The present invention relates to processes and systems for synthesizing alkyl bromides into high molecular weight hydrocarbons in at least two sequential or concurrent stages, and more particularly, in one or more embodiments, to processes and systems for synthesizing alkyl bromides in at least two sequential or concurrent stages operated with different feeds and at different temperatures.
Mono-halogenated alkanes may be used in the production of high molecular weight hydrocarbons, such as C5+ gasoline-range and heavier hydrocarbons, as well as olefins, for example by conversion over an appropriate catalyst, such as a synthetic crystalline alumino-silicate catalyst, at sufficient temperatures to form high molecular-weight C3+ hydrocarbons, the C6+ fraction of which are predominately substituted aromatics. As the aromatic content of the C6+ fraction of the high molecular weight hydrocarbons derived from such a process is higher than desired for production of “neat” gasoline motor fuel, the C6+ fraction is valuable as a high-octane blending component with a petroleum-derived naphtha or natural gasoline derived from the processing of natural gas to produce a motor fuel. Petroleum-derived naphtha or natural gasoline derived from the processing of natural gas typically contain substantial paraffin content and have low octane ratings. Thus, a need exists for a process of synthesizing mono-halogenated alkanes over a suitable catalyst and at a suitable temperature to produce higher molecular-weight C3+ hydrocarbons, the C6+ fraction of which contains a substantial C6+ paraffin content and thus a reduced aromatic content.
To achieve the foregoing and other objects, and in accordance with the purposes of the present invention, as embodied and broadly described herein, one characterization of the present invention is a process which comprises providing alkyl bromides and reacting at least a first portion of the alkyl bromides in the presence of a first catalyst and at a first temperature sufficient to form a first hydrocarbon product containing at least hydrocarbons having at least 5 carbon atoms and having a substantial C6+ paraffin content. A second portion of the alkyl bromides is reacted in the presence of a second catalyst and at a second temperature sufficient to form a second hydrocarbon product containing at least hydrocarbons having at least 5 carbon atoms and having a substantial substituted aromatic content.
In another characterization of the present invention, a process comprises providing a first feed gas stream containing lower molecular weight alkanes and having from about 0.1 mol % to about 10.0 mol % C2+. components and reacting bromine with the first feed gas stream to form first alkyl bromides. At least the first alkyl bromides may be reacted in the presence of a first catalyst and at a first temperature sufficient to form a first hydrocarbon product containing at least hydrocarbons having at least 5 carbon atoms and having a substantial C6+ paraffin content. A second feed gas stream containing lower molecular weight alkanes and having predominately C2+ components is reacted with bromine to form second alkyl bromides. At least the second alkyl bromides are reacted in the presence of a second catalyst and at a second temperature sufficient to form a second hydrocarbon product containing at least hydrocarbons having at least 5 carbon atoms and having a substantial substituted aromatic content.
In still another characterization of the present invention, a system is provided having a first synthesis zone and a second synthesis zone. The first synthesis zone contains a suitable catalyst and is configured to form at a first temperature hydrocarbon products containing paraffins from synthesis reactants comprising alkyl bromides. The second synthesis zone is in fluid communication with the first synthesis zone, contains a second suitable catalyst and is configured to form at a second temperature hydrocarbon products containing substituted aromatics from synthesis reactants comprising a unreacted portion of the alkyl bromides.
In a still further characterization of the present invention, a system is provided having a first bromination reactor, a first synthesis reactor, a second bromination reactor and a second synthesis reactor. The first bromination reactor is configured to form first bromination products comprising alkyl bromides from first bromination reactants comprising lower molecular weight alkanes having from about 0.1 mol % to about 10.0 mol % C2+ components. The first synthesis reactor is in fluid communication with the first bromination reactor, contains a suitable catalyst and is configured to form hydrocarbon products containing paraffins from the first bromination products. The second bromination reactor is configured to form second bromination products comprising alkyl bromides from second bromination reactants comprising lower molecular weight alkanes containing predominately C2+ components. The second synthesis reactor is in fluid communication with the second bromination reactor, contains a suitable catalyst and is configured to form hydrocarbon products containing substituted aromatics from the first bromination products. The second synthesis reactor is operated at a higher temperature than the first bromination reactor.
The accompanying drawings, which are incorporated in and form a part of the specification, illustrate the embodiments of the present invention and, together with the description, serve to explain the principles of the invention.
In the drawings:
As used herein, the term “alkyl bromides” refers to mono-, di-, and tri-brominated lower molecular weight alkanes, and combinations of these. The term “high molecular weight hydrocarbons” as used herein refers to hydrocarbons comprising C3 chains and longer hydrocarbon chains. In some embodiments, the high molecular weight hydrocarbons may be used directly as a product (e.g., LPG, motor fuel, etc.). In other instances, the high molecular weight hydrocarbons may be used as an intermediate product or as a feedstock for further processing. In other instances, the high molecular weight hydrocarbons may be further processed, for example, to produce gasoline grade fuels, diesel grade fuels, and fuel additives. In some embodiments, the high molecular weight hydrocarbons obtained by the processes of the present invention can be used directly as a motor gasoline fuel having a substantial paraffin content, as a fuel blending stock, or as feedstock for further processing, such as an aromatic feed to a process producing aromatic polymers such as polystyrene or related polymers, or an olefin feed to a process for producing polyolefins. The term “olefins” as used herein refers to hydrocarbons that contain two to six carbon atoms and at least one carbon-carbon double bond. The olefins may be further processed if desired. In some instances, the olefins produced by the processes of the present invention may be further reacted in a polymerization reaction (for example, a reaction using a metallocene catalyst) to produce poly(olefins), which may be useful in many end products such as plastics or synthetic lubricants.
The end use of the high molecular weight hydrocarbons, the olefins or mixtures thereof may depend on the particular catalyst employed in the synthesis portion of the processes and systems discussed below, as well as the operating parameters employed in the process. Other uses will be evident to those skilled in the art with the benefit of this disclosure.
Lower molecular weight alkanes may be used as a feed stock for the methods described herein. As utilized throughout this description, the term “lower molecular weight alkanes” refers to methane, ethane, propane, butane, pentane or mixtures of two or more of these individual alkanes. The lower molecular weight alkanes may be from any suitable source, for example, any source of gas that provides lower molecular weight alkanes, whether naturally occurring or synthetically produced. Examples of sources of lower molecular weight alkanes for use in the processes of the present invention include, but are not limited to, natural gas, coal-bed methane, regasified liquefied natural gas, gas derived from gas hydrates and/or chlathrates, gas derived from anerobic decomposition of organic matter or biomass, gas derived in the processing of tar sands, and synthetically produced natural gas or alkanes. Combinations of these may be suitable as well in some embodiments. In some embodiments, it may be desirable to treat the feed gas to remove undesirable compounds, such as sulfur compounds and carbon dioxide. In any event, it is important to note that small amounts of carbon dioxide, e.g., less than about 2 mol %, can be tolerated in the feed gas to the processes of the present invention.
Suitable sources of bromine that may be used in various embodiments of the present invention include, but are not limited to, elemental bromine, bromine salts, aqueous hydrobromic acid, metal bromide salts, and the like. Combinations may be suitable, but as recognized by those skilled in the art, using multiple sources may present additional complications. Certain embodiments of the methods and systems of the invention are described below. Although major aspects of what is to believed to be the primary chemical reactions involved in the methods are discussed in detail as it is believed that they occur, it should be understood that side reactions may take place. One should not assume that the failure to discuss any particular side reaction herein means that that reaction does not occur. Conversely, those that are discussed should not be considered exhaustive or limiting. Additionally, although figures are provided that schematically show certain aspects of the methods of the present invention, these figures should not be viewed as limiting on any particular method of the invention.
A block flow diagram generally depicting some aspects of certain embodiments of the processes and systems of the present invention is illustrated in
The effluent 6 from the first stage synthesis reactor may be heated by any suitable means, such as a heat exchanger 7, before being introduced into a second stage synthesis reactor 8. In the second stage synthesis reactor, the methyl and ethyl bromides that are contained in the effluent are reacted exothermically at a temperature in the range of about 300° C. to about 450° C., and more preferably in the range of about 350° C. to about 425° C., and at a pressure in the range of about 1 to about 100 bar, over a suitable catalyst 9 to produce desired hydrocarbon products (e.g., high molecular weight hydrocarbons, olefins or mixtures thereof) which are removed as a hydrocarbon product stream 10 from second stage synthesis reactor 8. It is thought that at these conditions the methyl bromides and ethyl bromides may preferentially react over a suitable catalyst to oligomerize the methyl and ethyl units thereby forming products, for example high molecular weight hydrocarbons, olefins or mixtures thereof, that contain C6+ fractions having primarily substituted aromatics and also light alkanes primarily in the C3 to C5+ range.
The catalyst used in the first and second stage synthesis reactors 4 and 8, respectively, may be any of a variety of suitable materials for catalyzing the conversion of the alkyl bromides to product hydrocarbons. In certain embodiments, the first and second stage synthesis reactors may comprise a fixed bed of the catalyst. A fluidized-bed of synthesis catalyst may also be used in certain circumstances, particularly in larger applications and may have certain advantages, such as constant removal of coke and a steady selectivity to product composition. Examples of suitable catalysts include a fairly wide range of materials that have the common functionality of being acidic ion-exchangers and which also contain a synthetic crystalline alumino-silicate oxide framework. In certain embodiments, a portion of the aluminum in the crystalline alumino-silicate oxide framework may be substituted with magnesium, boron, gallium and/or titanium. In certain embodiments, a portion of the silicon in the crystalline alumino-silicate oxide framework may be optionally substituted with phosphorus. The crystalline alumino-silicate catalyst generally may have a significant anionic charge within the crystalline alumino-silicate oxide framework structure which may be balanced, for example, by Na cations. Although zeolitic catalysts may be commonly obtained in a sodium form, a protonic or hydrogen form (via ion-exchange with ammonium hydroxide, and subsequent calcining) is preferred, or a mixed protonic/sodium form may also be used. The zeolite may also be modified by ion exchange with cations of other elements. Elements useful for ion exchange of the zeolite include 1st-row transition metals, Group 1 (IA), Group 2 (IIA), La, Ce, Mo, V, Ag or combinations thereof. Such subsequent ion-exchange, may replace the charge-balancing counter-ions, but furthermore may also partially replace ions in the oxide framework resulting in a modification of the crystalline make-up and structure of the oxide framework. The crystalline alumino-silicate or substituted crystalline alumino-silicate may include a microporous or mesoporous crystalline aluminosilicate, but, in certain embodiments, may include a synthetic microporous crystalline zeolite, and, for example, being of the MFI structure such as ZSM-5. Moreover, the crystalline alumino-silicate or substituted crystalline alumino-silicate, in certain embodiments, may be subsequently impregnated with an aqueous solution of a Mg, Ca, Sr, Ba, V, Ag, La or Ce salt, such as Ce(NO3)3, dried and calcined in air. In certain embodiments, the salts may be a halide salt, such as a bromide salt, such as MgBr2. Optionally, the crystalline alumino-silicate or substituted crystalline alumino-silicate may also contain between about 0.1 to about 1 weight % Pt, about 0.1 to 5 weight % Pd, or about 0.1 to about 5 weight % Ni in the metallic state. Although, such zeolite materials are primarily initially crystalline, it should be noted that some crystalline catalysts may undergo some loss of crystallinity either due to initial ion-exchange or impregnation or due to operation at the reaction conditions or during regeneration and hence my also contain significant amorphous character, yet still retain significant, and in some cases improved activity.
The particular catalyst 5 and 9 used in both the first and second stage synthesis reactors 4 and 8, respectively, will depend, for example, upon the particular product hydrocarbons that are desired. For example, when product hydrocarbons having primarily C3, C4 and C5+ gasoline-range paraffinic compounds and heavier hydrocarbon fractions are desired, a ZSM-5 zeolite catalyst may be used. When it is desired to produce product hydrocarbons comprising a mixture of olefins and C6+ products, an X-type or Y-type zeolite catalyst or SAPO zeolite catalyst may be used. Examples of suitable zeolites include an X-type, such as 10-X, or Y-type zeolite, although other zeolites with differing pore sizes and acidities, may be used in embodiments of the present invention. The catalyst used in the first and second stage synthesis reactors need not be identical so long as the catalyst used in both reactors are selected to form the similar products, e.g. selected to form hydrocarbons having primarily C3, C4 and C5+ gasoline-range paraffinic compounds and heavier hydrocarbon fractions.
In addition to the catalyst, the temperature at which the first and second stage synthesis reactors are operated is an important parameter in determining the selectivity and conversion of the reaction to the particular product desired. For example, when a X type or Y type zeolite catalyst is used and it is desired to produce olefins, it may be advisable to operate the first stage synthesis reactor at a temperature within the range of about 250° C. to 400° C. and the second stage synthesis reactor at a temperature within the range of about 400° C. to 450° C. Alternatively, in an embodiment involving a ZSM-5 zeolite catalyst operating in a slightly lower temperature range of about 150° C. to 300° C. in the first stage synthesis reactor and about 300° C. to 400° C. in the second stage synthesis reactor, will result in the production of higher molecular weight hydrocarbons. In both instances, the high molecular weight hydrocarbon products produced by process and system of the present invention as illustrated in
A block flow diagram generally depicting some aspects of certain embodiments of the processes and systems of the present invention is illustrated in
A block flow diagram generally depicting some aspects of certain embodiments of the processes and systems of the present invention is illustrated in
As illustrated in
CH4 (g)+Br2 (g)→CH3Br (g)+HBr (g)
Due to the free-radical mechanism of the gas-phase bromination reaction, di-bromomethane and some tri-bromomethane and other poly-brominated lower molecular weight alkanes may be also formed. Bromination often occurs in the bromination reactor with a relatively high degree of selectivity to methyl bromide due to the alkane to bromine ratio employed. For example, in the case of the bromination of methane, a methane to bromine ratio of about 6:1 is believed to increase the selectivity to mono-halogenated methyl bromide to average approximately 88%, depending on reaction conditions, such as residence times less than about 15 seconds, temperature less than about 450° C., and extent of turbulent mixing. At these conditions, some dibromomethane and only extremely small amounts of tribromomethane approaching the detectable limits may also be formed in the bromination reaction. If a lower methane to bromine ratio of approximately 3 to 1 is utilized, selectivity to the mono-halogenated methyl bromide may fall to the range of approximately 65 to 75% at residence times less than about 15 seconds and temperatures less than about 450° C. However, methyl bromide selectivity may rise to approximately 90% if temperatures are increased to the range of about 490° C. to 530° C. and residence time is increased to about 60 seconds. However, at a methane to bromine ratio significantly less than about 2.5 to 1, unacceptably low selectivities to methyl bromide occurs, and, moreover, significant formation of undesirable di-bromomethane, tri-bromomethane, and carbon soot is observed. The relatively higher temperature range of about 450° C. to 530° C. employed in the bromination reactor also ensures that bromine is substantially consumed in the bromination reactor thereby effectively inhibiting subsequent formation of free-radical bromination in subsequent stages of the processes of the present invention due to the presence of elemental bromine. The residence time of the reactants in the bromination reactor necessary to achieve near-complete bromine reaction is relatively short and may be as little as 1-5 seconds under adiabatic reaction conditions. Any higher molecular weight alkanes, such as ethane, propane and butane that are contained in the feed gas to the bromination reactor may also be brominated, resulting in mono- and multiple-brominated species such as ethyl bromides, propyl bromides and butyl bromides. Further, in some embodiments, the dry bromine vapor that is fed into the bromination reactor may be substantially water-free. Applicant has discovered that, at least in some instances, this may be preferred because it appears that elimination of substantially all water vapor from the bromination step substantially eliminates the formation of unwanted carbon dioxide. This may increase the selectivity of alkane bromination to alkyl bromides, thus possibly eliminating the large amount of waste heat generated in the formation of carbon dioxide from alkanes.
Gas stream 23 may be combined with the effluent 25 withdrawn from the bromination reactor that comprises alkyl bromides, hydrogen bromide and unreacted bromine and introduced into a shift/reproportionation reactor 26. Further, although the bromine is generally rapidly reacted, any small amount of unreacted bromine which is not reacted in the bromination reactor due to imperfect mixing or shorter residence times and which may be present in the effluent from the bromination reactor is readily consumed by thermal bromination reaction with C2+ hydrocarbons prior to or upon introduction into a shift/reproportionation reactor. In the shift/reproportionation reactor 26, a significant portion of the di- and tri-brominated alkanes that may be present in the alkyl bromides contained in the effluent 25 from the bromination reactor may be selectively converted upon reaction with C2+ components to mono-brominated alkanes. As an example, where C3 and di-bromomethane are the reactants, it is believed that the conversion occurs in accordance with the following general reaction:
C3H8+CH2Br2→CH3Br+C3H7Br
Although this reaction may proceed thermally without a catalyst, it has been determined that such thermal reaction requires unacceptably long residence time within the shift/reproportionation reactor and does not achieve satisfactory conversion rates to mono-brominated alkanes. Accordingly, it is preferred that the shift/reproportionation reactor contain a bed of suitable catalyst (not illustrated) selected from Group VIII metals, Group VIB metals, Group IB metals, aluminum, zinc, vanadium, magnesium, calcium, titanium, and mixtures thereof. Group VIII metals include iron, cobalt, nickel, platinum, palladium, rhodium, ruthenium, iridium, osmium or mixtures of two or more thereof. Group VIB metals include tungsten, molybdenum or chromium. Group IB metals include copper or silver. Preferably, the Group VIII metal used in this embodiment of the present invention is a noble metal selected from platinum, palladium, rhodium, ruthenium, iridium, osmium, or mixtures of two or more thereof, and more preferably the Group VIII metal is platinum. Most preferably, the Group VIII metal is iron employed as a metal bromide, metal oxide or non-stoichometric metal oxy-bromide. Preferably the Group VIB metals are molybdenum or tungsten. Preferably the Group IB metal is copper employed as a metal bromide, metal oxide or metal oxy-bromide. Nonlimiting examples of suitable metal catalysts listed above which may form more than one thermally reversible bromide salt as used in the processes of the present invention are iron, molybdenum, tungsten, copper, vanadium, chromium or mixtures of two or more thereof. Nonlimiting examples of suitable catalysts listed above which may form single bromide salts as used in the processes of the present invention are cobalt, nickel, silver, zinc, magnesium, calcium, titanium, aluminum or mixtures of two or more thereof. These metals which form more than one thermally reversible bromide salt or a single bromide salt may be initially employed in the processes of the present invention as a bromide salt or an oxide since they would exist and function as bromides in the shift/reproportionation reactor due to conversion to bromide salts via a reaction with hydrogen bromide under the conditions employed in the shift/reproportionation reactor. Suitable supports are selected to have relatively low acidity to inhibit thermal decomposition and cracking of poly-brominated alkanes and have relatively low surface area to inhibit adsorption of the poly-brominated alkanes onto the support. Nonlimiting examples of suitable supports for use with the catalyst in the shift/reproportionation reactor are silica, titania, zirconia or low surface area alumina, preferably having a specific surface area less than about 50 m2/g.
The catalyst is loaded and dispersed upon a suitable support to yield high activity in a cost effective manner as will be evident to a skilled artisan. For example, it is preferred to use a loading of from about 0.1 wt % to about 1 wt % and more preferably from about 0.3 wt % to about 0.5 wt % when platinum is employed as the catalyst in the shift/reproportionation reactor bed, while a loading of from about 1 wt % to about 10 wt % and more preferably 3 wt % to about 10 wt % is employed when palladium is employed as the catalyst. In the case of the preferred non-noble metals such as iron, molybdenum, vanadium or mixtures thereof with higher loadings in the range of about 10% to about 20% or greater (as metal oxide) are cost-effective. When using a catalyst in the shift/reproportionation reactor 26, it is preferred to operate the reactor 26 at from about 200° C. to about 500° C., more preferably from about 300° C. to about 400° C. The residence time of the reactants in the shift/reproportionation reactor 26 necessary to achieve the desired selectivity to mono-brominated alkanes is relatively short and may be as little as 2 to 8 seconds.
The effluent 27 from shift/reproportionation reactor which contains alkyl bromides having a significantly increased ratio of mono-brominated alkanes to di- or tri-brominated alkanes may be cooled or heated by any suitable means, such as a heat exchanger 28, to about 150° C. to about 300° C., more preferably from about 225° C. to about 275° C., before being introduced into a first stage synthesis reactor 32. In the first stage synthesis reactor 32, the alkyl bromides may be reacted exothermically at a temperature range of from about 150° C. to about 300° C., and more preferably from about 225° C. to about 275° C., and at a pressure in the range of about 1 to about 100 bar, over a suitable catalyst 33 to produce desired hydrocarbons products (e.g., high molecular weight hydrocarbons, olefins or mixtures thereof). It is believed that at these conditions propyl bromide is more reactive than methyl bromide or ethyl bromide over a suitable catalyst thereby preferentially oligomerizing the propyl units thereby forming hydrocarbon products, for example high molecular weight hydrocarbons, olefins or mixtures thereof, that contain a substantial C6+ paraffin content and thus a reduced aromatic content. In the first stage synthesis reactor 32, only a portion of the mono-brominated alkanes present in the alkyl bromides may be converted, and any poly-brominated alkanes which may be present may have a lower propensity to be converted to heavy products or “coke” which deposit on the catalyst, due to the presence of propyl bromide and the lower temperature conditions.
The effluent 34 from the first stage synthesis reactor may be heated by any suitable means, such as a heat exchanger 35, before being introduced into a second stage synthesis reactor 36. Effluent 34 contains hydrocarbon products and unreacted alkyl methyl and ethyl bromides. In the second stage synthesis reactor 36, the methyl and ethyl bromides may be reacted exothermically at a temperature in the range of about 300° C. to about 450° C., and more preferably in the range of about 350° C. to about 425° C., and at a pressure in the range of about 1 to about 100 bar, over a suitable catalyst to produce desired hydrocarbon products (e.g., high molecular weight hydrocarbons, olefins or mixtures thereof). It is believed that at these conditions the methyl bromides and ethyl bromides are reactive over a suitable catalyst to preferentially oligomerize the methyl and ethyl units thereby forming hydrocarbon products, for example high molecular weight hydrocarbons, olefins or mixtures thereof, that contain C7+ fractions having primarily substituted aromatics and also light alkanes primarily in the C3 to C5+ range.
The catalyst 33 and 37 employed in the first and second stage synthesis reactors 32 and 36, respectively, may be any of a variety of suitable materials for catalyzing the conversion of the alkyl bromides to product hydrocarbons as previously set forth. In certain embodiments, the first and second stage synthesis reactors may comprise a fixed bed of the catalyst. A fluidized-bed of synthesis catalyst may also be used in certain circumstances, particularly in larger applications and may have certain advantages, such as constant removal of coke and a steady selectivity to product composition. The particular catalyst used in both the first and second stage synthesis reactors 32 and 36 will depend, for example, upon the particular product hydrocarbons that are desired. For example, when product hydrocarbons having primarily C3, C4 and C5+ gasoline-range paraffinic compounds and heavier hydrocarbon fractions are desired, a ZSM-5 zeolite catalyst may be used. When it is desired to produce product hydrocarbons comprising a mixture of olefins and C5+ products, an X-type or Y-type zeolite catalyst or SAPO zeolite catalyst may be used. Examples of suitable zeolites include an X-type, such as 10-X, or Y-type zeolite, although other zeolites with differing pore sizes and acidities, may be used in embodiments of the present invention. The catalyst used in the first and second stage synthesis reactors 32 and 36 need not be identical so long as the catalyst used in both reactors are selected to form the similar products, e.g. selected to form hydrocarbons having primarily C3, C4 and C5+ gasoline-range paraffinic compounds and heavier hydrocarbon fractions.
The effluent 38 from the second stage synthesis reactor 36 may be cooled by suitable means such as heat exchanger 39 to recover heat for use elsewhere in the process, such as to produce steam or preheat feed to the process (not shown) or for other uses as determined by the skilled artisan, and then conveyed to a product separation stage 40. Hydrogen bromide may be removed from the hydrocarbon product, e.g. high molecular weight hydrocarbons, olefins or mixtures thereof, in the product separation stage and a stream 42 of separated hydrogen bromide may be conveyed to a bromide oxidation stage 44 wherein hydrogen bromide may be neutralized by a partially oxidized metal bromide salt to yield a metal bromide salt and steam. A stream 46 of oxygen or air may be introduced to the bromide oxidation stage 44 of the present invention to contact the resultant metal bromide salt so as to yield elemental bromine. A stream 48 of bromine may be recycled to the bromination stage as a dry bromine vapor and a partially oxidized metal bromide salt which may be used to neutralize and remove additional hydrogen bromide from the hydrocarbons produced by the process. The steam resulting from oxidation of the HBr with the partially oxidized metal bromide salt may be condensed, stripped of any residual bromine and withdrawn as a byproduct liquid water stream 49.
The first stage synthesis reactor 32 and the second stage synthesis reactor 36 of the process embodiments illustrated in
A block flow diagram generally depicting some aspects of certain embodiments of the processes and systems of the present invention is illustrated in
A separate stream 50 of predominately C3+ alkyl bromides which are used as a feed to the first synthesis reactor 52 in the embodiments depicted in
As previously mentioned, the particular catalyst used in both the first and second synthesis reactors 52 and 57 of
A block flow diagram generally depicting some aspects of certain embodiments of the processes and systems of the present invention is illustrated in
The C1+ stream 62 may be combined with a bromine stream 88 prior to, upon introduction into or within at least one C1+ bromination reactor 64. The ratio of methane to bromine that may be utilized in the feed to the C1+ bromination reactor is a function of the C2+ content of the C1+ stream as well as the temperature. Lower C2+ content in the C1+ stream and operation at lower temperatures may allow operation at lower methane to bromine ratios.
Hence with the appropriate control of the C2+ content of the C1+ stream, the molar ratio of methane to bromine in the feed to the C1+ bromination reactor 64 is less than about 7 to 1 but greater than about 1.25 to 1, and preferably less than about 4 to 1 but greater than about 2 to 1, and more preferably less than or equal to about 3 to 1 but greater than about 2.5 to 1. The C1+ stream 62 and a liquid bromine stream 88 may be mixed and conveyed to a heat exchanger (not illustrated) wherein the mixture is heated to a temperature between about 300° C. to about 550° C., but more preferably in the range of about 450° C. to about 500° C., and wherein the liquid bromine is vaporized and the bromination reaction is initiated.
Further, in some embodiments, the dry bromine vapor in the mixture fed into the C1+ bromination reactor may be substantially water-free. Applicant has discovered that, at least in some instances, this may be preferred because it appears that elimination of substantially all water vapor from the bromination step substantially eliminates the formation of unwanted carbon dioxide. This may increase the selectivity of alkane bromination to alkyl bromides, thus possibly eliminating the large amount of waste heat generated in the formation of carbon dioxide from alkanes.
The heated mixture, containing predominantly methane, acceptable amounts of C2+ lower molecular weight alkane components, and bromine vapor, may be introduced to a C1+ bromination reactor 64 wherein lower molecular weight alkanes, predominantly methane and an acceptable amount of C2+ lower molecular weight alkanes, present in the mixture are thermally brominated. If necessary, the C1+ bromination reactor 64 may contain an inlet pre-heater zone (not illustrated) to ensure that the mixture remains heated to a reaction initiation temperature in the range of about 300° C. to about 550° C. In the case of methane, the formation of methyl bromide is believed to occur in accordance with the following general reaction:
CH4 (g)+Br2 (g)→CH3Br (g)+HBr (g)
Where substantially all of the elemental bromine has been reacted away, the effluent stream 65 from the C1+ bromination reactor 64 is a mixture of alkyl bromides and hydrogen bromide and unreacted lower molecular weight alkanes, predominately methane. The effluent stream 65 may be removed from the C1+ bromination reactor 64 and introduced directly into a high temperature synthesis reactor 68. The C1+ bromination reactor 64 may also contain a catalytic shift zone. The temperature of this feed to the catalytic shift zone may be in the range of about 350° C. to about 570° C., more preferably 500° C. to about 570° C., and most preferably 530° C. to about 570° C. As the C1+ thermal bromination reaction is exothermic, the feed gas and bromine introduced to the C1+ bromination reactor may be heated to a temperature within the about 300° C. to about 550° C. range to ensure that the effluent from the thermal bromination zone of the C1+ bromination reactor 64 is within the desired range for introduction into the catalytic shift zone given the reactor operating conditions of the thermal bromination reactor as will be evident to a skilled artisan. Alternatively, the effluent mixture from the thermal bromination zone or reactor may be heated or cooled to a temperature within the range of about 350° C. to about 570° C. prior to contact with the catalyst employed in the catalytic shift zone by any suitable means (not illustrated) as evident to a skilled artisan.
The catalyst useful in the catalytic shift zone of the C1+ bromination reactor in the embodiment of the processes of the present invention illustrated generally in
While the catalyst may be initially prepared as a metal bromide dispersed on a catalyst support, it is generally more common to disperse a metal oxide by an incipient wetness technique utilizing a metal nitrate solution precursor, followed by drying and calcination at high-temperature in air or other oxidizing gas mixture. Further, as many metal bromide salts are hygroscopic, handling, storage and transport may require special measures. Accordingly the catalyst used in the catalytic shift zone may be most practically, commercially available in only the metal oxide state. Such a metal oxide catalyst may be initially employed in the catalytic shift zone within reactor 64 of
In the catalytic shift zone, a significant portion of the di- and tri- brominated alkanes that may be present in the alkyl bromides contained in the effluent from the thermal bromination zone may be selectively converted upon reaction with the unreacted alkane components, predominantly methane, present in the feed, to mono-brominated alkanes. As an example, where C1 and di-bromomethane are the reactants, it is believed that the conversion occurs in accordance with the following general reaction:
CH4+CH2Br2→2CH3Br
Due to the high temperatures in the both the thermal and catalytic zones, elemental bromine is likely to be essentially completely converted. It is believed that the catalyst used in the catalytic shift zone or reactor promotes a selective reaction of di-bromomethane with methane to yield methyl bromide via a selective catalytic reaction of bromine (supplied by dissociative adsorption of di-bromomethane on the catalyst surface) with methane. The effluent from the catalytic shift zone of the C1+ bromination reactor which contains a significantly increased ratio of mono-brominated alkanes to di- or tri-brominated alkanes may then be transported to a high temperature synthesis reactor 68. While the thermal and catalytic shift zones have been described above as contained within a single C1+ bromination reactor 64, these zones can each be contained in at least two separate reactors arranged in series as will be evident to a skilled artisan.
The effluent stream 65 from the C1+ bromination reactor may be cooled or heated by any suitable means, such as a heat exchanger 66, before being introduced into a high temperature synthesis reactor 68. In the high temperature synthesis reactor, the methyl and ethyl bromides may be reacted exothermically at a temperature in the range of about 300° C. to about 450° C., and more preferably in the range of about 350° C. to about 425° C., and at a pressure in the range of about 1 to about 100 bar, over a suitable catalyst to produce a stream 67 of desired hydrocarbon products (e.g., high molecular weight hydrocarbons, olefins or mixtures thereof). It is believed that at these conditions the methyl bromides and ethyl bromides are reactive over a suitable catalyst to preferentially oligomerize the methyl and ethyl units thereby forming hydrocarbon products, for example high molecular weight hydrocarbons, olefins or mixtures thereof, that contain C7+ fractions having primarily substituted aromatics and also light alkanes primarily in the C3 to C5+ range.
A stream 70 of C2+ components may be produced by the process or contained in the feed gas which are removed in the product separation unit 80 so that the feed to the C1+ thermal bromination contains an acceptable amount of C2+. The excess C2+ and in particular C3+ may be separately processed in a C2+ thermal bromination reactor 72 using a slip stream 89 of the liquid bromine feed. The C2+ thermal bromination reactor 72 operates at an alkane to bromine ratio of in the range of about 4 to 1 to about 1.25 to 1, and preferably in the range of about 2 to 1 to about 1.5 to 1 and at a temperature in the range of about 250° C. to 550° C.
The effluent 73 from the C2+ thermal bromination reactor contains various alkyl bromides and hydrogen bromide may be cooled or heated by any suitable means, such as a heat exchanger 74, to about 150° C. to about 300° C., more preferably from about 225° C. to about 275° C., before being introduced into to a low temperature synthesis reactor 76. In the low temperature synthesis reactor, the alkyl bromides may be reacted exothermically at a temperature range of from about 150° C. to about 300° C., and more preferably from about 225° C. to about 275° C., and at a pressure in the range of about 1 to about 100 bar, over a suitable catalyst 77 to produce desired hydrocarbons products (e.g., high molecular weight hydrocarbons, olefins or mixtures thereof). It is believed that at these conditions propyl bromide is more reactive than methyl bromide or ethyl bromide over a suitable catalyst thereby preferentially oligomerizing the propyl units thereby forming hydrocarbons products, for example high molecular weight hydrocarbons, olefins or mixtures thereof, that contain a substantial C6+ paraffin content and thus a reduced aromatic content. In the first stage synthesis reactor, only a portion of the mono-brominated alkanes present in the alkyl bromides may be converted, and any poly-brominated alkanes which may be present may have a lower propensity to be converted to heavy products or “coke” which deposit on the catalyst, due to the presence of propyl bromide and the lower temperature conditions.
The catalyst 77 and 69 employed in the low temperature and high temperature synthesis reactors 76 and 68, respectively, may be any of a variety of suitable materials for catalyzing the conversion of the alkyl bromides to product hydrocarbons as previously set forth. In certain embodiments, the low temperature and high temperature synthesis reactors may comprise a fixed bed of the catalyst. A fluidized-bed of synthesis catalyst may also be used in certain circumstances, particularly in larger applications and may have certain advantages, such as constant removal of coke and a steady selectivity to product composition. The particular catalyst used in both the low temperature and high temperature synthesis reactors will depend, for example, upon the particular product hydrocarbons that are desired. For example, when product hydrocarbons having primarily C3, C4 and C5+ gasoline-range paraffinic compounds and heavier hydrocarbon fractions are desired, a ZSM-5 zeolite catalyst may be used. When it is desired to produce product hydrocarbons comprising a mixture of olefins and C5+ products, an X-type or Y-type zeolite catalyst or SAPO zeolite catalyst may be used. Examples of suitable zeolites include an X-type, such as 10-X, or Y-type zeolite, although other zeolites with differing pore sizes and acidities, may be used in embodiments of the present invention. The catalyst used in the low temperature and high temperature synthesis reactors need not be identical so long as the catalyst used in both reactors are selected to form the similar products, e.g. selected to form hydrocarbons having primarily C3, C4 and C5+ gasoline-range paraffinic compounds and heavier hydrocarbon fractions.
The effluent streams 78 and 67 from the low temperature and the high temperature synthesis reactors 76 and 68, respectively, may be combined into one synthesis effluent stream 79 and cooled by suitable means such as heat exchanger 71 to recover heat for use elsewhere in the process, such as to produce steam or preheat feed to the process (not shown) or for other uses as determined by the skilled artisan, and then conveyed to a product separation stage 80. Hydrogen bromide may be removed from the hydrocarbon product, e.g. high molecular weight hydrocarbons, olefins or mixtures thereof, and a stream 82 of hydrogen bromide may be conveyed to a bromide oxidation stage 84 wherein hydrogen bromide may be neutralized by a partially oxidized metal bromide salt to yield a metal bromide salt and steam. A stream 86 of oxygen or air may be introduced to the bromide oxidation stage 84 to contact the resultant metal bromide so as to yield elemental bromine. A stream 88 of bromine may be recycled to the bromination stage as a dry bromine vapor and a partially oxidized metal bromide salt which may be used to neutralize and remove additional hydrogen bromide from the hydrocarbons produced by the process. The steam produced from the oxidation of the HBr with partially oxidized metal bromide salt may be condensed, stripped of any residual bromine, and removed as a byproduct liquid water product 87.
A block flow diagram generally depicting some aspects of certain embodiments of the processes and systems of the present invention is illustrated in
Where a feed gas contains a substantial amount of gases suitable for use as liquefied petroleum gas (LPG), such LPG may be separated from the feed gas for use as an end product or as an intermediate feedstock for another process. Alternatively, it may be desirable to convert such LPG to product hydrocarbons, for example C5+ gasoline-range paraffinic compounds and heavier hydrocarbon fractions, which may have greater value and use. The block flow diagrams generally depicting some aspects of certain embodiments of the present invention illustrated in
While the foregoing preferred embodiments of the invention have been described and shown, it is understood that the alternatives and modifications, such as those suggested and others, may be made thereto and fall within the scope of the invention.
Number | Name | Date | Kind |
---|---|---|---|
2168260 | Heisel et al. | Aug 1939 | A |
2246082 | Vaughan et al. | Jun 1941 | A |
2488083 | Gorin et al. | Nov 1949 | A |
2536457 | Mugdan | Jan 1951 | A |
2677598 | Crummett et al. | May 1954 | A |
2941014 | Rothweiler et al. | Jun 1960 | A |
3076784 | Schulte-Huemann et al. | Feb 1963 | A |
3172915 | Borkowski et al. | Mar 1965 | A |
3246043 | Rosset et al. | Apr 1966 | A |
3254023 | Miale et al. | May 1966 | A |
3273964 | Rosset | Sep 1966 | A |
3291708 | Juda | Dec 1966 | A |
3294846 | Livak et al. | Dec 1966 | A |
3310380 | Lester | Mar 1967 | A |
3346340 | Louvar et al. | Oct 1967 | A |
3353916 | Lester | Nov 1967 | A |
3353919 | Stockman | Nov 1967 | A |
3379506 | Massonne et al. | Apr 1968 | A |
3496242 | Berkowitz et al. | Feb 1970 | A |
3562321 | Borkowski et al. | Feb 1971 | A |
3598876 | Bloch | Aug 1971 | A |
3657367 | Blake et al. | Apr 1972 | A |
3670037 | Dugan | Jun 1972 | A |
3673264 | Kuhn | Jun 1972 | A |
3679758 | Schneider | Jul 1972 | A |
3702886 | Argauer et al. | Nov 1972 | A |
3705196 | Turner | Dec 1972 | A |
3799997 | Schmerling | Mar 1974 | A |
3865886 | Schindler et al. | Feb 1975 | A |
3876715 | McNulty et al. | Apr 1975 | A |
3879473 | Stapp | Apr 1975 | A |
3879480 | Riegel et al. | Apr 1975 | A |
3883651 | Woitun et al. | May 1975 | A |
3886287 | Kobayashi et al. | May 1975 | A |
3894103 | Chang et al. | Jul 1975 | A |
3894104 | Chang et al. | Jul 1975 | A |
3894105 | Chang et al. | Jul 1975 | A |
3894107 | Butter et al. | Jul 1975 | A |
3907917 | Forth | Sep 1975 | A |
3919336 | Kurtz | Nov 1975 | A |
3920764 | Riegel et al. | Nov 1975 | A |
3923913 | Antonini et al. | Dec 1975 | A |
3928483 | Chang et al. | Dec 1975 | A |
3965205 | Garwood et al. | Jun 1976 | A |
3974062 | Owen et al. | Aug 1976 | A |
3987119 | Kurtz et al. | Oct 1976 | A |
3992466 | Plank et al. | Nov 1976 | A |
4006169 | Anderson et al. | Feb 1977 | A |
4011278 | Plank et al. | Mar 1977 | A |
4025571 | Lago | May 1977 | A |
4025572 | Lago | May 1977 | A |
4025575 | Chang et al. | May 1977 | A |
4025576 | Chang et al. | May 1977 | A |
4035285 | Owen et al. | Jul 1977 | A |
4035430 | Dwyer et al. | Jul 1977 | A |
4039600 | Chang | Aug 1977 | A |
4044061 | Chang et al. | Aug 1977 | A |
4046825 | Owen et al. | Sep 1977 | A |
4049734 | Garwood et al. | Sep 1977 | A |
4052471 | Pearsall | Oct 1977 | A |
4052472 | Givens et al. | Oct 1977 | A |
4058576 | Chang et al. | Nov 1977 | A |
4060568 | Rodewald | Nov 1977 | A |
4071753 | Fulenwider et al. | Jan 1978 | A |
4072733 | Hargis et al. | Feb 1978 | A |
4087475 | Jordan | May 1978 | A |
4088706 | Kaeding | May 1978 | A |
4092368 | Smith | May 1978 | A |
4105755 | Darnell et al. | Aug 1978 | A |
4110180 | Nidola et al. | Aug 1978 | A |
4117251 | Kaufhold et al. | Sep 1978 | A |
4129604 | Tsao | Dec 1978 | A |
4133838 | Pearson | Jan 1979 | A |
4133966 | Pretzer et al. | Jan 1979 | A |
4138440 | Chang et al. | Feb 1979 | A |
4143084 | Kaeding et al. | Mar 1979 | A |
4156698 | Dwyer et al. | May 1979 | A |
4169862 | Eden | Oct 1979 | A |
4172099 | Severino | Oct 1979 | A |
4187255 | Dodd | Feb 1980 | A |
4191618 | Coker et al. | Mar 1980 | A |
4194990 | Pieters et al. | Mar 1980 | A |
4197420 | Ferraris et al. | Apr 1980 | A |
4219680 | Konig et al. | Aug 1980 | A |
4249031 | Drent et al. | Feb 1981 | A |
4252687 | Dale et al. | Feb 1981 | A |
4270929 | Dang Vu et al. | Jun 1981 | A |
4272338 | Lynch et al. | Jun 1981 | A |
4282159 | Davidson et al. | Aug 1981 | A |
4300005 | Li | Nov 1981 | A |
4300009 | Haag et al. | Nov 1981 | A |
4301253 | Warren | Nov 1981 | A |
4302619 | Gross et al. | Nov 1981 | A |
4307261 | Beard, Jr. et al. | Dec 1981 | A |
4308403 | Knifton | Dec 1981 | A |
4311865 | Chen et al. | Jan 1982 | A |
4317800 | Sloterdijk et al. | Mar 1982 | A |
4317934 | Seemuth | Mar 1982 | A |
4317943 | Knifton | Mar 1982 | A |
4320241 | Frankiewicz | Mar 1982 | A |
4333852 | Warren | Jun 1982 | A |
4347391 | Campbell | Aug 1982 | A |
4350511 | Holmes et al. | Sep 1982 | A |
4356159 | Norval et al. | Oct 1982 | A |
4371716 | Paxson et al. | Feb 1983 | A |
4373109 | Olah | Feb 1983 | A |
4376019 | Gamlen et al. | Mar 1983 | A |
4380682 | Leitert et al. | Apr 1983 | A |
4384159 | Diesen | May 1983 | A |
4389391 | Dunn, Jr. | Jun 1983 | A |
4410714 | Apanel | Oct 1983 | A |
4412086 | Beard, Jr. et al. | Oct 1983 | A |
4418236 | Cornelius et al. | Nov 1983 | A |
4431856 | Daviduk et al. | Feb 1984 | A |
4433189 | Young | Feb 1984 | A |
4433192 | Olah | Feb 1984 | A |
4439409 | Puppe et al. | Mar 1984 | A |
4440871 | Lok et al. | Apr 1984 | A |
4443620 | Gelbein et al. | Apr 1984 | A |
4462814 | Holmes et al. | Jul 1984 | A |
4465884 | Degnan et al. | Aug 1984 | A |
4465893 | Olah | Aug 1984 | A |
4467130 | Olah | Aug 1984 | A |
4467133 | Chang et al. | Aug 1984 | A |
4489210 | Judat et al. | Dec 1984 | A |
4489211 | Ogura et al. | Dec 1984 | A |
4492657 | Heiss | Jan 1985 | A |
4496752 | Gelbein et al. | Jan 1985 | A |
4497967 | Wan | Feb 1985 | A |
4499314 | Seddon et al. | Feb 1985 | A |
4506105 | Kaufhold | Mar 1985 | A |
4509955 | Hayashi | Apr 1985 | A |
4513092 | Chu et al. | Apr 1985 | A |
4513164 | Olah | Apr 1985 | A |
4523040 | Olah | Jun 1985 | A |
4524227 | Fowles et al. | Jun 1985 | A |
4524228 | Fowles et al. | Jun 1985 | A |
4524231 | Fowles et al. | Jun 1985 | A |
4538014 | Miale et al. | Aug 1985 | A |
4538015 | Miale et al. | Aug 1985 | A |
4540826 | Banasiak et al. | Sep 1985 | A |
4543434 | Chang | Sep 1985 | A |
4544781 | Chao et al. | Oct 1985 | A |
4547612 | Tabak | Oct 1985 | A |
4550217 | Graziani et al. | Oct 1985 | A |
4550218 | Chu | Oct 1985 | A |
4568660 | Klosiewicz | Feb 1986 | A |
4579977 | Drake | Apr 1986 | A |
4579992 | Kaufhold et al. | Apr 1986 | A |
4579996 | Font Freide et al. | Apr 1986 | A |
4587375 | Debras et al. | May 1986 | A |
4588835 | Torii et al. | May 1986 | A |
4590310 | Townsend et al. | May 1986 | A |
4599474 | Devries et al. | Jul 1986 | A |
4605796 | Isogai et al. | Aug 1986 | A |
4605803 | Chang et al. | Aug 1986 | A |
4621161 | Shihabi | Nov 1986 | A |
4621164 | Chang et al. | Nov 1986 | A |
4633027 | Owen et al. | Dec 1986 | A |
4634800 | Withers, Jr. et al. | Jan 1987 | A |
4642403 | Hyde et al. | Feb 1987 | A |
4642404 | Shihabi | Feb 1987 | A |
4652688 | Brophy et al. | Mar 1987 | A |
4654449 | Chang et al. | Mar 1987 | A |
4655893 | Beale | Apr 1987 | A |
4658073 | Tabak | Apr 1987 | A |
4658077 | Kolts et al. | Apr 1987 | A |
4665259 | Brazdil et al. | May 1987 | A |
4665267 | Barri | May 1987 | A |
4665270 | Brophy et al. | May 1987 | A |
4675410 | Feitler et al. | Jun 1987 | A |
4690903 | Chen et al. | Sep 1987 | A |
4695663 | Hall et al. | Sep 1987 | A |
4696985 | Martin | Sep 1987 | A |
4704488 | Devries et al. | Nov 1987 | A |
4704493 | Devries et al. | Nov 1987 | A |
4709108 | Devries et al. | Nov 1987 | A |
4720600 | Beech, Jr. et al. | Jan 1988 | A |
4720602 | Chu | Jan 1988 | A |
4724275 | Hinnenkamp et al. | Feb 1988 | A |
4735747 | Ollivier et al. | Apr 1988 | A |
4737594 | Olah | Apr 1988 | A |
4748013 | Saito et al. | May 1988 | A |
4762596 | Huang et al. | Aug 1988 | A |
4769504 | Noceti et al. | Sep 1988 | A |
4774216 | Kolts et al. | Sep 1988 | A |
4775462 | Imai et al. | Oct 1988 | A |
4777321 | Harandi et al. | Oct 1988 | A |
4781733 | Babcock et al. | Nov 1988 | A |
4783566 | Kocal et al. | Nov 1988 | A |
4788369 | Marsh et al. | Nov 1988 | A |
4788377 | Chang et al. | Nov 1988 | A |
4792642 | Rule et al. | Dec 1988 | A |
4795732 | Barri | Jan 1989 | A |
4795737 | Rule et al. | Jan 1989 | A |
4795843 | Imai et al. | Jan 1989 | A |
4795848 | Teller et al. | Jan 1989 | A |
4804797 | Minet et al. | Feb 1989 | A |
4804800 | Bortinger et al. | Feb 1989 | A |
4808763 | Shum | Feb 1989 | A |
4814527 | Diesen | Mar 1989 | A |
4814532 | Yoshida et al. | Mar 1989 | A |
4814535 | Yurchak | Mar 1989 | A |
4814536 | Yurchak | Mar 1989 | A |
4849562 | Buhs et al. | Jul 1989 | A |
4849573 | Kaeding | Jul 1989 | A |
4851602 | Harandi et al. | Jul 1989 | A |
4851606 | Ragonese et al. | Jul 1989 | A |
4886925 | Harandi | Dec 1989 | A |
4886932 | Leyshon | Dec 1989 | A |
4891463 | Chu | Jan 1990 | A |
4895995 | James, Jr. et al. | Jan 1990 | A |
4899000 | Stauffer | Feb 1990 | A |
4899001 | Kalnes et al. | Feb 1990 | A |
4899002 | Harandi et al. | Feb 1990 | A |
4902842 | Kalnes et al. | Feb 1990 | A |
4925995 | Robschlager | May 1990 | A |
4929781 | James, Jr. et al. | May 1990 | A |
4939310 | Wade | Jul 1990 | A |
4939311 | Washecheck et al. | Jul 1990 | A |
4939314 | Harandi et al. | Jul 1990 | A |
4945175 | Hobbs et al. | Jul 1990 | A |
4950811 | Doussain et al. | Aug 1990 | A |
4950822 | Dileo et al. | Aug 1990 | A |
4956521 | Volles | Sep 1990 | A |
4962252 | Wade | Oct 1990 | A |
4973776 | Allenger et al. | Nov 1990 | A |
4973786 | Karra | Nov 1990 | A |
4982024 | Lin et al. | Jan 1991 | A |
4982041 | Campbell | Jan 1991 | A |
4988660 | Campbell | Jan 1991 | A |
4990696 | Stauffer | Feb 1991 | A |
4990711 | Chen et al. | Feb 1991 | A |
5001293 | Nubel et al. | Mar 1991 | A |
5004847 | Beaver et al. | Apr 1991 | A |
5013424 | James, Jr. et al. | May 1991 | A |
5013793 | Wang et al. | May 1991 | A |
5019652 | Taylor et al. | May 1991 | A |
5026934 | Bains et al. | Jun 1991 | A |
5026937 | Bricker | Jun 1991 | A |
5026944 | Allenger et al. | Jun 1991 | A |
5034566 | Ishino et al. | Jul 1991 | A |
5043502 | Martindale et al. | Aug 1991 | A |
5055235 | Brackenridge et al. | Oct 1991 | A |
5055625 | Neidiffer et al. | Oct 1991 | A |
5055633 | Volles | Oct 1991 | A |
5055634 | Volles | Oct 1991 | A |
5059744 | Harandi et al. | Oct 1991 | A |
5068478 | Miller et al. | Nov 1991 | A |
5071449 | Sircar | Dec 1991 | A |
5071815 | Wallace et al. | Dec 1991 | A |
5073656 | Chafin et al. | Dec 1991 | A |
5073657 | Warren | Dec 1991 | A |
5082473 | Keefer | Jan 1992 | A |
5082816 | Teller et al. | Jan 1992 | A |
5085674 | Leavitt | Feb 1992 | A |
5087779 | Nubel et al. | Feb 1992 | A |
5087786 | Nubel et al. | Feb 1992 | A |
5087787 | Kimble et al. | Feb 1992 | A |
5093533 | Wilson | Mar 1992 | A |
5093542 | Gaffney | Mar 1992 | A |
5096469 | Keefer | Mar 1992 | A |
5097083 | Stauffer | Mar 1992 | A |
5099084 | Stauffer | Mar 1992 | A |
5105045 | Kimble et al. | Apr 1992 | A |
5105046 | Washecheck | Apr 1992 | A |
5107032 | Erb et al. | Apr 1992 | A |
5107051 | Pannell | Apr 1992 | A |
5107061 | Ou et al. | Apr 1992 | A |
5108579 | Casci | Apr 1992 | A |
5118899 | Kimble et al. | Jun 1992 | A |
5120332 | Wells | Jun 1992 | A |
5132343 | Zwecker et al. | Jul 1992 | A |
5138112 | Gosling et al. | Aug 1992 | A |
5139991 | Taylor et al. | Aug 1992 | A |
5146027 | Gaffney | Sep 1992 | A |
5157189 | Karra | Oct 1992 | A |
5160502 | Kimble et al. | Nov 1992 | A |
5166452 | Gradl et al. | Nov 1992 | A |
5175382 | Hebgen et al. | Dec 1992 | A |
5178748 | Casci et al. | Jan 1993 | A |
5185479 | Stauffer | Feb 1993 | A |
5188725 | Harandi | Feb 1993 | A |
5191142 | Marshall et al. | Mar 1993 | A |
5194244 | Brownscombe et al. | Mar 1993 | A |
5202506 | Kirchner et al. | Apr 1993 | A |
5202511 | Salinas, III et al. | Apr 1993 | A |
5208402 | Wilson | May 1993 | A |
5210357 | Kolts et al. | May 1993 | A |
5215648 | Zones et al. | Jun 1993 | A |
5223471 | Washecheck | Jun 1993 | A |
5228888 | Gmelin et al. | Jul 1993 | A |
5233113 | Periana et al. | Aug 1993 | A |
5237115 | Makovec et al. | Aug 1993 | A |
5243098 | Miller et al. | Sep 1993 | A |
5243114 | Johnson et al. | Sep 1993 | A |
5245109 | Kaminsky et al. | Sep 1993 | A |
5254772 | Dukat et al. | Oct 1993 | A |
5254790 | Thomas et al. | Oct 1993 | A |
5264635 | Le et al. | Nov 1993 | A |
5268518 | West et al. | Dec 1993 | A |
5276226 | Horvath et al. | Jan 1994 | A |
5276240 | Timmons et al. | Jan 1994 | A |
5276242 | Wu | Jan 1994 | A |
5284990 | Peterson et al. | Feb 1994 | A |
5300126 | Brown et al. | Apr 1994 | A |
5306855 | Periana et al. | Apr 1994 | A |
5316995 | Kaminsky et al. | May 1994 | A |
5319132 | Ozawa et al. | Jun 1994 | A |
5334777 | Miller et al. | Aug 1994 | A |
5345021 | Casci et al. | Sep 1994 | A |
5354916 | Horvath et al. | Oct 1994 | A |
5354931 | Jan et al. | Oct 1994 | A |
5366949 | Schubert | Nov 1994 | A |
5371313 | Ostrowicki | Dec 1994 | A |
5382704 | Krespan et al. | Jan 1995 | A |
5382743 | Beech, Jr. et al. | Jan 1995 | A |
5382744 | Abbott et al. | Jan 1995 | A |
5385650 | Howarth et al. | Jan 1995 | A |
5385718 | Casci et al. | Jan 1995 | A |
5395981 | Marker | Mar 1995 | A |
5399258 | Fletcher et al. | Mar 1995 | A |
5401890 | Parks | Mar 1995 | A |
5401894 | Brasier et al. | Mar 1995 | A |
5406017 | Withers, Jr. | Apr 1995 | A |
5411641 | Trainham, III et al. | May 1995 | A |
5414173 | Garces et al. | May 1995 | A |
5430210 | Grasselli et al. | Jul 1995 | A |
5430214 | Smith et al. | Jul 1995 | A |
5430219 | Sanfilippo et al. | Jul 1995 | A |
5433828 | van Velzen et al. | Jul 1995 | A |
5436378 | Masini et al. | Jul 1995 | A |
5444168 | Brown | Aug 1995 | A |
5446234 | Casci et al. | Aug 1995 | A |
5453557 | Harley et al. | Sep 1995 | A |
5456822 | Marcilly et al. | Oct 1995 | A |
5457255 | Kumata et al. | Oct 1995 | A |
5464799 | Casci et al. | Nov 1995 | A |
5465699 | Voigt | Nov 1995 | A |
5470377 | Whitlock | Nov 1995 | A |
5480629 | Thompson et al. | Jan 1996 | A |
5486627 | Quarderer, Jr. et al. | Jan 1996 | A |
5489719 | Le et al. | Feb 1996 | A |
5489727 | Randolph et al. | Feb 1996 | A |
5500297 | Thompson et al. | Mar 1996 | A |
5510525 | Sen et al. | Apr 1996 | A |
5523503 | Funk et al. | Jun 1996 | A |
5525230 | Wrigley et al. | Jun 1996 | A |
5538540 | Whitlock | Jul 1996 | A |
5563313 | Chung et al. | Oct 1996 | A |
5565092 | Pannell et al. | Oct 1996 | A |
5565616 | Li et al. | Oct 1996 | A |
5571762 | Clerici et al. | Nov 1996 | A |
5571885 | Chung et al. | Nov 1996 | A |
5599381 | Whitlock | Feb 1997 | A |
5600043 | Johnston et al. | Feb 1997 | A |
5600045 | Van Der Aalst et al. | Feb 1997 | A |
5609654 | Le et al. | Mar 1997 | A |
5633419 | Spencer et al. | May 1997 | A |
5639930 | Penick | Jun 1997 | A |
5653956 | Zones | Aug 1997 | A |
5656149 | Zones et al. | Aug 1997 | A |
5661097 | Spencer et al. | Aug 1997 | A |
5663465 | Clegg et al. | Sep 1997 | A |
5663474 | Pham et al. | Sep 1997 | A |
5675046 | Ohno et al. | Oct 1997 | A |
5675052 | Menon et al. | Oct 1997 | A |
5679134 | Brugerolle et al. | Oct 1997 | A |
5679879 | Mercier et al. | Oct 1997 | A |
5684213 | Nemphos et al. | Nov 1997 | A |
5693191 | Pividal et al. | Dec 1997 | A |
5695890 | Thompson et al. | Dec 1997 | A |
5698747 | Godwin et al. | Dec 1997 | A |
5705712 | Frey et al. | Jan 1998 | A |
5705728 | Viswanathan et al. | Jan 1998 | A |
5705729 | Huang | Jan 1998 | A |
5708246 | Camaioni et al. | Jan 1998 | A |
5720858 | Noceti et al. | Feb 1998 | A |
5728897 | Buysch et al. | Mar 1998 | A |
5728905 | Clegg et al. | Mar 1998 | A |
5734073 | Chambers et al. | Mar 1998 | A |
5741949 | Mack | Apr 1998 | A |
5744669 | Kalnes et al. | Apr 1998 | A |
5750801 | Buysch et al. | May 1998 | A |
5770175 | Zones | Jun 1998 | A |
5776871 | Cothran et al. | Jul 1998 | A |
5780703 | Chang et al. | Jul 1998 | A |
5782936 | Riley | Jul 1998 | A |
5798314 | Spencer et al. | Aug 1998 | A |
5814715 | Chen et al. | Sep 1998 | A |
5817904 | Vic et al. | Oct 1998 | A |
5821394 | Schoebrechts et al. | Oct 1998 | A |
5847224 | Koga et al. | Dec 1998 | A |
5849978 | Benazzi et al. | Dec 1998 | A |
5866735 | Cheung et al. | Feb 1999 | A |
5882614 | Taylor, Jr. et al. | Mar 1999 | A |
5895831 | Brasier et al. | Apr 1999 | A |
5898086 | Harris | Apr 1999 | A |
5905169 | Jacobson | May 1999 | A |
5906892 | Thompson et al. | May 1999 | A |
5908963 | Voss et al. | Jun 1999 | A |
5928488 | Newman | Jul 1999 | A |
5952538 | Vaughn et al. | Sep 1999 | A |
5959170 | Withers, Jr. | Sep 1999 | A |
5968236 | Bassine | Oct 1999 | A |
5969195 | Stabel et al. | Oct 1999 | A |
5977402 | Sekiguchi et al. | Nov 1999 | A |
5983476 | Eshelman et al. | Nov 1999 | A |
5986158 | Van Broekhoven et al. | Nov 1999 | A |
5994604 | Reagen et al. | Nov 1999 | A |
5998679 | Miller | Dec 1999 | A |
5998686 | Clem et al. | Dec 1999 | A |
6002059 | Hellring et al. | Dec 1999 | A |
6015867 | Fushimi et al. | Jan 2000 | A |
6018088 | Olah | Jan 2000 | A |
6022929 | Chen et al. | Feb 2000 | A |
6034288 | Scott et al. | Mar 2000 | A |
6056804 | Keefer et al. | May 2000 | A |
6068679 | Zheng | May 2000 | A |
6072091 | Cosyns et al. | Jun 2000 | A |
6087294 | Klabunde et al. | Jul 2000 | A |
6090312 | Ziaka et al. | Jul 2000 | A |
6093306 | Hanrahan et al. | Jul 2000 | A |
6096932 | Subramanian | Aug 2000 | A |
6096933 | Cheung et al. | Aug 2000 | A |
6103215 | Zones et al. | Aug 2000 | A |
6107561 | Thompson | Aug 2000 | A |
6117371 | Mack | Sep 2000 | A |
6124514 | Emmrich et al. | Sep 2000 | A |
6127588 | Kimble et al. | Oct 2000 | A |
6130260 | Hall et al. | Oct 2000 | A |
6143939 | Farcasiu et al. | Nov 2000 | A |
6169218 | Hearn et al. | Jan 2001 | B1 |
6180841 | Fatutto et al. | Jan 2001 | B1 |
6187871 | Thompson et al. | Feb 2001 | B1 |
6187983 | Sun | Feb 2001 | B1 |
6203712 | Bronner et al. | Mar 2001 | B1 |
6207864 | Henningsen et al. | Mar 2001 | B1 |
6225517 | Nascimento et al. | May 2001 | B1 |
6248218 | Linkous et al. | Jun 2001 | B1 |
6265505 | McConville et al. | Jul 2001 | B1 |
6281405 | Davis et al. | Aug 2001 | B1 |
6320085 | Arvai et al. | Nov 2001 | B1 |
6337063 | Rouleau et al. | Jan 2002 | B1 |
6342200 | Rouleau et al. | Jan 2002 | B1 |
6368490 | Gestermann | Apr 2002 | B1 |
6369283 | Guram et al. | Apr 2002 | B1 |
6372949 | Brown et al. | Apr 2002 | B1 |
6376731 | Evans et al. | Apr 2002 | B1 |
6380328 | McConville et al. | Apr 2002 | B1 |
6380423 | Banning et al. | Apr 2002 | B2 |
6380444 | Bjerrum et al. | Apr 2002 | B1 |
6395945 | Randolph | May 2002 | B1 |
6403840 | Zhou et al. | Jun 2002 | B1 |
6406523 | Connor et al. | Jun 2002 | B1 |
6423211 | Randolph et al. | Jul 2002 | B1 |
6426441 | Randolph et al. | Jul 2002 | B1 |
6426442 | Ichikawa et al. | Jul 2002 | B1 |
6452058 | Schweizer et al. | Sep 2002 | B1 |
6455650 | Lipian et al. | Sep 2002 | B1 |
6462243 | Zhou et al. | Oct 2002 | B1 |
6465696 | Zhou et al. | Oct 2002 | B1 |
6465699 | Grosso | Oct 2002 | B1 |
6472345 | Hintermann et al. | Oct 2002 | B2 |
6472572 | Zhou et al. | Oct 2002 | B1 |
6475463 | Elomari et al. | Nov 2002 | B1 |
6475464 | Rouleau et al. | Nov 2002 | B1 |
6479705 | Murata et al. | Nov 2002 | B2 |
6482997 | Petit-Clair et al. | Nov 2002 | B2 |
6486368 | Zhou et al. | Nov 2002 | B1 |
6491809 | Briot et al. | Dec 2002 | B1 |
6495484 | Holtcamp | Dec 2002 | B1 |
6509485 | Mul et al. | Jan 2003 | B2 |
6511526 | Jagger et al. | Jan 2003 | B2 |
6514319 | Keefer et al. | Feb 2003 | B2 |
6518474 | Sanderson et al. | Feb 2003 | B1 |
6518476 | Culp et al. | Feb 2003 | B1 |
6525228 | Chauvin et al. | Feb 2003 | B2 |
6525230 | Grosso | Feb 2003 | B2 |
6528693 | Gandy et al. | Mar 2003 | B1 |
6538162 | Chang et al. | Mar 2003 | B2 |
6540905 | Elomari | Apr 2003 | B1 |
6545191 | Stauffer | Apr 2003 | B1 |
6547958 | Elomari | Apr 2003 | B1 |
6548040 | Rouleau et al. | Apr 2003 | B1 |
6552241 | Randolph et al. | Apr 2003 | B1 |
6566572 | Okamoto et al. | May 2003 | B2 |
6572829 | Linkous et al. | Jun 2003 | B2 |
6585953 | Roberts et al. | Jul 2003 | B2 |
6616830 | Elomari | Sep 2003 | B2 |
6620757 | McConville et al. | Sep 2003 | B2 |
6632971 | Brown et al. | Oct 2003 | B2 |
6635793 | Mul et al. | Oct 2003 | B2 |
6641644 | Jagger et al. | Nov 2003 | B2 |
6646102 | Boriack et al. | Nov 2003 | B2 |
6669846 | Perriello | Dec 2003 | B2 |
6672572 | Werlen | Jan 2004 | B2 |
6679986 | Da Silva et al. | Jan 2004 | B1 |
6680415 | Gulotty, Jr. et al. | Jan 2004 | B1 |
6692626 | Keefer et al. | Feb 2004 | B2 |
6692723 | Rouleau et al. | Feb 2004 | B2 |
6710213 | Aoki et al. | Mar 2004 | B2 |
6713087 | Tracy et al. | Mar 2004 | B2 |
6713655 | Yilmaz et al. | Mar 2004 | B2 |
RE38493 | Keefer et al. | Apr 2004 | E |
6723808 | Holtcamp | Apr 2004 | B2 |
6727400 | Messier et al. | Apr 2004 | B2 |
6740146 | Simonds | May 2004 | B2 |
6753390 | Ehrman et al. | Jun 2004 | B2 |
6765120 | Weber et al. | Jul 2004 | B2 |
6797845 | Hickman et al. | Sep 2004 | B1 |
6797851 | Martens et al. | Sep 2004 | B2 |
6821924 | Gulotty, Jr. et al. | Nov 2004 | B2 |
6822123 | Stauffer | Nov 2004 | B2 |
6822125 | Lee et al. | Nov 2004 | B2 |
6825307 | Goodall | Nov 2004 | B2 |
6825383 | Dewkar et al. | Nov 2004 | B1 |
6831032 | Spaether | Dec 2004 | B2 |
6838576 | Wicki et al. | Jan 2005 | B1 |
6841063 | Elomari | Jan 2005 | B2 |
6852896 | Stauffer | Feb 2005 | B2 |
6866950 | Connor et al. | Mar 2005 | B2 |
6869903 | Matsunaga | Mar 2005 | B2 |
6875339 | Rangarajan et al. | Apr 2005 | B2 |
6878853 | Tanaka et al. | Apr 2005 | B2 |
6888013 | Paparatto et al. | May 2005 | B2 |
6900363 | Harth et al. | May 2005 | B2 |
6902602 | Keefer et al. | Jun 2005 | B2 |
6903171 | Rhodes et al. | Jun 2005 | B2 |
6909024 | Jones et al. | Jun 2005 | B1 |
6921597 | Keefer et al. | Jul 2005 | B2 |
6933417 | Henley et al. | Aug 2005 | B1 |
6946566 | Yaegashi et al. | Sep 2005 | B2 |
6953868 | Boaen et al. | Oct 2005 | B2 |
6953870 | Yan et al. | Oct 2005 | B2 |
6953873 | Cortright et al. | Oct 2005 | B2 |
6956140 | Ehrenfeld | Oct 2005 | B2 |
6958306 | Holtcamp | Oct 2005 | B2 |
6984763 | Schweizer et al. | Jan 2006 | B2 |
7001872 | Pyecroft et al. | Feb 2006 | B2 |
7002050 | Santiago Fernandez et al. | Feb 2006 | B2 |
7011811 | Elomari | Mar 2006 | B2 |
7019182 | Grosso | Mar 2006 | B2 |
7026145 | Mizrahi et al. | Apr 2006 | B2 |
7026519 | Santiago Fernandez et al. | Apr 2006 | B2 |
7037358 | Babicki et al. | May 2006 | B2 |
7045670 | Johnson et al. | May 2006 | B2 |
7049388 | Boriack et al. | May 2006 | B2 |
7053252 | Boussand et al. | May 2006 | B2 |
7057081 | Allison et al. | Jun 2006 | B2 |
7060865 | Ding et al. | Jun 2006 | B2 |
7064238 | Waycuilis | Jun 2006 | B2 |
7064240 | Ohno et al. | Jun 2006 | B2 |
7067448 | Weitkamp et al. | Jun 2006 | B1 |
7083714 | Elomari | Aug 2006 | B2 |
7084308 | Stauffer | Aug 2006 | B1 |
7091270 | Zilberman et al. | Aug 2006 | B2 |
7091387 | Fong et al. | Aug 2006 | B2 |
7091391 | Stauffer | Aug 2006 | B2 |
7094936 | Owens et al. | Aug 2006 | B1 |
7098371 | Mack et al. | Aug 2006 | B2 |
7105710 | Boons et al. | Sep 2006 | B2 |
7138534 | Forlin et al. | Nov 2006 | B2 |
7141708 | Marsella et al. | Nov 2006 | B2 |
7145045 | Harmsen et al. | Dec 2006 | B2 |
7148356 | Smith, III et al. | Dec 2006 | B2 |
7148390 | Zhou et al. | Dec 2006 | B2 |
7151199 | Martens et al. | Dec 2006 | B2 |
7161050 | Sherman et al. | Jan 2007 | B2 |
7169730 | Ma et al. | Jan 2007 | B2 |
7176340 | Van Broekhoven et al. | Feb 2007 | B2 |
7176342 | Bellussi et al. | Feb 2007 | B2 |
7182871 | Perriello | Feb 2007 | B2 |
7193093 | Murray et al. | Mar 2007 | B2 |
7196239 | Van Egmond et al. | Mar 2007 | B2 |
7199083 | Zevallos | Apr 2007 | B2 |
7199255 | Murray et al. | Apr 2007 | B2 |
7208641 | Nagasaki et al. | Apr 2007 | B2 |
7214750 | McDonald et al. | May 2007 | B2 |
7220391 | Huang et al. | May 2007 | B1 |
7226569 | Elomari | Jun 2007 | B2 |
7226576 | Elomari | Jun 2007 | B2 |
7230150 | Grosso et al. | Jun 2007 | B2 |
7230151 | Martens et al. | Jun 2007 | B2 |
7232872 | Shaffer et al. | Jun 2007 | B2 |
7238846 | Janssen et al. | Jul 2007 | B2 |
7244795 | Agapiou et al. | Jul 2007 | B2 |
7244867 | Waycuilis | Jul 2007 | B2 |
7250107 | Benazzi et al. | Jul 2007 | B2 |
7250542 | Smith, Jr. et al. | Jul 2007 | B2 |
7252920 | Kurokawa et al. | Aug 2007 | B2 |
7253327 | Janssens et al. | Aug 2007 | B2 |
7253328 | Stauffer | Aug 2007 | B2 |
7265193 | Weng et al. | Sep 2007 | B2 |
7267758 | Benazzi et al. | Sep 2007 | B2 |
7268263 | Frey et al. | Sep 2007 | B1 |
7271303 | Sechrist et al. | Sep 2007 | B1 |
7273957 | Bakshi et al. | Sep 2007 | B2 |
7282603 | Richards | Oct 2007 | B2 |
7285698 | Liu et al. | Oct 2007 | B2 |
7304193 | Frey et al. | Dec 2007 | B1 |
7342144 | Kaizik et al. | Mar 2008 | B2 |
7348295 | Zones et al. | Mar 2008 | B2 |
7348464 | Waycuilis | Mar 2008 | B2 |
7357904 | Zones et al. | Apr 2008 | B2 |
7361794 | Grosso | Apr 2008 | B2 |
7365102 | Weissman | Apr 2008 | B1 |
7390395 | Elomari | Jun 2008 | B2 |
7560607 | Waycuilis | Jul 2009 | B2 |
7674941 | Waycuilis et al. | Mar 2010 | B2 |
7713510 | Harrod et al. | May 2010 | B2 |
7880041 | Waycuilis | Feb 2011 | B2 |
8008535 | Waycuilis | Aug 2011 | B2 |
20020102672 | Mizrahi et al. | Aug 2002 | A1 |
20020193649 | O'Rear et al. | Dec 2002 | A1 |
20020198416 | Zhou et al. | Dec 2002 | A1 |
20030004380 | Grumann et al. | Jan 2003 | A1 |
20030065239 | Zhu | Apr 2003 | A1 |
20030069452 | Sherman et al. | Apr 2003 | A1 |
20030078456 | Yilmaz et al. | Apr 2003 | A1 |
20030120121 | Sherman et al. | Jun 2003 | A1 |
20030125589 | Grosso | Jul 2003 | A1 |
20030166973 | Zhou et al. | Sep 2003 | A1 |
20040006246 | Sherman et al. | Jan 2004 | A1 |
20040062705 | Leduc | Apr 2004 | A1 |
20040152929 | Clarke | Aug 2004 | A1 |
20040158107 | Aoki | Aug 2004 | A1 |
20040158108 | Snoble | Aug 2004 | A1 |
20040171779 | Matyjaszewski et al. | Sep 2004 | A1 |
20040187684 | Elomari | Sep 2004 | A1 |
20040188324 | Elomari | Sep 2004 | A1 |
20040220433 | Van Der Heide | Nov 2004 | A1 |
20050027084 | Clarke | Feb 2005 | A1 |
20050038310 | Lorkovic et al. | Feb 2005 | A1 |
20050042159 | Elomari | Feb 2005 | A1 |
20050047927 | Lee et al. | Mar 2005 | A1 |
20050148805 | Jones | Jul 2005 | A1 |
20050171393 | Lorkovic | Aug 2005 | A1 |
20050192468 | Sherman et al. | Sep 2005 | A1 |
20050215837 | Hoffpauir | Sep 2005 | A1 |
20050234276 | Waycuilis | Oct 2005 | A1 |
20050234277 | Waycuilis | Oct 2005 | A1 |
20050245771 | Fong et al. | Nov 2005 | A1 |
20050245772 | Fong | Nov 2005 | A1 |
20050245777 | Fong | Nov 2005 | A1 |
20050267224 | Herling | Dec 2005 | A1 |
20060025617 | Begley | Feb 2006 | A1 |
20060100469 | Waycuilis | May 2006 | A1 |
20060135823 | Jun | Jun 2006 | A1 |
20060138025 | Zones | Jun 2006 | A1 |
20060138026 | Chen | Jun 2006 | A1 |
20060149116 | Slaugh | Jul 2006 | A1 |
20060229228 | Komon | Oct 2006 | A1 |
20060229475 | Weiss et al. | Oct 2006 | A1 |
20060270863 | Reiling | Nov 2006 | A1 |
20060288690 | Elomari | Dec 2006 | A1 |
20070004955 | Kay | Jan 2007 | A1 |
20070078285 | Dagle | Apr 2007 | A1 |
20070100189 | Stauffer | May 2007 | A1 |
20070129584 | Basset | Jun 2007 | A1 |
20070142680 | Ayoub | Jun 2007 | A1 |
20070148067 | Zones | Jun 2007 | A1 |
20070148086 | Zones | Jun 2007 | A1 |
20070149778 | Zones | Jun 2007 | A1 |
20070149789 | Zones | Jun 2007 | A1 |
20070149819 | Zones | Jun 2007 | A1 |
20070149824 | Zones | Jun 2007 | A1 |
20070149837 | Zones | Jun 2007 | A1 |
20070197801 | Bolk | Aug 2007 | A1 |
20070197847 | Liu | Aug 2007 | A1 |
20070213545 | Bolk | Sep 2007 | A1 |
20070238905 | Arredondo | Oct 2007 | A1 |
20070238909 | Gadewar et al. | Oct 2007 | A1 |
20070276168 | Garel | Nov 2007 | A1 |
20070284284 | Zones | Dec 2007 | A1 |
20080022717 | Yoshida et al. | Jan 2008 | A1 |
20080152555 | Wang et al. | Jun 2008 | A1 |
20080171898 | Waycuilis | Jul 2008 | A1 |
20080183022 | Waycuilis | Jul 2008 | A1 |
20080188697 | Lorkovic | Aug 2008 | A1 |
20080200740 | Waycuilis | Aug 2008 | A1 |
20080275284 | Waycuilis | Nov 2008 | A1 |
20090005620 | Waycuilis et al. | Jan 2009 | A1 |
20090163749 | Li et al. | Jun 2009 | A1 |
20090247796 | Waycuilis et al. | Oct 2009 | A1 |
20090308759 | Waycuilis | Dec 2009 | A1 |
20090312586 | Waycuilis et al. | Dec 2009 | A1 |
20090326292 | Waycuilis | Dec 2009 | A1 |
20100087686 | Fong et al. | Apr 2010 | A1 |
20100096588 | Gadewar et al. | Apr 2010 | A1 |
20100234637 | Fong et al. | Sep 2010 | A1 |
20110015458 | Waycuilis et al. | Jan 2011 | A1 |
20110071326 | Waycuilis | Mar 2011 | A1 |
20110218374 | Waycuilis | Sep 2011 | A1 |
Number | Date | Country |
---|---|---|
1099656 | Apr 1981 | CA |
1101441 | May 1981 | CA |
1202610 | Apr 1986 | CA |
2542857 | May 2005 | CA |
2236126 | Aug 2006 | CA |
2203115 | Sep 2006 | CA |
2510093 | Dec 2006 | CA |
0164798 | Dec 1985 | EP |
0418971 | Mar 1991 | EP |
0418974 | Mar 1991 | EP |
0418975 | Mar 1991 | EP |
0510238 | Oct 1992 | EP |
0526908 | Feb 1993 | EP |
0346612 | Aug 1993 | EP |
0560546 | Sep 1993 | EP |
0976705 | Feb 2000 | EP |
1186591 | Mar 2002 | EP |
1253126 | Oct 2002 | EP |
1312411 | May 2003 | EP |
1235769 | May 2004 | EP |
1435349 | Jul 2004 | EP |
1440939 | Jul 2004 | EP |
1235772 | Jan 2005 | EP |
1661620 | May 2006 | EP |
1760057 | Mar 2007 | EP |
1689728 | Apr 2007 | EP |
1808227 | Jul 2007 | EP |
1837320 | Sep 2007 | EP |
5125 | Jan 1912 | GB |
156122 | Mar 1922 | GB |
294100 | Jun 1929 | GB |
363009 | Dec 1931 | GB |
402928 | Dec 1933 | GB |
474922 | Nov 1937 | GB |
536491 | May 1941 | GB |
553950 | Jun 1943 | GB |
586483 | Mar 1947 | GB |
775590 | May 1957 | GB |
793214 | Apr 1958 | GB |
796048 | Jun 1958 | GB |
796085 | Jun 1958 | GB |
883256 | Nov 1961 | GB |
930341 | Jul 1963 | GB |
950975 | Mar 1964 | GB |
950976 | Mar 1964 | GB |
991303 | May 1965 | GB |
995960 | Jun 1965 | GB |
1015033 | Dec 1965 | GB |
1104294 | Feb 1968 | GB |
1133752 | Nov 1968 | GB |
1172002 | Nov 1969 | GB |
1212240 | Nov 1970 | GB |
1233299 | May 1971 | GB |
1253618 | Nov 1971 | GB |
1263806 | Feb 1972 | GB |
1446803 | Aug 1976 | GB |
1542112 | Mar 1979 | GB |
2095243 | Sep 1982 | GB |
2095245 | Sep 1982 | GB |
2095249 | Sep 1982 | GB |
2116546 | Sep 1982 | GB |
2120249 | Nov 1983 | GB |
2185754 | Jul 1987 | GB |
2191214 | Dec 1987 | GB |
694483 | Oct 1979 | SU |
8300859 | Mar 1983 | WO |
8504863 | Nov 1985 | WO |
8504867 | Nov 1985 | WO |
9008120 | Jul 1990 | WO |
9008752 | Aug 1990 | WO |
9118856 | Dec 1991 | WO |
9203401 | Mar 1992 | WO |
9212946 | Aug 1992 | WO |
9316798 | Sep 1993 | WO |
9622263 | Jul 1996 | WO |
9744302 | Nov 1997 | WO |
9812165 | Mar 1998 | WO |
9907443 | Feb 1999 | WO |
0007718 | Feb 2000 | WO |
0009261 | Feb 2000 | WO |
0114300 | Mar 2001 | WO |
0138275 | May 2001 | WO |
0144149 | Jun 2001 | WO |
02094749 | Nov 2002 | WO |
02094750 | Nov 2002 | WO |
02094751 | Nov 2002 | WO |
02094752 | Nov 2002 | WO |
03000635 | Jan 2003 | WO |
03002251 | Jan 2003 | WO |
03018524 | Mar 2003 | WO |
03020676 | Mar 2003 | WO |
03022827 | Mar 2003 | WO |
03043575 | May 2003 | WO |
03051813 | Jun 2003 | WO |
03062143 | Jul 2003 | WO |
03062172 | Jul 2003 | WO |
03078366 | Sep 2003 | WO |
2004018093 | Mar 2004 | WO |
2004067487 | Aug 2004 | WO |
2005014168 | Feb 2005 | WO |
2005019143 | Mar 2005 | WO |
2005021468 | Mar 2005 | WO |
2005035121 | Apr 2005 | WO |
2005037758 | Apr 2005 | WO |
2005054120 | Jun 2005 | WO |
2005056525 | Jun 2005 | WO |
2005058782 | Jun 2005 | WO |
2005090272 | Sep 2005 | WO |
2005095310 | Oct 2005 | WO |
2005104689 | Nov 2005 | WO |
2005105709 | Nov 2005 | WO |
2005105715 | Nov 2005 | WO |
2005110953 | Nov 2005 | WO |
2005113437 | Dec 2005 | WO |
2005113440 | Dec 2005 | WO |
2006007093 | Jan 2006 | WO |
2006015824 | Feb 2006 | WO |
2006019399 | Feb 2006 | WO |
2006020234 | Feb 2006 | WO |
2006036293 | Apr 2006 | WO |
2006039213 | Apr 2006 | WO |
2006039354 | Apr 2006 | WO |
2006043075 | Apr 2006 | WO |
2006053345 | May 2006 | WO |
2006067155 | Jun 2006 | WO |
2006067188 | Jun 2006 | WO |
2006067190 | Jun 2006 | WO |
2006067191 | Jun 2006 | WO |
2006067192 | Jun 2006 | WO |
2006067193 | Jun 2006 | WO |
2006069107 | Jun 2006 | WO |
2006071354 | Jul 2006 | WO |
2006083427 | Aug 2006 | WO |
2006100312 | Sep 2006 | WO |
2006104909 | Oct 2006 | WO |
2006104914 | Oct 2006 | WO |
2006111997 | Oct 2006 | WO |
2006113205 | Oct 2006 | WO |
2006118935 | Nov 2006 | WO |
2007001934 | Jan 2007 | WO |
2007017900 | Feb 2007 | WO |
2007044139 | Apr 2007 | WO |
2007046986 | Apr 2007 | WO |
2007050745 | May 2007 | WO |
2007071046 | Jun 2007 | WO |
2007079038 | Jul 2007 | WO |
2007091009 | Aug 2007 | WO |
2007094995 | Aug 2007 | WO |
2007107031 | Sep 2007 | WO |
2007111997 | Oct 2007 | WO |
2007114479 | Oct 2007 | WO |
2007125332 | Nov 2007 | WO |
2007130054 | Nov 2007 | WO |
2007130055 | Nov 2007 | WO |
2007141295 | Dec 2007 | WO |
2007142745 | Dec 2007 | WO |
2008036562 | Mar 2008 | WO |
2008036563 | Mar 2008 | WO |
2008106319 | Sep 2008 | WO |
2008157043 | Dec 2008 | WO |
2008157044 | Dec 2008 | WO |
2008157045 | Dec 2008 | WO |
2008157046 | Dec 2008 | WO |
2008157047 | Dec 2008 | WO |
2009152403 | Dec 2009 | WO |
2009152405 | Dec 2009 | WO |
2009152408 | Dec 2009 | WO |
2010009376 | Jan 2010 | WO |
2011008573 | Jan 2011 | WO |
2011109244 | Sep 2011 | WO |
Number | Date | Country | |
---|---|---|---|
20110218372 A1 | Sep 2011 | US |