The present invention relates to the field of fluid handling and heat exchange, specifically the area of heavy oil improvement, transport, and in particular to the area of heavy oil recovery, but not excluding the partial or total improvement through the method of visbreaking.
Visbreaking is a non-catalytic thermal method used in industry as a way to improve heavy oils through the change of the local or overall temperature of the oil within a specific range. Within said temperature range, hydrocarbon chains of varying lengths break as a consequence of the change in internal energy as well as other intrinsic chemical processes that oil undergoes as a consequence of this operation, thereby reducing the viscosity of the oil. The outcome of increasing the internal energy of a volume of heavy oil (within said range) is the partial or total improvement of the oil itself. These changes are usually reflected in the measured viscosity when the treated oil is compared to a sample of the same, before it is subject to this thermal step.
In the field of oil improvement the method of visbreaking is used as means of reducing the oil viscosity with the purpose of easing the process of transporting the crude in pipelines, oil tankers, lorry and floating barges. Oil treated through this method simplifies other downstream processes such as distillation, refining and fractioning.
The method of visbreaking is commonly practiced by pumping heavy oil through tubes circulating within an industrial oven or furnaces, or “visbreakers”, that often operate at high temperatures (380° C.-560° C.). The fluid residence time within these furnaces is often greater than 5 minutes. It is common knowledge that these residence times are not sufficiently long to heat a volume of oil homogeneously to the required visbreaking temperatures. Therefore, to increase the effect of visbreaking, the oil is often moved to heated drums or vessels commonly known as “soaker drums” or “soaker”.
It is difficult to control the local heating of the fluid within the tubes and it is documented that hot-spots along the tubes exist. These operating conditions and the nature of the heating mechanism allow for the generation of petroleum coke (known also as coke). These phenomena occur as a result of higher local temperatures that are above the visbreaking range. Moreover, the coke that is generated attaches to the tube walls or it is dragged with the flowing oil.
Induction heating is used in the industry as means of heating metals with the end goal of manipulating at will or simply doing heat treatments. This method is commonly performed using a power source of alternating current (AC) in low to medium frequencies 60 Hz-10 kHz and in some applications reaching high frequencies of 100 kHz-10 MHz. The power source is connected to an induction coil made of electrically conductive material (made from metal). When the electrical current generated by the power source passes through the coil, an alternating magnetic field is generated. It is widely accepted that an electrically conductive material, placed within a region of volume wherein the magnetic field intensity is sufficiently high, is inductively heated. This induction phenomenon occurs as a result of the collapse and reinstatement of the magnetic field when it alternates its direction. Therefore, if an electrically conductive material is positioned within said alternating magnetic field, then the material will experience an alternating current which is proportional to the current passing through the induction coil, and inversely proportional to the square of the distance between them (the conductive material and the coil). The current passing through the electrically conductive material in this situation is known as an eddy current.
The magnitude of the dissipated electrical energy, in form of heat from the electrically conductive material, depends on many variables, such as, for example, the type of electrically conductive material, size and shape of the electrically conductive material, the frequency of the current generated by the power source and, therefore, the frequency of the alternating magnetic field. Other factors such as the hysteresis and electrical resistance of the electrically conductive material play an important role in the physical mechanism of heating.
When magnetic or ferromagnetic materials are separated in small parts, such as when these parts are of sizes between 1 nm-100 nm (called “nanoparticles”), the direction of magnetization can change randomly depending on the temperature that these particles are held to. The time that is required to change twice the direction of the magnetic field is known as Neel relaxation time, or Neel relaxation phenomenon. On average, these individual nanoparticles have no magnetization, although in macroscopic scales the material exhibits magnetic or ferromagnetic properties. This particular phenomenon in the branch of general physics is commonly and openly known as superparamagnetism.
Magnetic or superparamagnetic nanoparticles can be inductively heated, and the frequency of the alternating magnetic field that these nanoparticles must be subjected nominally needs to be above 100 kHz or the equivalent to surpass the Neel relaxation time. This phenomenon is different from conventional induction heating, where the frequency of said magnetic field is in the low to medium range. In the conventional case, the magnetic properties of the materials change when the temperature at which they are induced surpasses the Curie point (Curie temperature). Nevertheless, superparamagnetic or magnetic materials experience similar changes under the Curie temperature. Therefore, magnetic induction heating of metals or electrically conductive materials is different than induction heating of superparamagnetic or magnetic nanoparticles.
Embodiments of the present invention are directed to a continuous or semi-continuous process for the partial or total improvement of heavy oil by means of the method known as visbreaking. The process of implementing the temperature treatment of visbreaking described in embodiments of the present invention occurs within a packed bed type apparatus, similar to a packed-bed reactor. The heavy oil that is treated in this process is herein known as fluid or liquid and it is displaced into the process by means of pumps or other fluid handling devices. After the fluid enters the process herein described as the invention, the same is eventually in contact with a packed bed type structure. The structure can be made in the shape of spheres, irregular forms, or a mixture of both; this structure can also be in the shape of a honeycomb or an array of tightly packed hollow cylinders. Said structure has in it superparamagnetic or magnetic nanoparticles that are responsive to an alternating magnetic field, releasing energy as heat, or induction heating.
The fluid passing through the structure with a nanoparticles base is heated as a result of the thermal gradient between the packed bed surface (induction structure) and the liquid. It is due to this surface interaction that the local fluid temperature is increased until it reaches the visbreaking temperature.
Moreover, the high surface area of the induction structure allows for rapid heat exchange between the fluid and said structure. This fluid-structure interaction, as well as the known nominal energy input by the power source, allows for precise control of the process in general, and specifically of the outlet temperature of the fluid that enters the induction heating apparatus.
Afterwards, the fluid is heated within the induction apparatus, and/or the heated liquid flows to a container or series of containers that might be further heated. The fluid can either stay or move through these containers allowing it to have additional reaction residence time, if necessary. Another or additional option is to extend the length of the apparatus in order to extend the residence time.
After the liquid passes through these containers it is then moved to a cooling system or equipment for this purpose. The cooling system reduces the overall temperature of the fluid as it transits through it by means of conventional heat exchangers. This cooling step can be used to halt, hold, or slow several reactions and the breakup of long chain molecules that occur at the visbreaking temperatures. At this step is where the process of improving oil through induction heating finishes.
Once the fluid leaves the cooling step, the same can be stored, transported as it is, or mixed with a diluent stream seeking to further reduce the viscosity of the treated fluid. The fluid can be fractioned in separation units, and/or it can be handled using a mixture of one or many of the aforementioned processes.
The above summary is not intended to describe each illustrated embodiment or every implementation of the subject matter hereof. The figures and the detailed description that follow more particularly exemplify various embodiments.
Subject matter hereof may be more completely understood in consideration of the following detailed description of various embodiments in connection with the accompanying figures, in which:
While various embodiments are amenable to various modifications and alternative forms, specifics thereof have been shown by way of example in the drawings and will be described in detail. It should be understood, however, that the intention is not to limit the claimed inventions to the particular embodiments described. On the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the subject matter as defined by the claims.
The embodiments described below are not intended to be exhaustive or to limit the invention to the precise forms disclosed in the following detailed description. Rather the embodiments are chosen and described so that others skilled in the art may appreciate and understand the entire disclosure.
Embodiments of the present invention comprise one or many of the block diagrams shown in
Regarding to the embodiment of the present invention, stream 0 of
Unit 1 of
The cold fluid feed entering at 0 displaces or exits unit 1 as hot fluid 101. In other words, by the time the fluid feed passes through unit 1 or pre-heating step, it experiences an increase in temperature such that it reaches the required process temperature before entering 2. The transfer of fluids between units is achieved using the fluid handling devices mentioned previously, or with the use of pumps, or a combination of both methods.
Once displaced outside of 1, fluid 101 passes to unit 2 comprising a heating apparatus by means of induction heating. The apparatus in unit 2 is shown in greater detail in
Within the other components in 2, there is a component that is a structure that comprises one or various subdivisions or structures made of an electrically non-conductive or low-conductive material. The electrically non-conductive or with low conductivity material is filled with particles in the size range of micrometers or millimeters or nanometers with superparamagnetic characteristics. These objects with superparamagnetic or magnetic particles are referred from now on as “induction heating structure 24”. The induction heating structure can be in the form of spheres 24 as shown in
The induction heating structure in 24 (
Components 24, 25, 26 and 28 are placed within a tube, pipe or other annular elongated structure 27 that is from now referred as well as “main casing 27”, which is positioned concentrically with an induction coil 22 as it is shown in
The fluid current 101 as seen in
In certain embodiments, the cooling fluid can be used in 11 (
The control system 30 shown in
The fluid stream 102 corresponds to the liquid or fluid that has passed the heating system 2 by magnetic induction described in the previous paragraphs. The temperature or internal energy of this stream is increased by means of thermal exchange at the surface of the induction heating structure 24 (and variants shown in
In
A magnified or close-up section shown in
Now possible variations, alterations and/or modifications according to embodiments of the present invention are discussed.
These cylinders are packed such that the external walls of each individual element are in contact to the neighboring one. The packing mechanism creates interstitial spaces where the fluid can pass through, and be in contact with the induction heating structure. This configuration reduces the pressure drop of the fluid through the induction heating apparatus, allowing similar or greater surface contact area when compared to the conventional packing with spheres.
According to embodiments, and referring back to
Once a certain fluid volume is heated at the appropriate temperature under the required time for visbreaking, either by passing through solely through unit 2 in
After the quenching step, the fluid is moved outside of the system previously described; the fluid now may be transported in pipelines, lorries, tankers and barges. Moreover, during or previous the transport process the oil could be mixed with a solvent as means of further reducing the viscosity. If necessary the fluid could also be stored or separated through other specific means 5, described above.
Various embodiments of systems, devices, and methods have been described herein. These embodiments are given only by way of example and are not intended to limit the scope of the claimed inventions. It should be appreciated, moreover, that the various features of the embodiments that have been described may be combined in various ways to produce numerous additional embodiments. Moreover, while various materials, dimensions, shapes, configurations and locations, etc. have been described for use with disclosed embodiments, others besides those disclosed may be utilized without exceeding the scope of the claimed inventions.
Persons of ordinary skill in the relevant arts will recognize that the subject matter hereof may comprise fewer features than illustrated in any individual embodiment described above. The embodiments described herein are not meant to be an exhaustive presentation of the ways in which the various features of the subject matter hereof may be combined. Accordingly, the embodiments are not mutually exclusive combinations of features; rather, the various embodiments can comprise a combination of different individual features selected from different individual embodiments, as understood by persons of ordinary skill in the art. Moreover, elements described with respect to one embodiment can be implemented in other embodiments even when not described in such embodiments unless otherwise noted.
Although a dependent claim may refer in the claims to a specific combination with one or more other claims, other embodiments can also include a combination of the dependent claim with the subject matter of each other dependent claim or a combination of one or more features with other dependent or independent claims. Such combinations are proposed herein unless it is stated that a specific combination is not intended.
Any incorporation by reference of documents above is limited such that no subject matter is incorporated that is contrary to the explicit disclosure herein. Any incorporation by reference of documents above is further limited such that no claims included in the documents are incorporated by reference herein. Any incorporation by reference of documents above is yet further limited such that any definitions provided in the documents are not incorporated by reference herein unless expressly included herein.
For purposes of interpreting the claims, it is expressly intended that the provisions of 35 U.S.C. § 112(f) are not to be invoked unless the specific terms “means for” or “step for” are recited in a claim.
The present application is a National Phase entry of PCT Application No. PCT/IB2017/000891 filed Jun. 9, 2017, which claims the benefit of U.S. Provisional Application No. 62/348,583 filed Jun. 10, 2016, which is hereby fully incorporated herein by reference.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/IB2017/000891 | 6/9/2017 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2017/212342 | 12/14/2017 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4019133 | Manley | Apr 1977 | A |
4136016 | Rosensweig | Jan 1979 | A |
4292171 | Mayer | Sep 1981 | A |
4441989 | Spencer | Apr 1984 | A |
4504377 | Shu | Mar 1985 | A |
5054420 | Raghavan | Oct 1991 | A |
5543041 | Okazaki | Aug 1996 | A |
6315972 | Mehdizadeh | Nov 2001 | B1 |
20020093330 | Crouzen | Jul 2002 | A1 |
Entry |
---|
Office Action dated Jan. 23, 2021 for Colombia Application No. NC2019/0000139, 20 pages. |
Number | Date | Country | |
---|---|---|---|
20200308491 A1 | Oct 2020 | US |
Number | Date | Country | |
---|---|---|---|
62348583 | Jun 2016 | US |