nagaoka | Nov 2001 | A1 |
20020059786 | Nagaoka | May 2002 | A1 |
20020092414 | Nagaoka | Jul 2002 | A1 |
20020146358 | Smith et al. | Oct 2002 | A1 |
20030125594 | Moore | Jul 2003 | A1 |
20030146524 | Niknafs | Aug 2003 | A1 |
20040031729 | Meier et al. | Feb 2004 | A1 |
20040043493 | Kobayashi | Mar 2004 | A1 |
20040084352 | Meier et al. | May 2004 | A1 |
20040192862 | Glover et al. | Sep 2004 | A1 |
20040225085 | Glover et al. | Nov 2004 | A1 |
20050211644 | Goldman | Sep 2005 | A1 |
20050240038 | Gobbel et al. | Oct 2005 | A1 |
20050255014 | Glover | Nov 2005 | A1 |
20060009648 | Gobbel et al. | Jan 2006 | A1 |
20060108274 | Frey et al. | May 2006 | A1 |
20060196826 | Glover | Jul 2006 | A1 |
20060251555 | Warner et al. | Nov 2006 | A1 |
20060275185 | Tonkovich et al. | Dec 2006 | A1 |
20060292046 | Fruchey et al. | Dec 2006 | A1 |
20070158277 | And et al. | Jul 2007 | A1 |
20070187314 | Sambrook | Aug 2007 | A1 |
20070265357 | Iversen et al. | Nov 2007 | A1 |
20080044316 | Glover | Feb 2008 | A1 |
20080245743 | Dew | Oct 2008 | A1 |
20080257804 | Dew | Oct 2008 | A1 |
20080257805 | Dew | Oct 2008 | A1 |
20080296216 | Glover | Dec 2008 | A1 |
20090044702 | Adamek et al. | Feb 2009 | A1 |
20090146339 | Malone et al. | Jun 2009 | A1 |
20090211441 | Reyes et al. | Aug 2009 | A1 |
20090283479 | Warner et al. | Nov 2009 | A1 |
20100209315 | Niknafs | Aug 2010 | A1 |
20100243519 | Glover et al. | Sep 2010 | A1 |
20100243520 | Glover et al. | Sep 2010 | A1 |
20110200478 | Billiet | Aug 2011 | A1 |
20120211430 | Choi | Aug 2012 | A1 |
20120211438 | Glover | Aug 2012 | A1 |
20120237434 | Blanchard et al. | Sep 2012 | A1 |
20130178627 | Freitas, Jr. | Jul 2013 | A1 |
20130184461 | Freitas, Jr. | Jul 2013 | A1 |
20130306562 | Stifter et al. | Nov 2013 | A1 |
20140291224 | Fujita | Oct 2014 | A1 |
20150053627 | Silin et al. | Feb 2015 | A1 |
20150129512 | Thiyagarajan | May 2015 | A1 |
20160136603 | Parihar et al. | May 2016 | A1 |
20170189834 | Glover et al. | Jul 2017 | A1 |
20170234339 | Glover | Aug 2017 | A1 |
20180008952 | Glover | Jan 2018 | A1 |
20180023598 | Glover | Jan 2018 | A1 |
20180093207 | Glover et al. | Apr 2018 | A1 |
20180093930 | Freitas, Jr. | Apr 2018 | A1 |
20190046901 | Boyd | Feb 2019 | A1 |
20190048903 | Glover et al. | Feb 2019 | A1 |
20190177181 | St. Germain | Jun 2019 | A1 |
20190217283 | Glover et al. | Jul 2019 | A1 |
20190242412 | Glover et al. | Aug 2019 | A1 |
20190285098 | Glover et al. | Sep 2019 | A1 |
20190301498 | Glover | Oct 2019 | A1 |
20190301499 | Glover | Oct 2019 | A1 |
20190358620 | Glover | Nov 2019 | A1 |
20200149564 | Glover | May 2020 | A1 |
20200215524 | Glover | Jul 2020 | A1 |
20200338518 | Bakli et al. | Oct 2020 | A1 |
20200376413 | Glover | Dec 2020 | A1 |
20200376414 | Glover | Dec 2020 | A1 |
20210018022 | Glover | Jan 2021 | A1 |
20220042528 | Glover | Feb 2022 | A1 |
Number | Date | Country |
---|---|---|
2010203014 | Aug 2010 | AU |
2019928 | Dec 1991 | CA |
2520071 | Apr 2004 | CA |
2297113 | Feb 2005 | CA |
2570527 | Dec 2005 | CA |
202072546 | Dec 2011 | CN |
203382593 | Jan 2014 | CN |
3539195 | May 1986 | DE |
73150 | Oct 1933 | EP |
260826 | Mar 1988 | EP |
576096 | Dec 1993 | EP |
639544 | Feb 1995 | EP |
651041 | May 1995 | EP |
719578 | Jul 1996 | EP |
1001837 | Jul 1998 | EP |
0899011 | Mar 1999 | EP |
1606038 | Dec 2005 | EP |
1755766 | Feb 2007 | EP |
3040119 | Jun 2016 | EP |
3397364 | Nov 2018 | EP |
3414003 | Dec 2018 | EP |
267877 | Jan 1927 | GB |
374707 | Jul 1932 | GB |
429616 | Jun 1935 | GB |
933124 | Aug 1963 | GB |
1097473 | Jan 1968 | GB |
1442085 | Jul 1976 | GB |
2108003 | May 1983 | GB |
2149771 | Jun 1985 | GB |
S49-145763 | Dec 1974 | JP |
5237396 | Sep 1977 | JP |
S558819 | Jan 1980 | JP |
SHO 55-43817 | Mar 1980 | JP |
5567309 | May 1980 | JP |
S58 (1983)-024308 | Feb 1983 | JP |
S61 (1986)-134300 | Jun 1986 | JP |
S61 (1986)-180818 | Aug 1986 | JP |
52114643 | May 1987 | JP |
SHO 62-114643 | May 1987 | JP |
4187297 | Jul 1992 | JP |
H06 (1994)-205922 | Jul 1994 | JP |
1028876 | Feb 1998 | JP |
HEI 10-028876 | Feb 1998 | JP |
1057821 | Mar 1998 | JP |
HEI 10-057821 | Mar 1998 | JP |
2000-028876 | Jan 2000 | JP |
2000-246048 | Sep 2000 | JP |
2003-120257 | Apr 2003 | JP |
2004-515432 | May 2004 | JP |
2004-250554 | Sep 2004 | JP |
2004-530746 | Oct 2004 | JP |
2004-537406 | Dec 2004 | JP |
2006-55749 | Mar 2006 | JP |
2006-205068 | Aug 2006 | JP |
2006-523139 | Oct 2006 | JP |
5543817 | Jul 2014 | JP |
2015-085208 | May 2015 | JP |
2016-13748 | Aug 2016 | JP |
2018-61955 | Apr 2018 | JP |
6324420 | May 2018 | JP |
2019-19023 | Feb 2019 | JP |
10-2006-0016746 | Feb 2006 | KR |
B0747359 | Aug 2007 | KR |
1221298 | Jan 2013 | KR |
B1417049 | Jul 2014 | KR |
542787 | Jun 2009 | NZ |
9903561 | Jan 1999 | WO |
2001001536 | Jan 2001 | WO |
2002045838 | Jun 2002 | WO |
2002079346 | Oct 2002 | WO |
2003013725 | Feb 2003 | WO |
2004094039 | Nov 2004 | WO |
2005058472 | Jun 2005 | WO |
2005123221 | Dec 2005 | WO |
2006127671 | Nov 2006 | WO |
2010149908 | Dec 2010 | WO |
2015037730 | Mar 2015 | WO |
2015200513 | Dec 2015 | WO |
2017117492 | Jul 2017 | WO |
2017139597 | Aug 2017 | WO |
2019020705 | Jan 2019 | WO |
2022056154 | Mar 2022 | WO |
200508048 | Nov 2006 | ZA |
Entry |
---|
New Zealand Intellectual Property Office; First Examination Report, issued in connection to application No. 743895; dated Jan. 31, 2019; 5 pages; New Zealand. |
New Zealand Intellectual Property Office; First Examination Report, issued in connection to application No. 743891; dated Nov. 6, 2018; 10 pages; New Zealand. |
Behrens et al.; Performance of a Monolith-like Structured; Chem. Biochem. Eng. Q. 15 (2); pp. 49-57; 2001. |
Beihai Huihuang Chemical Packing Co. Lts., http://77520.pub.diysite.com/sc.deliver/main/0-4-5/4/0-ma.html?siteid=77520; 10 pages; May 5, 2003. |
Butcher; Reticulated Ceramic Foam as a Catalyst Support; Seminar for CatCon '98; Jun. 3-5, 1998; Ohio. |
Ceramic Industry Cover page; and Table of Contents; vol. 147, No. 3; 2 pages; Mar. 1997. |
Christy Refractories Company; Prox-Svers Catalyst Support Media; Apr. 1995. |
Colombo; Porous Ceramics and Ceramic Components from Preceramic Polymers; http://www.matse.psu.edu/people/faculty/colombo.htm1; 5 pages, Jan. 12, 2005. |
Criterion; Technical Bulletin: Loading Your Hydrotreating Reactor for Maximum Activity; Criterion Catalysts & Technologies; 3 pages; 2008. |
Fay; A Three-Point Generalization of the Ellipse; International Journal of Mathematical Education in Science and Technology; Jan. 2002; vol. 33, Issue 1; pp. 111-123. |
Foseco Home Page; Internet; p. 1-3; Feb. 21, 1997. |
Fulton; CE Refresher: Catalyst Engineering, Part 2, Selecting the Catalyst Configuaration; May 1986 Chemical engineering; pp. 97-101. |
Gibson; Cellular Solids, MRS Bulletin; www.mrs.org/publications/bulleting; pp. 270-274; Apr. 2003. |
Gibson et al.; Cellular Solids: Structure and Properties; Second Edition, Cambridge Solid State Science Series, Cambridge University Press; 71 pages; 1997. |
Green et al.; Cellular Ceramics: Intriguing Structures, Novel Properties, and Innovative Applications; www.mrs.org/publications/bulletin; pp. 296-300; Apr. 2003. |
Haldor Topsoe, Inc.; Material Safety Data Sheet Inert Topping TK-10; p. 1-4; 1992. |
Hickman et al.; Production of Syngas by Direct Catalytic Ocidation of Methane; Science; vol. 256; p. 343-346; Jan. 15, 1993. |
Hung et al.; Translation of DE3539195, Hydroprocessing Catalyzer with Specific Geometric Shate; 23 pages; May 2000. |
Ivars Peterson's MathLand; Beyond the Ellipse; The Mathematical Association of America; Sep. 2, 1996; 3 pages. |
Kim et al.; Effect of Inert Filler Addition on Pore Size and Porosity of Closed-Cell Silicon Oxycarbide Foams; Journal of Materials Science 39; pp. 3513-3515; 2004. |
Loehrke and Nagib, Agard Report No. R-598 Experiments on Management of Free-stream Turbulence 1972. |
Materials 2017, 10(7), 735; “Improving the Strength of ZTA Foams with Different Strategies: Immersion Infiltration and Recoating;” https://doi.org/10.3390/ma10070735; 15 pages; Jul. 1, 2017. |
Mills; Ceramic Technology Provides Refining Solutions, Saint-Gobain Norpro; pp. 1-17; 2003. |
Mills; Ceramic Guard Bed Materials; Norton Chemical Process Products Corporation; Jun. 3-5, 1998; 24 pages; US. |
Norton Chemical Process Products Corporation, MacroTrap Guard Bed Media; 6 pages: 1998. |
Norton Chemical Process Products Copr.; Denstone Inert Catalyst Bed Supports; 10 pages; 1992; Ohio. |
NPRA Q&A Session on Refining and Petrochemical Technology; Section B. Hydrotreating; p. 85-101; 1990. |
NPRA Q&A Session on Refining and Petrochemical Technology: Section B. Hydrotreating; p. 98-118; 1991. |
NPRA Q&A Session on Refining and Petrochemical Technology: Section B. Hydrotreating; p. 104-135; 1992. |
NPRA Q&A Session on Refining and Petrochemical Technology: Section B. Hydrotreating; p. 94-112; 1993. |
NPRA Q&A Session on Refining and Petrochemical Technology: Section B. Hydrotreating; p. 98-139; 1994. |
NPRA Q&A Session on Refining and Petrochemical Technology: Section B. Hydrotreating; p. 96-123; 1995. |
NPRA Q&A Session on Refining and Petrochemical Technology: Section B. Hydrotreating; p. 131-160; 1996. |
Olujic et al.; Distillation Column Internals/Configurations for Press . . . , Chem. Biochem, Eng. Q. 17 (4); pp. 301-309; 2003. |
Perry's Chemical Engineers' Handbook, 7th Ed., McGraw-Hill, 1997, pp. 6-33-6-34. |
Product Bulletin: Criterion 855 MD “Medallions” Inert Catalyst Support; Aug. 1998; 2 pages. |
Queheillalt et al.; Synthesis of Stochastic Open Cell Ni-Based Foams; Scripta Materialia 50; pp. 313-317; 2004. |
Rashmi Narayan; Particle Capture from Non-Aqueous Media on Packed Beds; Dept. of Chemical and Materials Engineering; 116 pages; Fall 1996; Edmonton, Alberta. |
Saxonburg Ceramics Incorporated; Product Material Specifications, Nov. 14, 1996. |
Australian Government, IP Australia, Examination Report No. 1 for Standard Patent Application, Issued in connection to AU2017217834; 3 pages; dated Nov. 14, 2018; Australia. |
Australian Government, IP Australia, Examination Report No. 1 for Standard Patent Application, Issued in connection to AU2016381170; 3 pages; dated Apr. 10, 2019; Australia. |
Brazilian National Institute of Industrial Property; Technical Examination Report, issued in connection to PI0613275-8; dated Feb. 25, 2016; 16 pages; Brazil. |
Canadian Intellectual Property Office; Official Action, issued in connection with CA3009825; dated Jun. 18, 2019; 4 pages; Canada. |
European Patent Office; PCT International Search Report, Issued in Connection to PCT/US2005/020712; dated Mar. 3, 2006; 2 pages; Europe. |
European Patent Office; PCT International Search Report, Issued in Connection to PCT/US2004/006366; dated Oct. 20, 2004; 2 pages; Europe. |
European Patent Office; PCT International Search Report, Issued in Connection to PCT/US2006/019854; dated Jan. 17, 2007; 2 pages; Europe. |
European Patent Office; PCT Written Opinion of the International Searching Authority, Issued in Connection to PCT/US2006/019854; dated Jan. 17, 2007; 5 pages; Europe. |
European Patent Office; PCT International Search Report, Issued in Connection to PCT/US98/14768; dated Nov. 26, 1998; 3 pages; Europe. |
European Patent Office; PCT International Search Report, Issued in Connection to PCT/US2016/069396; dated Mar. 31, 2017; 3 pages; Europe. |
European Patent Office; PCT Written Opinion of the International Searching Authority, Issued in Connection to PCT/US2016/069396; dated Mar. 31, 2017; 6 pages; Europe. |
European Patent Office; PCT International Search Report, Issued in Connection to PCT/US2017/017398; 5 pages; Europe, dated Apr. 4, 2017. |
European Patent Office; Communicaiton and Search Report, Issued in Connection to EP15192642.5; dated Jun. 2, 2016; 7 pages; Europe. |
European Patent Office; Communicaiton Pursuant to Rules 161(1) and 162 EPC, issued in connection to EP17706648 7; dated Sep. 19, 2018; 3 pages; Europe. |
European Patent Office; Communicaiton Pursuant to Rules 161(1) and 162 EPC, issued in connection to EP16834162.6; dated Aug. 8, 2018; 3 pages; Europe. |
European Patent Office; Communication Pursuant to Article 94(3) EPC, issued in connection to EP15192642.5; dated Mar. 13, 2019; 5 pages; Europe. |
European Patent Office; Communication Pursuant to Article 94(3) EPC, Issued in Connection to EP04716499.1; dated May 9, 2016; 4 pages; Europe. |
European Patent Office; Communication pursuant to Article 94(3) EPC, issued in connection to EP04716499.1; dated Mar. 10, 2017; 5 pages; Europe. |
European Patent Office; Communication Pursuant to Article 94(3) EPC, Issued in Connection to EP04716499.1; dated Mar. 15, 2013; 4 pages; Europe. |
European Patent Office; Summons to attend oral proceedings pursuant to Rule 115(1) EPC, issued in connection to EP04716499.1; dated Feb. 12, 2018; 6 pages; Europe. |
European Patent Office; Extended European Search Report, issued in connection to EP18201370.6; dated Apr. 9, 2019; 6 pages; Europe. |
European Patent Office; Extended European Search Report, issued in connection to EP15192642.5; dated Jun. 2, 2016; 6 pages; Europe. |
European Patent Office; Communication Pursuant to Article 94(3) EPC, issued in connection to EP98934597.0; dated Mar. 16, 2009; 3 pages; Europe. |
European Patent Office; Communication Pursuant to Article 94(3) EPC, issued in connection to EP98934597.0; dated Jun. 21, 2006; 4 pages; Europe. |
European Patent Office; Communication Pursuant to Article 96(2) EPC, issued in connection to EP98934597.0; dated Sep. 10, 2004; 4 pages; Europe. |
European Patent Office; Communication Pursuant to Article 96(2) EPC, issued in connection to EP98934597.0; dated Dec. 11, 2002; 3 pages; Europe. |
European Patent Office; Communication Pursuant to Article 96(2) EPC, issued in connection to EP98934597.0; dated Oct. 8, 2001; 2 pages; Europe. |
European Patent Office; Communication Pursuant to Article 96(2) EPC, issued in connection to EP05760680.8; dated Jan. 28, 2009; 6 pages; Europe. |
European Patent Office; Communication Pursuant to Article 96(2) EPC, issued in connection to EP05760680.8; dated Jul. 5, 2010; 5 pages; Europe. |
Japanese Patent Office; Notice of Reasons for Rejection, issued in connection to JP2010-246536; dated Sep. 7, 2012; 8 pages; Japan. |
Japan Patent Office; Notice of Reasons for Rejection, issued in connection with JP2010-246536; dated Nov. 12, 2013; 6 pages; Japan. |
Japan Patent Office; Certified Copy of Final Rejection, issued in connection with JP2010-246536; dated Jun. 25, 2014 2 pages; Japan. |
Japan Patent Office; Decision to Dismiss Amendment, issued in connection to JP2010-246536; dated Jun. 25, 2014; 3 pages; Japan. |
Japanese Patent Office; Notice of Reasons for Rejection of Japanese Patent Application 2016-017373; dated Dec. 7, 2016; 11 pages; Japan. |
Japanese Patent Office; Certified Copy of Decision of Dismissal of Amendment, issued in connection to JP2014-21/190; 4 pages; Japan, dated Jul. 26, 2017. |
Japanese Patent Office; Certified Copy of Final Rejection, issued in connection to JP2014-217190; 3 pages; Japan, dated Jul. 26, 2017. |
Japanese Patent Office; Notice of Reasons for Rejection, issued in connection to JP2014-217190; dated Aug. 31, 2016; 6 pages; Japan. |
Japanese Patent Office; Notice of Reasons for Rejection, issued in connection to JP2014-217190; dated Sep. 30, 2015; 8 pages; Japan. |
Japanese Patent Office; Observation, issued in connection to JP2017-226648; Jul. 17, 2018; 50 pages; Japan. |
Japanese Patent Office; Notice of Reasons for Rejection, issued in connection to JP2017-226648; dated Jan. 31, 2019; 10 pages; Japan. |
Japanese Patent Office; Notice of Resons for Rejection, issued in connection to JP2018-553847; dated May 29, 2019; 10 pages; Japan. |
Intellectual Property Office of Singapore; Examination Report, issued in connection with application No. 11201805491X; dated Sep. 28, 2021; 6 pages; Singapore. |
Intellectual Property Corporation of Malaysia; Examination Adverse Report (Section 30(1) / 30(2)), issued in connection with application No. PI2018001178; dated Oct. 20, 2021; 4 pages; Malaysia. |
Japanese Patent Office; Notice of Reasons for Rejection, issued in connection to Appeal Trial No. 2020-016134, application No. 2018-541647; dated Sep. 22, 2021; 14 pages; Japan. |
Korean Intellectual Property Office; Notification of Provisional Rejection, issued in connection to application No. 10-2021-7019648; dated Sep. 19, 2021; 11 pages; Korea. |
Japanese Patent Office; Notice of Reasons for Rejection, issued in connection to JP2018-541647; dated Aug. 28, 2019; 14 pages; Japan. |
European Patent Office; Communication Pursuant to Article 94(3) EPC, issued in connection to EP17706648.7; dated Oct. 24, 2019; 7 pages; Europe. |
Korean Intellectual Property Office; Notification of Provisional Rejection, issued in connection to application No. 10-2018-7026274; dated Oct. 22, 2019; 14 pages; Korea. |
Australian Government, IP Australia, Examination Report No. 2 for Standard Patent Application, Issued in connection to AU2016381170; 3 pages; dated Nov. 8, 2019; Australia. |
Japanese Patent Office; Final Rejection, issued in connection to application No. 2017-226648; dated Feb. 26, 2020; 6 pages; Japan. |
European Patent Office; Communication pursuant to Article 94(3) EPC, issued in connection to EP16834162.6; dated Feb. 4, 2020; 7 pages; Europe. |
Japanese Patent Office; Office Action, issued in connection to application No. 2018-553847; dated Feb. 26, 2020; 8 pages; Japan. |
Intellectual Property Office of Singapore; Invitation to Respond to Written Opinion, issued in connection with application No. 11201805491X; dated Mar. 3, 2020; 6 pages; Singapore. |
Indian Patent Office; Examination Report, issued in connection to application No. 201837023720; dated Jan. 23, 2020; 6 pages; India. |
Intellectual Property Office of Singapore; Invitation to Respond to Written Opinion, issued in connection with application No. 11201805367W; dated Mar. 2, 2020; 34 pages; Singapore. |
Canadian Intellectual Property Office; Office Action, issued in connection to application No. 3009825; dated Apr. 22, 2020; 3 pages; Canada. |
Japanese Patent Office; Statement of Submission of Publication by third part, filed in connection to application No. 2019-140168; Apr. 21, 2020; 1 page; Japan. |
Canadian Intellectual Property Office; Examiner Report, issued in connection to application No. CA3009845; dated May 20, 2020; 3 pages; Canada. |
Japanese Patent Office; Statement of Submission of Publication by third part, filed in connection to application No. 2018-541647; Jun. 25, 2020; 3 page; Japan. |
Korean Intellectual Property Office; Office Action, issued in connection to patent application No. 10-2020-7011514; dated Jul. 20, 2020; 11 pages; Korea. |
European Patent Office; Communication Pursuant to Article 94(3)EPC, issued in connection to application No. 182013703.6; dated Jul. 27, 2020; 5 pages; Europe. |
Japanese Patent Office; Office Action, issued in connection to application No. 2019-140168; dated Sep. 2, 2020; 9 pages; Japan. |
European Patent Office; Communication Pursuant to Article 94(3) EPC, issued in conneciton to application No. EP15192642.5; dated Sep. 10, 2020; 5 pages; Europe. |
Intellectual Property Office of Singapore; Invitation to Respond to Written Opinion, issued in connection to application No. 11201805491X; dated Aug. 18, 2020; 6 pages; Singapore. |
Japanese Patent Office; Final Rejection, issued in connection to application No. 2018-541647; dated Jul. 22, 2020; 4 cages; Japan. |
Korean Intellectual Property Office; Second Notificaiton of Provisional Rejection, issued in connection to application No. 10-2018-7021988; dated Oct. 26, 2020; 12 pages; Korea. |
Japanese Patent Office; Final Office Action, issued in connection to application No. 2018-553847; dated Jan. 6, 2021; 11 pages; Japan. |
Canadian Patent Office; Office Action, issued in connection to application No. 3009825; dated Feb. 17, 2021; 3 pages; Canada. |
Korean Intellectual Property Office; Notice of First Refusal Ruling, issued in connection to application No. 10-2018-7021988; dated Mar. 26, 2021; 8 pages; Korea. |
Brazilian National Institute of Industrial Property; Technical Examination Report, issued in connection to PI0613275-8; dated Feb. 24, 2021; 18 pages; Brazil. |
Japanese Patent Office; Final Office Action, issued in connection to application No. 2017-226648; dated Feb. 24, 2021; 29 pages; Japan. |
Nippon Ketjen Co., Ltd; Summary of Invalidation Reason, filed in connection to Korean patetn No. 10-1417049; dated Mar. 15, 2021; 35 pages; Korea. |
Intellectual Property Corporation of Malaysia; Substantive Examination Adverse Report (Section 30 (1) / 30(2)), issued in connection with application No. PI2018702533; dated Apr. 27, 2021; 3 pages; Malaysia. |
European Patent Office; Communication Pursuant to Article 94(3) EPC, issued in connection to application No. EP18201370.6; dated May 19, 2021; 4 pages; Europe. |
European Patent Office; Communication Pursuant to Article 94(3) EPC, issued in connection to application No. EP17706648.7; dated Jul. 1, 2021; 7 pages; Europe. |
Japanese Patent Office; Observation, issued in connection to JP2020-110241; May 28, 2021; 36 pages; Japan. |
U.S. Appl. No. 17/062,371; gathered Aug. 12, 2021; 35 pages; U.S. |
Japanese Patent Office; Office Action, issued in connection to application No. 2020-110241; dated Jul. 21, 2021; 8 pages; Japan. |
Japanese Patent Office; Final Rejection, issued in connection to application No. 2019-140168; dated Jul. 21, 2021; 7 pages; Japan. |
Korean Intellectual Property Office; Notification of Reason for Refusal, issued in connection to application No. 10-2021-7015042; dated Aug. 27, 2021; 7 pages; Korea. |
Schildhauer; Application of Film-Flow-Monoliths . . . , Technical Univesity Delft; Julianalaan 136, NL-2628 BL Delft; The Netherlands; 1 page; Oct. 29, 2003. |
Scheffler, Michael; Cellular Ceramics: Structure, Manufacturing, Properties and Applications; Die Beutsche Bibliotheck; 2005; 5 pages; Germany. |
Schlichting, Boundary-Layer Theory; McGraw-Hill; (Translation of Grenzschicht-Theorie, Translated by Dr. J. Kestin), 1979; pp. 230-234. |
Selee Corporation; Product Brochure; 6 pages; 1997. |
Selee Corporation Home Page; Internet; downloaded Nov. 14, 1996; 3 pages. |
Selee Corporation; Ceramic Foam for Thermal/Kiln Furniture Applications; Ceramic Foam Kiln Furniture Phusical Property Data Sheet; Nov. 14, 1996; 2 pages. |
Snyder Filtration; Nanofiltration Membranes; Retrieved Jun. 15, 2016 from: http://synderfiltration.com/nanofiltration/membranes/; 4 pages; Membrane Technology, Jun. 15, 2016. |
Sulzer; Structured Packings for Separation and Reactive Distillation Brochure; pp. 2-27; 2002-2003. |
Sweeting et al.; High Surface Reticulated Ceramics for Catalytic Applications; Mat., Res. Soc. Symp. Proc., vol. 549; pp. 17-23; 1999. |
Sweeting et al.; Reticulated Ceramics for Catalyst Support Applications; Hi-Tech Ceramics, Inc.; Nov. 30, 1994; 12 pages. |
Tan-Atichat and Nagib, “Interaction of free-stream turbulence with screens and grids: a balance between turbulence scales” J. Fluid Mech (1982), vol. 114, pp. 501-528; Great Britain. |
Wadley; Cellular Metals Manufacutring; Advanced Engineering Materials; 4; No. 10; pp. 726-733; 2002. |
Woodward et al.; Akzo Chemicals' Guard Bed Technology; 16 pages; 1991. |
U.S. Patent and Trademark Office; Non-Final Office Action, Issued in Connection with U.S. Appl. No. 11/893,190; dated Mar. 10, 2010; 6 pages; U.S. |
Applicant; Amendment and Response, Filed in Connection with U.S. Appl. No. 11/893,190; Aug. 20, 2010; 4 pages; U.S. |
U.S. Patent and Trademark Office; Final Office Action, Issued in Connection with U.S. Appl. No. 11/893,190; dated Nov. 3, 2010; 5 pages; U.S. |
Applicant; Response to Final Office Action, Filed in Connection with U.S. Appl. No. 11/893,190; Jan. 3, 2011; 5 pages; U.S. |
U.S. Patent and Trademark Office; Non-Final Office Action, Issued in Connection with U.S. Appl. No. 11/893,190; dated Jan. 19, 2011; 5 pages; U.S. |
Applicant; Amendment and Response, Filed in Connection with U.S. Appl. No. 11/893,190; Jul. 19, 2011; 4 pages; U.S. |
U.S. Patent and Trademark Office; Final Office Action, Issued in Connection with U.S. Appl. No. 11/893,190; dated Sep. 22, 2011; 6 pages; U.S. |
Applicant; Amendment and Response, Filed in Connection with U.S. Appl. No. 11/893,190; Dec. 16, 2011; 5 pages; U.S. |
U.S. Patent and Trademark Office; Non-Final Office Action, Issued in Connection with U.S. Appl. No. 11/893,190; dated Jan. 27, 2012; 7 pages; U.S. |
U.S. Patent and Trademark Office; Non-Final Office Action, Issued in Connection with U.S. Appl. No. 11/893,190; dated Feb. 6, 2012; 7 pages; U.S. |
Applicant; Amendment and Response, Filed in Connection with U.S. Appl. No. 11/893,190; Aug. 3, 2012; 6 pages; U.S. |
U.S. Patent and Trademark Office; Final Office Action, Issued in Connection with U.S. Appl. No. 11/893,190; dated Oct. 23, 2012; 9 pages; U.S. |
Applicant; Amendment and Response, Filed in Connection with U.S. Appl. No. 11/893,190; Dec. 24, 2012; 8 pages; U.S. |
U.S. Patent and Trademark Office; Advisory Action Before the Filing of an Appeal Brief, Issued in Connection with U.S. Appl. No. 11/893,190; dated Jan. 11, 2013; 3 pages; U.S. |
Applicant; Amendment and Response, Filed in Connection with U.S. Appl. No. 11/893,190; Feb. 25, 2013; 4 pages; U.S. |
U.S. Patent and Trademark Office; Notice of Allowance and Fee(s) Due, Issued in Connection with U.S. Appl. No. 11/893,190; dated May 2, 2013; 8 pages; U.S. |
U.S. Court of Appeals Federal Circuit; Purdue Pharma L.P. v. Faulding Inc., 56 USPQ2d 1481 (CA FC 2000); Oct. 25, 2000; 11 pages. |
Selected relevant excerpts from file history of U.S. Appl. No. 11/893,190, filed Aug. 15, 2007 and assigned to Applicant for present application. |
Notice of Allowance for U.S. Appl. No. 10/867,015 (now U.S. Pat. No. 7,393,510, issued Jul. 1, 2008). |
Observations submitted in connection to JP2017-226648; Jul. 17, 2018; 50 pages; Japan. |
New Zealand Intellectual Property Office; Further Examination Report, issued in connection to application No. 743891; dated Jun. 24, 2019; 9 pages; New Zealand. |
Japanese Patent Office; Observation, issued in connection to JP2018-541647;Jun. 19, 2019; 40 pages Japan. |
The Japan Petroleum Institute; Petroleum Refining Process; Kodansha Ltd.; May 20, 1998; 6 pages; Japan. |
Chen, Xiaodong et al.; Improving the Strength of ZTA Foams with Different Strategies: Immersion Infiltration and Recoating; www.mdpi.com/journal/material;; May 30, 2017; 15 pages. |
Intellectual Property Office of Singapore; Written Opinion, issued in connection to application No. 11201805367W; dated Aug. 16, 2019; 7 pages; Singapore. |
Intellectual Property Office of Singapore; Written Opinion, issued in connection to application No. 11201805491X; dated Aug. 29, 2019; 6 pages; Singapore. |
Intellectual Property India; Examination Report, issued in connection to application No. 201837023710; dated Aug. 28, 2019; 6 pages; India. |
Canadian Intellectual Property Office; Official Action and Examination Search Report, issued in connection with CA3009845; dated Aug. 28, 2019; 4 pages; Canada. |
Saint-Gobain Norpro; Denstone ® Deltrap ® Support Media; 6 pages; printed Oct. 1, 2019; https://www.norpro.saint-gobain.com/support-media/denstone-deltap. |
Saint-Gobain Norpro; Tools Help Optimize Selection of Denstone ® Bed Support Media; Apr. 4, 2019; 4 pages; https://www.norpro.saint-gobain.com/articles/tools-help-optimize-selection-denstone-bed-support-media-article. |
Chilean Patent and Trademark Office; Examiner Report, issued in connection to application No. 2131-2018; 17 pages; dated Aug. 29, 2019; Chile. |
Chilean Patent and Trademark Office; Search Report, issued in connection to application No. 2131-2018; 3 pages; dated Aug. 29, 2019; Chile. |
Japanese Patent Office; Statement of Submission of Publications, filed in connection to JP2020-194305; Oct. 6, 2021; 42 pages; Japan. |
Kabe, Toshiaki; Hydrotreating—Science and Technology; Oct. 20, 2000; pp. 341-347; IPC KK. |
Woven Metal Products, Inc.; Perforated Plate; https://wovenmetal.com/reactor-internals/axialdownflow/catalyst-hold-downfloating-screens; printed Aug. 30, 2021; 2 pages. |
Christy Catalytics; Catalyst Support Hold Down—Secondary Reformers; https://www.christycatalytics.com/our-blog/bid/31695/catalyst-support-hold-down-secondary-reformers; Dec. 3, 2009; 4 pages. |
Crystaphase; CatTrap; https://crystaphase.com/solutions/cattrap/; Aug. 27, 2021; 3 pages. |
European Patent Office; International Search Report, issued in connection to application No. PCT/US2021/049704; dated Nov. 26, 2021; 4 pages; Europe. |
European Patent Office; Written Opinion of the International Searching Authority, issued in connection to application No. PCT/US2021/049704; dated Nov. 26, 2021; 7 pages; Europe. |
Intellectual Property Office of Singapore, Written Opinion, issued in connection to application No. 10202007685S; dated Jul. 17, 2022; 8 pages; Singapore. |
European Patent Office; Communication Pursuant to Rules 161(1) and 162 EPC, issued in connection to application No. EP21794038.6; 3 pages; dated Apr. 18, 2023; Europe. |
European Patent Office; Communication Pursuant to Article 94(3) EPC, issued in connection to EP18201370.6; 4 pages; dated Jun. 17, 2022; Europe. |
Japanese Patent Office; Final Rejection, issued in connection to application No. 2020-110241; dated Jun. 8, 2022; 6 pages; Japan. |
Ancheyta, Jorge et al.; Asphaltenes: Chemical Transformation during Hydroprocessing of Heavy Oils; Chemical Industries/124; CRC Press; 2009; 5 pages. |
Third Party Submission; filed in connection to application No. 2020-110241; May 18, 2022; 39 pages; Japan. |
Japanese Patent Office; Office Action, issued in connection to application No. 2021-116861; dated Aug. 24, 2022; 10 pages; Japan. |
Mexican Patent Office; Office Action, issued in connection to application No. MX/a/2018/007939; dated Mar. 21, 2023; 6 pages; Mexico. |
Intellectual Property Office of Singapore; Refusal of Request for Examinaton Review Report, issued in connection with application No. 11201805491X; dated May 11, 2023; 8 pages; Singapore. |
Intellectual Property Office of Singapore; Notice of Intention to Refuse Patent Application, issued in connection with application No. 11201805491X; dated Sep. 28, 2021; 6 pages; Singapore. |
Japanese Patent Office; Office Action, issued in connection to application No. 2020-194305; dated Oct. 19, 2022; 13 pages; Japan. |
Japanese Patent Office; Office Action, issued in connection to application No. 2020-194305; dated Jan. 19, 2022; 4 pages; Japan. |
Number | Date | Country | |
---|---|---|---|
20220072495 A1 | Mar 2022 | US |
Number | Date | Country | |
---|---|---|---|
63076226 | Sep 2020 | US |