Process vessel entry zones

Information

  • Patent Grant
  • 11752477
  • Patent Number
    11,752,477
  • Date Filed
    Thursday, September 9, 2021
    2 years ago
  • Date Issued
    Tuesday, September 12, 2023
    8 months ago
Abstract
Process vessels can contain one or more entry zones containing stability-improving materials. The entry zones address bed movement and filtration problems. The stability-improving material can be positioned above a treating zone or above a processing bed within the vessel. Entry Zones are intended to improve the stability of downstream operations.
Description
BACKGROUND
1. Field of the Invention

The presently disclosed subject matter relates to improving the functionality and efficiency of industrial process vessels.


2. Description of the Related Art

Many industrial process vessels include fluid process streams entering and exiting the vessel. Some vessels can have streams that migrate or recycle within or around the vessel. Commercial process vessels can be from 4 inches to 18 feet in diameter and 1 to 100 feet in height. Conventional vessels can include bed materials, which are typically 3 inches in size or less.


Materials can be loaded into process vessels as a packed bed of elements. Within a packed bed, space exists between the elements, known as “interstitial space.” Additionally, elements can have space that exists within themselves, defined as “internal void.” Fluid flow in a packed bed occurs in the interstitial spaces and internal voids unless the sizes of the individual spaces and voids are typically less than one micron. The “porosity” of the packed bed is defined as the total volume of the interstitial spaces and internal voids available for fluid flow in the packed bed divided by the total volume of the packed bed. It has been commonplace in the industry to overlap these terms, creating confusion. The definitions are created here so they can be used in interpreting the remainder of the document.


Processing elements are loaded into process vessels as packed beds. Processing elements can be catalysts, sorbents, or the like. These processing bed elements are typically formed as small kernels the size of corn or rice via extrusion or other methods. Conventional processing elements weigh in the range of 25 to 50 pounds per cubic foot. Weight per piece can be 10 to 50 mg. Porosity is an important value when considering the performance and behavior of a processing bed. Processing bed porosity is typically in the range of 30-45% and is entirely composed of interstitial space. Lacking voids available for fluid flow, processing bed internal void is 0%.


Vessels are designed and operated in cycles, that is, in a series of continuous modes each lasting for weeks, months or years. End-of-cycle vessel operations can be triggered by exhaustion of the capabilities of processing bed elements disposed within the vessels, pressure drop, shutdown for required vessel inspections, upsets (e.g., a power outage) and the like.


In a process vessel, fluids flow from entry to exit via pressure differential. This differential is referred to as pressure drop. The higher the pressure drop, the harder upstream pumps and compressors have to work. Once the pressure drop increases past a certain point the pumps and compressors can no longer keep up with the higher pressure differential and the unit must be shut down. Increased pressure drop is not desired.


Improvements in this field of technology are desired.


SUMMARY

The following presents a simplified summary of the disclosed subject matter in order to provide a basic understanding of some aspects thereof. This summary is not an exhaustive overview of the technology disclosed herein.


In certain illustrative embodiments, a method of providing improved stability and filtration of fluid process stream flow in a process vessel is provided, which can include: passing the fluid process stream flow through a processing zone within the process vessel, the processing zone containing one or more beds of processing elements; and prior to passing the fluid process stream flow through the processing bed, passing the fluid process stream flow through an entry zone located upstream of the processing bed, wherein the entry zone contains a bed of stability-improving materials which can have a porosity in the range from 67% to 87%, which can have a density in the range from 30-60 lbs/ft3, and can have a weight per piece of 25-200 grams. The stabilizing materials can have internal void capable of capturing undesired species from the fluid process stream flow. The entry zone can include one or more layers of stability-improving materials. There can be a treating zone downstream the entry zone. The stability-improving material stabilize and prevent movement of the treating elements in the treating zone. The internal void of the stability-improving material can contain a network of interconnected pores that are able to trap and retain undesired particles. The internal void of the stability-improving material can be tortuous. The internal void can be 20%-42% of the entry zone volume. The internal void can be 20%-40% of the entry zone volume. The internal void can be 25%-42% of the entry zone volume. The internal void can be 25%-35% of the entry zone volume. The internal void can be 30%-40% of the entry zone volume. The internal void can be 30%-35% of the entry zone volume. The internal void can be 20%-35% of the entry zone volume. The weight per piece can be 30-200 grams. The weight per piece can be 65-200 grams. The weight per piece can be 70-300 grams. The weight per piece can be 70-200 grams. The weight per piece can be 35-300 grams. The weight per piece can be 12-200 grams. The weight per piece can be 12-300 grams. The weight per piece of the stability-improving material can be 2500-4000 times greater than the downstream processing elements. The weight per piece of the stability-improving material can be 2-25 times greater than the downstream treating elements. The weight per piece of the stability-improving material can be 2-10 times greater than the downstream treating elements. The stability-improving material can stabilize and prevent movement of the processing elements in the processing bed. The fluid process stream flow exiting the entry zone can flow directly into the processing bed or treating zone. The stability-improving material can stabilize and prevent movement of the process elements in the processing bed. A permeable mesh can separate the entry zone and the processing bed. A void space can present between the exit of the entry zone and the entrance to the processing bed. The composition of the stability-improving materials in the entry zone can include one or more of iron, tungsten, zirconium, titania, alumina, and the like. The composition of the stability-improving materials in the entry zone can include one or more oxides of iron, tungsten, zirconium, titania, alumina, and the like. The composition of the stability-improving materials in the entry zone can include one or more carbides of iron, tungsten, zirconium, titania, alumina, and the like. The stability-improving materials in the entry zone can be secured to the internal walls of the process vessel.


In certain illustrative embodiments, a process vessel is provided. The process vessel can include: a processing zone containing one or more beds of processing elements; and an entry zone located upstream of the processing bed, the entry zone comprising a bed of stability-improving materials having a porosity in the range from 67% to 87%, a density in the range from 30-60 lbs/ft3, a weight per piece of 25-200 grams, and an internal void capable of capturing undesired species from a fluid process stream flow passing therethrough. The process vessel can be, for example, a reformer, a hydrotreater, a naphtha hydrotreater, a fluid catalytic cracker gasoline treater unit, a hydrodesulfurization unit, an isomerization unit, or a sulfur recovery unit.





BRIEF DESCRIPTION OF THE DRAWINGS

A better understanding of the presently disclosed subject matter can be obtained when the following detailed description is considered in conjunction with the following drawings, wherein:



FIG. 1 is an illustration of vorticity and horizontal diffusion in a process vessel in accordance with an illustrative embodiment of the presently disclosed subject matter;



FIG. 2 is an illustration of vorticity and vertical diffusion in a process vessel in accordance with an illustrative embodiment of the presently disclosed subject matter;



FIG. 3 is an illustration of coning in a process vessel in accordance with an illustrative embodiment of the presently disclosed subject matter;



FIG. 4 is an illustration of dishing in a process vessel in accordance with an illustrative embodiment of the presently disclosed subject matter;



FIG. 5 is an illustration of a dished treating zone in a process vessel in accordance with an illustrative embodiment of the presently disclosed subject matter;



FIG. 6 is an illustration of a stabilizing zone on top of a treating zone, where fouling has occurred above the stabilizing zone, blocking off access to the downstream treating zone in accordance with an illustrative embodiment of the presently disclosed subject matter;



FIG. 7 is an illustration of a stabilizing zone with high velocity streams and fouling in a process vessel in accordance with an illustrative embodiment of the presently disclosed subject matter;



FIG. 8 is an illustration of a treating zone with fluid processing streams in a process vessel in accordance with an illustrative embodiment of the presently disclosed subject matter;



FIG. 9 is an illustration of a stability-improving material and a treating zone beneath the stability-improving material in a process vessel in accordance with an illustrative embodiment of the presently disclosed subject matter;



FIG. 10 is an illustration of a stability-improving material and a processing bed beneath the stability-improving material in a process vessel in accordance with an illustrative embodiment of the presently disclosed subject matter;



FIG. 11 is an illustration of an impinged processing bed under a distributor tray downcomer in a processing vessel in accordance with an illustrative embodiment of the presently disclosed subject matter;



FIG. 12 is an illustration of a stability-improving material positioned below a distributor tray and protecting a processing bed in a process vessel in accordance with an illustrative embodiment of the presently disclosed subject matter;



FIG. 13 is an illustration of three intrusive devices known as trash baskets, bypass tubes, and a bypass device, where each are shown to be embedded in or through the entry zone in accordance with an illustrative embodiment of the presently disclosed subject matter;





While certain preferred illustrative embodiments will be described herein, it will be understood that this description is not intended to limit the subject matter to those embodiments. On the contrary, it is intended to cover all alternatives, modifications, and equivalents, as may be included within the spirit and scope of the subject matter as defined by the appended claims.


DETAILED DESCRIPTION

According to the various illustrative embodiments disclosed herein, materials and related methods for improving the functionality and efficiency of a processing bed 40 in an industrial process vessel 10 are provided.



FIG. 1 and FIG. 2 are illustrations of a process vessel 10. Process vessels 10 can include mechanical devices to help distribute and reduce high velocities in the feed streams 20 entering the vessel 10. These zones of the vessel 10 can be described as inlet zones 80, which are installed between the primary feed stream input flange and bed materials. Inlet zones 80 can help to distribute and reduce high velocities in the entering feed streams 20. Inlet zones 80 can comprise devices such as engineered stream diffusion nozzles 90, as well as perforated plates and distribution trays 200. Such devices can be complex engineered devices that can be expensive and bulky. Expense includes the efforts to engineer, design, install, operate and maintain the facilities. Conventional engineered inlet zones 80 typically consume approximately 2 to 4 feet of vertical space within a vessel 10.


Other mechanical devices, herein called “intrusive devices” have been known to be installed and intrude into the packed bed of the vessel where bed material is packed around them. These are devices which can allow fluid to bypass the top of the bed in the event plugging occurs. Examples of intrusive devices would be “trash baskets”, “bypass tubes”, or a “bypass device”. The bypass device, embedded in bed materials, could be a collection of bypass tubes connected to a means of distribution. Disclosed materials can be used alongside these intrusive devices.


Vessels 10 have been known to have feed rates which generate high velocities at the inlet which create vorticity and horizontal/vertical diffusion. FIG. 1 is an illustration of vorticity and horizontal diffusion in a process vessel 10, and FIG. 2 is an illustration of vorticity and vertical diffusion in a process vessel 10. Inlet zones 80 are intended to help diffuse these high velocities to generate gentler fluid velocities, eliminating high velocity streams. Even so, there are cases where the inlet zones 80 are unable to reduce the fluid velocities to acceptable operating limits. Mechanical devices in the inlet zone 80 can become damaged or hindered during installation or operation which can also impeded their ability to operate correctly. The high velocities generated in these instances can initiate movement of processing elements 30 in the processing bed 40, known as “bed movement”. Once the processing elements 30 begin to move, the uppermost portion of the processing bed 40 can be made to swirl and collide, with the processing elements 30 grinding against one another. This can quickly lead to vessel shutdown as the processing elements 30 abrade and break apart, contributing to an unsustainable disturbance and loss of acceptable operating conditions.


Common types of bed movement events include coning, dishing, gouging, impingement, and fluffing. FIG. 3 is an illustration of coning in a process vessel 10. Coning 120 is defined as the processing elements 30 (e.g., catalyst) in the uppermost portion of the processing bed 40 being swirled and broken apart as particulates are moved toward the cross-sectional center of the processing bed 40, forming a cone. Dishing 130 is defined as the uppermost portion of the processing bed 40 swirling and breaking apart as the particulates of processing elements 30 are moved towards the cross-section perimeter of the processing bed 40 and leaving a bowl or dish shape depression in the center. FIG. 4 is an illustration of dishing in a process vessel 10. FIG. 5 is an illustration of a dished treating zone 180 in a process vessel 10. Gouging is where the high fluid velocities only affect a small portion of the processing elements 30, but it is enough to create an asymmetric gouge or scar in a small location of the processing bed 40, pushing the broken processing elements 30 into other parts of the bed 40. Fluffing includes situations where flow rate is reversed from the normal down flow operation. When fluids move upward at a sufficient velocity they can entrain bed materials. Impingement can be defined as the instruction of a fluid into a packed bed causing bed materials to be displaced forming a hole. FIG. 11 is an illustration of an impinged processing bed 220 under a distributor tray downcomer 210 in a processing vessel 10. In any of these types of bed movement events, the result can be catastrophic and can end the cycle of the processing vessel 10, where a shutdown may be required to fix the problem.


Some processing vessels 10 can include stabilizing zones 110 intended to stabilize beds 40 of processing materials 30 contained in the process vessel 10 and can offer protection or can eliminate these bed movement events. FIG. 6 is an illustration of stabilizing zones with high velocity streams 20. Stabilizing zones 110 can contain stabilizing elements 115 and are installed below the inlet zone 80 and upstream of the processing elements 30. Conventional stabilizing zones 110 consist of stabilizing elements 115 typically made from ceramic and can include elements such as support balls, dogbones, butterflies, wagon wheels and the like. These elements 115 have densities in the range of 55-130 pounds per cubic foot, a packed bed porosity of 40%-65%, and a weight per element of 3 grams to 190 grams. Although suitable for stabilizing, these elements 115 have poor filtration performance due to their low porosity. The internal void porosity of stabilizing elements 115 is typically close to zero percent (0%). However, these elements 115 can have an internal void of 3-5% and potentially up to 20%. A bed of stabilizing elements 115 with an internal void of 20% corresponds to approximately 65% porosity. The porosity of the packed bed is defined as the total volume of the spaces and voids available for fluid flow in the packed bed divided by the total volume of the packed bed. Low porosity is defined as any packed bed with less than or equal to 65% total porosity. Conversely, high porosity is defined as any bed with over 65% total porosity. Low porosity beds can create problems due to caking, plugging, etc. of the stabilizing elements 115. Particles deposit on the surface and can build up eventually plugging the vessel 10 and creating a cake layer 140. FIG. 7 is an illustration of stabilizing zones with high velocity streams and fouling that creates a cake layer 140. Stabilizing elements 115 utilize volumes and depths within the vessel 10 which detract from the amounts of processing materials 30 in processing bed 40 that can be installed in the vessel 10 and, accordingly, detracts from the processing capability of the processing bed 40.


Process vessels 10 can also include treating zones 150 installed to facilitate internal filtration of undesired species contained within streams. Treating zones 150 can contain treating elements 160. FIG. 8 is an illustration of a treating zone 150 with fluid processing streams 20 in a process vessel 10. Treating zones 150 are typically placed upstream of processing beds 40. Treating elements 160 are intended to help mitigate caking and plugging problems in the vessel 10 and are designed to have a large internal capacity for particles. Treating elements 160 have densities in the range of 12-30 pounds per cubic foot, a porosity of 88%-95%, and a weight per element of 8-30 grams. The high porosity provides the treating elements 160 with the ability to store large amounts of particles before pressure drop formation can take place in the vessel 10. However, the large porosity exposes the elements 160 to a lower velocity threshold of bed movement. When these elements 160 are used on top of the bed, with sufficiently high velocity streams, movement of bed materials is possible, which can create a coned or dished bed of treating elements 160 or other bed disturbance.


The stabilizing zone 110 comprised of stabilizing elements 115 can be positioned upstream of the treating zone 150 of treating elements 160 in order to provide resistance to bed movement. In these cases, the stabilizing elements 115 can prevent bed movement, but introduce two additional undesirable constraints on the vessel 10 similar to the constraints already discussed above. The stabilizing elements 115 can require an increase in vessel volume and depth to install at the cost of the removal of processing elements 30 or other bed materials. Also, the stabilizing elements 115 can block any particles from being stored in the downstream treating zone 150, rendering the high porosity required for treating zone particle storage unusable. This can lead to an undesirable increase in pressure drop caused by particle accumulation 140 in the stabilizing zone 110.


In certain illustrative embodiments, process vessels 10 can contain one or more entry zones 170 containing stability-improving materials 175. The entry zones 170 address bed movement and filtration problems. FIG. 9 is an illustration of a stability-improving material 175 and a treating zone beneath the stability-improving material 175, and FIG. 10 is an illustration of a stability-improving material 175 and a processing bed 40 beneath the stability-improving material 175.


Bed movement problems can be characterized as a mismatch between the velocity of the process stream 20 as it enters the processing bed 40 and the material properties of the processing elements 30 at the top of the bed 40. In a packed bed with no external fluid forces applied, gravity is the only force which holds the elements 30 in place. If the fluid forces applied to the elements 30 overcome the gravitational forces, bed movement will occur. The force which a fluid can apply to a given element is proportional to the density of the fluid, the square of the velocity of the fluid, and the area of that element. Higher density fluids and higher velocities enable larger forces. The velocity at which an element in a bed can move depends largely on its surface area and weight per piece. Elements with large surface areas or low weight per piece tend to be easier to move for a given velocity. To avoid bed movement for given fluid properties of density and velocity, the weight per piece of the element must be increased and the surface area decreased. It has been thought that the low surface area requirement would preclude high porosity with high surface area materials from being used as a stabilizing material. Surprisingly, this has been shown to be incorrect and, by selecting the correct properties, high porosity, high surface area materials can be used for stabilizing while providing the filtration capacity to retain incoming particles.


Undesired species are contained in streams 20 entering the entry zone 170. Longevity of entry zone 170 is important because the useful life of the entry zone 170 is desired to out-live that of a cycle of a process vessel 10, including the activity of processing bed material 30. Pressure drop control is also important as particle deposition in the processing bed material 30 can increase the pressure through the beds in vessel 10. Increase in pressure must be minimized to ensure designed performance of the vessel 10. Additionally, entry zone 170 should be designed to withstand feed stream forces and velocities in order to avoid bed movement.


The entry zone 170 is intended to improve the stability of downstream operations. Stability-improving material 175 allows for resistance to coning, dishing, impingement, or fluffing while also providing the ability to filter particles from the process stream 20 without detriment to the operation of vessel 10. FIG. 12 is an illustration of a stability-improving material 175 positioned below a distributor tray 200 and protecting a processing bed 40 from fluid process streams 20 coming out of the distributor tray downcomer 210 in a process vessel 10. Some stability-improving materials 175 can have holes or pores sized from 1 mm to 15 mm. Stability-improving materials 175 are typically more dense than downstream bed materials or have a higher weight per piece than downstream bed materials.


Stability-improvement materials 175 can be differentiated by the presence of heavy chemical species, a reduced internal void space of the materials 175, and an increase in size. Another option includes fabrication of materials 175 that are adhered to the walls of the vessel 10 or spread as a sheet or mesh of materials 175 across the circumference of the vessel 10 to constrict movement of downstream materials. Alternatively, a porous, solid screen or membrane can be disposed on top of and/or below the one or more entry zones 170 to prevent movement of the materials 175 in the entry zone 170 as well as that of downstream zones. The entry zone 170 can internally filter undesired species from the incoming streams 20. The media in the entry zone 170 can include materials 175 whose porosity is capable of attracting and retaining undesired species passing through the entry zone 170. Streams can exit the entry zone 170 and enter downstream operations. Entry zone 170 can be disposed in layers reflecting different geometries and/or characteristics of the media contained in each layer. An example would be an entry zone 170 containing three layers of materials 175, each with a different size, porosity, or pore size. Such layers in entry zone 170 are intended to facilitate filtration of the fluid streams passing through them. An entry zone 170 can be layered such that the largest sizes of materials 175 are on the top, and/or the largest porosity of materials 175 is on the top, and/or the heaviest pieces of materials 175 are on top.


Entry zone 170 can provide filtration upstream of downstream processing bed operations. Filtered fluids that are removed from streams containing undesired species are referred to herein as “filtrate.” The undesired species removed from these streams are referred to herein as “filtrant.” Filtrant is trapped and retained on stability-improving material 175.


Stability-improving materials 175 can contain a network of interconnected pores that are able to trap and retain undesired particles. Elements with interconnected pores provide surface area and residence time to facilitate (i) separation of filtrate from filtrant and (ii) retention of filtrant. Such pores are typically between 2 microns and 5000 microns in size.


Stability-improving materials 175 can be tortuous porous elements. Tortuous porous elements are defined herein as those containing sinuous, winding, internal porous flow passageways which provide surface area and residence time to facilitate (i) separation of filtrate from filtrant and (ii) retention of filtrant. Such passageways are typically between 2 microns and 5000 microns in size.


The presently disclosed materials 175 in entry zone 170 can reduce the required depth of material positioned upstream of the processing beds in vessel 10 while also achieving bed stability, facilitating filtration, and allowing increased utilization of the processing bed capabilities in vessel 10.


In certain illustrative embodiments, stability-improving material can surround an intrusive device such that the intrusive device is embedded, partially or wholly, in the entry zone. FIG. 13 is an illustration of three intrusive devices known as trash baskets 230, bypass tubes 240, and a bypass device 250, where each are shown to occupy part of the entry zone 170.


In certain illustrative embodiments, the presently disclosed materials 175 in entry zone 170 can be constructed to have a desired combination of weight, strength and porosity to enable stream stability and filtration within the entry zone 170 of the process vessel 10. The materials 175 can result in improvements in vessel 10 including reduced vertical space requirements, eliminating or significantly reducing bed movement, minimizing increase in pressure drop when capturing foulant, and improving cycle-length of the performance of vessel 10.


The use of disclosed materials 175 can achieve bed porosities which are favorable for filtration while also having material densities and weight per piece which are favorable for bed stabilization. The disclosed porosities in entry zone 170 would be in the range of 67% to 87%. In other illustrative embodiments the porosities would be in the range of 70% to 87%. In yet other illustrative embodiments, the porosities would be in the range of 75% to 87%. In yet other illustrative embodiments, the porosities would be in the range of 75% to 85%.


The disclosed density ranges in entry zone 170 would be in the range of 30-60 pounds per cubic foot.


The disclosed weight per piece for the materials 175 in the disclosed entry zone 170 would be from 2500-4000 times greater than that of the materials 30 in the downstream processing bed 40. For example, if the downstream processing bed 40 contained materials 30 having a weight per piece of 10-50 milligrams, the materials 175 in the disclosed entry zone 170 could have a weight per piece of 25-200 grams per piece. In another illustrative embodiment, the weight per piece of materials 175 could be in the range of 60-200 grams. In another illustrative embodiment, the weight per piece of materials 175 could be in the range of 65-200 grams. In another illustrative embodiment, the weight per piece of materials 175 could be in the range of 70-200 grams. In another illustrative embodiment, the weight per piece of materials 175 could be in the range of 75-200 grams. In another illustrative embodiment, the disclosed weight per piece for the materials 175 in the disclosed entry zone 170 could be from 5-10 times greater than that of the elements in the downstream treating zone. For example, if the downstream processing bed zone materials had a weight per piece of 7-30 grams, the materials 175 in the disclosed entry zone 170 could have a weight per piece of 35-300 grams per piece. In another illustrative embodiment, the disclosed weight per piece for the materials 175 in the disclosed entry zone 170 could be from 2-25 times greater than that of the elements in the downstream treating zone.


Unexpectedly, it has been found that an increase in a material's internal void space, while significantly reducing the weight per piece, improves the material's stabilizing capability. It was thought the reduced weight, combined with the additional drag added by the increased surface area from the internal void would cause the material to become easier to move. Conversely, it has been demonstrated that the permeability of the internal void helps contribute to the gravitational force already holding it in place, thus increasing the stability.


One driver of improving stabilizing zone capability is weight per piece. Another important driver for filtration is internal void. As that internal void is filled and the filtration material becomes used, it loses the permeability it derives from the internal void and can be more easily moved. The conclusion that the stability can change throughout the cycle is key in designing stable entry zone material which can also perform well in filtration. Using a material which has good stabilizing and good filtration performance turns into a balance of controlling the initial weight per piece, but also determining an internal void that will provide significant filtration capability.


In one illustrative embodiment, the disclosed stability-improving material 175 has an internal void in the range of 20-42% with the interstitial space making up the balance of the described porosity. In another illustrative embodiment, the disclosed stability-improving material 175 has an internal void in the range of 20-40% with the interstitial space making up the balance of the described porosity. In another illustrative embodiment, the disclosed stability-improving material 175 has an internal void in the range of 25-40% with the interstitial space making up the balance of the described porosity. In another illustrative embodiment, the disclosed stability-improving material 175 has an internal void in the range of 20-35% with the interstitial space making up the balance of the described porosity. In another illustrative embodiment, the disclosed stability-improving material 175 has an internal void in the range of 25-35% with the interstitial space making up the balance of the described porosity. In another illustrative embodiment, the disclosed stability-improving material 175 has an internal void in the range of 30-40% with the interstitial space making up the balance of the described porosity. In another illustrative embodiment, the disclosed stability-improving material 175 has an internal void in the range of 30-35% with the interstitial space making up the balance of the described porosity. This internal void would provide good filtration performance, while surprisingly, bolstering the stabilizing capability of the material 175. The advantage of the disclosed material 175 when compared to that of other materials with internal void is the weight per piece has been increased by the introduction of heavier materials, providing a good initial stabilizing capability, and a slight reduction in the internal void, which means the stabilizing capability remains more constant throughout the cycle while still providing the capability to store filtrant. Both additions of increased weight per piece and reduced internal void improve the ability of the material 175 to withstand bed movement in high fluid velocity applications throughout the cycle life of the vessel 10.


This disclosed combination of porosity, density range, weight per piece, and resulting functionality, is not used in existing vessels and materials. In one example of existing materials, bed porosity in the range of 40-65% is maintained to achieve a density of 55-130 pounds per cubic foot. This porosity range and density range leads to materials which have good stability performance, but lead to poor filtration performance. In another example, to achieve good filtration performance, porosity is in the range of 88-95%. To achieve this porosity, existing materials have a density in the range of 12-30 pounds per cubic foot and a weight per piece in the range of 8-30 grams. This density range, porosity range, and weight per piece range lead to materials which have good filtration performance, but lack required stability performance.


In certain illustrative embodiments, the presently disclosed materials 175 can be disposed within one or more entry zones 170 within a vessel 10 as individual zones or as a unified zone of material. Processing bed stability downstream of the entry zone 170 can be facilitated via use of weighted materials and/or by the installation of vessel 10 circumference-spanning materials. Weighting can be achieved via the use of high density, high weight per piece components in the composition of the materials 175 such as iron, tungsten, zirconium, titania, alumina, and the like, and their oxides, carbides and the like.


In certain illustrative embodiments, the presently disclosed materials 175 can include geometries such as disks, cubes, rectangular or other polyhedral shapes, eclipses, cylinders, briquettes, rings and the like. Disclosed materials 175 in entry zone 170 can be of individual sizes such that each element of material 175 fits in a space measuring from 1 cubic inch to 27 cubic inches.


The presently disclosed materials 175 can have important filtration characteristics when used in entry zone 170. In certain illustrative embodiments, the materials 175 can increasingly separate filtrates as the streams travel through the entry zone 170. Upstream filtrant removal is promoted within the porous structure of the materials 175 to the point where the individual filtration capacity of these materials 175 is exhausted. Thereafter, fluid process stream flows bypass the exhausted materials 175 and proceed thru the entry zone 170 to engage in filtrant removal with materials 175 whose filtration capacity has not been exhausted. This process proceeds through the entry zone 170 with only moderate increase in pressure within the process vessel 10.


In certain illustrative embodiments, the presently disclosed materials 175 can be utilized in vapor phase applications such as reformers, hydrotreaters including, without limitation, naphtha hydrotreaters (“NHT”), fluid catalytic cracking gasoline hydrotreater units (“GHT”), sulfur recovery units (“SRU”), hydrodesulfurization units, and isomerization units, among other potential uses. In other illustrative embodiments, the presently disclosed materials 175 can be utilized in mixed-phase applications (where liquid and gas flows are present) such as kerosene hydrotreaters (“KHT”), diesel hydrotreaters (“DHT”), cat-feed hydrotreaters (“CFHT”), gas oil hydrotreaters (“GOHT”), and other mixed phase applications.


While the presently disclosed subject matter will be described in connection with the preferred embodiment, it will be understood that it is not intended to limit the presently disclosed subject matter to that embodiment. On the contrary, it is intended to cover all alternatives, modifications, and equivalents, as may be included within the spirit and the scope of the presently disclosed subject matter as defined by the appended claims.

Claims
  • 1. A method of providing improved stability and filtration of fluid process stream flow in a process vessel comprising: passing the fluid process streams through a processing zone within the process vessel, the processing zone containing one or more beds of processing elements; andprior to passing the fluid process streams through the processing zone, passing the fluid process streams through an entry zone located upstream of the processing zone,wherein the entry zone contains a bed of stability-improving materials having a porosity in the range from 67% to 87%, a density in the range from 30-60 lbs/ft3, and a weight per piece of 12-300 grams,and wherein the stability-improving materials have internal voids capable of filtering particles from the fluid process stream flow,and wherein the weight per piece of the stability-improving material is 2500-4000 times greater than the weight per piece of the processing elements in the processing zone.
  • 2. The method of claim 1, wherein the entry zone comprises a single bed of stability-improving materials.
  • 3. The method of claim 1, wherein there is a treating zone downstream of the entry zone.
  • 4. The method of claim 3 whereby the stability-improving material stabilize and prevent movement of the treating elements in the treating zone.
  • 5. The method of claim 1, where the internal void contains a network of interconnected pores.
  • 6. The method of claim 1, where the internal void is tortuous.
  • 7. The method of claim 1, where the internal void is 20%-42% of the entry zone volume.
  • 8. The method of claim 1, where the internal void is 20%-40% of the entry zone volume.
  • 9. The method of claim 1, where the internal void is 25%-42% of the entry zone volume.
  • 10. The method of claim 1, where the internal void is 25%-35% of the entry zone volume.
  • 11. The method of claim 1, where the internal void is 30%-40% of the entry zone volume.
  • 12. The method of claim 1, where the internal void is 30%-35% of the entry zone volume.
  • 13. The method of claim 1, where the internal void is 20%-35% of the entry zone volume.
  • 14. The method of claim 1, where the weight per piece is 12-200 grams.
  • 15. The method of claim 1, where the weight per piece is 30-200 grams.
  • 16. The method of claim 1, where the weight per piece is 70-200 grams.
  • 17. The method of claim 1, where the weight per piece is 70-300 grams.
  • 18. The method of claim 1, where the weight per piece is 35-300 grams.
  • 19. The method of claim 1, where the weight per piece is 25-200 grams.
  • 20. The method of claim 1 whereby the stability-improving material stabilize and prevent movement of the processing elements in the processing bed.
  • 21. The method of claim 1, wherein the fluid process stream flow exiting the entry zone flows directly into the processing bed.
  • 22. The method of claim 1 wherein the composition of the stability-improving materials in the entry zone comprises one or more of iron, tungsten, zirconium, titania, and alumina.
  • 23. The method of claim 1 wherein the composition of the stability-improving materials in the entry zone comprises one or more oxides of iron, tungsten, zirconium, titania, and alumina.
  • 24. The method of claim 1 wherein the composition of the stability-improving materials in the entry zone comprises one or more carbides of iron, tungsten, zirconium, titania, and alumina.
  • 25. The method of claim 1, wherein the stability-improving materials in the entry zone are secured to the internal walls of the process vessel.
  • 26. A method of providing improved stability and filtration of fluid process stream flow in a process vessel comprising: passing the fluid process streams through a processing zone within the process vessel, the processing zone containing one or more beds of processing elements; andprior to passing the fluid process streams through the processing zone, passing the fluid process streams through a treating zone located upstream of the processing zone and containing treating elements, and through an entry zone located upstream of the treating zone,wherein the entry zone contains a bed of stability-improving materials having a porosity in the range from 67% to 87%, a density in the range from 30-60 lbs/ft3, and a weight per piece of 12-300 grams,and wherein the stability-improving materials have internal voids capable of filtering particles from the fluid process stream flow,and wherein the stability-improving materials in the entry zone and the treating elements in the treating zone are different materials,and wherein the weight per piece of the stability-improving material is 2-25 times greater than the weight per piece of the treating elements in the treating zone,and wherein the weight per piece of the stability-improving material is 2500-4000 times greater than the weight per piece of the processing elements in the processing zone.
RELATED APPLICATIONS

This application claims the benefit, and priority benefit, of U.S. Provisional Patent Application Ser. No. 63/076,226, filed Sep. 9, 2020, the disclosure and contents of which are incorporated by reference herein in their entirety.

US Referenced Citations (371)
Number Name Date Kind
436414 Graham Sep 1890 A
578548 Deruelle Mar 1897 A
598351 Staub Feb 1898 A
1947777 Huff et al. Feb 1934 A
2000078 Haseltine May 1935 A
2006078 Pyzel Jun 1935 A
2055162 Friedrich Sep 1936 A
2153599 Thomas Apr 1939 A
2183657 Page Dec 1939 A
2198861 Chamberlain Apr 1940 A
2212932 Fairlie Aug 1940 A
2375336 Weitkamp May 1945 A
2408164 Foster Sep 1946 A
2439021 Quigg Apr 1948 A
2546479 Sodano Mar 1951 A
2571958 Slaughter et al. Oct 1951 A
2739118 Comte Mar 1956 A
2793017 Lake May 1957 A
2819887 Eversole et al. Jan 1958 A
2867425 Teller Jan 1959 A
2893852 Montgomery Jul 1959 A
2919981 Calva Jan 1960 A
2985589 Broughton et al. May 1961 A
3090094 Schwartzwalder et al. May 1963 A
3100688 Dess Aug 1963 A
3151187 Comte Sep 1964 A
3167600 Worman Jan 1965 A
3169839 Calva Feb 1965 A
3171820 Volz Mar 1965 A
3175918 McGahan Mar 1965 A
3208833 Carson Sep 1965 A
3214247 Broughton Oct 1965 A
3219194 Scwartzwalder Nov 1965 A
3232589 Eckert Feb 1966 A
3266787 Eckert Aug 1966 A
3329271 Ward Jul 1967 A
3361839 Lester Jan 1968 A
3410057 Lerner Nov 1968 A
3423185 Ballard et al. Jan 1969 A
3431082 Sellin Mar 1969 A
3487112 Paulik et al. Dec 1969 A
3489529 Dudych et al. Jan 1970 A
3498755 Borre Mar 1970 A
3506248 Starbuck et al. Apr 1970 A
3543937 Choun Dec 1970 A
3544457 Fredrick et al. Dec 1970 A
3562800 Carlson Feb 1971 A
3563887 Sommers et al. Feb 1971 A
3618910 Arndt Nov 1971 A
3635943 Stewart Jan 1972 A
3657864 Davis, Jr. et al. Apr 1972 A
3685971 Carson Aug 1972 A
3706812 Derosset et al. Dec 1972 A
3717670 Schultz Feb 1973 A
3732078 Kassarjian May 1973 A
3752453 Doyne Aug 1973 A
3758087 Hoon, Jr. Sep 1973 A
3787188 Lyon Jan 1974 A
3787189 Lovell et al. Jan 1974 A
3789989 Carson Feb 1974 A
3796657 Protorius et al. Mar 1974 A
D232236 La Borde Jul 1974 S
3823924 Hoon, Jr. Jul 1974 A
3844936 Newson Oct 1974 A
3888633 Grosboll et al. Jun 1975 A
3892583 Winter et al. Jul 1975 A
3898180 Crooks et al. Aug 1975 A
3914351 McKeown Oct 1975 A
3924807 Morgan Dec 1975 A
3947347 Mitchell Mar 1976 A
3960508 Bessant et al. Jun 1976 A
3962078 Hirs Jun 1976 A
3992282 Grosboll et al. Nov 1976 A
4005985 Hutson, Jr. Feb 1977 A
D243531 Strigle, Jr. Mar 1977 S
4029482 Postma et al. Jun 1977 A
RE29314 Carlson et al. Jul 1977 E
RE29315 Carlson et al. Jul 1977 E
4033727 Vautrain Jul 1977 A
4041113 McKeown Aug 1977 A
4072736 Fattinger Feb 1978 A
4086307 Glaspie Apr 1978 A
4113810 Ikawa Sep 1978 A
4149862 Sewell, Sr. Apr 1979 A
4188197 Amberkar et al. Feb 1980 A
4197205 Hirs Apr 1980 A
4200532 Iwatani Apr 1980 A
4203935 Hackenjos May 1980 A
4251239 Clyde et al. Feb 1981 A
4275019 Bednarski Jun 1981 A
4285910 Kennedy, Jr. Aug 1981 A
4329318 Le Grouyellec et al. May 1982 A
4342643 Kyan Aug 1982 A
4374020 Trevino et al. Feb 1983 A
4378292 Haase Mar 1983 A
4380529 Gupta Apr 1983 A
4402832 Gerhold Sep 1983 A
4425285 Shimoi Jan 1984 A
4443559 Smith, Jr. Apr 1984 A
4457849 Heinze Jul 1984 A
4478721 Gerhold Oct 1984 A
4483771 Koch Nov 1984 A
4487727 Ballato, Jr. Dec 1984 A
4504396 Vardi et al. Mar 1985 A
4511519 Hsia Apr 1985 A
4519960 Kitterman May 1985 A
4522767 Billet Jun 1985 A
4537731 Billet Aug 1985 A
4554114 Glen Nov 1985 A
4568595 Morris Feb 1986 A
4569821 Duperray et al. Feb 1986 A
4579647 Smith Apr 1986 A
4581299 Jager Apr 1986 A
4615796 Kramer Oct 1986 A
4642089 Zupkas et al. Feb 1987 A
4642397 Zinnen et al. Feb 1987 A
4668442 Lang May 1987 A
4669890 Peyrot Jun 1987 A
4681674 Graven et al. Jul 1987 A
4691031 Suciu et al. Sep 1987 A
4708852 Helbling, Jr. et al. Nov 1987 A
4711930 Hoelderick et al. Dec 1987 A
4716066 Wymann Dec 1987 A
4719090 Masaki Jan 1988 A
4724593 Lang Feb 1988 A
4726825 Natale Feb 1988 A
4731205 McNulty Mar 1988 A
4775460 Reno Oct 1988 A
4788040 Campagnolo et al. Nov 1988 A
4798676 Matkovich Jan 1989 A
4810685 Twigg et al. Mar 1989 A
4830736 Hung et al. May 1989 A
4842920 Banai Jun 1989 A
4849569 Smith, Jr. Jul 1989 A
4859642 Hoelderick et al. Aug 1989 A
4863606 Ryall Sep 1989 A
4863712 Twigg et al. Sep 1989 A
4880541 Chiron et al. Nov 1989 A
4938422 Koves Jul 1990 A
4950834 Arganbright et al. Aug 1990 A
4954251 Barnes et al. Sep 1990 A
4968651 Crabtree Nov 1990 A
4971771 Stahl Nov 1990 A
4982022 Smith, Jr. Jan 1991 A
4985211 Akihama et al. Jan 1991 A
5013426 Dang Vu et al. May 1991 A
5017542 Matan et al. May 1991 A
5043506 Crossland Aug 1991 A
5055627 Smith, Jr. et al. Oct 1991 A
5104546 Filson et al. Apr 1992 A
5113015 Palmer et al. May 1992 A
5118873 Smith, Jr. Jun 1992 A
5122276 Loikits Jun 1992 A
5143700 Anguil Sep 1992 A
D331793 Erwes Dec 1992 S
5177961 Whittenberger Jan 1993 A
5188772 Yu Feb 1993 A
5189001 Johnson Feb 1993 A
D334970 Tominaga Apr 1993 S
D334971 Tominaga Apr 1993 S
5202027 Stuth Apr 1993 A
5202097 Poussin Apr 1993 A
5217603 Inoue et al. Jun 1993 A
5217616 Sanyal Jun 1993 A
5229015 Keep Jul 1993 A
5235102 Palmer et al. Aug 1993 A
5243115 Smith, Jr. et al. Sep 1993 A
5248415 Masuda Sep 1993 A
5248836 Bakshi et al. Sep 1993 A
D345410 Del Prete Mar 1994 S
5298226 Nowobilski Mar 1994 A
5304423 Niknafs et al. Apr 1994 A
5326512 Stillwagon et al. Jul 1994 A
5336656 Campbell Aug 1994 A
5368722 Bartholdy Nov 1994 A
5384300 Feeley et al. Jan 1995 A
5384302 Gerdes et al. Jan 1995 A
5399535 Whitman Mar 1995 A
5401398 McManus Mar 1995 A
5409375 Butcher Apr 1995 A
5411681 Seah May 1995 A
5446223 Smith, Jr. Aug 1995 A
5454947 Olapinski et al. Oct 1995 A
5476978 Smith, Jr. et al. Dec 1995 A
5510056 Jacobs et al. Apr 1996 A
5512530 Gerdes et al. Apr 1996 A
5523503 Funk et al. Jun 1996 A
5538544 Nowobilski et al. Jul 1996 A
5543088 Halbirt Aug 1996 A
5558029 Peake Sep 1996 A
5599363 Percy Feb 1997 A
5624547 Sudhakar et al. Apr 1997 A
D381394 Lex, Jr. et al. Jul 1997 S
5660715 Trimble et al. Aug 1997 A
5670095 Southam Sep 1997 A
5690819 Chianh Nov 1997 A
5707513 Jowett Jan 1998 A
5766290 Zievers et al. Jun 1998 A
5767470 Cha Jun 1998 A
5779886 Couture Jul 1998 A
5779993 Gentry Jul 1998 A
5785851 Morris et al. Jul 1998 A
5799596 Peake Sep 1998 A
5817594 McNamara et al. Oct 1998 A
5853579 Rummier et al. Dec 1998 A
5853582 Grangeon et al. Dec 1998 A
5866736 Chen Feb 1999 A
5873998 Grangeon et al. Feb 1999 A
5895572 Joulin et al. Apr 1999 A
5901575 Sunder May 1999 A
5910241 McNamara et al. Jun 1999 A
5943969 Peake Aug 1999 A
5972214 Callebert et al. Oct 1999 A
5980739 Jowett Nov 1999 A
6019810 Phillips Feb 2000 A
6024871 Harter et al. Feb 2000 A
6033629 Friederick et al. Mar 2000 A
6036743 Butcher et al. Mar 2000 A
6096278 Gary Aug 2000 A
6110389 Horowitz Aug 2000 A
6117812 Gao et al. Sep 2000 A
6153094 Jowett Nov 2000 A
6156197 Dessapt et al. Dec 2000 A
6242661 Podrebarac et al. Jun 2001 B1
6258900 Glover et al. Jul 2001 B1
6262131 Arcuri et al. Jul 2001 B1
6284022 Sachweh et al. Sep 2001 B1
6291603 Glover et al. Sep 2001 B1
6315972 Mehdizadeh et al. Nov 2001 B1
6352579 Hirata et al. Mar 2002 B1
6371452 Shojaie Apr 2002 B1
6379032 Sorensen Apr 2002 B1
6387534 Niknafs May 2002 B1
6402959 Dessapt et al. Jun 2002 B1
6454948 Ferschneider et al. Sep 2002 B2
D465257 Van Olst Nov 2002 S
6521562 Clem et al. Feb 2003 B1
6524849 Adams Feb 2003 B1
6583329 Podrebarac Jun 2003 B1
6630078 Kourtakis et al. Oct 2003 B2
6631890 Lau Oct 2003 B1
6713772 Goodman et al. Mar 2004 B2
6797175 Hotier Sep 2004 B2
6811147 Lau Nov 2004 B2
6835224 Cheng Dec 2004 B2
6852227 Petrone Feb 2005 B1
6890878 Moore May 2005 B2
7014175 Honnell Mar 2006 B2
7125490 Clendenning et al. Oct 2006 B2
7255848 Deluga et al. Aug 2007 B2
7255917 Rochlin et al. Aug 2007 B2
7265189 Glover Sep 2007 B2
7303668 Liao Dec 2007 B2
7314551 Frey et al. Jan 2008 B2
7390403 Siwak Jun 2008 B2
7393510 Glover Jul 2008 B2
7427385 Scheirer et al. Sep 2008 B2
7488413 Badreddine Feb 2009 B2
7527671 Stuecker et al. May 2009 B1
7544288 Cook Jun 2009 B1
7566428 Warner Jul 2009 B2
7632320 Tonkovich et al. Dec 2009 B2
7637485 Honnell Dec 2009 B2
7722832 Glover et al. May 2010 B2
7741502 Lecocq et al. Jun 2010 B2
7748688 Bessettes Jul 2010 B2
8062521 Glover Nov 2011 B2
8241717 Anderson Aug 2012 B1
8282890 Niknafa et al. Oct 2012 B2
8293195 Blanchard Oct 2012 B2
8313709 Glover Nov 2012 B2
D672009 Flournoy Dec 2012 S
8500852 Galbraith Aug 2013 B2
8524076 Yang Sep 2013 B2
8524164 Glover Sep 2013 B2
8550157 O'Malley Oct 2013 B2
8663474 Niazi Mar 2014 B2
D705499 Zamarripa May 2014 S
9056268 Jones et al. Jun 2015 B2
9101863 Glover Aug 2015 B2
9205392 Byl et al. Dec 2015 B2
9352292 Solantie et al. May 2016 B2
D780286 Ausner Feb 2017 S
9732774 Glover Aug 2017 B1
10054140 Glover et al. Aug 2018 B2
10161428 Glover et al. Dec 2018 B2
10407348 Osborne Sep 2019 B2
10421067 Glover Sep 2019 B2
10421068 Glover Sep 2019 B2
10449531 Glover Oct 2019 B2
10500581 Glover Dec 2019 B1
10525456 Glover Jan 2020 B2
10543483 Glover et al. Jan 2020 B2
10557486 Glover et al. Feb 2020 B2
10655654 Glover et al. May 2020 B2
10662986 Glover May 2020 B2
10738806 Glover Aug 2020 B2
10744426 Glover Aug 2020 B2
10864465 Boyd Dec 2020 B2
10876553 Glover et al. Dec 2020 B2
10920807 Glover et al. Feb 2021 B2
11000785 Glover et al. May 2021 B2
11156240 Glover et al. Oct 2021 B2
20010042928 Nagaoka Nov 2001 A1
20020059786 Nagaoka May 2002 A1
20020092414 Nagaoka Jul 2002 A1
20020146358 Smith et al. Oct 2002 A1
20030125594 Moore Jul 2003 A1
20030146524 Niknafs Aug 2003 A1
20040031729 Meier et al. Feb 2004 A1
20040043493 Kobayashi Mar 2004 A1
20040084352 Meier et al. May 2004 A1
20040192862 Glover et al. Sep 2004 A1
20040225085 Glover et al. Nov 2004 A1
20050211644 Goldman Sep 2005 A1
20050240038 Gobbel et al. Oct 2005 A1
20050255014 Glover Nov 2005 A1
20060009648 Gobbel et al. Jan 2006 A1
20060108274 Frey et al. May 2006 A1
20060196826 Glover Jul 2006 A1
20060251555 Warner et al. Nov 2006 A1
20060275185 Tonkovich et al. Dec 2006 A1
20060292046 Fruchey et al. Dec 2006 A1
20070158277 And et al. Jul 2007 A1
20070187314 Sambrook Aug 2007 A1
20070265357 Iversen et al. Nov 2007 A1
20080044316 Glover Feb 2008 A1
20080245743 Dew Oct 2008 A1
20080257804 Dew Oct 2008 A1
20080257805 Dew Oct 2008 A1
20080296216 Glover Dec 2008 A1
20090044702 Adamek et al. Feb 2009 A1
20090146339 Malone et al. Jun 2009 A1
20090211441 Reyes et al. Aug 2009 A1
20090283479 Warner et al. Nov 2009 A1
20100209315 Niknafs Aug 2010 A1
20100243519 Glover et al. Sep 2010 A1
20100243520 Glover et al. Sep 2010 A1
20110200478 Billiet Aug 2011 A1
20120211430 Choi Aug 2012 A1
20120211438 Glover Aug 2012 A1
20120237434 Blanchard et al. Sep 2012 A1
20130178627 Freitas, Jr. Jul 2013 A1
20130184461 Freitas, Jr. Jul 2013 A1
20130306562 Stifter et al. Nov 2013 A1
20140291224 Fujita Oct 2014 A1
20150053627 Silin et al. Feb 2015 A1
20150129512 Thiyagarajan May 2015 A1
20160136603 Parihar et al. May 2016 A1
20170189834 Glover et al. Jul 2017 A1
20170234339 Glover Aug 2017 A1
20180008952 Glover Jan 2018 A1
20180023598 Glover Jan 2018 A1
20180093207 Glover et al. Apr 2018 A1
20180093930 Freitas, Jr. Apr 2018 A1
20190046901 Boyd Feb 2019 A1
20190048903 Glover et al. Feb 2019 A1
20190177181 St. Germain Jun 2019 A1
20190217283 Glover et al. Jul 2019 A1
20190242412 Glover et al. Aug 2019 A1
20190285098 Glover et al. Sep 2019 A1
20190301498 Glover Oct 2019 A1
20190301499 Glover Oct 2019 A1
20190358620 Glover Nov 2019 A1
20200149564 Glover May 2020 A1
20200215524 Glover Jul 2020 A1
20200338518 Bakli et al. Oct 2020 A1
20200376413 Glover Dec 2020 A1
20200376414 Glover Dec 2020 A1
20210018022 Glover Jan 2021 A1
20220042528 Glover Feb 2022 A1
Foreign Referenced Citations (83)
Number Date Country
2010203014 Aug 2010 AU
2019928 Dec 1991 CA
2520071 Apr 2004 CA
2297113 Feb 2005 CA
2570527 Dec 2005 CA
202072546 Dec 2011 CN
203382593 Jan 2014 CN
3539195 May 1986 DE
73150 Oct 1933 EP
260826 Mar 1988 EP
576096 Dec 1993 EP
639544 Feb 1995 EP
651041 May 1995 EP
719578 Jul 1996 EP
1001837 Jul 1998 EP
0899011 Mar 1999 EP
1606038 Dec 2005 EP
1755766 Feb 2007 EP
3040119 Jun 2016 EP
3397364 Nov 2018 EP
3414003 Dec 2018 EP
267877 Jan 1927 GB
374707 Jul 1932 GB
429616 Jun 1935 GB
933124 Aug 1963 GB
1097473 Jan 1968 GB
1442085 Jul 1976 GB
2108003 May 1983 GB
2149771 Jun 1985 GB
S49-145763 Dec 1974 JP
5237396 Sep 1977 JP
S558819 Jan 1980 JP
SHO 55-43817 Mar 1980 JP
5567309 May 1980 JP
S58 (1983)-024308 Feb 1983 JP
S61 (1986)-134300 Jun 1986 JP
S61 (1986)-180818 Aug 1986 JP
52114643 May 1987 JP
SHO 62-114643 May 1987 JP
4187297 Jul 1992 JP
H06 (1994)-205922 Jul 1994 JP
1028876 Feb 1998 JP
HEI 10-028876 Feb 1998 JP
1057821 Mar 1998 JP
HEI 10-057821 Mar 1998 JP
2000-028876 Jan 2000 JP
2000-246048 Sep 2000 JP
2003-120257 Apr 2003 JP
2004-515432 May 2004 JP
2004-250554 Sep 2004 JP
2004-530746 Oct 2004 JP
2004-537406 Dec 2004 JP
2006-55749 Mar 2006 JP
2006-205068 Aug 2006 JP
2006-523139 Oct 2006 JP
5543817 Jul 2014 JP
2015-085208 May 2015 JP
2016-13748 Aug 2016 JP
2018-61955 Apr 2018 JP
6324420 May 2018 JP
2019-19023 Feb 2019 JP
10-2006-0016746 Feb 2006 KR
B0747359 Aug 2007 KR
1221298 Jan 2013 KR
B1417049 Jul 2014 KR
542787 Jun 2009 NZ
9903561 Jan 1999 WO
2001001536 Jan 2001 WO
2002045838 Jun 2002 WO
2002079346 Oct 2002 WO
2003013725 Feb 2003 WO
2004094039 Nov 2004 WO
2005058472 Jun 2005 WO
2005123221 Dec 2005 WO
2006127671 Nov 2006 WO
2010149908 Dec 2010 WO
2015037730 Mar 2015 WO
2015200513 Dec 2015 WO
2017117492 Jul 2017 WO
2017139597 Aug 2017 WO
2019020705 Jan 2019 WO
2022056154 Mar 2022 WO
200508048 Nov 2006 ZA
Non-Patent Literature Citations (183)
Entry
New Zealand Intellectual Property Office; First Examination Report, issued in connection to application No. 743895; dated Jan. 31, 2019; 5 pages; New Zealand.
New Zealand Intellectual Property Office; First Examination Report, issued in connection to application No. 743891; dated Nov. 6, 2018; 10 pages; New Zealand.
Behrens et al.; Performance of a Monolith-like Structured; Chem. Biochem. Eng. Q. 15 (2); pp. 49-57; 2001.
Beihai Huihuang Chemical Packing Co. Lts., http://77520.pub.diysite.com/sc.deliver/main/0-4-5/4/0-ma.html?siteid=77520; 10 pages; May 5, 2003.
Butcher; Reticulated Ceramic Foam as a Catalyst Support; Seminar for CatCon '98; Jun. 3-5, 1998; Ohio.
Ceramic Industry Cover page; and Table of Contents; vol. 147, No. 3; 2 pages; Mar. 1997.
Christy Refractories Company; Prox-Svers Catalyst Support Media; Apr. 1995.
Colombo; Porous Ceramics and Ceramic Components from Preceramic Polymers; http://www.matse.psu.edu/people/faculty/colombo.htm1; 5 pages, Jan. 12, 2005.
Criterion; Technical Bulletin: Loading Your Hydrotreating Reactor for Maximum Activity; Criterion Catalysts & Technologies; 3 pages; 2008.
Fay; A Three-Point Generalization of the Ellipse; International Journal of Mathematical Education in Science and Technology; Jan. 2002; vol. 33, Issue 1; pp. 111-123.
Foseco Home Page; Internet; p. 1-3; Feb. 21, 1997.
Fulton; CE Refresher: Catalyst Engineering, Part 2, Selecting the Catalyst Configuaration; May 1986 Chemical engineering; pp. 97-101.
Gibson; Cellular Solids, MRS Bulletin; www.mrs.org/publications/bulleting; pp. 270-274; Apr. 2003.
Gibson et al.; Cellular Solids: Structure and Properties; Second Edition, Cambridge Solid State Science Series, Cambridge University Press; 71 pages; 1997.
Green et al.; Cellular Ceramics: Intriguing Structures, Novel Properties, and Innovative Applications; www.mrs.org/publications/bulletin; pp. 296-300; Apr. 2003.
Haldor Topsoe, Inc.; Material Safety Data Sheet Inert Topping TK-10; p. 1-4; 1992.
Hickman et al.; Production of Syngas by Direct Catalytic Ocidation of Methane; Science; vol. 256; p. 343-346; Jan. 15, 1993.
Hung et al.; Translation of DE3539195, Hydroprocessing Catalyzer with Specific Geometric Shate; 23 pages; May 2000.
Ivars Peterson's MathLand; Beyond the Ellipse; The Mathematical Association of America; Sep. 2, 1996; 3 pages.
Kim et al.; Effect of Inert Filler Addition on Pore Size and Porosity of Closed-Cell Silicon Oxycarbide Foams; Journal of Materials Science 39; pp. 3513-3515; 2004.
Loehrke and Nagib, Agard Report No. R-598 Experiments on Management of Free-stream Turbulence 1972.
Materials 2017, 10(7), 735; “Improving the Strength of ZTA Foams with Different Strategies: Immersion Infiltration and Recoating;” https://doi.org/10.3390/ma10070735; 15 pages; Jul. 1, 2017.
Mills; Ceramic Technology Provides Refining Solutions, Saint-Gobain Norpro; pp. 1-17; 2003.
Mills; Ceramic Guard Bed Materials; Norton Chemical Process Products Corporation; Jun. 3-5, 1998; 24 pages; US.
Norton Chemical Process Products Corporation, MacroTrap Guard Bed Media; 6 pages: 1998.
Norton Chemical Process Products Copr.; Denstone Inert Catalyst Bed Supports; 10 pages; 1992; Ohio.
NPRA Q&A Session on Refining and Petrochemical Technology; Section B. Hydrotreating; p. 85-101; 1990.
NPRA Q&A Session on Refining and Petrochemical Technology: Section B. Hydrotreating; p. 98-118; 1991.
NPRA Q&A Session on Refining and Petrochemical Technology: Section B. Hydrotreating; p. 104-135; 1992.
NPRA Q&A Session on Refining and Petrochemical Technology: Section B. Hydrotreating; p. 94-112; 1993.
NPRA Q&A Session on Refining and Petrochemical Technology: Section B. Hydrotreating; p. 98-139; 1994.
NPRA Q&A Session on Refining and Petrochemical Technology: Section B. Hydrotreating; p. 96-123; 1995.
NPRA Q&A Session on Refining and Petrochemical Technology: Section B. Hydrotreating; p. 131-160; 1996.
Olujic et al.; Distillation Column Internals/Configurations for Press . . . , Chem. Biochem, Eng. Q. 17 (4); pp. 301-309; 2003.
Perry's Chemical Engineers' Handbook, 7th Ed., McGraw-Hill, 1997, pp. 6-33-6-34.
Product Bulletin: Criterion 855 MD “Medallions” Inert Catalyst Support; Aug. 1998; 2 pages.
Queheillalt et al.; Synthesis of Stochastic Open Cell Ni-Based Foams; Scripta Materialia 50; pp. 313-317; 2004.
Rashmi Narayan; Particle Capture from Non-Aqueous Media on Packed Beds; Dept. of Chemical and Materials Engineering; 116 pages; Fall 1996; Edmonton, Alberta.
Saxonburg Ceramics Incorporated; Product Material Specifications, Nov. 14, 1996.
Australian Government, IP Australia, Examination Report No. 1 for Standard Patent Application, Issued in connection to AU2017217834; 3 pages; dated Nov. 14, 2018; Australia.
Australian Government, IP Australia, Examination Report No. 1 for Standard Patent Application, Issued in connection to AU2016381170; 3 pages; dated Apr. 10, 2019; Australia.
Brazilian National Institute of Industrial Property; Technical Examination Report, issued in connection to PI0613275-8; dated Feb. 25, 2016; 16 pages; Brazil.
Canadian Intellectual Property Office; Official Action, issued in connection with CA3009825; dated Jun. 18, 2019; 4 pages; Canada.
European Patent Office; PCT International Search Report, Issued in Connection to PCT/US2005/020712; dated Mar. 3, 2006; 2 pages; Europe.
European Patent Office; PCT International Search Report, Issued in Connection to PCT/US2004/006366; dated Oct. 20, 2004; 2 pages; Europe.
European Patent Office; PCT International Search Report, Issued in Connection to PCT/US2006/019854; dated Jan. 17, 2007; 2 pages; Europe.
European Patent Office; PCT Written Opinion of the International Searching Authority, Issued in Connection to PCT/US2006/019854; dated Jan. 17, 2007; 5 pages; Europe.
European Patent Office; PCT International Search Report, Issued in Connection to PCT/US98/14768; dated Nov. 26, 1998; 3 pages; Europe.
European Patent Office; PCT International Search Report, Issued in Connection to PCT/US2016/069396; dated Mar. 31, 2017; 3 pages; Europe.
European Patent Office; PCT Written Opinion of the International Searching Authority, Issued in Connection to PCT/US2016/069396; dated Mar. 31, 2017; 6 pages; Europe.
European Patent Office; PCT International Search Report, Issued in Connection to PCT/US2017/017398; 5 pages; Europe, dated Apr. 4, 2017.
European Patent Office; Communicaiton and Search Report, Issued in Connection to EP15192642.5; dated Jun. 2, 2016; 7 pages; Europe.
European Patent Office; Communicaiton Pursuant to Rules 161(1) and 162 EPC, issued in connection to EP17706648 7; dated Sep. 19, 2018; 3 pages; Europe.
European Patent Office; Communicaiton Pursuant to Rules 161(1) and 162 EPC, issued in connection to EP16834162.6; dated Aug. 8, 2018; 3 pages; Europe.
European Patent Office; Communication Pursuant to Article 94(3) EPC, issued in connection to EP15192642.5; dated Mar. 13, 2019; 5 pages; Europe.
European Patent Office; Communication Pursuant to Article 94(3) EPC, Issued in Connection to EP04716499.1; dated May 9, 2016; 4 pages; Europe.
European Patent Office; Communication pursuant to Article 94(3) EPC, issued in connection to EP04716499.1; dated Mar. 10, 2017; 5 pages; Europe.
European Patent Office; Communication Pursuant to Article 94(3) EPC, Issued in Connection to EP04716499.1; dated Mar. 15, 2013; 4 pages; Europe.
European Patent Office; Summons to attend oral proceedings pursuant to Rule 115(1) EPC, issued in connection to EP04716499.1; dated Feb. 12, 2018; 6 pages; Europe.
European Patent Office; Extended European Search Report, issued in connection to EP18201370.6; dated Apr. 9, 2019; 6 pages; Europe.
European Patent Office; Extended European Search Report, issued in connection to EP15192642.5; dated Jun. 2, 2016; 6 pages; Europe.
European Patent Office; Communication Pursuant to Article 94(3) EPC, issued in connection to EP98934597.0; dated Mar. 16, 2009; 3 pages; Europe.
European Patent Office; Communication Pursuant to Article 94(3) EPC, issued in connection to EP98934597.0; dated Jun. 21, 2006; 4 pages; Europe.
European Patent Office; Communication Pursuant to Article 96(2) EPC, issued in connection to EP98934597.0; dated Sep. 10, 2004; 4 pages; Europe.
European Patent Office; Communication Pursuant to Article 96(2) EPC, issued in connection to EP98934597.0; dated Dec. 11, 2002; 3 pages; Europe.
European Patent Office; Communication Pursuant to Article 96(2) EPC, issued in connection to EP98934597.0; dated Oct. 8, 2001; 2 pages; Europe.
European Patent Office; Communication Pursuant to Article 96(2) EPC, issued in connection to EP05760680.8; dated Jan. 28, 2009; 6 pages; Europe.
European Patent Office; Communication Pursuant to Article 96(2) EPC, issued in connection to EP05760680.8; dated Jul. 5, 2010; 5 pages; Europe.
Japanese Patent Office; Notice of Reasons for Rejection, issued in connection to JP2010-246536; dated Sep. 7, 2012; 8 pages; Japan.
Japan Patent Office; Notice of Reasons for Rejection, issued in connection with JP2010-246536; dated Nov. 12, 2013; 6 pages; Japan.
Japan Patent Office; Certified Copy of Final Rejection, issued in connection with JP2010-246536; dated Jun. 25, 2014 2 pages; Japan.
Japan Patent Office; Decision to Dismiss Amendment, issued in connection to JP2010-246536; dated Jun. 25, 2014; 3 pages; Japan.
Japanese Patent Office; Notice of Reasons for Rejection of Japanese Patent Application 2016-017373; dated Dec. 7, 2016; 11 pages; Japan.
Japanese Patent Office; Certified Copy of Decision of Dismissal of Amendment, issued in connection to JP2014-21/190; 4 pages; Japan, dated Jul. 26, 2017.
Japanese Patent Office; Certified Copy of Final Rejection, issued in connection to JP2014-217190; 3 pages; Japan, dated Jul. 26, 2017.
Japanese Patent Office; Notice of Reasons for Rejection, issued in connection to JP2014-217190; dated Aug. 31, 2016; 6 pages; Japan.
Japanese Patent Office; Notice of Reasons for Rejection, issued in connection to JP2014-217190; dated Sep. 30, 2015; 8 pages; Japan.
Japanese Patent Office; Observation, issued in connection to JP2017-226648; Jul. 17, 2018; 50 pages; Japan.
Japanese Patent Office; Notice of Reasons for Rejection, issued in connection to JP2017-226648; dated Jan. 31, 2019; 10 pages; Japan.
Japanese Patent Office; Notice of Resons for Rejection, issued in connection to JP2018-553847; dated May 29, 2019; 10 pages; Japan.
Intellectual Property Office of Singapore; Examination Report, issued in connection with application No. 11201805491X; dated Sep. 28, 2021; 6 pages; Singapore.
Intellectual Property Corporation of Malaysia; Examination Adverse Report (Section 30(1) / 30(2)), issued in connection with application No. PI2018001178; dated Oct. 20, 2021; 4 pages; Malaysia.
Japanese Patent Office; Notice of Reasons for Rejection, issued in connection to Appeal Trial No. 2020-016134, application No. 2018-541647; dated Sep. 22, 2021; 14 pages; Japan.
Korean Intellectual Property Office; Notification of Provisional Rejection, issued in connection to application No. 10-2021-7019648; dated Sep. 19, 2021; 11 pages; Korea.
Japanese Patent Office; Notice of Reasons for Rejection, issued in connection to JP2018-541647; dated Aug. 28, 2019; 14 pages; Japan.
European Patent Office; Communication Pursuant to Article 94(3) EPC, issued in connection to EP17706648.7; dated Oct. 24, 2019; 7 pages; Europe.
Korean Intellectual Property Office; Notification of Provisional Rejection, issued in connection to application No. 10-2018-7026274; dated Oct. 22, 2019; 14 pages; Korea.
Australian Government, IP Australia, Examination Report No. 2 for Standard Patent Application, Issued in connection to AU2016381170; 3 pages; dated Nov. 8, 2019; Australia.
Japanese Patent Office; Final Rejection, issued in connection to application No. 2017-226648; dated Feb. 26, 2020; 6 pages; Japan.
European Patent Office; Communication pursuant to Article 94(3) EPC, issued in connection to EP16834162.6; dated Feb. 4, 2020; 7 pages; Europe.
Japanese Patent Office; Office Action, issued in connection to application No. 2018-553847; dated Feb. 26, 2020; 8 pages; Japan.
Intellectual Property Office of Singapore; Invitation to Respond to Written Opinion, issued in connection with application No. 11201805491X; dated Mar. 3, 2020; 6 pages; Singapore.
Indian Patent Office; Examination Report, issued in connection to application No. 201837023720; dated Jan. 23, 2020; 6 pages; India.
Intellectual Property Office of Singapore; Invitation to Respond to Written Opinion, issued in connection with application No. 11201805367W; dated Mar. 2, 2020; 34 pages; Singapore.
Canadian Intellectual Property Office; Office Action, issued in connection to application No. 3009825; dated Apr. 22, 2020; 3 pages; Canada.
Japanese Patent Office; Statement of Submission of Publication by third part, filed in connection to application No. 2019-140168; Apr. 21, 2020; 1 page; Japan.
Canadian Intellectual Property Office; Examiner Report, issued in connection to application No. CA3009845; dated May 20, 2020; 3 pages; Canada.
Japanese Patent Office; Statement of Submission of Publication by third part, filed in connection to application No. 2018-541647; Jun. 25, 2020; 3 page; Japan.
Korean Intellectual Property Office; Office Action, issued in connection to patent application No. 10-2020-7011514; dated Jul. 20, 2020; 11 pages; Korea.
European Patent Office; Communication Pursuant to Article 94(3)EPC, issued in connection to application No. 182013703.6; dated Jul. 27, 2020; 5 pages; Europe.
Japanese Patent Office; Office Action, issued in connection to application No. 2019-140168; dated Sep. 2, 2020; 9 pages; Japan.
European Patent Office; Communication Pursuant to Article 94(3) EPC, issued in conneciton to application No. EP15192642.5; dated Sep. 10, 2020; 5 pages; Europe.
Intellectual Property Office of Singapore; Invitation to Respond to Written Opinion, issued in connection to application No. 11201805491X; dated Aug. 18, 2020; 6 pages; Singapore.
Japanese Patent Office; Final Rejection, issued in connection to application No. 2018-541647; dated Jul. 22, 2020; 4 cages; Japan.
Korean Intellectual Property Office; Second Notificaiton of Provisional Rejection, issued in connection to application No. 10-2018-7021988; dated Oct. 26, 2020; 12 pages; Korea.
Japanese Patent Office; Final Office Action, issued in connection to application No. 2018-553847; dated Jan. 6, 2021; 11 pages; Japan.
Canadian Patent Office; Office Action, issued in connection to application No. 3009825; dated Feb. 17, 2021; 3 pages; Canada.
Korean Intellectual Property Office; Notice of First Refusal Ruling, issued in connection to application No. 10-2018-7021988; dated Mar. 26, 2021; 8 pages; Korea.
Brazilian National Institute of Industrial Property; Technical Examination Report, issued in connection to PI0613275-8; dated Feb. 24, 2021; 18 pages; Brazil.
Japanese Patent Office; Final Office Action, issued in connection to application No. 2017-226648; dated Feb. 24, 2021; 29 pages; Japan.
Nippon Ketjen Co., Ltd; Summary of Invalidation Reason, filed in connection to Korean patetn No. 10-1417049; dated Mar. 15, 2021; 35 pages; Korea.
Intellectual Property Corporation of Malaysia; Substantive Examination Adverse Report (Section 30 (1) / 30(2)), issued in connection with application No. PI2018702533; dated Apr. 27, 2021; 3 pages; Malaysia.
European Patent Office; Communication Pursuant to Article 94(3) EPC, issued in connection to application No. EP18201370.6; dated May 19, 2021; 4 pages; Europe.
European Patent Office; Communication Pursuant to Article 94(3) EPC, issued in connection to application No. EP17706648.7; dated Jul. 1, 2021; 7 pages; Europe.
Japanese Patent Office; Observation, issued in connection to JP2020-110241; May 28, 2021; 36 pages; Japan.
U.S. Appl. No. 17/062,371; gathered Aug. 12, 2021; 35 pages; U.S.
Japanese Patent Office; Office Action, issued in connection to application No. 2020-110241; dated Jul. 21, 2021; 8 pages; Japan.
Japanese Patent Office; Final Rejection, issued in connection to application No. 2019-140168; dated Jul. 21, 2021; 7 pages; Japan.
Korean Intellectual Property Office; Notification of Reason for Refusal, issued in connection to application No. 10-2021-7015042; dated Aug. 27, 2021; 7 pages; Korea.
Schildhauer; Application of Film-Flow-Monoliths . . . , Technical Univesity Delft; Julianalaan 136, NL-2628 BL Delft; The Netherlands; 1 page; Oct. 29, 2003.
Scheffler, Michael; Cellular Ceramics: Structure, Manufacturing, Properties and Applications; Die Beutsche Bibliotheck; 2005; 5 pages; Germany.
Schlichting, Boundary-Layer Theory; McGraw-Hill; (Translation of Grenzschicht-Theorie, Translated by Dr. J. Kestin), 1979; pp. 230-234.
Selee Corporation; Product Brochure; 6 pages; 1997.
Selee Corporation Home Page; Internet; downloaded Nov. 14, 1996; 3 pages.
Selee Corporation; Ceramic Foam for Thermal/Kiln Furniture Applications; Ceramic Foam Kiln Furniture Phusical Property Data Sheet; Nov. 14, 1996; 2 pages.
Snyder Filtration; Nanofiltration Membranes; Retrieved Jun. 15, 2016 from: http://synderfiltration.com/nanofiltration/membranes/; 4 pages; Membrane Technology, Jun. 15, 2016.
Sulzer; Structured Packings for Separation and Reactive Distillation Brochure; pp. 2-27; 2002-2003.
Sweeting et al.; High Surface Reticulated Ceramics for Catalytic Applications; Mat., Res. Soc. Symp. Proc., vol. 549; pp. 17-23; 1999.
Sweeting et al.; Reticulated Ceramics for Catalyst Support Applications; Hi-Tech Ceramics, Inc.; Nov. 30, 1994; 12 pages.
Tan-Atichat and Nagib, “Interaction of free-stream turbulence with screens and grids: a balance between turbulence scales” J. Fluid Mech (1982), vol. 114, pp. 501-528; Great Britain.
Wadley; Cellular Metals Manufacutring; Advanced Engineering Materials; 4; No. 10; pp. 726-733; 2002.
Woodward et al.; Akzo Chemicals' Guard Bed Technology; 16 pages; 1991.
U.S. Patent and Trademark Office; Non-Final Office Action, Issued in Connection with U.S. Appl. No. 11/893,190; dated Mar. 10, 2010; 6 pages; U.S.
Applicant; Amendment and Response, Filed in Connection with U.S. Appl. No. 11/893,190; Aug. 20, 2010; 4 pages; U.S.
U.S. Patent and Trademark Office; Final Office Action, Issued in Connection with U.S. Appl. No. 11/893,190; dated Nov. 3, 2010; 5 pages; U.S.
Applicant; Response to Final Office Action, Filed in Connection with U.S. Appl. No. 11/893,190; Jan. 3, 2011; 5 pages; U.S.
U.S. Patent and Trademark Office; Non-Final Office Action, Issued in Connection with U.S. Appl. No. 11/893,190; dated Jan. 19, 2011; 5 pages; U.S.
Applicant; Amendment and Response, Filed in Connection with U.S. Appl. No. 11/893,190; Jul. 19, 2011; 4 pages; U.S.
U.S. Patent and Trademark Office; Final Office Action, Issued in Connection with U.S. Appl. No. 11/893,190; dated Sep. 22, 2011; 6 pages; U.S.
Applicant; Amendment and Response, Filed in Connection with U.S. Appl. No. 11/893,190; Dec. 16, 2011; 5 pages; U.S.
U.S. Patent and Trademark Office; Non-Final Office Action, Issued in Connection with U.S. Appl. No. 11/893,190; dated Jan. 27, 2012; 7 pages; U.S.
U.S. Patent and Trademark Office; Non-Final Office Action, Issued in Connection with U.S. Appl. No. 11/893,190; dated Feb. 6, 2012; 7 pages; U.S.
Applicant; Amendment and Response, Filed in Connection with U.S. Appl. No. 11/893,190; Aug. 3, 2012; 6 pages; U.S.
U.S. Patent and Trademark Office; Final Office Action, Issued in Connection with U.S. Appl. No. 11/893,190; dated Oct. 23, 2012; 9 pages; U.S.
Applicant; Amendment and Response, Filed in Connection with U.S. Appl. No. 11/893,190; Dec. 24, 2012; 8 pages; U.S.
U.S. Patent and Trademark Office; Advisory Action Before the Filing of an Appeal Brief, Issued in Connection with U.S. Appl. No. 11/893,190; dated Jan. 11, 2013; 3 pages; U.S.
Applicant; Amendment and Response, Filed in Connection with U.S. Appl. No. 11/893,190; Feb. 25, 2013; 4 pages; U.S.
U.S. Patent and Trademark Office; Notice of Allowance and Fee(s) Due, Issued in Connection with U.S. Appl. No. 11/893,190; dated May 2, 2013; 8 pages; U.S.
U.S. Court of Appeals Federal Circuit; Purdue Pharma L.P. v. Faulding Inc., 56 USPQ2d 1481 (CA FC 2000); Oct. 25, 2000; 11 pages.
Selected relevant excerpts from file history of U.S. Appl. No. 11/893,190, filed Aug. 15, 2007 and assigned to Applicant for present application.
Notice of Allowance for U.S. Appl. No. 10/867,015 (now U.S. Pat. No. 7,393,510, issued Jul. 1, 2008).
Observations submitted in connection to JP2017-226648; Jul. 17, 2018; 50 pages; Japan.
New Zealand Intellectual Property Office; Further Examination Report, issued in connection to application No. 743891; dated Jun. 24, 2019; 9 pages; New Zealand.
Japanese Patent Office; Observation, issued in connection to JP2018-541647;Jun. 19, 2019; 40 pages Japan.
The Japan Petroleum Institute; Petroleum Refining Process; Kodansha Ltd.; May 20, 1998; 6 pages; Japan.
Chen, Xiaodong et al.; Improving the Strength of ZTA Foams with Different Strategies: Immersion Infiltration and Recoating; www.mdpi.com/journal/material;; May 30, 2017; 15 pages.
Intellectual Property Office of Singapore; Written Opinion, issued in connection to application No. 11201805367W; dated Aug. 16, 2019; 7 pages; Singapore.
Intellectual Property Office of Singapore; Written Opinion, issued in connection to application No. 11201805491X; dated Aug. 29, 2019; 6 pages; Singapore.
Intellectual Property India; Examination Report, issued in connection to application No. 201837023710; dated Aug. 28, 2019; 6 pages; India.
Canadian Intellectual Property Office; Official Action and Examination Search Report, issued in connection with CA3009845; dated Aug. 28, 2019; 4 pages; Canada.
Saint-Gobain Norpro; Denstone ® Deltrap ® Support Media; 6 pages; printed Oct. 1, 2019; https://www.norpro.saint-gobain.com/support-media/denstone-deltap.
Saint-Gobain Norpro; Tools Help Optimize Selection of Denstone ® Bed Support Media; Apr. 4, 2019; 4 pages; https://www.norpro.saint-gobain.com/articles/tools-help-optimize-selection-denstone-bed-support-media-article.
Chilean Patent and Trademark Office; Examiner Report, issued in connection to application No. 2131-2018; 17 pages; dated Aug. 29, 2019; Chile.
Chilean Patent and Trademark Office; Search Report, issued in connection to application No. 2131-2018; 3 pages; dated Aug. 29, 2019; Chile.
Japanese Patent Office; Statement of Submission of Publications, filed in connection to JP2020-194305; Oct. 6, 2021; 42 pages; Japan.
Kabe, Toshiaki; Hydrotreating—Science and Technology; Oct. 20, 2000; pp. 341-347; IPC KK.
Woven Metal Products, Inc.; Perforated Plate; https://wovenmetal.com/reactor-internals/axialdownflow/catalyst-hold-downfloating-screens; printed Aug. 30, 2021; 2 pages.
Christy Catalytics; Catalyst Support Hold Down—Secondary Reformers; https://www.christycatalytics.com/our-blog/bid/31695/catalyst-support-hold-down-secondary-reformers; Dec. 3, 2009; 4 pages.
Crystaphase; CatTrap; https://crystaphase.com/solutions/cattrap/; Aug. 27, 2021; 3 pages.
European Patent Office; International Search Report, issued in connection to application No. PCT/US2021/049704; dated Nov. 26, 2021; 4 pages; Europe.
European Patent Office; Written Opinion of the International Searching Authority, issued in connection to application No. PCT/US2021/049704; dated Nov. 26, 2021; 7 pages; Europe.
Intellectual Property Office of Singapore, Written Opinion, issued in connection to application No. 10202007685S; dated Jul. 17, 2022; 8 pages; Singapore.
European Patent Office; Communication Pursuant to Rules 161(1) and 162 EPC, issued in connection to application No. EP21794038.6; 3 pages; dated Apr. 18, 2023; Europe.
European Patent Office; Communication Pursuant to Article 94(3) EPC, issued in connection to EP18201370.6; 4 pages; dated Jun. 17, 2022; Europe.
Japanese Patent Office; Final Rejection, issued in connection to application No. 2020-110241; dated Jun. 8, 2022; 6 pages; Japan.
Ancheyta, Jorge et al.; Asphaltenes: Chemical Transformation during Hydroprocessing of Heavy Oils; Chemical Industries/124; CRC Press; 2009; 5 pages.
Third Party Submission; filed in connection to application No. 2020-110241; May 18, 2022; 39 pages; Japan.
Japanese Patent Office; Office Action, issued in connection to application No. 2021-116861; dated Aug. 24, 2022; 10 pages; Japan.
Mexican Patent Office; Office Action, issued in connection to application No. MX/a/2018/007939; dated Mar. 21, 2023; 6 pages; Mexico.
Intellectual Property Office of Singapore; Refusal of Request for Examinaton Review Report, issued in connection with application No. 11201805491X; dated May 11, 2023; 8 pages; Singapore.
Intellectual Property Office of Singapore; Notice of Intention to Refuse Patent Application, issued in connection with application No. 11201805491X; dated Sep. 28, 2021; 6 pages; Singapore.
Japanese Patent Office; Office Action, issued in connection to application No. 2020-194305; dated Oct. 19, 2022; 13 pages; Japan.
Japanese Patent Office; Office Action, issued in connection to application No. 2020-194305; dated Jan. 19, 2022; 4 pages; Japan.
Related Publications (1)
Number Date Country
20220072495 A1 Mar 2022 US
Provisional Applications (1)
Number Date Country
63076226 Sep 2020 US