The invention relates to apparatus, systems, and processes for extracting stable natural color concentrates from hibiscus plants.
Throughout history, dyes and coloring agents have been used for a variety of purposes. For example, green copper salts extracted from miners were used as an eye shadow by the Egyptians as early as 5000 B.C. Similarly, henna was and is still used as a hair and fingernail colorant in the Middle East, Asia, and other parts of the world. A variety of plant and animal dyes have been used to dye textiles, and certain colors were valued more highly than others. R. A. Donkin, The Insect Dyes of Western and West-Central Asia, Anthropes, Herausgeber Anthtopos-Institut, 5205 St. Augustin, Deutschland. Vol. 72 (1977). Presently, colors are used extensively in textiles, foods, drinks, drugs, and cosmetics.
Coloring foodstuffs and condiments dates back at least 500 years. In general, colors are added to food products to improve appearance. Some food producers believe that the color of a food product is more influential on consumers than the flavor of the food product. To consumers, an off-color food suggests an inferior product. Color may be added to a food product to make the product recognizable or to compensate for color loss during food processing.
Until the middle of the nineteenth century, most of the colorants used in food, drugs, and cosmetics were obtained from natural sources.
One problem with many natural pigments found in plants or animals is their relative instability. Changes or deviations from natural conditions of these pigments can cause physical and chemical changes to the colors they exhibit. This includes pH changes or the effect of light or temperature, particularly present during the processing necessary to preserve products for an extended period of time, such as two to three years.
The instability of natural pigments led to the development of synthetic colors. The first synthetic dye was developed by a British chemist in 1856. Use of the first synthetic dye in food occurred with dairy products in the United States, and synthetic colors were allowed in 1886 for butter and in 1896 for cheese. By the year 1900, synthetic colorants were used in a wide range of foods, such as ice cream, candy, ketchup, jellies, noodles, wine, and many more.
In the 1950s, the effect of synthetic colorants on human health was first recognized when animal studies implicated some colorants as causing health concerns. As a result, some colorants are no longer permitted in food.
Of particular interest to the invention is the status of red colorings allowed in foods. Within the last thirty years at least four different FD&C Red colors have been delisted by the U.S. Government and are no longer permitted in food. A recent example of a delisted color is FD&C Red. No. 3 which is a Xanthene dye with a range of application from lipstick to candy to dyed cherries. FD&C Red. No. 3 has a maximum absorbency wavelength at about 520 nm and is chemically very stable. It precipitates under acidic conditions. However, in January of 1990, the U.S. Food and Drug Administration (FDA) announced the formal banning of FD&C Red No. 3 in drugs and cosmetics based on the required compliance with the Delany Clause of the Food, Drug and Cosmetic Act. This ban, however, does not yet disapprove “permanently” listed uses of the food dye from ingested drugs and foods.
Studies show that certain synthetic dyes pose adverse health effects. For example, some synthetic dyes, such as FD&C Red No. 3, are recognized as carcinogenic. In recent years, public interest groups and private organizations have raised concerns that certain synthetic dyes may cause hyperactivity and other behavior disorders in children. The risk posed by synthetic and some natural dyes in commercial use with food continues to be investigated.
Processed and unprocessed natural and organic foods are in high demand by health conscious consumers. Processed foods with natural and organic ingredients appeal to consumers more than processed foods containing many synthetic ingredients. Consequently, broad commercial use of synthetic colors in foods has caused consumers to focus on food ingredients when selecting food to consume. The possible adverse health effects of synthetic dyes in children has caused parents to avoid purchasing foods with synthetic ingredients for their children to eat. Consumer awareness of food ingredients drives sales of natural and organic foods. The use of natural food colorings in food appeals to consumers. Food manufacturers are evolving food processing techniques to substitute natural food colorings for synthetic dyes to meet consumer demand. For example, replacing red dye No. 3 in some foods with an insect origin dye (carmine) is described in Meloan et al. Histochemie 37, 87 (1971). Another example is producing natural yellow and orange color from tomato skin for use as a replacement of FD&C Yellow No. 5 and Yellow No. 6. Karim Nafisi, U.S. Pat. No. 4,781,936.
One natural source of food coloring is anthocyanin, which is naturally occurring in the flower of hibiscus plants. The representative polyphenolic colorant anthocyanin is a subgroup of flavonoids that are water-soluble glycosides of anthocyanidins. Anthocyanins contain a C6C3C6 backbone and cover a broad range of the color spectrum including blue, purple, violet, magenta, red, and orange. Although other flavonoids release colors, anthocyanins are the most broadly distributed pigment in plants. Anthocyanins differ in the number of hydroxyl and/or methoxy groups present, and sugars, such as, glucose, galactose, arabinose, and xylose, are attached to the 3 position in the C ring. When the attached sugars are hydrolyzed into aglycone and sugar, the aglycone is referred to as an anthocyanidin, which is another color source along with anthocyanin. The color of anthocyanins and anthocyanidins results from excitation of a molecule by light, and the strength of the color is determined by the relative electron mobility in the structures. Since the two colorings have many conjugated double bonds which are readily excitable, the compounds readily release color when exposed to light. Anthocyanins and anthocyanidins serve as natural food additives or ingredients and also contribute health benefits as a rich source of antioxidants.
Certain processes exist for extracting food grade coloring from flowers, including hibiscus flowers. For example, U.S. Pat. No. 5,704,950 teaches extracting food colors from hibiscus using heated water. The solution obtained by heat treatment contains color from the flower. The pH value of the solution is adjusted to about 7.5-8 using alkaline amino acid. Then, the solution is boiled for 1-2 hours to mature the color extract. After being adjusted to mildly acidic, the extract must be filtered, mixed with a polysaccharide solution, and spray dried into a powder for use as a food coloring.
Cold processing may be used to extract color from hibiscus flowers. For example, U.S. Pat. No. 6,730,243 teaches lyophilizing hibiscus flower petals to create anthocyanin-containing powders. Another cold extraction process taught by Olukemi et al., Elec. J. Envtl. Agric. & Food Che., 4(1), 858-862 (2005) includes collecting anthocyanins from hibiscus flowers by mixing flower material with methanol and 0.1% glacial acetic acid at 19° C. to create a cold anthocyanin-containing solution.
Hot processing may also be used to extract color from hibiscus plant material. U.S. Pat. No. 6,730,243 teaches hot air drying hibiscus plant material and then purifying the dried material into an anthocyanin powder. Another hot extraction process taught by Olukemi includes mixing plant material with methanol and 0.1% glacial acetic acid and then incubating the mixture at 60° C. for 30 minutes. The extract is filtered and concentrated under reduced pressure. Yet another example of hot processing taught by Chumsri et al. Songklanakarin J. Sci. Technol. 30 (Suppl. 1), 133-139 (2008) uses water extraction of anthocyanin from fresh hibiscus flowers using a juice extractor or filter to separate color from hibiscus flower in water at about 60° C. and concentrating the extract under vacuum or at atmospheric pressure.
The disclosed processes present drawbacks for extracting anthocyanin from hibiscus plant material. Pollution-generating solvents must be used in hot and cold extraction processes. Some of the processes use non-food-grade solvents, such as methanol. Other processes require time and temperature sensitive processing techniques. Although lyophilizing or hot air drying hibiscus flowers is simple, further processing is required to extract anthocyanin from the dried plant product and to purify it for use.
The description of the prior art provided with this disclosure highlights the need for improved processes for extracting color from hibiscus flowers in such a way that (1) the hibiscus color is extracted with a water-based process without pollution-generating solvents or chemicals; (2) the hibiscus color is stable and remains stable in adverse conditions, such as exposure to light, low pH, and high temperature; (3) the process does not pose risk to the environment; (4) the hibiscus color may be extracted from wet or dry hibiscus flower; (5) the hibiscus color is acid resistant and suitable for coloring acidified fruits and vegetables without deterioration of the color; and (6) the hibiscus color is useful for coloring food, drink, cosmetics, drugs, and the like.
Additional aspects, features, and advantages of the invention, as to its operation and use, will be understood and become more readily apparent when the invention is considered in light of the following description of illustrative embodiments made in conjunction with the accompanying drawings, wherein:
Illustrative and alternative embodiments of processes to extract a stable natural color from hibiscus flowers will be discussed with reference to
For this disclosure, the term “hibiscus” takes on its ordinary meaning to refer generally to a genus of flowering plants in the mallow family, Malvaceae. An illustrative and non-limiting example of hibiscus is Hibiscus rosa-sinensis. The term “hibiscus flower” or “flower” takes on its general meaning to refer to the flower of hibiscus, also called a calyx, sepal, or roselle.
The terms “hibiscus color,” “color,” and “coloring” mean (1) a solution of compounds comprising one or more of (a) organic acids (such as, for example, citric acid, malic acid, oxalic acid) and/or inorganic acids, and (b) antioxidants, including, but not limited to, anthocyanin and carotenoids dissolved in a solvent, such as, for example, water or other suitable solvent including a stabilizing agent, and (2) in the event that substantially all solvent is removed from the solution of compounds, a powder or paste of the dried compounds, which may include bulking agents as an additive.
The term “acid” is used to refer generally to organic acids and inorganic acids. The terms “food” and “drink” are used individually in reference to their ordinary plain and ordinary meanings
The invention provides processes to extract natural hibiscus color from hibiscus flowers. A purpose of the invention is to produce colors that are stable and remain stable in adverse conditions, such as exposure to light, low pH, and high temperature. Another purpose of the invention is to use water, not chemicals, with or without enzymes added to the water, for color extraction and purification to achieve a substantial yield of coloring. A further purpose of the invention is to produce an acid resistant product suitable for coloring acidified fruits and vegetables without deterioration of the color. The hibiscus color may also be used as an ingredient or colorant for food, drink, cosmetics, drugs, and the like. The hibiscus color provides health benefits which derive from its naturally-occurring antioxidant characteristics.
The processes of the invention may take place in a large scale commercial operation whereby each step may be automated with commercial machinery, carried out manually, or executed with some combination of both.
In an illustrative embodiment of the invention shown in
Referring to
Intact or ground hibiscus flowers 112 are soaked in water for a desired time and temperature to prepare the flowers to extract hibiscus color. Hibiscus flowers are soaked at a weight ratio of flower to water from about 1:1 to about 1:50 and, in a specific embodiment, about 1:5. The soak time may range from about one minute to about 20 minutes or longer. During the soak, the temperature of the mixture of water and hibiscus flowers ranges from about 35° F. to about 210° F. In a specific embodiment, the soak temperature is about 160° F. The time and temperature variables of the soak have an indirect relationship. For example, soak time may decrease at higher temperatures and may increase at lower temperatures. The soaking creates a mixture of soaked—intact or ground—hibiscus flowers 114 as depicted in the illustrative process of the invention in
Referring to
Referring now to
Residual color mixture 132 may be processed to separate residual hibiscus color 138 from residual hibiscus solids 134 as shown in
Residual hibiscus solids 134 may be discarded as waste, processed into livestock feed 136, or dehydrated 180 into dietary fiber 182 as shown in
Referring to
In an alternative embodiment shown in
When it is desirable to concentrate hibiscus color obtained from batch processing, solvent may be distilled from the hibiscus color by heating product receptacle 316, 336 to create a solvent vapor. This solvent vapor is removed from product receptacle 316 through line 300 in such a manner that the solvent condenses and accumulates in solvent recovery receptacle 328. Of course, the hibiscus color may be concentrated by merely allowing solvent to evaporate.
Referring now to
Preferred solvents for color extraction are food-grade organic solvents at a desirable polarity. The solvents are desirably tasteless or good-tasting. The solvents should have no adverse effects on coloring compounds. Solvents are also desirably volatile and inexpensive. Solvents with dielectric constants ranging from 1.97 to 78.00 at about 77° F. are preferred, especially solvents having dielectric constants between about 20.00 and 30.00 at about 77° F. Particular solvents useful in the practice of the invention include ethanol, liquid carbon dioxide, lower alcohols (about 2 carbons or more), ethers, ketones, and aldehydes, each being modified as necessary to achieve the desired polarity. In an alternative embodiment, lower alkyl and aryl solvents may be used, but must be fully removed from the hibiscus color if the compounds are intended for use in a consumable product. Ethanol, particularly in concentrations above 50%, and more particularly in a concentration of about 95%, is especially preferred. In producing food colorings, it is desirable to use a food-grade solvent which is generally recognized as safe (GRAS). Extraction time may range from about 10 minutes to about 3 days. A typical extraction time is about 4 hours to about 6 hours.
Extraction is likely at its greatest efficiency at a temperature at or near the boiling point of the solvent. In a non-limiting example, if pure or nearly pure ethanol is used as the solvent, the extraction temperature is about 172° F. to about 174° F. (at atmospheric pressure). However, the solvent does not need to be heated, and extraction can occur in a wide range of temperatures including ambient temperature. If desired, the solvent may be heated above its normal boiling point so long as sufficient pressure is applied to maintain the solvent in its liquid state.
The extracted color may be dilute or concentrated as desired. Additional solvent may be added to further dilute the extraction product if desired. Alternatively, solvent may be removed by conventional methods such as vacuum distillation to concentrate the extraction product.
Referring to
Referring to
In an embodiment, compositions of hibiscus color powders or pastes may be produced from color solutions, concentrates, and stabilized concentrates by dry mixing, spray drying, freeze drying, blending, drying, extrusion or by any other convenient process. Additionally, compositions of hibiscus color powders or pastes may be prepared from color solutions, concentrates, and stabilized concentrates in a co-dried form with a bulking agent or the like. These compositions of powder or pastes and bulking agents may be produced by drying, mixing, co-spray drying, co-freeze drying, blending, co-drying, extrusion, or by any other convenient process. Bulking agents may be selected based on one or more functionalities which are desirable for use in product applications for which the hibiscus color powder or paste may be used. A broad range of bulking agents are compatible with hibiscus powders and pastes and can be selected. For example, bulking agents may be nutritive, such as, Maltodextrins or the like, or non-nutritive, such as, polydextrose or the like.
The spray drying may be completed through conventional mixing in which solutions of hibiscus color, hibiscus color concentrates, or stabilized color concentrates with bulking agents are formed. Alternatively, solutions of hibiscus color, hibiscus color concentrates, or stabilized color concentrates may be vacuum drum dried with one or more bulking agents. Any drying equipment conventionally used for the drying of color or dye solutions or other products having similar physical properties can be used to conduct such drying.
The amounts of hibiscus color 122, 142, hibiscus color concentrates 124, 140, or stabilized color concentrates 126, 142, whether or not commingled with bulking agents, or other ingredients, may be adjusted in order to reach the physical properties of the desired end product. For example, the desired bulk density of the resulting product may vary depending upon the end product (i.e., a coloring with bulking agent to be added to color juice drinks) or product form.
Compositions of hibiscus color powders or pastes whether or not commingled with bulking agents may be milled into a powder for use. Hibiscus color powder 129, 148 comprising hibiscus color with bulking agent, or hibiscus color paste may be stored under seal with or without desiccants.
While the invention is described in conjunction with specific embodiments, it is evident that many alternatives, modifications, permutations, and variations will become apparent to those skilled in the art in light of the foregoing description. Accordingly, it is intended that the invention embraces all such alternatives, modifications, permutations, and variations as falling within the scope of the claims below.