The present invention relates generally to processes and systems for converting lower molecular weight alkanes to higher molecular weight hydrocarbons and, more particularly, in one or more embodiments, to processes for converting lower molecular weight alkanes that include demethanization of brominated hydrocarbons, wherein the brominated hydrocarbons are formed by reaction of the lower molecular weight alkanes with bromine.
Natural gas, which is primarily composed of methane and other light alkanes, has been discovered in large quantities throughout the world. In the United States, the latest proved natural gas reserves are 6,731 billion standard cubic meter (238 trillion standard cubic feet) in 2010, which makes the United States a top-five country in natural gas abundance. Natural gas is generally a cleaner energy source than crude oil. It is normally heavy sulfur-free and contains none or a minimum amount of heavy metals and non-reacting heavy hydrocarbons. For a given amount of heat energy, burning natural gas produces about half as much carbon dioxide as coal.
However, the transportation, storage and distribution of natural gas in a gaseous form are much less favorable than those of crude oil making it more difficult to be a substitute as the predominant energy source. Converting natural gas to higher molecular weight hydrocarbons which, due to their higher density and value, are able to be more economically transported can significantly aid the development of natural gas reserves, particularly the stranded remote natural gas reserves.
One technique for converting natural gas to higher molecular weight hydrocarbons is a bromine-based process. In general, the bromine-based process may include several basic steps, as listed below.
In the bromine-based processes, mono-brominated alkanes created during bromination may be desirable as the predominant reactant species for the subsequent alkyl bromide conversion. Poly-brominated alkanes are known to adversely affect the selectivity profiles of the higher molecular weight hydrocarbons produced during the alkyl bromide conversion and, more importantly, promote the formation of coke which can deposit on the catalyst, block the active sites, and cause rapid catalyst deactivation. The higher selectivity of poly-brominated alkanes can also lower the utilization efficiency of bromine, requiring a higher circulating flow of bromine which can correspond to a higher cost in recovering hydrogen bromide and regenerating recyclable bromine.
To achieve higher selectivity of mono-brominated alkanes and reduce the formation of bromination carbon/soot, a large excess of methane or large methane-to-bromine ratio can be used. In the case of the bromination of methane, a methane-to-bromine ratio of about 6:1 can be used to increase the selectivity to mono-bromomethane (CH3Br) to average approximately 88% depending on other reaction conditions. If a lower methane-to-bromine ratio of approximately 2.6:1 is utilized, selectivity of CH3Br may fall to the range of approximately 65-75% depending, for example, on other reaction conditions. If a methane-to-bromine ratio significantly less than 2.5:1 is utilized, unacceptably low selectivity to CH3Br occurs, and, moreover, significant formation of undesirable di-bromomethane, tri-bromomethane, and carbon soot is observed. However, the large methane-to-bromine ratio can be problematic, in that the large excess methane represents a large recycle stream circulating throughout the entire system. For example, the pressure drop of the process gas between the feed to bromination in step (1) and the recycle methane from product recovery in the step (5) can be large, resulting in a high cost of compression for the recycle gas.
In alkyl bromide conversion, the exothermic coupling reaction may be carried out in a fixed-bed, fluidized-bed or other suitable reactor in the presence of suitable catalysts under sufficient conditions (e.g. 150-600° C., 1-80 bar). The catalyst may have to undergo decoking periodically or continuously to maintain adequate performance. In some instances, a fluidized-bed reactor may be considered to be advantageous for the coupling reaction, particularly for commercial scale of operation, as it should allow for continuous removal of coke and regeneration of the spent catalyst without requiring daily shutdowns and expensive cyclic operation. The fluidized-bed configuration should also facilitate removal of reaction heat and provide a steady selectivity to product composition. However, the fluidized-bed reactor for this particular application may be a very costly item to design and construct as it may have to deal with a high density gas due to the large amount of higher molecular weight Br contained in the reactor feed (in the forms of HBr and alkyl bromides). Elevated operating pressure, 20-50 bars, may be required to minimize the recompression cost of recycle methane, which, however, will further increase the density of the gases in the synthesis reactor, resulting in a large diameter reactor with heavy wall thickness.
In product recovery, fresh feed gas may be required to replace the lower molecular weight alkanes converted to products. The fresh feed gas stream containing, for example, primarily methane may necessitate sufficient treating to remove excessive amounts of ethane and higher hydrocarbons prior to being combined with bromine and reacted in a bromination reactor. The feed gas stream may or may not mix with the hydrocarbon mixture exiting HBr recovery prior to receiving such treating. While some ethane and higher hydrocarbons may be tolerated in the bromination reactor, due to the much higher bromination rate of the higher hydrocarbons than that of methane, higher concentrations of the higher hydrocarbon impurities may easily over-brominate and, thus, may result in the rapid formation of carbon-containing coke-like solids, which can cause yield loss and reduced process reliability by fouling and plugging the reactor as well as the downstream units. However, the removal of ethane and higher hydrocarbons from the methane by such means as adsorption or cryogenic distillation can be costly. The cost is higher when both the recycle methane and the fresh feed gas stream require the removal of ethane and higher hydrocarbons. The cost is even higher when high methane-to-bromine ratios are used in the bromination, leading to a large flow rate of recycle methane.
Thus, although progress has been made in the conversion of lower molecular weight alkanes to higher molecular weight hydrocarbons, there remains a need for processes that are more efficient, economic, and safe to operate.
To achieve the foregoing and other objects, and in accordance with the purposes of the present invention, as embodied and broadly described herein, one embodiment of the present invention is a process comprising reacting at least gaseous alkanes and a halogen (e.g., bromine) to produce at least a halogenation product stream, wherein the halogenation product stream comprise alkyl halides, hydrogen halide, and unreacted alkanes. Embodiments of the process further may comprise separating the halogenation product stream into at least a gaseous stream and a liquid alkyl halides stream, wherein the gaseous stream comprises hydrogen halide and unreacted alkanes, and wherein the liquid alkyl halides stream comprises alkyl halides. Embodiments of the process further may comprise recovering at least a portion of the hydrogen halide from the gaseous stream. Embodiments of the process further may comprise reacting at least a portion of the alkyl halides from the liquid alkyl halides stream in the presence of a catalyst to produce a synthesis product stream, wherein the synthesis product stream comprises higher molecular weight hydrocarbons and hydrogen halides.
Another embodiment of the present invention provides a process comprising reacting at least gaseous alkanes and bromine in a bromination reactor to produce at least a bromination product stream, wherein the bromination product stream comprise alkyl bromides, HBr, and unreacted alkanes. Embodiments of the process further may comprise separating the bromination product stream into at least a gaseous alkane/HBr stream and a liquid alkyl bromides stream, wherein the gaseous alkane/HBr stream comprises HBr and unreacted alkanes, and wherein the liquid alkyl bromides stream comprises alkyl bromides. Embodiments of the process further may comprise reacting at least a portion of the alkyl bromides from the liquid alkyl bromides stream in a synthesis reactor to produce a synthesis product stream, wherein the synthesis product stream comprises higher molecular weight hydrocarbons and HBr. Embodiments of the process further may comprise recovering at least a portion of the HBr from the synthesis product stream in an HBr separator. Embodiments of the process further may comprise providing a natural gas stream. Embodiments of the process further may comprise separating at least the synthesis product stream and the natural gas stream into at least a light ends product stream, a heavy ends product stream, and a feed gas stream, wherein the light ends product stream comprises hydrocarbons having from 2 to 4 carbons, wherein the heavy ends product stream comprises hydrocarbons having 5 or more carbons, and wherein the feed gas stream comprises methane. Embodiments of the process further may comprise compressing the feed gas stream in a feed compressor. Embodiments of the process further may comprise feeding the feed gas stream into the bromination reactor. Embodiments of the process further may comprise generating a recycle alkane stream by recovering at least a portion of the HBr from the gaseous alkane/HBr stream in a second hydrogen bromide separator operating at a higher pressure than the hydrogen bromide separator. Embodiments of the process further may comprise compressing the recycle alkane stream in a recycle compressor. Embodiments of the process further may comprise feeding the recycle alkane stream to the bromination reactor.
Another embodiment of the present invention is a system comprising a bromination reactor for reacting at least gaseous alkanes and bromine to produce at least a bromination product stream, wherein the bromination product stream comprises alkyl bromides, HBr, and unreacted alkanes. Embodiments of the system further may comprise an alkyl bromides fractionation unit in fluid communication with the bromination reactor for separating the bromination product stream into at least a gaseous alkane/HBr stream and a liquid stream, wherein the gaseous alkane/HBr stream comprises HBr and unreacted alkanes, and wherein the liquid stream comprises alkyl bromides. Embodiments of the system further may comprise a synthesis reactor in fluid communication with the alkyl bromides fractionation unit for reacting at least a portion of the alkyl bromides from the liquid stream in the presence of a catalyst to produce a synthesis product stream, wherein the synthesis product stream comprises higher molecular weight hydrocarbons and HBr. Embodiments of the system further may comprise an HBr separator in fluid communication with the synthesis reactor for recovering at least a portion of the HBr from the synthesis product stream. Embodiments of the system further may comprise a second HBr separator unit in fluid communication with the alkyl bromides fractionation unit for recovering at least a portion of the HBr from the gaseous alkane/HBr stream.
These drawings illustrate certain aspects of some of the embodiments of the present invention and should not be used to limit or define the invention.
Embodiments of the present invention are directed to processes for converting lower molecular weight alkanes to higher molecular weight hydrocarbons that include demethanization of brominated hydrocarbons, wherein the brominated hydrocarbons are formed by reaction of the lower molecular weight alkanes with bromine.
There may be many potential advantages to the methods and systems of the present invention, only some of which are alluded to herein. One of the many potential advantages of the systems and methods of the present invention is that separation of the methane from the brominated hydrocarbons should reduce the large recycle stream circulating through the entire process due to the large excess methane that may be used in the bromination step. Accordingly, the bromination step can be performed with a large methane-to-bromine ratio with reasonable recompression cost for recycled methane as embodiments. In addition, reduction of the large recycle stream circulating throughout the entire system should also reduce the cost for ethane separation as the recycle stream should not need to be treated for ethane removal while still meeting the ethane specification for feed to the bromination step. Yet another potential advantage of the systems and methods of the present invention is that separation of the methane from the brominated hydrocarbons should reduce the feed rate to the synthesis reactor in the alkyl bromide conversation step. Accordingly, the size of the synthesis reactor can be reduced, which may result in considerable costs savings, especially if a fluidized bed reactor is employed.
The term “higher molecular weight hydrocarbons” as used herein refers to hydrocarbons comprising a greater number of carbon atoms than one or more components of the feedstock. For example, natural gas is typically a mixture of light hydrocarbons, predominately methane, with lesser amounts of ethane, propane, and butane, and even smaller amounts of longer chain hydrocarbons such as pentane, hexane, etc. When natural is used as a feedstock, higher molecular weight hydrocarbons produced in accordance with embodiments of the present invention may include a hydrocarbon comprising C2 and longer hydrocarbon chains, such as propane, butane, C5+ hydrocarbons, aromatic hydrocarbons, and mixtures thereof. In some embodiments, part or all of the higher molecular weight hydrocarbons may be used directly as a product (e.g., LPG, motor fuel, etc.). In other instances, part or all of the higher molecular weight hydrocarbons may be used as an intermediate product or as a feedstock for further processing. In yet other instances, part or all of the higher molecular weight hydrocarbons may be further processed, for example, to produce gasoline grade fuels, diesel grade fuels, and fuel additives. In some embodiments, part or all of the higher molecular weight hydrocarbons obtained by the processes of the present invention can be used directly as a motor gasoline fuel having a substantial aromatic content, as a fuel blending stock, or as feedstock for further processing such as an aromatic feed to a process producing aromatic polymers such as polystyrene or related polymers.
The end use of the higher molecular weight hydrocarbons may depend on the particular catalyst employed in the oligomerization portion of the methods discussed below, as well as the operating parameters employed in the process. Other uses will be evident to those skilled in the art with the benefit of this disclosure.
The term “alkyl bromides,” as used herein, refers to mono-, di-, and tri-brominated alkanes, and combinations of these. Poly-brominated alkanes include di-brominated alkanes, tri-brominated alkanes and mixtures thereof. These alkyl bromides may then be reacted over suitable catalysts so as to form higher molecular weight hydrocarbons.
Lower molecular weight alkanes may be used as a feedstock for the methods described herein. A suitable source of lower molecular weight alkanes may be natural gas. As used herein, the term “lower molecular weight alkanes” refers to methane, ethane, propane, butane, pentane or mixtures of two or more of these individual alkanes. The lower molecular weight alkanes may be from any suitable source, for example, any source of gas that provides lower molecular weight alkanes, whether naturally occurring or synthetically produced. Examples of sources of lower molecular weight alkanes for use in the processes of the present invention include, but are not limited to, natural gas, coal-bed methane, regasified liquefied natural gas, gas derived from gas hydrates and/or clathrates, gas derived from anaerobic decomposition of organic matter or biomass, gas derived in the processing of tar sands, and synthetically produced natural gas or alkanes. Combinations of these may be suitable as well in some embodiments. In some embodiments, it may be desirable to treat the feed gas to remove undesirable compounds, such as sulfur compounds and carbon dioxide. In any event, it is important to note that small amounts of carbon dioxide, e.g., less than about 2 mol %, can be tolerated in the feed gas to the processes of the present invention.
Suitable sources of bromine that may be used in various embodiments of the present invention include, but are not limited to, elemental bromine, bromine salts, aqueous hydrobromic acid, metal bromide salts, and the like. Combinations may be suitable, but as recognized by those skilled in the art, using multiple sources may present additional complications.
As illustrated, a gas stream 2 comprising lower molecular weight alkanes (which, in some embodiments, may include a mixture of a feed gas plus a recycled gas stream) and a bromine stream 4 may be combined and introduced into a bromination reactor 6. In the illustrated embodiment, the gas stream 2 and the bromine stream 4 are premixed to form a bromination feed gas stream 3 prior to feeding the bromination reactor 6. In an alternative embodiment (not illustrated), the gas stream 2 and bromine stream 4 may be combined in the bromination reactor 6. The gas stream 2 and the bromine stream 4 may be allowed to react in the bromination reactor 6 to form a bromination product stream 8 that comprise alkyl bromides, HBr vapor, and unreacted alkanes. The bromination product stream 8 may be withdrawn from the bromination reactor 6.
The bromination product stream 8 from the bromination reactor 6 may be fed to the synthesis reactor 10. In the synthesis reactor 10, the alkyl bromides in bromination product stream 8 are then reacted over a suitable catalyst under sufficient conditions via a catalytic coupling reaction to produce higher molecular weight hydrocarbons and additional HBr vapor. Those of ordinary skill in the art will appreciate, with the benefit of this disclosure, that the particular hydrocarbons products produced will be dependent, for example, upon the catalyst employed, the composition of the alkyl bromides introduced, and the exact operating parameters employed. Catalysts that may be employed in the synthesis reactor 10 include synthetic crystalline alumino-silicate catalyst as will be recognized by those of ordinary skill in the art. A synthesis product stream 12 comprising the higher molecular weight hydrocarbons and additional HBr vapor may be withdrawn from the synthesis reactor 10. As discussed below, this methane produced in the synthesis reactor 10 may be separated from the higher molecular weight hydrocarbons and recycled to the bromination reactor 6. In some embodiments, the synthesis product stream 12 further may comprise an unintended amount of methane produced in the synthesis reactor 10, unreacted alkanes (e.g., methane) in the reactor feed, and the HBr vapor produced in the synthesis reactor 10.
The synthesis product stream 12 from the synthesis reactor 10 may then be contacted with an aqueous solution in an HBr separator 14 to recover HBr from the hydrocarbons by absorbing it into the aqueous solution. The aqueous solution may be fed to the HBr separator via recirculating aqueous solution 16. The resultant aqueous solution comprising HBr dissolved therein may also be contacted with a feed gas stream 18 (e.g., natural gas) comprising lower molecular weight alkanes to strip out any residual hydrocarbons, depending on the solubility of the hydrocarbons in the aqueous solution at the operating conditions. The resultant aqueous solution comprising HBr dissolved therein may be removed from the HBr separator 14 via aqueous HBr stream 20.
The aqueous HBr stream 20 may then be routed to a bromide oxidation unit 22 to convert the dissolved HBr to elemental bromine using, for example, air or oxygen and to regenerate the aqueous solution for reuse in the HBr separator 14. The regenerated aqueous solution may then be recirculated to the HBr separator via recirculating aqueous solution 16. The bromine may then be treated sufficiently and sent to the bromination reactor 6 via bromine stream 4. In some embodiments, the bromine that is feed into the bromination reactor 6 may be dry bromine in that the bromine is substantially water-free. Effluent water 24 may also be removed from this oxidation unit 22. Line 26 may be used to supply the oxygen or air fed to this oxidation unit. Residual oxygen or spent air may be removed from the oxidation unit via line 28.
The hydrocarbon stream 30 comprising the unreacted alkanes, product hydrocarbons, and the feed gas may be withdrawn from the HBr separator 14. The hydrocarbon stream 30 may substantially HBr free, in accordance with embodiments of the present invention, for example, containing less than about 1 mppm HBr and alternatively less than 0.1 mppm HBr. As illustrated, the hydrocarbon stream 30 may be routed to a dehydration and product recovery unit 32 wherein water is removed from the remaining constituents, higher molecular weight hydrocarbons may be recovered as liquid hydrocarbon products, and lower molecular weight alkanes may be recycled with feed gas to the bromination reactor 6. As illustrated, water may be removed via water stream 34. A liquid hydrocarbon product stream 36 comprising higher molecular weight hydrocarbons may be withdrawn for use as a fuel, a fuel blend, or for further petrochemical or fuel processing, for example. As illustrated, gas stream 2 comprising the feed gas and unreacted methane and potentially other unreacted alkanes may be recycled to the bromination reactor 6.
Referring now to
As illustrated, the bromination product stream 8 comprising alkyl bromides, HBr vapor, and unreacted alkanes can be withdrawn from the bromination reactor 6 and fed to an alkyl bromides fractionation unit 38. In the alkyl bromides fractionation unit 38, the bromination product stream 8 may be separated into a liquid alkyl bromides stream 40 comprising methyl bromide and other heavier alkyl bromides and a gaseous alkane/HBr stream 42 comprising unreacted alkanes and HBr.
In some embodiments, the liquid alkyl bromides stream 40 comprising methyl bromide and other heavier alkyl bromides may be vaporized and fed to the synthesis reactor 10. In the synthesis reactor 10, the alkyl bromides may be reacted over a suitable catalyst under sufficient conditions via a catalytic coupling reaction to produce higher molecular weight hydrocarbons and additional HBr vapor. The synthesis product stream 12 comprising the higher molecular weight hydrocarbons and additional HBr may be withdrawn from the synthesis reactor 10 and fed to the HBr separator 14 for recovery of HBr.
In some embodiments, the gaseous alkane/HBr stream 42 comprising the unreacted alkanes and HBr produced in the bromination reactor 6 may be also routed to the HBr separator 14 to recover HBr from the alkanes. While not illustrated, the gaseous alkane/HBr stream 42 and the synthesis product stream 12 may be mixed prior to contacting the recirculating aqueous solution 16 in the HBr separator 14. By routing the gaseous alkane/HBr stream 42 to the HBr separator 14, in some embodiments, the unreacted alkanes and HBr separated from the alkyl bromides in the alkyl bromides fractionation unit 38 are not fed to the synthesis reactor 10. Accordingly, in accordance with embodiments, the feed to the synthesis reactor 10 is reduced, and the size of the synthesis reactor 10 can be reduced, resulting in cost savings, especially if a fluidized bed reactor is employed.
Referring now to
As illustrated, the gaseous alkane/HBr stream 42 comprising the unreacted alkanes and HBr may be withdrawn from the alkyl bromides fractionation unit 38 and fed to a second HBr separator 44. In the second HBr separator 44, any of a variety of different suitable techniques may be used to produce a recycle gas stream 52 by separation of HBr, including, but not limited to, the techniques disclosed in U.S. Pat. No. 7,674,941, the disclosure of which is incorporated herein by reference. Non-limiting examples of techniques for HBr separation include absorption HBr into an aqueous solution or adsorption of HBr on a metal oxide. In some embodiments, the HBr can be recovered from the unreacted alkanes by adsorbing the HBr into an aqueous solution using, for example, a packed column or other suitable containing device. The aqueous solution may be fed to the second HBr separator via second recirculating aqueous stream 48.
The second HBr separator 44 can operate at a different, and preferably, higher pressure than the HBr separator 14 which recovers HBr from the synthesis product stream 12. For example, the second HBr separator 44 can operate at a pressure that is at least about 3 bars higher than the HBr separator 14. In some embodiments, the second HBr separator 44 may operate at a pressure of about 5 bars to about 50 bars while the HBr separator 14 operates at a pressure a pressure of about 2 bars to about 47 bars.
The resultant aqueous solution comprising HBr dissolved therein may be removed from the second HBr separator 44 via second aqueous HBr stream 50, in accordance with embodiments of the present invention. The second aqueous HBr stream 50 may be combined with aqueous HBr stream 20 from the HBr separator 14 and fed to the bromide oxidation unit 22 described above to produce elemental bromine and regenerate the aqueous solutions for reuse in the HBr separator 14 and the second HBr separator 44. While
The recycle gas stream 52 containing the alkanes separated from HBr in the second HBr separator 44 may be fed to a second dehydrator 46 for the removal of water and then mixed with a feed gas stream 54 from the dehydration and product recovery unit 32. The gas stream 2 comprising a mixture of the recycle gas stream 52 and the feed gas stream 54 may be fed to the bromination reactor 6. While
In the illustrated embodiment, the unreacted alkanes separated from the alkyl bromides in the alkyl bromides fractionation unit 38 are only circulating through the bromination reactor 6, the alkyl bromides fractionation unit 38, the second HBr separator 44, and the second dehydrator 46, enduring much less pressure drop by avoiding circulation through the entire system as disclosed in the process schemes used heretofore. As a result, the increase in compression cost for using a large excess of methane or high methane-to-bromine ratio in the bromination reactor 6 can be minimized by incorporation of embodiments of the present invention.
Referring now to
As illustrated, the bromination reactor 6 may receive as feed the recycle gas stream 52 from the recycle compressor 60, the feed gas stream 54 from the feed compressor 62, and the bromine stream 4 from the bromide oxidation unit 22. While not illustrated, embodiments may include pre-mixing two or more of these feed streams prior to feeding the bromination reactor 6. The recycle gas stream 52 and the feed gas stream 54 may be allowed to react with the bromine stream 4 to form a bromination product stream 8 that comprise alkyl bromides, HBr vapor, and unreacted alkanes. The bromination product stream 8 may be withdrawn from the bromination reactor 6.
In the bromination reactor 6, the lower molecular weight alkanes in the feed gas stream 54 and the recycle gas stream 52 may be reacted exothermically with bromine in the bromine stream 4, for example, at a temperature in the range of about 250° C. to about 600° C., and at a pressure in the range of about 1 bar to about 50 bars to produce gaseous alkyl bromides and HBr. In an embodiment, the operating pressure of the bromination reactor 6 may range from about 20 bars to about 40 bars, for example, to minimize recompression costs and to maximize the condenser temperature required for the alkyl bromides fraction step. In some embodiments, the feeds to the bromination reactor 6 may be pre-heated to a temperature of about 250° C. to about 400° C., for example, in an inlet pre-heater zone. It should be understood that the upper limit of the operating temperature range is greater than the upper limit of the reaction initiation temperature range to which the feed mixture may be heated due to the exothermic nature of the bromination reaction. Those of ordinary skill in the art will appreciate that the bromination reaction may be a non-catalytic (thermal) or a catalytic reaction as described, for example, in U.S. Pat. No. 7,674,941. In the case of methane, it is believed that the formation of multiple brominated compounds occurs in accordance with the following general overall reaction:
aCH4(g)+bBr2(g)→*cCH3Br(g)+dCH2Br2(g)+eCHBr3(g)+fCBr4(g)+xHBr(g)
The methane/bromine molar ratio of the feed introduced to the bromination reactor 6 may be at least about 2.5:1, in some embodiments. In alternative embodiments, a larger excess of methane (e.g., about 3:1 to about 10:1) may be used in order to achieve desirable selectivity of methyl bromide and reduce the formation of soot, as methyl bromide is more rapidly brominated than methane under free radical conditions. The C2+ alkanes entering the bromination reactor 6 are known to more rapidly form poly-brominated alkanes and coke/soot, as they are much more easily brominated than methane. Accordingly, in some embodiments, the C2+ alkane content entering the bromination reactor 6 can be controlled by treating the natural gas feed stream 18 or its mixture with the higher molecular weight hydrocarbons formed in the synthesis reactor 10 using any suitable means, such as a cryogenic separation. In some embodiment, the C2+ alkane concentration in the total alkanes (recycle gas stream 52+feed gas stream 54) fed to the bromination reactor 6 is about 0.1 mole % to about 10 mole %, in another embodiment, about 0.1 mole % to about 1 mole %, and, in yet another embodiment, about 0.1 mole % to about 0.2 mole %.
As illustrated, the bromination product stream 8 comprising alkyl bromides, HBr vapor, and unreacted alkanes can be withdrawn from the bromination reactor 6 and fed to an alkyl bromides fractionation unit 38. In the alkyl bromides fractionation unit 38, the bromination product stream 8 may be separated into a liquid alkyl bromides stream 40 comprising methyl bromide and other heavier alkyl bromides and a gaseous alkane/HBr stream 42 comprising unreacted alkanes and HBr.
The gaseous alkane/HBr stream 42 comprising the unreacted alkanes and HBr may be withdrawn from the alkyl bromides fractionation unit 38 and fed to a second HBr separator 44. In the second HBr separator 44, a recycle gas stream 52 may be produced by separation of HBr from the unreacted alkanes. The recycle gas stream 52 from the separator 44 may be fed to the second dehydrator 46 for removal of water and then to a recycle compressor 60 for recompression. After dehydration and recompression, the recycle gas stream 52 may be routed to the bromination reactor 6 without further cryogenic treatment. Therefore, the process cost to control the presence of C2+ alkanes in the bromination reactor 6 is independent of the molar ratio of methane to bromine. In other words, the use of a large excess of methane should not increase the process cost associated with C2+ alkane control.
In addition, in the illustrated embodiment, the unreacted alkanes separated from the alkyl bromides in the alkyl bromides fractionation unit 38 are only circulating through the bromination reactor 6, the alkyl bromides fractionation unit 38, the second HBr separator 44, the second dehydrator 46, and the recycle compressor 60 enduring much less pressure drop by avoiding circulation through the entire system as disclosed in the process schemes used heretofore. Therefore, the increase in compression cost for using a large excess of methane or high methane-to-bromine ratio in the bromination reactor 6 can be minimized by incorporation of embodiments of the present invention.
In some embodiments, the liquid alkyl bromides stream 40 comprising methyl bromide and other heavier alkyl bromides may be vaporized and fed to the synthesis reactor 10. In one embodiment, the liquid alkyl bromides stream 40 can be pumped to a higher pressure before vaporization. In another embodiment, the liquid alkyl bromides stream 40 can be laid down to a lower pressure prior to vaporization. In the synthesis reactor 10, the alkyl bromides may be reacted over a suitable catalyst under sufficient conditions via a catalytic coupling reaction to produce higher molecular weight hydrocarbons and additional HBr vapor.
As illustrated, the synthesis product stream 12 comprising the higher molecular weight hydrocarbons and additional HBr may be withdrawn from the synthesis reactor 10 and fed to the HBr separator 14 for recovery of HBr. In the HBr separator 14 any of a variety of different suitable techniques may be used for separation of HBr, including, but not limited to, the techniques disclosed in U.S. Pat. No. 7,674,941, the disclosure of which is incorporated herein by reference. Non-limiting examples of techniques for HBr separation include absorption of HBr into an aqueous solution or adsorption of HBr on a metal oxide. The HBr separator 14 and the second HBr separator 44 may use the same or different techniques for the removal of HBr from the hydrocarbon streams (e.g., gaseous alkane/HBr stream 42, synthesis product stream 12). In some embodiments, the HBr separator 14 and the second HBr separator 44 operate at different pressures but both can interact with the bromide oxidation unit 22 for generation of elemental bromine and regeneration of the bromide-taking medium (e.g., aqueous solution, metal oxide adsorbent).
In the illustrated embodiment, the natural gas feed stream 18 comprising lower molecular weight alkanes may enter the HBr separator 14 for recovery of hydrocarbons or other purposes. While not illustrated by
The hydrocarbon stream 30 comprising the unreacted alkanes, higher molecular weight hydrocarbons, and the feed gas may be withdrawn from the HBr separator 14 and routed to a dehydrator 64 for removal of water and then a product recovery unit 58 for recovery of a heavy ends product stream 66 comprising heavy end hydrocarbons (C5+), a light ends product stream 56 comprising light end hydrocarbons (C2-C4), and a feed gas stream 54 comprising methane. Any suitable method of dehydration and product recovery may be used, including, but not limited to, solid-bed desiccant adsorption followed by refrigerated condensation, cryogenic separation, or circulating absorption oil or some other solvent.
The feed gas stream 54 from the product recovery unit 58 may be fed to the bromination reactor 6 via the feed compressor 62. It should be understood that the feed gas stream 54 may also comprise some C2+ alkanes so long as the C2+ content of the alkanes (feed gas stream 54+recycle gas stream 52) fed to the bromination reactor 6 is less than a predetermined value.
Referring now to
The product recovery unit 58 illustrated in
Referring now to
As illustrated, the light ends product stream 56 comprising light end hydrocarbons (C2-C4) may be fed to the shift reactor 76 via a light ends recycle compressor 78. The liquid alkyl bromides stream 40 from the alkyl bromides fractionation unit 38 comprising methyl bromide and other heavier alkyl bromides may also be fed to the shift reactor 76. In some embodiments, the feeds may be vaporized prior to their introduction into the shift reactor 76. In the shift reactor 76, at least a portion of the poly-brominated alkanes in the liquid alkyl bromides stream 40 can be reproportionated into mono-brominated alkanes, thus reducing the content of poly-brominated alkanes in the feed to the synthesis reactor 10. This shift reaction occurs by reaction of the C2-C4 hydrocarbons in the light ends product stream 56 with the poly-brominated alkanes to form mono-brominated alkanes, such as methyl bromide, ethyl bromide, propyl bromide, and the like. In some embodiments, the shift reaction may proceed thermally without a catalyst. In another embodiment, the shift reaction may be a catalytic reaction. Example techniques for reproportionation of poly-brominated alkanes via a shift reaction is described in more detail in U.S. Pat. No. 7,674,941, the disclosure of which is incorporated herein by reference. In the illustrated embodiment, synthesis reactor feed 80 comprising mono-brominated alkanes may be withdrawn from the shift reactor 76 and fed to the synthesis reactor 10.
Referring now to
As illustrated, the light ends product stream 56 may be fed to the light ends bromination reactor 82 via light ends recycle compressor 78. In the light ends bromination reactor 82, the light end hydrocarbons may be allowed to react with bromine fed to the reactor 82 via line 84 to form products that comprise C2+ alkyl bromides, HBr vapor, and unreacted light end hydrocarbons.
In some embodiments, the light ends bromination reactor 82 may operate at milder conditions than the bromination reactor 6. For example, the light ends bromination reactor 82 may operate at a temperature in the range of about 200° C. to about 500° C., alternatively about 235° C. to about 450° C., and alternatively about 250° C. to about 425° C. By way of further example, the light ends bromination reactor 82 may operate at a pressure in the range of about 1 bar to about 80 bars, alternatively about 10 bars to about 50 bars, and alternatively about 20 bars to about 40 bars. In one embodiment, the light ends bromination reactor 82 may operate at a temperature in the range of about 250° C. to about 425° C., and at a pressure in the range of about 15 bars to about 35 bars while the bromination reactor 6 may operate at a temperature in the range of about 350° C. to about 500° C. and a pressure of about 25 bars to about 40 bars.
The effluent that contains the C2+ alkyl bromides, HBr vapor, and unreacted light end hydrocarbons may be withdrawn from the light ends bromination reactor 82 and fed to the synthesis reactor 10 via line 86. While the effluent in line 86 from the light ends bromination reactor 82 and the liquid alkyl bromides stream 40 from the alkyl bromides fractionation 38 comprising methyl bromide and other heavier alkyl bromides are illustrated as separate feeds to the synthesis reactor 10, it should be understood that present embodiments encompass processes in which these streams are combined prior to the synthesis reactor 10.
Referring now to
As illustrated, a bromination feed gas stream 3 comprising lower molecular weight alkanes (which, in some embodiments, may include a mixture of a feed gas plus a recycled gas stream) and bromine may be introduced into a bromination reactor 6. In the bromination reactor 6, the lower molecular weight alkanes may be reacted exothermally with bromine at a relatively low temperature of about 250° C. to about 600° C. and at a pressure in the range of about 1 bar to about 50 bars to produce alkyl bromides and HBr vapor. To minimize recompression costs and to maximize condenser temperature in the alkyl bromides fractionator 90, the bromination reactor 6 may be operated, for example, at a pressure of about 20 bars to about 40 bars. A bromination product stream 8 comprising the alkyl bromides (e.g., CH3Br and other brominated methanes and ethanes), HBr vapor, and unreacted alkanes may be withdrawn from the bromination reactor 6.
In the illustrated embodiment, the bromination product stream 8 can first be cooled prior to entering the alkyl bromides fractionator 90 for separation of the unreacted methane and HBr from the alkyl bromides. As illustrated, the bromination product stream 8 may be first cooled by heating up the bromination feed gas stream 3 in a bromination feed/product cross heat exchanger 92. The bromination feed gas stream 3 may be heated in the bromination feed/product cross heat exchanger 92 to a temperature of about 250° C. to about 450° C., in one embodiment, and about 300° C. to about 400° C. in another embodiment. While not illustrated, the bromination product stream 8 may be further cooled, in some embodiments, by exchanging heat with one or more other process streams in one or more inlet cross heat exchangers. In one embodiment, the bromination product stream 8 may then be cooled, for example, to a temperature of about 33° C. to about 43° C., by exchanging heat with water stream 98 in water-cooled heat exchanger 100. It should be understood that a cooling medium other than water stream 98 may be used in some embodiments, for example, to obtain a lower temperature (e.g., about −10° C. to about 33° C.) for the bromination product stream 8 exiting the heat exchanger 100. The cooled bromination product stream 8, which partially condenses in the water-cooled heat exchanger 100, is then sent to an inlet separator 102 (e.g., drum) for vapor-liquid phase separation. As illustrated, the bromination product stream 8 may be separated into a gas stream 104 and a liquid stream 106 in the inlet separator 102. The liquid stream 106 may be introduced into a lower section of the alkyl bromides fractionator 90 via pump 108. The alkyl bromides fractionator 90 may include a liquid distributor or manifold (not shown) to more evenly distribute the liquid stream 106 throughout the internal cross sectional area of the alkyl bromides fractionator 90. The alkyl bromides fractionator 90 may comprise a number of trays or equivalent packing material, identified in
In accordance with present embodiments, the alkyl bromides fractionator 90 should separate methyl bromide and heavier bromides from the effluent gas as a bottoms liquid product. The alkyl bromides fractionator 90 may operate at a pressure of about 1 bar to about 50 bars, alternatively about 20 bars to about 40 bars, and alternatively about 30 bars to about 35 bars. As illustrated, the bottoms liquid product can be withdrawn from at or near the bottom of the alkyl bromides fractionator 90 via liquid alkyl bromides stream 40. Liquid alkyl bromides stream 40 should generally comprise methyl bromide and other heavier bromides. In some embodiments, the liquid alkyl bromides stream 40 may comprise less than about 2% by weight of the total HBr introduced into the alkyl bromides fractionator 90, alternatively less than about 1%, and alternatively less than about 0.1%. Another stream 114 comprising methyl bromide and other heavier bromides be withdrawn from at or near the bottom of the alkyl bromides fractionator 90 and vaporized in reboiler 116, for example, by means of low pressure steam 118, in a manner that will be evident to those of ordinary skill in the art before being introduced back into the alkyl bromides fractionator 90 at or near the bottom thereof. In some embodiments, the reboiler 116 may operate to heat stream 114 to a temperature of about 100° C. to about 200° C.
The overhead vapor stream 120 may be withdrawn at or near the top of the alkyl bromides fractionator 90 and partially condensed in reflux condenser 122 against a refrigerant 124 and conveyed to a reflux separator drum 126. The reflux condenser 122 may operate to cool the overhead vapor stream 120 to a temperature of about −40° C. to about 0° C. In some embodiments, the overhead vapor stream 120 is cooled to a temperature greater than about −40° C. and greater than −34° C., in another embodiment. The reflux condenser 122 may have an operating pressure, for example, of about 20 bars to about 40 bars. The refrigerant 124 in the reflux condenser 122 may include propane or other available refrigerants. In the reflux separator drum 126, the overhead vapor stream 120 that was partially condensed in the reflux condenser 122 can be separated into a reflux stream 128 and a gaseous alkane/HBr stream 42. The reflux stream 128 may be conveyed via reflux pump 130 back into the alkyl bromides fractionator 90 at or near the top thereof. As illustrated, the gaseous alkane/HBr stream 42 exiting the reflux separator drum 126 may cross exchange in an overheads cross heat exchanger 132 with the overhead vapor stream 120 entering the reflux condenser 122 and in a feed/overheads cross heat exchanger 112 with the gas stream 104 entering the alkyl bromides fractionator 90, for example, to reduce refrigerant use. The gaseous alkane/HBr stream 42 from the reflux separator drum 126 may comprise, for example, HBr and unreacted alkanes (e.g., primarily methane with some heavier alkanes, such as ethane). In some embodiments, the gaseous alkane/HBr stream 42 comprises less than about 100 mppm alkyl bromides, alternatively less than about 10 mppm alkyl bromides, and alternatively less than about 1 mppm alkyl bromides.
As previously described, in accordance with embodiments of the present invention, the liquid alkyl bromides stream 40 can be vaporized and then conveyed to the synthesis reactor 10 (e.g.,
While the preceding description is directed to bromine-based processes for the conversion of lower molecular weight alkanes to higher molecular weight hydrocarbons, it should be understood that chlorine or another suitable halogen may be used in accordance with present embodiments. Additionally, it should be understood that the present invention also encompasses conversion of lower molecular weight alkanes to other higher molecular weight hydrocarbons. For example, a catalyst may be selected in the synthesis reactor 10 (e.g.,
To facilitate a better understanding of the present invention, the following examples of certain aspects of some embodiments are given. The following examples should not be read or construed in any manner to limit, or define, the entire scope of the invention.
Simulations were conducted using Aspen Hysys V7.1 to analyze the inclusion of an alkyl bromides fractionation unit in a process for converting natural gas to liquid hydrocarbons via a bromine-based method. 50 MMSCFD of natural gas was fed to the process. A Cl/Br2 mixture having a Cl/Br2 molar ratio of 2.5 entered a bromination reactor at 150° to 300° C. and 35 Barg and left at 450° C. to 500° C. The conversion of Br2 was 100%. The bromination product selectivity profile was: 70 mol % CH3Br, 25 mol % CH2Br2, and 5 mol % other bromides and solid carbonaceous compounds. The bromination product stream rate was 11,822 kgmol/h. In the absence of an alkyl bromides fractionation unit, as illustrated in
For comparison, a Cl/Br2 molar ratio of 5 was used in the bromination reactor. The conversion of Br2 was 100%. The bromination product selectivity profile was: 80 mol % CH3Br, 15 mol % CH2Br2, and 5 mol % other bromides and solid carbonaceous compounds. In the absence of alkyl bromides fractionation unit, the entire bromination product stream (18,673 kgmol/h) fed the synthesis reactor. Separating out Cl/HBr from alkyl bromides by fractionation downstream of the bromination reactor, as illustrated in
The above results are summarized in Table 1. Table 1 also shows that higher CH3Br selectivity was achieved when using a higher Cl/Br2 molar ratio in the bromination reactor. It also shows that when separating out methane and HBr from the bromination product stream, the synthesis reactor feed rate became nearly independent of the use of Cl/Br2 molar ratio in the upstream bromination reactor. However, in the absence of this step, the synthesis reactor feed increased by 58% from 11,822 to 18,673 kgmol/h, when the Cl/Br2 molar ratio used in the upstream bromination reactor was increased from 2.5 to 5.
1CH3Br selectivity (mol %) = mole of CH3Br/moles of (CH3Br + CH2Br2) + other bromination products) × 100%. Similar definition applies to CH2Br2 selectivity and other bromination products selectivity.
Additional simulations were conducted to further analyze the inclusion of an alkyl bromides fractionation unit in a process for converting natural gas to liquid hydrocarbons via a bromine-based method. 50 MMSCFD of natural gas was fed to the process illustrated by
For comparison, the same 50 MMSCFD of natural gas was a fed to the same process illustrated by
The above results are summarized in Table 2. It shows that when methane and HBr are separated out prior to feeding the bromination product stream to the synthesis reactor, the cryogenic separation section feed rate was independent of the use of Cl/Br2 molar ratio in the upstream bromination reactor. However, in the absence of this step, the synthesis reactor feed increased by 82% from 8,716 to 15,832 kgmol/h, when the Cl/Br2 molar ratio used in the upstream bromination reactor was increased from 2.5 to 5.
Additional simulations were conducted to further analyze the inclusion of an alkyl bromides fractionation unit in a process for converting natural gas to liquid hydrocarbons via a bromine-based method. 50 MMSCFD of natural gas comprising 97.1 mol % Cl and 2.9 mol % C2+ hydrocarbon impurities was fed to the process illustrated by
For comparison, the same 50 MMSCFD of natural gas was fed to the same process, but using a Cl/Br2 molar ratio of 5 in the bromination reactor. Without using an alkyl bromides fractionation unit between the bromination reactor and the synthesis reactor, the product recovery unit produced a 15,561 kgmol/h feed gas stream comprising substantially all of the recycle and feed methane with 1.0 mol % C2+ impurity at 8.51 barg and 30° C. The feed gas stream was then compressed by a feed plus recycle compressor from 8.5 to 35 barg using 21.5 MW power for reuse in the bromination reactor.
The above results are summarized in Table 3. It shows that using the process scheme illustrated in
Additional simulations were conducted to further analyze the inclusion of an alkyl bromides fractionation unit in a process for converting natural gas to liquid hydrocarbons via a bromine-based method. 50 MMSCFD of natural gas was fed to a process illustrated by
For comparison, the same 50 MMSCFD of natural gas was fed to the same process described above and shown in
The above results are summarized in Table 4. It also shows that using the process scheme illustrated in
Comparison to Table 3 of Example 3 also shows that when the Cl/Br2 molar ratio used in the upstream bromination reactor was 2.5, separation out of alkanes and HBr prior to feeding the bromination production stream to the synthesis reactor largely reduced the compression power requirement by 73.5% from 11.7 to 3.1 MW for feeding and recycling alkanes containing equal to or less than 1 mol % C2+ at 35 barg to the bromination reactor. When the said Cl/Br2 molar ratio was 5, the said reduction was from 21.5 to 4.3 MW or by 80%.
Additional simulations were conducted to further analyze the inclusion of an alkyl bromides fractionation unit in a process for converting natural gas to liquid hydrocarbons via a bromine-based method. 50 MMSCFD of natural gas was fed to the conversion process. A Cl/Br2 mixture having a Cl/Br2 molar ratio of 2.5 entered the bromination reactor at 150° C. to 300° C. and 35 Barg and left at 450° C. to 500° C. The bromination product stream comprising 29 mol % HBr, 50 mol % methane, and 21 mol % Cl bromides fed an alkyl bromides fractionator at a rate of 11,822 kgmol/h. With reference to
For comparison, 50 MMSCFD of natural gas was fed to the same process described above but using a Cl/Br2 molar ratio of 5. The bromination product stream comprising 17 mol % HBr, 70 mol % methane, and 13 mol % Cl bromides fed an alkyl bromides fractionator at a rate of 18,673 kgmol/h. This column fractionated the feed into a 16,147 kgmol/h gaseous alkane/HBr stream at 32 barg comprising substantially all of the HBr and methane fed to the fractionator and a 2,526 kgmol/h liquid alkyl bromides stream comprising substantially all of the methyl bromide and heavier bromides fed to the fractionator. The same fractionator specifications were used as above. The condenser temperature was −31° C. requiring a refrigeration duty of 11 MW. The reboiler temperature was 160° C. requiring a steam duty of 14 MW.
The above results are summarized in Table 5.
Certain embodiments of the methods of the invention are described herein. Although major aspects of what is to believed to be the primary chemical reactions involved in the methods are discussed in detail as it is believed that they occur, it should be understood that side reactions may take place. One should not assume that the failure to discuss any particular side reaction herein means that that reaction does not occur. Conversely, those that are discussed should not be considered exhaustive or limiting. Additionally, although figures are provided that schematically show certain aspects of the methods of the present invention, these figures should not be viewed as limiting on any particular method of the invention.
Therefore, the present invention is well adapted to attain the ends and advantages mentioned as well as those that are inherent therein. The particular embodiments disclosed above are illustrative only, as the present invention may be modified and practiced in different but equivalent manners apparent to those skilled in the art having the benefit of the teachings herein. Although individual embodiments are discussed, the invention covers all combinations of all those embodiments. Furthermore, no limitations are intended to the details of construction or design herein shown, other than as described in the claims below. It is therefore evident that the particular illustrative embodiments disclosed above may be altered or modified and all such variations are considered within the scope and spirit of the present invention. All numbers and ranges disclosed above may vary by some amount. Whenever a numerical range with a lower limit and an upper limit is disclosed, any number and any included range falling within the range are specifically disclosed.
Number | Name | Date | Kind |
---|---|---|---|
2168260 | Heisel et al. | Aug 1939 | A |
2246082 | Vaughan et al. | Jun 1941 | A |
2320257 | Beekhuis | May 1943 | A |
2488083 | Gorin et al. | Nov 1949 | A |
2536457 | Mugdan | Jan 1951 | A |
2666024 | Low et al. | Jan 1954 | A |
2677598 | Crummett et al. | May 1954 | A |
2941014 | Rothweiler et al. | Jun 1960 | A |
3076784 | Schulte-Huemann et al. | Feb 1963 | A |
3172915 | Borkowski et al. | Mar 1965 | A |
3246043 | Rosset et al. | Apr 1966 | A |
3254023 | Miale et al. | May 1966 | A |
3273964 | Rosset | Sep 1966 | A |
3291708 | Juda | Dec 1966 | A |
3294846 | Livak et al. | Dec 1966 | A |
3310380 | Lester | Mar 1967 | A |
3314762 | Hahn | Apr 1967 | A |
3346340 | Louvar et al. | Oct 1967 | A |
3353916 | Lester | Nov 1967 | A |
3353919 | Stockman | Nov 1967 | A |
3379506 | Massonne et al. | Apr 1968 | A |
3468968 | Baker et al. | Sep 1969 | A |
3496242 | Berkowitz et al. | Feb 1970 | A |
3562321 | Borkowski et al. | Feb 1971 | A |
3598876 | Bloch | Aug 1971 | A |
3615265 | Gartner | Oct 1971 | A |
3657367 | Blake et al. | Apr 1972 | A |
3670037 | Dugan | Jun 1972 | A |
3673264 | Kuhn | Jun 1972 | A |
3679758 | Schneider | Jul 1972 | A |
3702886 | Argauer et al. | Nov 1972 | A |
3705196 | Turner | Dec 1972 | A |
3799997 | Schmerling | Mar 1974 | A |
3816599 | Kafes | Jun 1974 | A |
3865886 | Schindler et al. | Feb 1975 | A |
3876715 | McNulty et al. | Apr 1975 | A |
3879473 | Stapp | Apr 1975 | A |
3879480 | Riegel et al. | Apr 1975 | A |
3883651 | Woitun et al. | May 1975 | A |
3886287 | Kobayashi et al. | May 1975 | A |
3894103 | Chang et al. | Jul 1975 | A |
3894104 | Chang et al. | Jul 1975 | A |
3894105 | Chang et al. | Jul 1975 | A |
3894107 | Butter et al. | Jul 1975 | A |
3907917 | Forth | Sep 1975 | A |
3919336 | Kurtz | Nov 1975 | A |
3920764 | Riegel et al. | Nov 1975 | A |
3923913 | Antonini et al. | Dec 1975 | A |
3928483 | Chang et al. | Dec 1975 | A |
3965205 | Garwood et al. | Jun 1976 | A |
3974062 | Owen et al. | Aug 1976 | A |
3987119 | Kurtz et al. | Oct 1976 | A |
3992466 | Plank et al. | Nov 1976 | A |
4006169 | Anderson et al. | Feb 1977 | A |
4011278 | Plank et al. | Mar 1977 | A |
4025571 | Lago | May 1977 | A |
4025572 | Lago | May 1977 | A |
4025575 | Chang et al. | May 1977 | A |
4025576 | Chang et al. | May 1977 | A |
4035285 | Owen et al. | Jul 1977 | A |
4035430 | Dwyer et al. | Jul 1977 | A |
4039600 | Chang | Aug 1977 | A |
4044061 | Chang et al. | Aug 1977 | A |
4046819 | Schmerling | Sep 1977 | A |
4046825 | Owen et al. | Sep 1977 | A |
4049734 | Garwood et al. | Sep 1977 | A |
4052471 | Pearsall | Oct 1977 | A |
4052472 | Given et al. | Oct 1977 | A |
4058576 | Chang et al. | Nov 1977 | A |
4060568 | Rodewald | Nov 1977 | A |
4071753 | Fulenwider et al. | Jan 1978 | A |
4072733 | Hargis et al. | Feb 1978 | A |
4087475 | Jordan | May 1978 | A |
4088706 | Kaeding | May 1978 | A |
4092368 | Smith | May 1978 | A |
4105755 | Darnell et al. | Aug 1978 | A |
4110180 | Nidola et al. | Aug 1978 | A |
4117251 | Kaufhold et al. | Sep 1978 | A |
4129604 | Tsao | Dec 1978 | A |
4133838 | Pearson | Jan 1979 | A |
4133966 | Pretzer et al. | Jan 1979 | A |
4138440 | Chang et al. | Feb 1979 | A |
4143084 | Kaeding et al. | Mar 1979 | A |
4156698 | Dwyer et al. | May 1979 | A |
4169862 | Eden | Oct 1979 | A |
4172099 | Severino | Oct 1979 | A |
4187255 | Dodd | Feb 1980 | A |
4191618 | Coker et al. | Mar 1980 | A |
4194990 | Pieters et al. | Mar 1980 | A |
4197420 | Ferraris et al. | Apr 1980 | A |
4219604 | Kakimi et al. | Aug 1980 | A |
4219680 | Konig et al. | Aug 1980 | A |
4249031 | Drent et al. | Feb 1981 | A |
4252687 | Dale et al. | Feb 1981 | A |
4270929 | Dang Vu et al. | Jun 1981 | A |
4272338 | Lynch et al. | Jun 1981 | A |
4282159 | Davidson et al. | Aug 1981 | A |
4300005 | Li | Nov 1981 | A |
4300009 | Haag et al. | Nov 1981 | A |
4301253 | Warren | Nov 1981 | A |
4302619 | Gross et al. | Nov 1981 | A |
4307261 | Beard, Jr. et al. | Dec 1981 | A |
4308403 | Knifton | Dec 1981 | A |
4311865 | Chen et al. | Jan 1982 | A |
4317800 | Sloterdijk et al. | Mar 1982 | A |
4317934 | Seemuth | Mar 1982 | A |
4317943 | Knifton | Mar 1982 | A |
4320241 | Frankiewicz | Mar 1982 | A |
4333852 | Warren | Jun 1982 | A |
4347391 | Campbell | Aug 1982 | A |
4350511 | Holmes et al. | Sep 1982 | A |
4356159 | Norval et al. | Oct 1982 | A |
4371716 | Paxson et al. | Feb 1983 | A |
4373109 | Olah | Feb 1983 | A |
4376019 | Gamlen et al. | Mar 1983 | A |
4380682 | Leitert et al. | Apr 1983 | A |
4384159 | Diesen | May 1983 | A |
4389391 | Dunn, Jr. | Jun 1983 | A |
4410714 | Apanel | Oct 1983 | A |
4412086 | Beard, Jr. et al. | Oct 1983 | A |
4418236 | Cornelius et al. | Nov 1983 | A |
4431856 | Daviduk et al. | Feb 1984 | A |
4433189 | Young | Feb 1984 | A |
4433192 | Olah | Feb 1984 | A |
4439409 | Puppe et al. | Mar 1984 | A |
4440871 | Lok et al. | Apr 1984 | A |
4443620 | Gelbein et al. | Apr 1984 | A |
4462814 | Holmes et al. | Jul 1984 | A |
4465884 | Degnan et al. | Aug 1984 | A |
4465893 | Olah | Aug 1984 | A |
4467130 | Olah | Aug 1984 | A |
4467133 | Chang et al. | Aug 1984 | A |
4489210 | Judat et al. | Dec 1984 | A |
4489211 | Ogura et al. | Dec 1984 | A |
4492657 | Heiss | Jan 1985 | A |
4496752 | Gelbein et al. | Jan 1985 | A |
4497967 | Wan | Feb 1985 | A |
4499314 | Seddon et al. | Feb 1985 | A |
4506105 | Kaufhold | Mar 1985 | A |
4509955 | Hayashi | Apr 1985 | A |
4513092 | Chu et al. | Apr 1985 | A |
4513164 | Olah | Apr 1985 | A |
4523040 | Olah | Jun 1985 | A |
4524227 | Fowles et al. | Jun 1985 | A |
4524228 | Fowles et al. | Jun 1985 | A |
4524231 | Fowles et al. | Jun 1985 | A |
4538014 | Miale et al. | Aug 1985 | A |
4538015 | Miale et al. | Aug 1985 | A |
4540826 | Banasiak et al. | Sep 1985 | A |
4543434 | Chang | Sep 1985 | A |
4544781 | Chao et al. | Oct 1985 | A |
4547612 | Tabak | Oct 1985 | A |
4550217 | Graziani et al. | Oct 1985 | A |
4550218 | Chu | Oct 1985 | A |
4568660 | Klosiewicz | Feb 1986 | A |
4579977 | Drake | Apr 1986 | A |
4579992 | Kaufhold et al. | Apr 1986 | A |
4579996 | Font Freide et al. | Apr 1986 | A |
4587375 | Debras et al. | May 1986 | A |
4588835 | Torii et al. | May 1986 | A |
4590310 | Townsend et al. | May 1986 | A |
4599474 | Devries et al. | Jul 1986 | A |
4605796 | Isogai et al. | Aug 1986 | A |
4605803 | Chang et al. | Aug 1986 | A |
4621161 | Shihabi | Nov 1986 | A |
4621164 | Chang et al. | Nov 1986 | A |
4633027 | Owen et al. | Dec 1986 | A |
4634800 | Withers, Jr. et al. | Jan 1987 | A |
4642403 | Hyde et al. | Feb 1987 | A |
4642404 | Shihabi | Feb 1987 | A |
4652688 | Brophy et al. | Mar 1987 | A |
4654449 | Chang et al. | Mar 1987 | A |
4655893 | Beale | Apr 1987 | A |
4658073 | Tabak | Apr 1987 | A |
4658077 | Kolts et al. | Apr 1987 | A |
4665259 | Brazdil et al. | May 1987 | A |
4665267 | Barri | May 1987 | A |
4665270 | Brophy et al. | May 1987 | A |
4675410 | Feitler et al. | Jun 1987 | A |
4690903 | Chen et al. | Sep 1987 | A |
4695663 | Hall et al. | Sep 1987 | A |
4696985 | Martin | Sep 1987 | A |
4704488 | Devries et al. | Nov 1987 | A |
4704493 | Devries et al. | Nov 1987 | A |
4709108 | Devries et al. | Nov 1987 | A |
4720600 | Beech, Jr. et al. | Jan 1988 | A |
4720602 | Chu | Jan 1988 | A |
4724275 | Hinnenkamp et al. | Feb 1988 | A |
4735747 | Ollivier et al. | Apr 1988 | A |
4737594 | Olah | Apr 1988 | A |
4748013 | Saito et al. | May 1988 | A |
4762596 | Huang et al. | Aug 1988 | A |
4769504 | Noceti et al. | Sep 1988 | A |
4774216 | Kolts et al. | Sep 1988 | A |
4775462 | Imai et al. | Oct 1988 | A |
4777321 | Harandi et al. | Oct 1988 | A |
4781733 | Babcock et al. | Nov 1988 | A |
4783566 | Kocal et al. | Nov 1988 | A |
4788369 | Marsh et al. | Nov 1988 | A |
4788377 | Chang et al. | Nov 1988 | A |
4792642 | Rule et al. | Dec 1988 | A |
4795732 | Barri | Jan 1989 | A |
4795737 | Rule et al. | Jan 1989 | A |
4795843 | Imai et al. | Jan 1989 | A |
4795848 | Teller et al. | Jan 1989 | A |
4804797 | Minet et al. | Feb 1989 | A |
4804800 | Bortinger et al. | Feb 1989 | A |
4808763 | Shum | Feb 1989 | A |
4814527 | Diesen | Mar 1989 | A |
4814532 | Yoshida et al. | Mar 1989 | A |
4814535 | Yurchak | Mar 1989 | A |
4814536 | Yurchak | Mar 1989 | A |
4849562 | Buhs et al. | Jul 1989 | A |
4849573 | Kaefing | Jul 1989 | A |
4851602 | Harandi et al. | Jul 1989 | A |
4851606 | Ragonese et al. | Jul 1989 | A |
4886925 | Harandi | Dec 1989 | A |
4886932 | Leyshon | Dec 1989 | A |
4891463 | Chu | Jan 1990 | A |
4895995 | James, Jr. et al. | Jan 1990 | A |
4899000 | Stauffer | Feb 1990 | A |
4899001 | Kalnes et al. | Feb 1990 | A |
4899002 | Harandi et al. | Feb 1990 | A |
4902842 | Kalnes et al. | Feb 1990 | A |
4925995 | Robschlager | May 1990 | A |
4929781 | James, Jr. et al. | May 1990 | A |
4939310 | Wade | Jul 1990 | A |
4939311 | Washecheck et al. | Jul 1990 | A |
4939314 | Harandi et al. | Jul 1990 | A |
4945175 | Hobbs et al. | Jul 1990 | A |
4950811 | Doussain et al. | Aug 1990 | A |
4950822 | Dileo et al. | Aug 1990 | A |
4956521 | Volles | Sep 1990 | A |
4962252 | Wade | Oct 1990 | A |
4973776 | Allenger et al. | Nov 1990 | A |
4973786 | Karra | Nov 1990 | A |
4982024 | Lin et al. | Jan 1991 | A |
4982041 | Campbell | Jan 1991 | A |
4988660 | Campbell | Jan 1991 | A |
4990696 | Stauffer | Feb 1991 | A |
4990711 | Chen et al. | Feb 1991 | A |
5001293 | Nubel et al. | Mar 1991 | A |
5004847 | Beaver et al. | Apr 1991 | A |
5013424 | James, Jr. et al. | May 1991 | A |
5013793 | Wang et al. | May 1991 | A |
5019652 | Taylor et al. | May 1991 | A |
5026934 | Bains et al. | Jun 1991 | A |
5026937 | Bricker | Jun 1991 | A |
5026944 | Allenger et al. | Jun 1991 | A |
5034566 | Ishino et al. | Jul 1991 | A |
5043502 | Martindale et al. | Aug 1991 | A |
5055235 | Brackenridge et al. | Oct 1991 | A |
5055625 | Neidiffer et al. | Oct 1991 | A |
5055633 | Volles | Oct 1991 | A |
5055634 | Volles | Oct 1991 | A |
5059744 | Harandi et al. | Oct 1991 | A |
5068478 | Miller et al. | Nov 1991 | A |
5071449 | Sircar | Dec 1991 | A |
5071815 | Wallace et al. | Dec 1991 | A |
5073656 | Chafin et al. | Dec 1991 | A |
5073657 | Warren | Dec 1991 | A |
5082473 | Keefer | Jan 1992 | A |
5082816 | Teller et al. | Jan 1992 | A |
5085674 | Leavitt | Feb 1992 | A |
5087779 | Nubel et al. | Feb 1992 | A |
5087786 | Nubel et al. | Feb 1992 | A |
5087787 | Kimble et al. | Feb 1992 | A |
5093533 | Wilson | Mar 1992 | A |
5093542 | Gaffney | Mar 1992 | A |
5096469 | Keefer | Mar 1992 | A |
5097083 | Stauffer | Mar 1992 | A |
5099084 | Stauffer | Mar 1992 | A |
5105045 | Kimble et al. | Apr 1992 | A |
5105046 | Washecheck | Apr 1992 | A |
5107032 | Erb et al. | Apr 1992 | A |
5107051 | Pannell | Apr 1992 | A |
5107061 | Ou et al. | Apr 1992 | A |
5108579 | Casci | Apr 1992 | A |
5118899 | Kimble et al. | Jun 1992 | A |
5120332 | Wells | Jun 1992 | A |
5132343 | Zwecker et al. | Jul 1992 | A |
5138112 | Gosling et al. | Aug 1992 | A |
5139991 | Taylor et al. | Aug 1992 | A |
5146027 | Gaffney | Sep 1992 | A |
5157189 | Karra | Oct 1992 | A |
5160502 | Kimble et al. | Nov 1992 | A |
5166452 | Gradl et al. | Nov 1992 | A |
5175382 | Hebgen et al. | Dec 1992 | A |
5178748 | Casci et al. | Jan 1993 | A |
5185479 | Stauffer | Feb 1993 | A |
5188725 | Harandi | Feb 1993 | A |
5191142 | Marshall et al. | Mar 1993 | A |
5194244 | Brownscombe et al. | Mar 1993 | A |
5202506 | Kirchner et al. | Apr 1993 | A |
5202511 | Salinas, III et al. | Apr 1993 | A |
5208402 | Wilson | May 1993 | A |
5210357 | Kolts et al. | May 1993 | A |
5215648 | Zones et al. | Jun 1993 | A |
5223471 | Washecheck | Jun 1993 | A |
5228888 | Gmelin et al. | Jul 1993 | A |
5233113 | Periana et al. | Aug 1993 | A |
5237115 | Makovec et al. | Aug 1993 | A |
5243098 | Miller et al. | Sep 1993 | A |
5243114 | Johnson et al. | Sep 1993 | A |
5245109 | Kaminsky et al. | Sep 1993 | A |
5254772 | Dukat et al. | Oct 1993 | A |
5254790 | Thomas et al. | Oct 1993 | A |
5264635 | Le et al. | Nov 1993 | A |
5268518 | West et al. | Dec 1993 | A |
5276226 | Horvath et al. | Jan 1994 | A |
5276240 | Timmons et al. | Jan 1994 | A |
5276242 | Wu | Jan 1994 | A |
5284990 | Peterson et al. | Feb 1994 | A |
5300126 | Brown et al. | Apr 1994 | A |
5306855 | Periana et al. | Apr 1994 | A |
5316995 | Kaminsky et al. | May 1994 | A |
5319132 | Ozawa et al. | Jun 1994 | A |
5334777 | Miller et al. | Aug 1994 | A |
5345021 | Casci et al. | Sep 1994 | A |
5354916 | Horvath et al. | Oct 1994 | A |
5354931 | Jan et al. | Oct 1994 | A |
5366949 | Schubert | Nov 1994 | A |
5371313 | Ostrowicki | Dec 1994 | A |
5382704 | Krespan et al. | Jan 1995 | A |
5382743 | Beech, Jr. et al. | Jan 1995 | A |
5382744 | Abbott et al. | Jan 1995 | A |
5385650 | Howarth et al. | Jan 1995 | A |
5385718 | Casci et al. | Jan 1995 | A |
5395981 | Marker | Mar 1995 | A |
5399258 | Fletcher et al. | Mar 1995 | A |
5401890 | Parks | Mar 1995 | A |
5401894 | Brasier et al. | Mar 1995 | A |
5406017 | Withers, Jr. | Apr 1995 | A |
5411641 | Trainham, III et al. | May 1995 | A |
5414173 | Garces et al. | May 1995 | A |
5430210 | Grasselli et al. | Jul 1995 | A |
5430214 | Smith et al. | Jul 1995 | A |
5430219 | Sanfilippo et al. | Jul 1995 | A |
5433828 | van Velzen et al. | Jul 1995 | A |
5436378 | Masini et al. | Jul 1995 | A |
5444168 | Brown | Aug 1995 | A |
5446234 | Casci et al. | Aug 1995 | A |
5453557 | Harley et al. | Sep 1995 | A |
5456822 | Marcilly et al. | Oct 1995 | A |
5457255 | Kumata et al. | Oct 1995 | A |
5464799 | Casci et al. | Nov 1995 | A |
5465699 | Voigt | Nov 1995 | A |
5470377 | Whitlock | Nov 1995 | A |
5480629 | Thompson et al. | Jan 1996 | A |
5486627 | Quarderer, Jr. et al. | Jan 1996 | A |
5489719 | Le et al. | Feb 1996 | A |
5489727 | Randolph et al. | Feb 1996 | A |
5500297 | Thompson et al. | Mar 1996 | A |
5510525 | Sen et al. | Apr 1996 | A |
5523503 | Funk et al. | Jun 1996 | A |
5525230 | Wrigley et al. | Jun 1996 | A |
5538540 | Whitlock | Jul 1996 | A |
5563313 | Chung et al. | Oct 1996 | A |
5565092 | Pannell et al. | Oct 1996 | A |
5565616 | Li et al. | Oct 1996 | A |
5571762 | Clerici et al. | Nov 1996 | A |
5571885 | Chung et al. | Nov 1996 | A |
5599381 | Whitlock | Feb 1997 | A |
5600043 | Johnston et al. | Feb 1997 | A |
5600045 | Van Der Aalst et al. | Feb 1997 | A |
5609654 | Le et al. | Mar 1997 | A |
5633419 | Spencer et al. | May 1997 | A |
5639930 | Penick | Jun 1997 | A |
5653956 | Zones | Aug 1997 | A |
5656149 | Zones et al. | Aug 1997 | A |
5661097 | Spencer et al. | Aug 1997 | A |
5663465 | Clegg et al. | Sep 1997 | A |
5663474 | Pham et al. | Sep 1997 | A |
5674464 | Van Velzen et al. | Oct 1997 | A |
5675046 | Ohno et al. | Oct 1997 | A |
5675052 | Menon et al. | Oct 1997 | A |
5679134 | Brugerolle et al. | Oct 1997 | A |
5679879 | Mercier et al. | Oct 1997 | A |
5684213 | Nemphos et al. | Nov 1997 | A |
5693191 | Pividal et al. | Dec 1997 | A |
5695890 | Thompson et al. | Dec 1997 | A |
5698747 | Godwin et al. | Dec 1997 | A |
5705712 | Frey et al. | Jan 1998 | A |
5705728 | Viswanathan et al. | Jan 1998 | A |
5705729 | Huang | Jan 1998 | A |
5708246 | Camaioni et al. | Jan 1998 | A |
5720858 | Noceti et al. | Feb 1998 | A |
5728897 | Buysch et al. | Mar 1998 | A |
5728905 | Clegg et al. | Mar 1998 | A |
5734073 | Chambers et al. | Mar 1998 | A |
5741949 | Mack | Apr 1998 | A |
5744669 | Kalnes et al. | Apr 1998 | A |
5750801 | Buysch et al. | May 1998 | A |
5770175 | Zones | Jun 1998 | A |
5776871 | Cothran et al. | Jul 1998 | A |
5780703 | Chang et al. | Jul 1998 | A |
5782936 | Riley | Jul 1998 | A |
5798314 | Spencer et al. | Aug 1998 | A |
5814715 | Chen et al. | Sep 1998 | A |
5817904 | Vic et al. | Oct 1998 | A |
5821394 | Schoebrechts et al. | Oct 1998 | A |
5847224 | Koga et al. | Dec 1998 | A |
5849978 | Benazzi et al. | Dec 1998 | A |
5866735 | Cheung et al. | Feb 1999 | A |
5882614 | Taylor, Jr. et al. | Mar 1999 | A |
5895831 | Brasier et al. | Apr 1999 | A |
5898086 | Harris | Apr 1999 | A |
5905169 | Jacobson | May 1999 | A |
5906892 | Thompson et al. | May 1999 | A |
5908963 | Voss et al. | Jun 1999 | A |
5928488 | Newman | Jul 1999 | A |
5952538 | Vaughn et al. | Sep 1999 | A |
5959170 | Withers, Jr. et al. | Sep 1999 | A |
5968236 | Bassine | Oct 1999 | A |
5969195 | Stabel et al. | Oct 1999 | A |
5977402 | Sekiguchi et al. | Nov 1999 | A |
5983476 | Eshelman et al. | Nov 1999 | A |
5986158 | Van Broekhoven et al. | Nov 1999 | A |
5994604 | Reagen et al. | Nov 1999 | A |
5998679 | Miller et al. | Dec 1999 | A |
5998686 | Clem et al. | Dec 1999 | A |
6002059 | Hellring et al. | Dec 1999 | A |
6015867 | Fushimi et al. | Jan 2000 | A |
6018088 | Olah | Jan 2000 | A |
6022929 | Chen et al. | Feb 2000 | A |
6034288 | Scott et al. | Mar 2000 | A |
6056804 | Keefer et al. | May 2000 | A |
6068679 | Zheng | May 2000 | A |
6072091 | Cosyns et al. | Jun 2000 | A |
6087294 | Klabunde et al. | Jul 2000 | A |
6090312 | Ziaka et al. | Jul 2000 | A |
6093306 | Hanrahan et al. | Jul 2000 | A |
6096932 | Subramanian | Aug 2000 | A |
6096933 | Cheung et al. | Aug 2000 | A |
6103215 | Zones et al. | Aug 2000 | A |
6107561 | Thompson et al. | Aug 2000 | A |
6117371 | Mack | Sep 2000 | A |
6124514 | Emmrich et al. | Sep 2000 | A |
6127588 | Kimble et al. | Oct 2000 | A |
6130260 | Hall et al. | Oct 2000 | A |
6143939 | Farcasiu et al. | Nov 2000 | A |
6169218 | Hearn et al. | Jan 2001 | B1 |
6180841 | Fatutto et al. | Jan 2001 | B1 |
6187871 | Thompson et al. | Feb 2001 | B1 |
6187983 | Sun | Feb 2001 | B1 |
6203712 | Bronner et al. | Mar 2001 | B1 |
6207864 | Henningsen et al. | Mar 2001 | B1 |
6225517 | Nascimento et al. | May 2001 | B1 |
6248218 | Linkous et al. | Jun 2001 | B1 |
6265505 | McConville et al. | Jul 2001 | B1 |
6281405 | Davis et al. | Aug 2001 | B1 |
6320085 | Arvai et al. | Nov 2001 | B1 |
6337063 | Rouleau et al. | Jan 2002 | B1 |
6342200 | Rouleau et al. | Jan 2002 | B1 |
6368490 | Gestermann | Apr 2002 | B1 |
6369283 | Guram et al. | Apr 2002 | B1 |
6372949 | Brown et al. | Apr 2002 | B1 |
6376731 | Evans et al. | Apr 2002 | B1 |
6380328 | McConville et al. | Apr 2002 | B1 |
6380423 | Banning et al. | Apr 2002 | B2 |
6380444 | Bjerrum et al. | Apr 2002 | B1 |
6395945 | Randolph | May 2002 | B1 |
6403840 | Zhou et al. | Jun 2002 | B1 |
6406523 | Connor et al. | Jun 2002 | B1 |
6423211 | Randolph et al. | Jul 2002 | B1 |
6426441 | Randolph et al. | Jul 2002 | B1 |
6426442 | Ichikawa et al. | Jul 2002 | B1 |
6452058 | Schweizer et al. | Sep 2002 | B1 |
6455650 | Lipian et al. | Sep 2002 | B1 |
6462243 | Zhou et al. | Oct 2002 | B1 |
6465696 | Zhou et al. | Oct 2002 | B1 |
6465699 | Grosso | Oct 2002 | B1 |
6472345 | Hintermann et al. | Oct 2002 | B2 |
6472572 | Zhou et al. | Oct 2002 | B1 |
6475463 | Elomari et al. | Nov 2002 | B1 |
6475464 | Rouleau et al. | Nov 2002 | B1 |
6479705 | Murata et al. | Nov 2002 | B2 |
6482997 | Petit-Clair et al. | Nov 2002 | B2 |
6486368 | Zhou et al. | Nov 2002 | B1 |
6491809 | Briot et al. | Dec 2002 | B1 |
6495484 | Holtcamp | Dec 2002 | B1 |
6509485 | Mul et al. | Jan 2003 | B2 |
6511526 | Jagger et al. | Jan 2003 | B2 |
6514319 | Keefer et al. | Feb 2003 | B2 |
6518474 | Sanderson et al. | Feb 2003 | B1 |
6518476 | Culp et al. | Feb 2003 | B1 |
6525228 | Chauvin et al. | Feb 2003 | B2 |
6525230 | Grosso | Feb 2003 | B2 |
6528693 | Gandy et al. | Mar 2003 | B1 |
6538162 | Chang et al. | Mar 2003 | B2 |
6540905 | Elomari | Apr 2003 | B1 |
6545191 | Stauffer | Apr 2003 | B1 |
6547958 | Elomari | Apr 2003 | B1 |
6548040 | Rouleau et al. | Apr 2003 | B1 |
6552241 | Randolph et al. | Apr 2003 | B1 |
6566572 | Okamoto et al. | May 2003 | B2 |
6572829 | Linkous et al. | Jun 2003 | B2 |
6585953 | Roberts et al. | Jul 2003 | B2 |
6616830 | Elomari | Sep 2003 | B2 |
6620757 | McConville et al. | Sep 2003 | B2 |
6627777 | Rossi et al. | Sep 2003 | B2 |
6632971 | Brown et al. | Oct 2003 | B2 |
6635793 | Mul et al. | Oct 2003 | B2 |
6641644 | Jagger et al. | Nov 2003 | B2 |
6646102 | Boriack et al. | Nov 2003 | B2 |
6669846 | Perriello | Dec 2003 | B2 |
6672572 | Werlen | Jan 2004 | B2 |
6679986 | Da Silva et al. | Jan 2004 | B1 |
6680415 | Gulotty, Jr. et al. | Jan 2004 | B1 |
6692626 | Keefer et al. | Feb 2004 | B2 |
6692723 | Rouleau et al. | Feb 2004 | B2 |
6710213 | Aoki et al. | Mar 2004 | B2 |
6713087 | Tracy et al. | Mar 2004 | B2 |
6713655 | Yilmaz et al. | Mar 2004 | B2 |
RE38493 | Keefer et al. | Apr 2004 | E |
6723808 | Holtcamp | Apr 2004 | B2 |
6727400 | Messier et al. | Apr 2004 | B2 |
6740146 | Simonds | May 2004 | B2 |
6753390 | Ehrman et al. | Jun 2004 | B2 |
6765120 | Weber et al. | Jul 2004 | B2 |
6797845 | Hickman et al. | Sep 2004 | B1 |
6797851 | Martens et al. | Sep 2004 | B2 |
6821924 | Gulotty, Jr. et al. | Nov 2004 | B2 |
6822123 | Stauffer | Nov 2004 | B2 |
6822125 | Lee et al. | Nov 2004 | B2 |
6825307 | Goodall | Nov 2004 | B2 |
6825383 | Dewkar et al. | Nov 2004 | B1 |
6831032 | Spaether | Dec 2004 | B2 |
6838576 | Wicki et al. | Jan 2005 | B1 |
6841063 | Elomari | Jan 2005 | B2 |
6852896 | Stauffer | Feb 2005 | B2 |
6866950 | Connor et al. | Mar 2005 | B2 |
6869903 | Matsunaga | Mar 2005 | B2 |
6875339 | Rangarajan et al. | Apr 2005 | B2 |
6878853 | Tanaka et al. | Apr 2005 | B2 |
6888013 | Paparatto et al. | May 2005 | B2 |
6900363 | Harth et al. | May 2005 | B2 |
6902602 | Keefer et al. | Jun 2005 | B2 |
6903171 | Rhodes et al. | Jun 2005 | B2 |
6909024 | Jones et al. | Jun 2005 | B1 |
6921597 | Keefer et al. | Jul 2005 | B2 |
6933417 | Henley et al. | Aug 2005 | B1 |
6946566 | Yaegashi et al. | Sep 2005 | B2 |
6953868 | Boaen et al. | Oct 2005 | B2 |
6953870 | Yan et al. | Oct 2005 | B2 |
6953873 | Cortright et al. | Oct 2005 | B2 |
6956140 | Ehrenfeld | Oct 2005 | B2 |
6958306 | Holtcamp | Oct 2005 | B2 |
6984763 | Schweizer et al. | Jan 2006 | B2 |
7001872 | Pyecroft et al. | Feb 2006 | B2 |
7002050 | Santiago Fernandez et al. | Feb 2006 | B2 |
7011811 | Elomari | Mar 2006 | B2 |
7019182 | Grosso | Mar 2006 | B2 |
7026145 | Mizrahi et al. | Apr 2006 | B2 |
7026519 | Santiago Fernandez et al. | Apr 2006 | B2 |
7037358 | Babicki et al. | May 2006 | B2 |
7045670 | Johnson et al. | May 2006 | B2 |
7049388 | Boriack et al. | May 2006 | B2 |
7053252 | Boussand et al. | May 2006 | B2 |
7057081 | Allison et al. | Jun 2006 | B2 |
7060865 | Ding et al. | Jun 2006 | B2 |
7064238 | Waycuilis | Jun 2006 | B2 |
7064240 | Ohno et al. | Jun 2006 | B2 |
7067448 | Weitkamp et al. | Jun 2006 | B1 |
7083714 | Elomari | Aug 2006 | B2 |
7084308 | Stauffer | Aug 2006 | B1 |
7091270 | Zilberman et al. | Aug 2006 | B2 |
7091387 | Fong et al. | Aug 2006 | B2 |
7091391 | Stauffer | Aug 2006 | B2 |
7094936 | Owens et al. | Aug 2006 | B1 |
7098371 | Mack et al. | Aug 2006 | B2 |
7105710 | Boons et al. | Sep 2006 | B2 |
7138534 | Forlin et al. | Nov 2006 | B2 |
7141708 | Marsella et al. | Nov 2006 | B2 |
7145045 | Harmsen et al. | Dec 2006 | B2 |
7148356 | Smith, III et al. | Dec 2006 | B2 |
7148390 | Zhou et al. | Dec 2006 | B2 |
7151199 | Martens et al. | Dec 2006 | B2 |
7161050 | Sherman et al. | Jan 2007 | B2 |
7169730 | Ma et al. | Jan 2007 | B2 |
7176340 | Van Broekhoven et al. | Feb 2007 | B2 |
7176342 | Bellussi et al. | Feb 2007 | B2 |
7182871 | Perriello | Feb 2007 | B2 |
7193093 | Murray et al. | Mar 2007 | B2 |
7196239 | Van Egmond et al. | Mar 2007 | B2 |
7199083 | Zevallos | Apr 2007 | B2 |
7199255 | Murray et al. | Apr 2007 | B2 |
7208641 | Nagasaki et al. | Apr 2007 | B2 |
7214750 | McDonald et al. | May 2007 | B2 |
7220391 | Huang et al. | May 2007 | B1 |
7226569 | Elomari | Jun 2007 | B2 |
7226576 | Elomari | Jun 2007 | B2 |
7230150 | Grosso et al. | Jun 2007 | B2 |
7230151 | Martens et al. | Jun 2007 | B2 |
7232872 | Shaffer et al. | Jun 2007 | B2 |
7238846 | Janssen et al. | Jul 2007 | B2 |
7244795 | Agapiou et al. | Jul 2007 | B2 |
7244867 | Waycuilis | Jul 2007 | B2 |
7250107 | Benazzi et al. | Jul 2007 | B2 |
7250542 | Smith, Jr. et al. | Jul 2007 | B2 |
7252920 | Kurokawa et al. | Aug 2007 | B2 |
7253327 | Janssens et al. | Aug 2007 | B2 |
7253328 | Stauffer | Aug 2007 | B2 |
7265193 | Weng et al. | Sep 2007 | B2 |
7267758 | Benazzi et al. | Sep 2007 | B2 |
7268263 | Frey et al. | Sep 2007 | B1 |
7271303 | Sechrist et al. | Sep 2007 | B1 |
7273957 | Bakshi et al. | Sep 2007 | B2 |
7282603 | Richards | Oct 2007 | B2 |
7285698 | Liu et al. | Oct 2007 | B2 |
7304193 | Frey et al. | Dec 2007 | B1 |
7342144 | Kaizik et al. | Mar 2008 | B2 |
7348295 | Zones et al. | Mar 2008 | B2 |
7348464 | Waycuilis | Mar 2008 | B2 |
7357904 | Zones et al. | Apr 2008 | B2 |
7361794 | Grosso | Apr 2008 | B2 |
7365102 | Weissman | Apr 2008 | B1 |
7390395 | Elomari | Jun 2008 | B2 |
7560607 | Waycuilis | Jul 2009 | B2 |
7674941 | Waycuilis et al. | Mar 2010 | B2 |
7713510 | Harrod et al. | May 2010 | B2 |
7880041 | Waycuilis | Feb 2011 | B2 |
8008535 | Waycuilis | Aug 2011 | B2 |
8173851 | Waycuilis et al. | May 2012 | B2 |
8198495 | Waycuilis et al. | Jun 2012 | B2 |
8232441 | Waycuilis | Jul 2012 | B2 |
8282810 | Waycuilis | Oct 2012 | B2 |
8367884 | Waycuilis | Feb 2013 | B2 |
20020102672 | Mizrahi | Aug 2002 | A1 |
20020193649 | O'Rear et al. | Dec 2002 | A1 |
20020198416 | Zhou et al. | Dec 2002 | A1 |
20030004380 | Grumann | Jan 2003 | A1 |
20030065239 | Zhu | Apr 2003 | A1 |
20030069452 | Sherman et al. | Apr 2003 | A1 |
20030078456 | Yilmaz et al. | Apr 2003 | A1 |
20030120121 | Sherman et al. | Jun 2003 | A1 |
20030125589 | Grosso | Jul 2003 | A1 |
20030166973 | Zhou et al. | Sep 2003 | A1 |
20040006246 | Sherman et al. | Jan 2004 | A1 |
20040062705 | Leduc | Apr 2004 | A1 |
20040152929 | Clarke | Aug 2004 | A1 |
20040158107 | Aoki | Aug 2004 | A1 |
20040158108 | Snoble | Aug 2004 | A1 |
20040171779 | Matyjaszewski et al. | Sep 2004 | A1 |
20040187684 | Elomari | Sep 2004 | A1 |
20040188271 | Ramachandraiah et al. | Sep 2004 | A1 |
20040188324 | Elomari | Sep 2004 | A1 |
20040220433 | Van Der Heide | Nov 2004 | A1 |
20050027084 | Clarke | Feb 2005 | A1 |
20050038310 | Lorkovic et al. | Feb 2005 | A1 |
20050042159 | Elomari | Feb 2005 | A1 |
20050047927 | Lee et al. | Mar 2005 | A1 |
20050148805 | Jones | Jul 2005 | A1 |
20050171393 | Lorkovic | Aug 2005 | A1 |
20050192468 | Sherman et al. | Sep 2005 | A1 |
20050215837 | Hoffpauir | Sep 2005 | A1 |
20050218041 | Yoshida et al. | Oct 2005 | A1 |
20050234276 | Waycuilis | Oct 2005 | A1 |
20050234277 | Waycuilis | Oct 2005 | A1 |
20050245771 | Fong et al. | Nov 2005 | A1 |
20050245772 | Fong | Nov 2005 | A1 |
20050245777 | Fong | Nov 2005 | A1 |
20050267224 | Herling | Dec 2005 | A1 |
20060025617 | Begley | Feb 2006 | A1 |
20060100469 | Waycuilis | May 2006 | A1 |
20060135823 | Jun | Jun 2006 | A1 |
20060138025 | Zones | Jun 2006 | A1 |
20060138026 | Chen | Jun 2006 | A1 |
20060149116 | Slaugh | Jul 2006 | A1 |
20060229228 | Komon et al. | Oct 2006 | A1 |
20060229475 | Weiss et al. | Oct 2006 | A1 |
20060270863 | Reiling | Nov 2006 | A1 |
20060288690 | Elomari | Dec 2006 | A1 |
20070004955 | Kay | Jan 2007 | A1 |
20070078285 | Dagle | Apr 2007 | A1 |
20070100189 | Stauffer | May 2007 | A1 |
20070129584 | Basset | Jun 2007 | A1 |
20070142680 | Ayoub | Jun 2007 | A1 |
20070148067 | Zones | Jun 2007 | A1 |
20070148086 | Zones | Jun 2007 | A1 |
20070149778 | Zones | Jun 2007 | A1 |
20070149789 | Zones | Jun 2007 | A1 |
20070149819 | Zones | Jun 2007 | A1 |
20070149824 | Zones | Jun 2007 | A1 |
20070149837 | Zones | Jun 2007 | A1 |
20070149838 | Chretien | Jun 2007 | A1 |
20070197801 | Bolk | Aug 2007 | A1 |
20070197847 | Liu | Aug 2007 | A1 |
20070213545 | Bolk | Sep 2007 | A1 |
20070238905 | Arredondo | Oct 2007 | A1 |
20070238909 | Gadewar et al. | Oct 2007 | A1 |
20070276168 | Garel | Nov 2007 | A1 |
20070284284 | Zones | Dec 2007 | A1 |
20080022717 | Yoshida et al. | Jan 2008 | A1 |
20080152555 | Wang et al. | Jun 2008 | A1 |
20080171898 | Waycuilis | Jul 2008 | A1 |
20080183022 | Waycuilis | Jul 2008 | A1 |
20080188697 | Lorkovic | Aug 2008 | A1 |
20080200740 | Waycuilis | Aug 2008 | A1 |
20080210596 | Litt et al. | Sep 2008 | A1 |
20080275279 | Podkolzin et al. | Nov 2008 | A1 |
20080275284 | Waycuilis | Nov 2008 | A1 |
20080314758 | Grosso et al. | Dec 2008 | A1 |
20090005620 | Waycuilis et al. | Jan 2009 | A1 |
20090163749 | Li et al. | Jun 2009 | A1 |
20090247796 | Waycuilis et al. | Oct 2009 | A1 |
20090270655 | Fong et al. | Oct 2009 | A1 |
20090306443 | Stark et al. | Dec 2009 | A1 |
20090308759 | Waycuilis | Dec 2009 | A1 |
20090312586 | Waycuilis et al. | Dec 2009 | A1 |
20090326292 | Waycuilis | Dec 2009 | A1 |
20100030005 | Sauer et al. | Feb 2010 | A1 |
20100087686 | Fong et al. | Apr 2010 | A1 |
20100096588 | Gadewar et al. | Apr 2010 | A1 |
20100099930 | Stoimenov et al. | Apr 2010 | A1 |
20100105972 | Lorkovic | Apr 2010 | A1 |
20100234637 | Fong et al. | Sep 2010 | A1 |
20100270167 | McFarland | Oct 2010 | A1 |
20110015458 | Waycuilis et al. | Jan 2011 | A1 |
20110071326 | Waycuilis | Mar 2011 | A1 |
20110218372 | Waycuilis et al. | Sep 2011 | A1 |
20110218374 | Waycuilis | Sep 2011 | A1 |
20120141356 | Bricket et al. | Jun 2012 | A1 |
20120245399 | Kurukchi et al. | Sep 2012 | A1 |
20130006024 | Kurukchi et al. | Jan 2013 | A1 |
20130046121 | Kurukchi et al. | Feb 2013 | A1 |
Number | Date | Country |
---|---|---|
1099656 | Apr 1981 | CA |
1101441 | May 1981 | CA |
1202610 | Apr 1986 | CA |
2542857 | May 2005 | CA |
2236126 | Aug 2006 | CA |
2203115 | Sep 2006 | CA |
2510093 | Dec 2006 | CA |
0164798 | Dec 1985 | EP |
0418971 | Mar 1991 | EP |
0418974 | Mar 1991 | EP |
0418975 | Mar 1991 | EP |
0510238 | Oct 1992 | EP |
0526908 | Feb 1993 | EP |
0346612 | Aug 1993 | EP |
0560546 | Sep 1993 | EP |
0976705 | Feb 2000 | EP |
1186591 | Mar 2002 | EP |
1253126 | Oct 2002 | EP |
1312411 | May 2003 | EP |
1235769 | May 2004 | EP |
1435349 | Jul 2004 | EP |
1440939 | Jul 2004 | EP |
1235772 | Jan 2005 | EP |
1661620 | May 2006 | EP |
1760057 | Mar 2007 | EP |
1689728 | Apr 2007 | EP |
1808227 | Jul 2007 | EP |
1837320 | Sep 2007 | EP |
5125 | Jan 1912 | GB |
156122 | Mar 1922 | GB |
294100 | Jun 1929 | GB |
363009 | Dec 1931 | GB |
402928 | Dec 1933 | GB |
474922 | Nov 1937 | GB |
536491 | May 1941 | GB |
553950 | Jun 1943 | GB |
586483 | Mar 1947 | GB |
775590 | May 1957 | GB |
793214 | Apr 1958 | GB |
796048 | Jun 1958 | GB |
796085 | Jun 1958 | GB |
883256 | Nov 1961 | GB |
930341 | Jul 1963 | GB |
950975 | Mar 1964 | GB |
950976 | Mar 1964 | GB |
991303 | May 1965 | GB |
995960 | Jun 1965 | GB |
1015033 | Dec 1965 | GB |
1104294 | Feb 1968 | GB |
1133752 | Nov 1968 | GB |
1172002 | Nov 1969 | GB |
1212240 | Nov 1970 | GB |
1233299 | May 1971 | GB |
1253618 | Nov 1971 | GB |
1263806 | Feb 1972 | GB |
1446803 | Aug 1976 | GB |
1542112 | Mar 1979 | GB |
2095243 | Sep 1982 | GB |
2095245 | Sep 1982 | GB |
2095249 | Sep 1982 | GB |
2116546 | Sep 1982 | GB |
2120249 | Nov 1983 | GB |
2185754 | Jul 1987 | GB |
2191214 | Dec 1987 | GB |
694483 | Oct 1979 | SU |
8300859 | Mar 1983 | WO |
8504863 | Nov 1985 | WO |
8504867 | Nov 1985 | WO |
9008120 | Jul 1990 | WO |
9008752 | Aug 1990 | WO |
9118856 | Dec 1991 | WO |
9203401 | Mar 1992 | WO |
9212946 | Aug 1992 | WO |
9316798 | Sep 1993 | WO |
9622263 | Jul 1996 | WO |
9744302 | Nov 1997 | WO |
9812165 | Mar 1998 | WO |
9907443 | Feb 1999 | WO |
0007718 | Feb 2000 | WO |
0009261 | Feb 2000 | WO |
0114300 | Mar 2001 | WO |
0138275 | May 2001 | WO |
0144149 | Jun 2001 | WO |
02094749 | Nov 2002 | WO |
02094750 | Nov 2002 | WO |
02094751 | Nov 2002 | WO |
02094752 | Nov 2002 | WO |
03000635 | Jan 2003 | WO |
03002251 | Jan 2003 | WO |
03018524 | Mar 2003 | WO |
03020676 | Mar 2003 | WO |
03022827 | Mar 2003 | WO |
03043575 | May 2003 | WO |
03051813 | Jun 2003 | WO |
03062143 | Jul 2003 | WO |
03062172 | Jul 2003 | WO |
03078366 | Sep 2003 | WO |
2004018093 | Mar 2004 | WO |
2004067487 | Aug 2004 | WO |
2005014168 | Feb 2005 | WO |
2005019143 | Mar 2005 | WO |
2005021468 | Mar 2005 | WO |
2005035121 | Apr 2005 | WO |
2005037758 | Apr 2005 | WO |
2005054120 | Jun 2005 | WO |
2005056525 | Jun 2005 | WO |
2005058782 | Jun 2005 | WO |
2005090272 | Sep 2005 | WO |
2005095310 | Oct 2005 | WO |
2005104689 | Nov 2005 | WO |
2005105709 | Nov 2005 | WO |
2005105715 | Nov 2005 | WO |
2005110953 | Nov 2005 | WO |
2005113437 | Dec 2005 | WO |
2005113440 | Dec 2005 | WO |
2006007093 | Jan 2006 | WO |
2006015824 | Feb 2006 | WO |
2006019399 | Feb 2006 | WO |
2006020234 | Feb 2006 | WO |
2006036293 | Apr 2006 | WO |
2006039213 | Apr 2006 | WO |
2006039354 | Apr 2006 | WO |
2006043075 | Apr 2006 | WO |
2006053345 | May 2006 | WO |
2006067155 | Jun 2006 | WO |
2006067183 | Jun 2006 | WO |
2006067190 | Jun 2006 | WO |
2006067191 | Jun 2006 | WO |
2006067192 | Jun 2006 | WO |
2006067193 | Jun 2006 | WO |
2006069107 | Jun 2006 | WO |
2006071354 | Jul 2006 | WO |
2006083427 | Aug 2006 | WO |
2006100312 | Sep 2006 | WO |
2006104909 | Oct 2006 | WO |
2006104914 | Oct 2006 | WO |
2006111997 | Oct 2006 | WO |
2006113205 | Oct 2006 | WO |
2006118935 | Nov 2006 | WO |
2007001934 | Jan 2007 | WO |
2007017900 | Feb 2007 | WO |
2007044139 | Apr 2007 | WO |
2007046986 | Apr 2007 | WO |
2007050745 | May 2007 | WO |
2007071046 | Jun 2007 | WO |
2007079038 | Jul 2007 | WO |
2007091009 | Aug 2007 | WO |
2007094995 | Aug 2007 | WO |
2007107031 | Sep 2007 | WO |
2007111997 | Oct 2007 | WO |
2007114479 | Oct 2007 | WO |
2007125332 | Nov 2007 | WO |
2007130054 | Nov 2007 | WO |
2007130055 | Nov 2007 | WO |
2007141295 | Dec 2007 | WO |
2007142745 | Dec 2007 | WO |
2008036562 | Mar 2008 | WO |
2008036563 | Mar 2008 | WO |
2008106319 | Sep 2008 | WO |
2008157043 | Dec 2008 | WO |
2008157044 | Dec 2008 | WO |
2008157045 | Dec 2008 | WO |
2008157046 | Dec 2008 | WO |
2008157047 | Dec 2008 | WO |
2009152403 | Dec 2009 | WO |
2009152405 | Dec 2009 | WO |
2009152408 | Dec 2009 | WO |
2010009376 | Jan 2010 | WO |
2011008573 | Jan 2011 | WO |
2011109244 | Sep 2011 | WO |
2011159490 | Dec 2011 | WO |
2012128922 | Sep 2012 | WO |
2012170132 | Dec 2012 | WO |
2013002888 | Jan 2013 | WO |
2013025281 | Feb 2013 | WO |
Entry |
---|
U.S. Appl. No. 60/487,364, filed Jul. 15, 2003, Lorkovic et al. |
U.S. Appl. No. 60/559,844, filed Apr. 6, 2004, Sherman et al. |
U.S. Appl. No. 60/765,115, filed Feb. 3, 2006, Gadewar et al. |
U.S. Office Communication from U.S. Appl. No. 10/365,346 dated Jun. 12, 2006. |
U.S. Office Communication from U.S. Appl. No. 10/826,885 dated Oct. 31, 2005. |
U.S. Office Communication from U.S. Appl. No. 10/826,885 dated Apr. 19, 2006. |
U.S. Office Communication from U.S. Appl. No. 10/826,885 dated Jul. 27, 2006. |
U.S. Office Communication from U.S. Appl. No. 10/826,885 dated Nov. 2, 2006. |
U.S. Office Communication from U.S. Appl. No. 10/826,885 dated Jan. 24, 2007. |
U.S. Office Communication from U.S. Appl. No. 10/893,418 dated Jun. 14, 2007. |
U.S. Office Communication from U.S. Appl. No. 10/893,418 dated Jan. 2, 2008. |
U.S. Office Communication from U.S. Appl. No. 11/091,130 dated Oct. 3, 2007. |
U.S. Office Communication from U.S. Appl. No. 11/101,886 dated Jan. 24, 2007. |
U.S. Office Communication from U.S. Appl. No. 11/254,438 dated Jan. 24, 2007. |
U.S. Office Communication from U.S. Appl. No. 11/254,438 dated Nov. 1, 2007. |
U.S. Office Communication from U.S. Appl. No. 11/778,479 dated Feb. 22, 2010. |
U.S. Office Communication from U.S. Appl. No. 12/112,926 dated Jan. 16, 2009. |
U.S. Office Communication from U.S. Appl. No. 12/112,926 dated Sep. 14, 2009. |
U.S. Office Communication from U.S. Appl. No. 12/112,926 dated Jan. 7, 2010. |
U.S. Office Communication from U.S. Appl. No. 12/112,926 dated Jul. 22, 2010. |
U.S. Office Communication from U.S. Appl. No. 12/112,926 dated Jan. 7, 2011. |
U.S. Office Communication from U.S. Appl. No. 12/123,924 dated Mar. 19, 2010. |
U.S. Office Communication from U.S. Appl. No. 12/123,924 dated Aug. 30, 2010. |
U.S. Office Communication from U.S. Appl. No. 12/139,135 dated Nov. 24, 2010. |
U.S. Office Communication from U.S. Appl. No. 12/502,024 dated Oct. 26, 2010. |
U.S. Office Communication from U.S. Appl. No. 12/715,526 dated Feb. 17, 2011. |
U.S. Office Communication from U.S. Appl. No. 12/139,135 dated Apr. 14, 2011. |
U.S. Office Communication from U.S. Appl. No. 12/715,526 dated May 24, 2011. |
U.S. Office Communication from U.S. Appl. No. 12/502,024 dated May 31, 2011. |
U.S. Office Communication from U.S. Appl. No. 12/139,135 dated Oct. 14, 2011. |
U.S. Office Communication from U.S. Appl. No. 12/477,307 dated Oct. 7, 2011. |
U.S. Office Communication from U.S. Appl. No. 12/477,319 dated Jul. 22, 2011. |
U.S. Office Communication from U.S. Appl. No. 12/502,024 dated Sep. 16, 2011. |
U.S. Office Communication from U.S. Appl. No. 12/477,307 dated Feb. 27, 2012. |
U.S. Office Communication from U.S. Appl. No. 12/715,526 dated Jan. 4, 2012. |
Abstract of BE 812868, Aromatic hydrocarbons prodn. from chlorinated hydrocarbons, Publication date: Sep. 27, 1974, esp@cenet database—worldwide. |
Abstract of BE 814900, Volatile aramatic cpds. prodn., Publication date: Sep. 2, 1974, esp@cenet database—worldwide. |
Abstract of BR 0210054, Oxidative halogenation of C1 hydrocarbons to halogenated C1 hydrocarbons and integrated processes related thereto, Publication date: Aug. 17, 2004, Inventor: Schweizer et al., esp@cenet database—worldwide. |
Abstract of CA 2447761 A1, Oxidative halogenation of C1 hydrocarbons to halogenated C1 hydrocarbons and integrated processes related thereto, Publication date: Nov. 28, 2002, Inventor: Hickman, et al. |
Abstract of CA 2471295 A1, Integrated process for synthesizing alcohols, ethers, and olefins from alkanes, Publication date: Jul. 31, 2003, Inventor: Sherman et al. |
Abstract of CN 1199039, Pentanol and its production process, Publication date: Nov. 18, 1998, Inventor: Kailun, esp@cenet database—worldwide. |
Abstract of CN 1210847, Process for producing low carbon alcohol by directly hydrating low carbon olefines, Publication date: Mar. 17, 1999, Inventor: Zhenguo et al., esp@cenet database—worldwide. |
Abstract of CN 1321728, Method for preparing aromatic hydrocarbon and hydrogen gas by using law-pressure gas, Publication date: Nov. 14, 2001, Inventor: Jie et al., esp@cenet database—worldwide. |
Abstract of CN 1451721, Process for non-catalytic combustion deoxidizing coal mine gas for producing methanol, Publication date: Oct. 29, 2003, Inventor: Pengwan et al., esp@cenet database—worldwide. |
Abstract of CN 1623969, Method for preparing 1, 4-benzene dimethanol, Publication date: Jun. 8, 2005, Inventor: Jiarong et al., esp@cenet database—worldwide. |
Abstract of CN 1657592, Method for converting oil to multiple energy fuel product, Publication date: Aug. 24, 2005, Inventor: Li. esp@cenet database—worldwide. |
Abstract of CN 1687316, Method for producing biologic diesel oil from rosin, Publication date: Oct. 26, 2005, Inventor: Jianchun et al., esp@cenet database—worldwide. |
Abstract of CN 1696248, Method for synthesizing biologic diesel oil based on ion liquid, Publication date: Nov. 16, 2005, Inventor: Sun, esp@cenet database—worldwide. |
Abstract of CN 1699516, Process for preparing bio-diesel-oil by using miroalgae fat, Publication date: Nov. 23, 2005, Inventor: Miao, esp@cenet database—worldwide. |
Abstract of CN 1704392, Process for producing alkylbenzene, Publication date: Dec. 7, 2005, Inventor: Gao, esp@cenet database—worldwide. |
Abstract of CN 1724612, Biological diesel oil catalyst and method of synthesizing biological diesel oil using sai catalyst, Publication date: Jan. 25, 2006, Inventor: Gu, esp@cenet database—worldwide. |
Abstract of CN 1986737, Process for producing biodiesel oil with catering waste oil, Publication date: Jun. 27, 2007, Inventor: Chen, esp@cenet database—worldwide. |
Abstract of CN 100999680, Esterification reaction tech. of preparing biodiesel by waste oil, Publication date: Jul. 18, 2007, Inventor: Weiming, esp@cenet database—worldwide. |
Abstract of CN 101016229, Refining method for bromomeoamyl alcohol, Publication date: Aug. 15, 2007, Inventor: Tian, esp@cenet database—worldwide. |
Abstract of DE 3209964, Process for the preparation of chlorinated hydrocarbons, Publication date: Nov. 11, 1982, Inventor: Pyke et al., esp@cenet database—worldwide. |
Abstract of DE 3210196, Process for the preparation of a monochlorinated olefin, Publication date: Jan. 5, 1983, Inventor: Pyke et al., esp@cenet database—worldwide. |
Abstract of DE 3226028, Process for the preparation of monochlorinated olefin, Publication date: Feb. 3, 1983, Inventor: Pyke et al., esp@cenet database—worldwide. |
Abstract of DE 3334225, Process for the preparation of 1,2-dichloroethane, Publication date: Apr. 4, 1985, Inventor: Hebgen et al., esp@cenet database—worldwide. |
Abstract of DE 4232056, 2,5-Di:methyl-hexane-2,5-di:ol continuous prodn. from tert. butanol—by oxidative dimerisation in two phase system with vigorous stirring, using aq. phase with specified density to facilitate phase sepn., Publication date: Mar. 31, 1994, Inventor: Gnann et al., esp@cenet database—worldwide. |
Abstract of DE 4434823, Continuous prodn. of hydroxy-benzyl alkyl ether, Publication date: Apr. 4, 1996, Inventor: Stein et al., esp@cenet database—worldwide. |
Abstract of EP 0021497 (A1), Synthesis of polyoxyalkylene glycol monoalkyl ethers., Publication date: Jan. 7, 1981, Inventor: Gibson, esp@cenet database—worldwide. |
Abstract of EP 0039471, Process for the preparation of 2-chloro-1,1,1,2,3,3,3-heptafluoropropane., Publication date: Nov. 11, 1981, Inventor: Von Halasz, esp@cenet database—worldwide. |
Abstract of EP 0101337, Process for the production of methylene chloride., Publication date: Feb. 22, 1984, Inventor: Olah et al., esp@cenet database—worldwide. |
Abstract of EP 0235110, Process for the stabilization of silicalite catalysts., Publication date: Sep. 2, 1987, Inventor: Debras et al., esp@cenet database—worldwide. |
Abstract of EP 0407989, Method for the production of 1,1,1-trifluoro-2,2-dichloroethane by photochlorination., Publication date: Jan. 16, 1991, Inventor: Cremer et al., esp@cenet database—worldwide. |
Abstract of EP 0442258, Process for the preparation of a polyunsaturated olefin., Publication date: Aug. 21, 1991, Inventor: Gaudin et al., esp@cenet database, worldwide. |
Abstract of EP 0465294, Process for the preparation of unsaturated bromides., Publication date: Jan. 8, 1992, Inventor: Decaudin et al., esp@cenet database—worldwide. |
Abstract of EP 0549387, Synthesis of n-perfluorooctylbromide., Publication date: Jun. 30, 1993, Inventor: Drivon et al., esp@cenet database—worldwide. |
Abstract of EP 0850906, Process and apparatus for the etherification of olefinic hydrocarbon feedstocks, Publication date: Jul. 1, 1998, Inventor: Masson, esp@cenet database—worldwide. |
Abstract of EP 0858987, Process for conversion of lighter alkanes to higher hydrocarbons, Publication date: Aug. 19, 1998, Inventor: Amariglio, et al., esp@cenet database—worldwide. |
Abstract of EP 1395536, Oxidative halogenation of C1 hydrocarbons to halogenated C1 hydrocarbons and integrated processes related thereto, Publication date: Mar. 10, 2004, Inventor: Schweizer et al., esp@cenet database—worldwide. |
Abstract of EP 1404636, Integrated process for synthesizing alcohols and ethers from alkanes, Publication date: Apr. 7, 2004, Inventor: Zhou et al., esp@cenet database—worldwide. |
Abstract of EP 1435349 A2, Integrated process for synthesizing alcohols and ethers from alkanes, Publication date: Jul. 7, 2004, Inventor: Zhou et al. |
Abstract of EP 1474371, Integrated process for synthesizing alcohols, ethers, and olefins from alkanes, Publication date: Nov. 10, 2004, Inventor: Zhou et al., esp@cenet database—worldwide. |
Abstract of FR 2692259, Aromatisation of 2-4C hydrocarbons—using a fixed-mobile-catalytic bed process, Publication date: Dec. 17, 1993, Inventor: Alario et al., esp@cenet database—worldwide. |
Abstract of FR 2880019, Manufacturing 1,2-dichloroethane, comprises cracking core hydrocarbonated source, separating into fractions, sending into chlorination reaction chamber and oxychlorination reaction chamber and separating from chambers, Publication date: Jun. 30, 2006, Inventor: Strebelle et al., esp@cenet database—worldwide. |
Abstract of FR 2883870, Formation of 1,2-dichloroethane useful in manufacture of vinyl chloride involves subjecting mixture of cracking products obtained by cracking of hydrocarbon source, to a succession of aqueous quenching, alkaline washing, and oxidation steps, Publication date: Oct. 6, 2006, Inventor: Baltha sart et al., esp@cenet database—worldwide. |
Abstract of FR 2883871, Preparing 1,2-dichloroethane comprises cracking hydrocarbon to form mixture, sending mixture into storage reservoir, supplying mixture into chlorination and/or oxychloration reactor, and separating 1,-2-dichloroethane from reactor, Publication date: Oct. 6, 2006, Inventor: Balthasart et al., esp@cenet database—worldwide. |
Abstract of IT 1255246, Process for the preparation of dinitrodiphenylmethanes, Publication date: Oct. 20, 1995, Applicant: Enichem Spa et al., esp@cenet database—worldwide. |
Abstract of IT 1255358, Process for the synthesis of 1,4-butanediol, Publication date: Oct. 31, 1995, Inventor: Ricci Marco, esp@cenet database—worldwide. |
Abstract of JP 2142740, Production of fluoroalcohol, Publication date: May 31, 1990, Inventor: Tsutomu et al., esp@cenet database—worldwide. |
Abstract of JP 2144150, Chemical process and catalyst used therefore, Publication date: Jun. 1, 1990, Inventor: Deidamusu et al., esp@cenet database—worldwide. |
Abstract of JP 4305542, Production of halogenated hydrocarbon compounds, Publication date: Oct. 28, 1992, Inventor: Shinsuke et al., esp@cenet database—worldwide. |
Abstract of JP 6172225, Method for fluorinating halogenated hydrocarbon, Publication date: Jun. 21, 1994, Inventor: Takashi et al., esp@cenet database—worldwide. |
Abstract of JP 6206834, Production of Tetrachloroethanes, Publication date: Jul. 26, 1994, Inventor: Toshiro et al., esp@cenet database—worldwide. |
Abstract of JP 8266888, Method for decomposing aromatic halogen compound, Publication date: Oct. 15, 1996, Inventor: Yuuji et al., esp@cenet database—worldwide. |
Abstract of JP 2001031605, Production of 3-hydroxy-1-cycloalkene, Publication date: Feb. 6, 2001, Inventor: Hideo et al., esp@cenet database—worldwide. |
Abstract of JP 2004-529189 (best available copy). |
Abstract of JP 2004075683, Method for producing optically active halogenohydroxypropyl compound and glycidyl compound, Publication date: Mar. 11, 2004, Inventor: Keisuke et al., esp@cenet database—worldwide. |
Abstract of JP 2004189655, Method for fluorinating with microwave, Publication date: Jul. 8, 2004, Inventor: Masaharu et al., esp@cenet database—worldwide. |
Abstract of JP 2005075798, Method for producing adamantyl ester compound, Publication date: Mar. 24, 2005, Inventor: Norihiro et al., esp@cenet database—worldwide. |
Abstract of JP 2005082563, Method for producing 1,3-adamantanediol, Publication date: Mar. 31, 2005, Inventor: Norihiro et al., esp@cenet database—worldwide. |
Abstract of JP 2005145977, Process for catalytically oxidizing olefin and cycloolefin for the purpose of forming enol, olefin ketone, and epoxide, Publication date: Jun. 9, 2005, Inventor: Cancheng et al., esp@cenet database—worldwide. |
Abstract of JP 2005254092, Method of manufacturing alkynes, Publication date: Sep. 22, 2005, Inventor: Shirakawa Eiji, esp@cenet database—worldwide. |
Abstract of JP 2006151892, Preparation method of alcohol derivative, Publication date: Jun. 15, 2006, Inventor: Baba Akio et al., esp@cenet database—worldwide. |
Abstract of JP 2006152263, Organic-inorganic hybrid-type mesoporous material, method for producing the same, and solid catalyst, Publication date: Jun. 15, 2006, Inventor: Junko et al., esp@cenet database—worldwide. |
Abstract of JP 2006193473, Aryl polyadamantane derivative having carboxy or acid anhydride group and method for producing the same, Publication date: Jul. 27, 2006, Inventor: Yasuto et al, esp@cenet database—worldwide. |
Abstract of JP 2006231318, Phosphorus containing macromolecule immobilizing palladium catalyst and method for using the same, Publication date: Sep. 7, 2006, Inventor: Osamu et al., esp@cenet database—worldwide. |
Abstract of JP 2006263567, Optical resolution method of optical isomer and optical resolution device, Publication date: Oct. 5, 2006, Inventor: Yoshikazu et al., esp@cenet database—worldwide. |
Abstract of JP 2006265157, Method for catalytically activating silicated nucleating agent using phosphazene base, Publication date: Oct. 5, 2006, Inventor: Yoshinori et al., esp@cenet database—worldwide. |
Abstract of JP 2006306758, Method for producing biaryl compound, Publication date: Nov. 9, 2006, Inventor: Yuji et al., esp@cenet database—worldwide. |
Abstract of JP 2007001942, Production method of para-xylene, Publication date: Jan. 11, 2007, Inventor: Kazuyoshi, esp@cenet database—worldwide. |
Abstract of JP 2007015994, Method for synthesizing organic compound in ultra high rate under high temperature and high pressure water, and system of high temperature and high pressure reaction, Publication date: Jan. 25, 2007, Inventor: Hajime et al., esp@cenet database—worldwide. |
Abstract of JP 2007045756, Hydrogenation method using diaphragm type hydrogenation catalyst, hydrogenation reaction apparatus and diaphragm type hydrogenation catalyst, Publication date: Feb. 22, 2007, Inventor: Shuji et al., esp@cenet database—worldwide. |
Abstract of JP 2007061594, Method for decomposing organohalogen compound and mobile decomposition system, Publication date: Mar. 15, 2007, Inventor: Koichi et al., esp@cenet database—worldwide. |
Abstract of JP 2007099729, Method for producing alpha-methylstyrene or cumene, Publication date: Apr. 19, 2007, Inventor: Toshio, esp@cenet database—worldwide. |
Abstract of RO 119778, Process for preparing perchloroethylene, Publication date: Mar. 30, 2005, Inventor: Horia et al., esp@cenet database—worldwide. |
Abstract of WO 0105737, Method for preparing a carboxylic acid, Publication date: Jan. 25, 2001, Inventor: Pascal et al., esp@cenet database—worldwide. |
Abstract of WO 0105738, Method for Preparing a carboxylic acid, Publication date: Jan. 25, 2001, Inventor: Pascal et al., esp@cenet database—worldwide. |
Abstract of WO 9721656, Method for making fluoroalkanols, Publication date: Jun. 19, 1997, Inventor: Gillet, esp@cenet database—worldwide. |
Abstract of WO 9950213, Method for producing dialkyl ethers, Publication date: Oct. 7, 1999, Inventor: Falkowski et al., esp@cenet database—worldwide. |
Abstract of WO 2004092099, Method for producing cyclic enols, Publication date: Oct. 28, 2004, Inventor: Friedrich Marko et al., esp@cenet database—worldwide. |
Abstract of WO 2006063852, Electroluminescent polymers and use thereof, Publication date: Jun. 22, 2006, Inventor: Buesing Ame et al., esp@cenet database—worldwide. |
Abstract of WO 2006076942, Method for the production of synthetic fuels from oxygenates, Publication date: Jul. 27, 2006, Inventor: Rothaemel et al., esp@cenet database—worldwide. |
Abstract of WO 2006136135, Method for decarboxylating C-C cross-linking of carboxylic acids with carbon electrophiles, Publication date: Dec. 28, 2006, Inventor: Goossen Lukas et al., esp@cenet database—worldwide. |
Abstract of WO 2007028761, Method for chlorinating alcohols, Publication date: Mar. 15, 2007, Inventor: Rohde et al., esp@cenet database—worldwide. |
Abstract of WO 2007128842, Catalytic transalkylation of dialkyl benzenes, Publication date: Nov. 15, 2007, Inventor: Goncalvesalmeida et al., esp@cenet database—worldwide. |
Abstract of WO 2007137566, Method for catalytic conversion of organic oxygenated compounds from biomaterials, Publication date: Dec. 6, 2007, Inventor: Reschetilowski, esp@cenet database—worldwide. |
Adachi et al., Synthesis of sialyl lewis X ganglioside analogs containing a variable length spacer between the sugar and lipophilic moieties, J. Carbohydrate Chemistry, vol. 17, No. 4-5, 1998, pp. 595-607, XP009081720. |
Akhrem et al., Ionic Bromination of Ethane and other alkanes (cycloalkanes) with bromine catalyzed by the polyhalomethane-2AlBr3 aprotic organic superacids under mild conditions, Tetrahedron Letters, vol. 36, No. 51, 1995, pp. 9365-9368, Pergamon, Great Britain. |
Bagno et al., Superacid-catalyzed carbonylation of methane, methyl halides, methyl alcohol, and dimethyl ether to methyl acetate and acetic acid, J. Org. Chem. 1990, 55, pp. 4284-4289, Loker Hydrocarbon Research Institute; University of Southern California. |
Bakker et al., An exploratory study of the addition reactions of ethyleneglycol, 2-chloroethanol and 1,3-dichloro-2-propanol to 1-dodecene, J. Am. Oil Chem. Soc., vol. 44, No. 9, 1967, pp. 517-521, XP009081570. |
Benizri et al., Study of the liquid-vapor equilibrium in the bromine-hydrobromic acid-water system, Hydrogen Energy Vector, 1980, pp. 101-116. |
Bouzide et al., Highly selective silver (I) oxide mediated monoprotection of symmetrical diols, Tetrahedron Letters, Elsevier, vol. 38, No. 34, 1997, pp. 5945-5948, XP004094157. |
Bradshaw et al., Production of hydrobromic acid from bromine and methane for hydrogen production, Proceedings of the 2001 DOE Hydrogen Program Review, NREL/CP-570-30535, 2001, pp. 1-8. |
Chang et al., The conversion of methanol and other O-compounds to hydrocarbons over zeolite catalysts, Journal of Catalysis 47, 1977, Academic Press, Inc., pp. 249-259. |
Claude et al., Monomethyl-branching of long n-alkanes in the range from decane to tetracosane on Pt/H-ZSM-22 bifunctional catalyst, Journal of Catalysis 190, 2000, pp. 39-48. |
Combined International Search Report and Written Opinion dated Apr. 17, 2007 for PCT/US2006/013394, Applicant: GRT, Inc. , pp. 1-13. |
Fenelonov, et al., Changes in texture and catalytic activity of nanocrystalline MgO during its transformation to MgCl2 in the reaction with 1-chlorobutane, J. Phys. Chem. B 2001, 105, 2001 American Chemical Society, pp. 3937-3941. |
Final Report, Abstract, http://chemelab.ucsd.edu/methanol/memos/final.html, May 9, 2004, pp. 1-7. |
Gibson, Phase-transfer synthesis of monoalkyl ethers of oligoethylene glycols, J. Org. Chem. 1980, vol. 45, No. 6, pp. 1095-1098, XP002427776. |
http://webbook.nist.gov/, Welcome to the NIST chemistry webbook, Sep. 10, 2007, U.S. Secretary of Commerce on Behalf of the United States of America, pp. 1-2. |
Ione, et al., Syntheses of hydrocarbons from compounds containing one carbon atom using bifunctional zeolite catalysts, Solid Fuel Chemistry, Khimiya Tverdogo Topliva, 1982, Allerton Press, Inc., vol. 16, No. 6, pp. 29-43. |
Jaumain et al., Direct catalytic conversion of chloromethane to higher hydrocarbons over various protonic and cationic zeolite catalysts as studied by in-situ FTIR and catalytic testing, Studies in Surface Science and Catalysis 130, Elsevier Science B.V., 2000, pp. 1607-1612. |
JLM Technology Ltd., The Miller GLS Technology for conversation of light hydrocarbons to alcohols, New Science for the Benefit of Humanity, May 31, 2000; pp. 1-10. |
Kirk-Othmer, Encyclopedia of Chemical Technology, 4th Edition, vol. 1, A Wiley-Interscience Publication, John Wiley & Sons, 1991, pp. 946-997. |
Liu et al., Higher hydrocarbons from methane condensation mediated by HBr, Journal of Molecular Catalysis A: Chemical 273, Elsevier B.V., 2007, pp. 14-20. |
Loiseau et al., Multigram synthesis of well-defined extended bifunctional polyethylene glycol (PEG) chains, J. Org. Chem., vol. 69, No. 3, XO-002345040, 2004, pp. 639-647. |
Lorkovic et al., A novel integrated process for the functionalization of methane and ethane: bromine as mediator, Catalysis Today 98, 2004, pp. 317-322. |
Lorkovic et al., C1 oxidative coupling via bromine activation and tandem catalytic condensation and neutralization over CaO/zeolite composites II. Product distribution variation and full bromine confinement, Catalysis Today 98, 2004, pp. 589-594. |
Lorkovic et al., C1 coupling via bromine activation and tandem catalytic condensation and neutralization over CaO/zeolite composites, Chem. Comm. 2004, pp. 566-567. |
Mihai, et al., Application of Bronsted-type LFER in the study of the phospholipase C Mechanism, J. Am. Chem. Soc., vol. 125, No. 11, XP-002427777, 2003, pp. 3236-3242. |
Mishakov et al., Nanocrystalline MgO as a dehydrohalogenation catalyst, Journal of Catalysis 206, Elsevier Science, USA, 2002, pp. 40-48. |
Mochida, et al., The catalytic dehydrohalogenation of haloethanes on solid acids and bases, Bulletin of the Chemical Society of Japan, vol. 44, Dec. 1971, pp. 3305-3310. |
Motupally et al., Recycling chlorine from hydrogen chloride, The Electrochemical Society Interface, Fall 1998, pp. 32-36. |
Murray et al., Conversion of methyl halides to hydrocarbons on basic zeolites: a discovery by in situ NMR, J. Am. Chem. Soc., 1993, vol. 115, pp. 4732-4741. |
Nishikawa et al., Ultrasonic relaxations in aqueous solutions of alcohols and the balance between hydrophobicity and hydrophilicity of the solutes, J. Phys. Chem., vol. 97, No. 14, XP-002427775, 1993, pp. 3539-3544. |
Olah et al., Antimony pentafluoride/graphite catalyzed oxidative carbonylation of methyl halides with carbon monoxide and copper oxides (or copper/oxygen) to methyl acetate, J. Org. Chem. 1990, 55, pp. 4293-4297. |
Olah et al., Antimony pentafluoride/graphite catalyzed oxidative conversion of methyl halides with copper oxides (or copper/oxygen) to dimethyl ether, J. Org. Chem. 1990, 55, pp. 4289-4293. |
Olah, Electrophilic methane conversion, American Chemical Society, Acc. Chem. Res. 1987, 20, pp. 422-428. |
Olah, Hydrocarbons through methane derivatives, Hydrocarbon Chemistry, 1995, pp. 89-90, John Wiley & Sons, Inc. |
Olah et al., Hydrocarbons through methane derivatives, Hydrocarbon Chemistry, 2nd Edition, 2003, pp. 123, 149, and 153, John Wiley & Sons, Inc. |
Olah et al., Onium Ylide Chemistry. 1. Bifunctional acid-base-catalyzed conversion of heterosubstituted methanes into ethylene and derived hydrocarbons. The Onium Ylide mechanism of the C1-C2 conversion. J. Am. Chem. Soc. 1984, 106, pp. 2143-2149. |
Olah et al., Selective monohalogenation of methane over supported acid or platinum metal catalysts and hydrolysis of methyl halides over y-alumina-supported metal oxide/hydroxide catalysts. A feasible path for the oxidative conversion of methane into methyl alcohol/dimethyl ether., J. Am. Chem. Soc. 1985, 107, pp. 7097-7105. |
Prelog et al., 234. Chirale 2, 2′-polyoxaalkano-9,9′-spirobifluorene, Helvetica Chimica Acta, vol. 62, No. 7, 1979 pp. 2285-2302. |
Rakoff et al., Quimica Organica Fundamental, Organic Chemistry, The Macmillan Company, 1966, pp. 58-63 and 76-77. |
Richards, et al., Nanocrystalline ultra high surface area magnesium oxide as a selective base catalyst, Scripta Materialia, 44, 2001, pp. 1663-1666, Elsevier Science Ltd. |
Shimizu et al., Gas-Phase electrolysis of hydrobromic acid using PTFE-bonded carbon electrode, Int. J. Hydrogen Energy, vol. 13, No. 6, pp. 345-349, 1988. |
Smirnov et al., Selective bromination of alkanes and arylalkanes with CBr4, Mendeleev Commun., 2000, pp. 175-176. |
Sun et al., Nanocrystal metal oxide—Chlorine adducts: selective catalysts for chlorination of alkanes, J. Am. Chem. Soc., 1999, 121, pp. 5587-5588. |
Sun et al., A general integrated process for synthesizing olefin oxides, Chem. Commun., The Royal Society of Chemistry 2004, pp. 2100-2101. |
Tamura et al., The reactions of grignard reagents with transition metal halides: Coupling, disproportionation, and exchange with olefins, Bulletin of the Chemical Society of Japan, vol. 44, Nov. 1971, pp. 3063-3073. |
Taylor et al., Direct conversion of methane to liquid hydrocarbons through chlorocarbon intermediates, 1988, Elsevier Science Publishers B.V. Amsterdam, Netherlands, pp. 483-489. |
Taylor, Conversion of substituted methanes over ZSM-catalysts, 2000, pp. 3633-3638, Studies in Surface Science and Catalysis 130, Elsevier Science B.V. |
Taylor, PETC's on-site naural gas conversion efforts, Preprints of the Fuel Division, 208th National Meeting of the American Chemical Society, 39 (4), 1994, pp. 1228-1232. |
Thomas et al., Catalytically active centres in porous oxides: design and performance of highly selective new catalysts, Chem. Commun., 2001, pp. 675-687. |
Thomas et al., Synthesis and characterization of a catalytically active nickel-silicoaluminophosphate catalyst for the conversion of methanol to ethene, American Chemical Society, 1991, 3, pp. 667-672. |
Van Velzen et al., HBr electrolysis in the Ispra mark 13A flue gas desulphurization process: electrolysis in a DEM cell, Journal of Applied Electrochemistry, 20, 1990, pp. 60-68. |
Wagner et al., Reactions of VX, GD, and HD with nanosize CaO: autocatalytic dehydrohalogenation of HD, J. Phys. Chem. B 2000, 104, pp. 5118-5123, 2000 American Chemical Society. |
Wauters et al., Electrolytic membrane recovery of bromine from waste hydrogen bromide streams, AIChE Journal, Oct. 1998, vol. 44, No. 10, pp. 2144-2148. |
Weissermel et al., Industrial Organic Chemistry, 3rd Edition, 1997, pp. 160-162, and 208. |
Whitesides et al., Nuclear magnetic resonance spectroscopy. The effect of structure on magnetic nonequivalence due to molecular asymmetry, J. Am. Chem. Soc., vol. 86, No. 13, 1964, pp. 2628-2634, XP002427774. |
Yilmaz et al., Bromine mediated partial oxidation of ethane over nanostructured zirconia supported metal oxide/bromide, Microporous and Mesoporous Materials, 79, 2005, Science Direct, Elsevier, pp. 205-214. |
Zhou et al., An integrated process for partial oxidation of alkanes, Chem. Commun., 2003, The Royal Society of Chemistry, pp. 2294-2295. |
ZSM-5 Catalyst, http://chemelba.ucsd.edu/methanol/memos/ZSM-5.html, Nov. 6, 2003, p. 1. |
Abstract of GB 998681(A), Improvements in or relating to the recovery of bromine from bromine-containing materials, Publication date: Jul. 21, 1965, Applicant: Electro Chimie Metal+, espacenet worldwide database. |
Abstract of JP 55-073619, Condensation of methyl chloride through dehydrochlorination, Publication date: Jun. 3, 1980, Inventor: Shigeo et al., http://www19.ipdl.inpit.go.jp/PA1/result . . . . |
Hannus, Adsorption and transformation of halogenated hydrocarbons over zeolites, Applied Catalysis A: General 189, 1999, XP-002634422, pp. 263-276. |
Howe, Zeolite catalysts for dehalogenation processes, Applied Catalysis A: General 271, 2004, XP-002634421, pp. 3-11. |
Li et al., Pyrolysis of Halon 1301 over zeolite catalysts, Microporous and Mesoporous Materials 35-36, 2000, XP-002634423, pp. 219-226. |
Chretien; Process for the Adjustment of the HHV in the LNG Plants; 23rd World Gas Conference; Amsterdam 2006; Jun. 5-9, 2006; pp. 1-14. |
Yang et al.; Maximising the Value of Surplus Ethane and Cost-Effective Design to Handle Rich LNG; publ. date Jun. 1, 2007; pp. 1-13. |
Henshuiinkai, Kagaku Daijiten; Kagaku Daijiten 4, Japan, Kyoritsu Publisher, Oct. 15, 1963; pp. 652-654. |
Jacobson, C.A.; “Encyclopedia of Chemical Reactions”; vol. 1; 1946; pp. 722. |
U.S. Office Communication from U.S. Appl. No. 12/957,036 dated Aug. 16, 2012. |
U.S. Office Communication from U.S. Appl. No. 12/792,335 dated Aug. 17, 2012. |
U.S. Office communication from U.S. Appl. No. 12/792,335 dated Jan. 2, 2013. |
U.S. Office communication from U.S. Appl. No. 13/117,785 dated Mar. 14, 2013. |
Abstract of JP publication No. 08-283182, Production of Hydrochloromethanes, Publication date Oct. 29, 1996, Inventor: Kojiro et al., http://www19.ipdl.inpit.go.jp. |
Number | Date | Country | |
---|---|---|---|
20120313034 A1 | Dec 2012 | US |