Processes for manufacturing polymeric microspheres

Abstract
Processes of manufacturing polymeric microspheres facilitate the generation of polymeric microspheres of size ranges smaller than 600 microns diameter by forming beads of a predetermined size from a starting material which may include a template polymer, and subsequently contacting the beads with a structural polymer. After crosslinking of the structural polymer has taken place, the template polymer may be removed to form the finished microspheres.
Description
TECHNICAL FIELD

This invention generally relates to polymeric microspheres and processes of manufacturing polymeric microspheres.


BACKGROUND INFORMATION

Microparticles, microcapsules and microspheres have important applications in the medical, pharmaceutical, agricultural, textile and cosmetics industries as delivery vehicles, cell culture substrates or as embolization agents.


Polymeric microspheres, i.e., microspheres formed (at least in part) from a crosslinkable polymer, have found a variety of uses in the medical and industrial areas. They may be employed, for example, as drug delivery agents, tissue bulking agents, tissue engineering agents, and embolization agents. Accordingly, there are numerous methods directed toward preparing polymeric microspheres. These methods include dispersion polymerization of the monomer, potentiometric dispersion of a dissolved crosslinkable polymer within an emulsifying solution followed by solvent evaporation, electrostatically controlled extrusion, and injection of a dissolved crosslinkable polymer into an emulsifying solution through a porous membrane followed by solvent evaporation.


Additional methods include vibratory excitation of a laminar jet of monomeric material flowing in a continuous liquid medium containing a suitable suspending agent, irradiation of slowly thawing frozen monomer drops, and continuous injection of a dissolved crosslinkable polymer into a flowing non-solvent through a needle oriented in parallel to the direction of flow of the non-solvent.


These methods known in the art have shortcomings that may curtail the formation of uniformly sized microspheres of small diameter ranges (e.g., in the range of 100-600 microns) for various applications, particularly when the base material has a high viscosity.


SUMMARY OF THE INVENTION

The present invention facilitates production of small, uniformly sized polymeric microspheres in a manner not limited, in terms of obtainable size range, by the viscosity or density of the structural polymer.


In one aspect, a process of the invention includes generating spherical beads or particles of a desired or predetermined size from a suitable template polymer, contacting the beads or particles with a structural polymer, such as polyvinyl alcohol, and crosslinking the structural polymer into the beads or particles. The template polymeric material may subsequently be removed, resulting in polymeric microspheres.


As used herein, the term “template” polymer refers to a soluble polymer that is used to create temporary particle forms (i.e., beads), which may be porous or non-porous depending on the template polymer that is selected. A “structural” polymer invades or surrounds the temporary form and, following crosslinking, creates the permanent structure of the particle. Structural polymers are generally chemically crosslinkable, i.e., crosslink through the formation of covalent bonds. Chemically crosslinkable polymers may be crosslinked through, for example, photoinitiation or other application of actinic radiation, by exposure to a chemical crosslinking agent or thermal energy or through freeze-thaw cycles.


In a preferred embodiment, a process of the invention includes generating spherical beads of a desired size from a starting material including a porous template polymer and a solvent; diffusing the structural polymer into the beads; and crosslinking at least the structural polymer. The solidified template polymer may exhibit a porosity gradient, from the outside to the inside of the beads, which determines the manner and extent to which the structural polymer diffuses into the beads. Alternatively, the template may have homogeneous porosity. The template polymer is subsequently removed, leaving behind a microsphere composed of only the structural polymer. In this way, the process of the invention overcomes the problem associated with generation of smaller-sized polymeric microspheres from viscous polymer solutions, by starting with particles of a desired size and subsequently contacting the particles with a structural polymer.


In an alternative embodiment of the diffusion method, spherical beads of a desired size are generated from starting material including a template polymer and a crosslinking agent. The structural polymer is diffused into the beads. The inclusion of a crosslinking agent in the starting material causes the structural polymer to crosslink into the beads upon contact therewith. The template polymer is subsequently removed, resulting in the formation of polymeric microspheres.


In another preferred embodiment, a process of the invention includes generating spherical particles or beads of a desired predetermined size from a starting material including a generally non-porous template polymer, such as methyacrylate, and contacting the beads with a structural polymer. To prevent premature damage to the beads, the template polymer in this case should not dissolve in the carrier of the structural polymer. The latter polymer is subsequently crosslinked and the template polymeric material is removed, leaving behind intact hollow polymeric spherical particles. In this embodiment the beads are coated on the outside surface with a generally uniform layer of the structural polymer, as opposed to the structural polymer diffusing within the beads. The beads can be either soaked in a solution containing the structural polymer, or the structural polymer can be sprayed or otherwise applied onto the outer surfaces of the beads. The structural polymer can be crosslinked, whether diffused within or applied onto the outer surface of the particles or beads, by a chemical crosslinking agent such as formaldehyde or glutaraldehyde, or by exposure to actinic or thermal energy.


The size of the beads can be determined or influenced by passing the mixture including a template polymer through a droplet generator with a nozzle adapted to generate droplets of a predetermined size, and subsequently depositing the droplets into a gelling solution to solidify the droplets, resulting in spherical beads. The size distribution of the beads can be improved by sieving.


Alternatively, a generally non-porous template polymer, such as methacrylate, can be used for generation of beads using spheronization technology known in the art.


In a preferred embodiment of the invention, a desired size for the resulting polymeric microspheres is in the range 1-50 microns diameter. Other desirable size ranges for the polymeric microspheres include microspheres in the size range 50-100 microns diameter, microspheres in the size range 100-600 microns diameter and microspheres in the size range 600-1000 microns diameter.


The foregoing and other objects, aspects, features and advantages of the invention will become more apparent from the following description and from the claims.





BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other objects of the invention and the various features thereof may be more fully understood from the following description when read together with the accompanying illustrative flowcharts in which like reference characters generally refer to the same parts throughout the different illustrations.



FIG. 1 is an illustrative flow diagram depicting the basic steps involved in a process of the invention.



FIG. 2 is an illustrative flow diagram representing the steps involved in a process of the invention, where the contacting step is carried out by either diffusion or coating.





DETAILED DESCRIPTION OF THE INVENTION

The methods of the invention facilitate the generation of polymeric microspheres of size ranges smaller than 600 microns diameter by forming template beads or particles of a predetermined size and subsequently contacting the beads with a structural polymer. Polymeric microspheres of size ranges smaller than 600 microns can be generated by diffusing a structural polymer, such as polyvinyl alcohol, within spherical beads of a predetermined size made from a starting material including a template polymer such as alginate, chitosan, etc. Diffusion of the structural polymer into the beads can be achieved by, for example, soaking the beads in a solution of the structural polymer. The porous nature of the beads favors the diffusion of the polymer into the beads. Alternatively, this process may be carried out under conditions that enhance diffusion, e.g., the addition of a surfactant, elevated temperature and/or pressure.


Polymeric microspheres of size ranges smaller than 600 microns diameter can also be generated by coating the outer surface of prefabricated beads or particles made from a template polymer, such as methacrylate, with a structural polymer. In this case, the beads are generally non-porous in morphology and receive a substantially even coating of the structural polymer either by, for example, soaking the beads in a solution or suspension of a structural polymer or by spraying the outer surface of the beads with such a solution or suspension.



FIG. 1 shows a flow chart 100 illustrating the basic steps involved in a process of the invention. The prefabrication or generation step 102 includes formation of spherical beads or particles of a predetermined size from a starting material containing a template polymer. In one embodiment, the starting material includes a template polymer and a solvent.


In general, the role of the template polymer is to act as a removable carrier to encapsulate or support the structural polymer, which is introduced in a subsequent step. Accordingly, the template polymer will be soluble in a solvent that does not attack the crosslinked structural polymer, and may be, for example, an ionically crosslinkable material. Omission of the structural polymer at this stage enables the formation of uniformly sized spherical beads of small size ranges, preferably smaller than 600 microns diameter.


Suitable porous template polymers include, for example, alginates, polysaccharides, carrageenans, chitosan, hyaluronic acid, or other ionically crosslinkable polymers (also known as “shape-forming agents”), such as the classes of carboxylic-, sulfate-, or amine-functionalized polymers. The template polymer can also be generated from a blend of one or more of the above synthetic or naturally occurring materials, or derivatives thereof. In one preferred embodiment of the invention, the template polymer is an alginate, which is ionically crosslinkable.


The solvent utilized in a process of the invention is chosen based on several considerations. Firstly, the solvent should be easily removable by evaporation, and should therefore have a relatively low boiling point. The solvent should be capable of dissolving the starting material without interfering with the structural polymer crosslinking. Absence of any environmental contaminants and ease of disposal are also worthwhile criteria in the selection of the solvent. Deionized water and saline solution are preferred as solvents; however, solvents can also be selected from polar and nonpolar laboratory solvents, such as, for example, acetone, methane and ethanol (which are polar), or hexane and benzene (nonpolar).


The generation step 102 is followed by the contacting step 104, which involves contacting the prefabricated spherical beads or particles with a structural polymer. The crosslinking step 106 involves crosslinking the structural polymer into the beads or particles. The last step 108, involves the removal of the template polymer from the beads, resulting in the formation of polymeric microspheres. The template polymer is removed by soaking the beads in a suitable solvent.


The structural polymer utilized in the contacting step 104 can be selected from a wide variety of generally chemically crosslinkable polymers such as, for example, vinyl polymers, polyacrylamides, polyethylene glycol, polyamides, polyureas, polyurethranes, polyvinyl alcohols, and derivatives thereof. For some (e.g., embolic) applications, a hydrophilic polymer, such as polyvinyl alcohol, will be preferred.


The structural polymer is subsequently crosslinked in step 106 by a crosslinking agent. The crosslinking agent can be a chemical agent such as, for example, formaldehyde or glutaraldehyde, or the like thereof. The structural polymer can also be crosslinked by application of photoinitiation, an ionic agent or actinic radiation such as, for example, ultraviolet or gamma radiation, or an electron beam.


The porosity of the outer polymeric shell can be controlled by the addition to the polymeric solution of a filler agent, such as starch, that is not crosslinked in the crosslinking step and can be removed easily by rinsing the beads.


The size of the polymeric particles depends on the method used for generating the spherical beads. Several techniques can be utilized for the generation of spherical particles or beads from a suitable starting material. A droplet generator can produce spherical droplets of a predetermined diameter by forcing a jet stream of a solution containing a template polymer and a solvent through a nozzle, which is subjected to a periodic disturbance to break up the laminar jet stream into droplets. This may involve the use of a nozzle having, for example, an electrostatic or piezoelectric element. The size of the droplets depends on the frequency at which the element is driven. The uniformly sized droplets fall into a solution containing a positively or a negatively charged agent, such as calcium or barium, or a charged polymer, such as polyacrylic acid, resulting in the conversion of the liquid droplets into solid beads.


The manner in which liquid droplets are solidified affects the properties of the particles. Ca2+, for example, is a strong gelling ion, so a high concentration of, for example, CaCl2 will create an inwardly moving gelling zone as the droplet solidifies. This creates a high porosity gradient, with the solidified particle exhibiting a smooth exterior with minimal porosity (e.g., microporous with an average pore size of 10 microns or less) and increasing porosity (e.g., up to about 50 microns) at the particle core. By adding non-gelling ions (e.g., Na+ in the form of NaCl) to the solution in order to compete with the gelling ions, it is possible to limit the porosity gradient, resulting in a more uniform intermediate porosity throughout the particle. The porosity of the particle, in turn, affects the distribution of the structural polymer. A higher porosity gradient will result in concentration of the structural polymer on the surface of the particle and, following removal of the template polymer, a relatively hollow sphere. A lower porosity gradient, by contrast, will result in a more even distribution of the structural polymer throughout the particle, and a more densely crosslinked finished sphere.


In an alternative embodiment, beads are generated from a mixture of a template polymer and a crosslinking agent, such as formaldehyde or glutaraldehyde. The beads are contacted with a structural polymer and the template polymer is subsequently removed, resulting in the formation of polymeric spherical particles. Thus, by inclusion of a crosslinking agent in the starting material for generating the beads, this embodiment eliminates the need for a discrete crosslinking step 106.



FIG. 2 shows a flow chart 200 illustrating the various steps in particular embodiments of the invention, where the contacting step 104 includes diffusion 202 or coating 204. The contacting step employing diffusion 202 is based on diffusing the structural polymer into the prefabricated beads, generated from a starting material including a template polymer and a solvent. Diffusion can be achieved by, for example, soaking the beads in a solution of the structural polymer.


The contacting step employing coating 204 is based on application of a uniform layer of the structural polymer on the outer surface of the beads. The structural polymer can be applied by, for example, spraying the polymer on the surfaces of prefabricated beads made from a generally non-porous template polymer, such as methyacrylate, or soaking such beads in a solution of a structural polymer. An even spray-coating of the microspheres can be achieved by, for example, suspending the beads in air while spraying.


The structural polymer is crosslinked into the beads in step 106. The template polymer, which generally comprises a porous polymer in the diffusion embodiment 202, and a non-porous polymer in the coating embodiment 204, is subsequently removed in step 108. The end product is microspheres of a desired predetermined size and composed of the structural polymer. Ionically crosslinkable materials, such as, for example, shape-forming agents are dissolved using suitable solvents, such as a solution of sodium hexametaphosphate or ethylene diamine tetraacetic acid (EDTA), that leave the structural polymer intact, thereby resulting in polymeric microspheres. The methyacrylate in the coating embodiment 204 can be removed by soaking the beads in acetone or another solvent that removes the methacrylate without dissolving the outer polymeric shell, resulting in hollow polymeric spheres.


Formation of porous particles is discussed above. To form non-porous beads of suitably small diameter, techniques such as spheronization may be used. Ultimately, the size of the hollow polymeric microspheres can be controlled by the size of the preformed beads and the thickness of the polymeric layer.


Spheronization techniques, which are well-characterized in the art, generate beads that have low surface to volume ratios and smooth surfaces, to allow for the application of uniform layer of the structural polymer. A device called a spheronizer comprises a rotating frictional plate enclosed within a hollow cylinder with a slim clearance between the edges of the rotating base plate and the cylinder wall. Spheronization typically begins with damp extruded particles, such as particles generated by grinding an agglomerated mass of a soluble polymer, such as methacrylate. The extruded particles are broken into uniform lengths and gradually transformed into spherical shapes while rotating on the base plate of the spheronizer. The resulting spherical beads have low surface to volume ratios and smooth surfaces to achieve even coating of the structural polymer on the surfaces thereof.


In still another embodiment, the beads are ice crystals. The ice crystals are removed simply by exposing the microspheres to elevated temperatures.


The invention is illustrated further by the following non-limiting examples.


EXAMPLE 1

An aqueous solution of 2% sodium alginate was infused through a droplet generator directly into a 2% CaCl2 bath. The parameters used for the droplet generator were a nozzle 300 microns in diameter; a flow rate of 10 ml/min; and a frequency of 260 Hz. The CaCl2 solution was decanted and the resulting calcium alginate beads were soaked overnight in an 8% polyvinyl alcohol (PVA) aqueous solution accompanied by slow stirring. The PVA-infused beads were subsequently recovered using a sieve and crosslinked by soaking the beads in a mixture of 3% formaldehyde/20% sulfuric acid at 60° C. for 20 minutes. The alginate was removed from the beads by soaking the beads in 5% sodium hexametaphosphate for 1 hour, resulting in PVA microspheres of 600 microns diameter.


The absence of non-gelling ions resulted in a heterogeneous distribution of the PVA within the particle, with a high concentration at the surface of the particle and a relatively low concentration at the center, resulting in a hollow microsphere.


EXAMPLE 2

A solution of 2% alginate was injected through a droplet generator using a nozzle of 200 micron diameter; a frequency of 660 Hz and a flow rate of 5 ml/min. The droplets were slowly stirred into a solution of 2% CaCl2 solution. The resultant calcium alginate beads were soaked overnight in an 8% polyvinyl alcohol solution, sieved and recovered. The polyvinyl alcohol was crosslinked by soaking the beads in a solution of 4% formaldehyde/20% sulfuric acid at 60° C. for 25 minutes. The alginate was removed by soaking the beads in a 5% sodium hexametaphosphate solution at room temperature, resulting in PVA microspheres of 400 microns diameter.


The absence of non-gelling ions resulted in a heterogeneous distribution of the PVA within the particle, with a high concentration at the surface of the particle and a relatively low concentration at the center, resulting in a hollow microsphere.

Claims
  • 1. A method for producing spherical polymeric particles, the method comprising the steps of: generating spherical beads of a desired size from a starting material comprising a template polymer; diffusing a structural polymer into the beads; and crosslinking the structural polymer, thereby producing polymeric spherical particles.
  • 2. The method of claim 1, wherein the generating step comprises use of a droplet generator.
  • 3. The method of claim 1, wherein the generating step comprises spheronization.
  • 4. The method of claim 1, wherein the beads are porous.
  • 5. The method of claim 4, wherein the beads comprise a template polymer selected from the group consisting of alginate, polysaccharide, carrageenan, chitosan, hyaluronic acid, and carboxylic-, sulfate-, or amine-functionalized polymers.
  • 6. The method of claim 2, wherein the generating step comprises (i) forming droplets by forcing a mixture comprising the template polymer and a solvent through the droplet generator, and (ii) depositing the droplets into a gelling solution comprising gelling ions to solidify the droplets into beads, the beads having a porosity gradient.
  • 7. The method of claim 6, wherein the solvent does not affect crosslinking of the structural polymer.
  • 8. The method of claim 6, wherein the gelling solution further comprises non-gelling ions to limit the porosity gradient.
  • 9. The method of claim 6, wherein the gelling solution does not contain non-gelling ions so as not to limit the porosity gradient.
  • 10. The method of claim 1, wherein diffusing comprises soaking the beads in a solution comprising the structural polymer.
  • 11. The method of claim 1, further comprising the step of removing the template polymer subsequent to the crosslinking step by subjecting the spherical polymeric particles to a solvent selective for the template polymer only.
  • 12. The method of claim 11, wherein the solvent comprises a solution of sodium hexametaphosphate.
  • 13. The method of claim 11, wherein the solvent comprises a solution of ethylene diamine tetraacetic acid.
  • 14. The method of claim 11, wherein the solvent comprises acetone.
  • 15. The method of claim 1, wherein the resulting polymeric spherical particles are in the range of 1-50 microns diameter.
  • 16. The method of claim 1, wherein the resulting polymeric spherical particles are in the range of 50-100 microns diameter.
  • 17. The method of claim 1, wherein the resulting polymeric spherical particles are in the range of 100-600 microns diameter.
  • 18. The method of claim 1, wherein the resulting polymeric spherical particles are in the range of 600-1000 microns diameter.
  • 19. The method of claim 1, wherein the template polymer is a shape-forming agent.
  • 20. The method of claim 1, wherein the structural polymer is selected from the group consisting of polyvinyl alcohol, polyacrylamide, polyethylene glycol, polyamides, polyureas, polyurethanes, and derivatives thereof.
  • 21. The method of claim 1, wherein the crosslinking step comprises application of a crosslinking agent.
  • 22. The method of claim 21, wherein the crosslinking agent forms covalent bonds with the structural polymer.
  • 23. The method of claim 1, wherein the crosslinking step comprises application of radiation.
  • 24. The method of claim 21, wherein the starting material comprises the crosslinking agent.
  • 25. A method for producing spherical polymeric particles, the method comprising: generating spherical beads of a desired size from a starting material comprising a methacrylate template polymer; contacting the beads with a structural polymer; and crosslinking the structural polymer, thereby producing spherical polymeric particles.
  • 26. The method of claim 25, wherein the beads further comprise a filler agent.
  • 27. The method of claim 26, wherein the filler agent is starch.
  • 28. The method of claim 25, wherein the beads are substantially non-porous.
  • 29. A method for producing spherical polymeric particles comprising the steps of: generating ice beads; contacting the beads with a structural polymer; and crosslinking the structural polymer, thereby producing polymeric spherical particles.
  • 30. The method of claim 29, further comprising the step of removing the ice subsequent to the crosslinking step by exposing the particles to an elevated temperature.
  • 31. The method of claim 29, wherein the contacting step comprises coating the beads with the structural polymer.
  • 32. The method of claim 29, wherein the structural polymer is selected from the group consisting of polyvinyl alcohol, polyacrylamide, polyethylene glycol, polyamides, polyureas, polyurethanes, and derivatives thereof.
  • 33. A method, comprising: contacting a template polymer with a structural polymer to form a particle comprising the template polymer and the structural polymer; and removing at least a portion of the template polymer from the particle.
  • 34. The method of claim 33, further comprising, after contacting the template polymer and the structural polymer but before removing the portion of the template polymer, cross-linking the structural polymer.
  • 35. The method of claim 34, wherein cross-linking the structural polymer includes contacting the structural polymer with a cross-linking agent.
  • 36. The method of claim 35, wherein the cross-linking agent is selected from the group consisting of formaldehyde and glutaraldehyde.
  • 37. The method of claim 33, further comprising, before contacting the template polymer with the structural polymer, forming droplets of the template polymer.
  • 38. The method of claim 37, wherein forming the droplets of the template polymer includes passing a solution containing the template polymer through a nozzle.
  • 39. The method of claim 38, wherein passing the solution containing the template polymer through the nozzle forms a stream containing the template polymer.
  • 40. The method of claim 39, further comprising subjecting the nozzle to a periodic disturbance to break up the stream containing the template polymer.
  • 41. The method of claim 33, wherein the template polymer comprises a polysaccharide.
  • 42. The method of claim 41, wherein the polysaccharide comprises alginate.
  • 43. The method of claim 33, wherein the template polymer is selected from the group consisting of carrageenans, chitosan, hyaluronic acid, carboxylic-functionalized polymers, sulfate-functionalized polymers, amine-functionalized polymers, blends thereof, and derivatives thereof.
  • 44. The method of claim 33, wherein the structural polymer is selected from the group consisting of vinyl polymers, polyacrylamides, polyethylene glycols, polyamides, polyureas, polyurethanes, polyvinyl alcohols, and derivatives thereof.
  • 45. The method of claim 44, wherein the structural polymer comprises a polyvinyl alcohol.
  • 46. The method of claim 33, wherein the particle has a diameter of less than 600 microns.
  • 47. The method of claim 46, wherein the particle has a diameter of 1 to 50 microns.
  • 48. The method of claim 46, wherein the particle has a diameter of 50 to 100 microns.
  • 49. The method of claim 46, wherein the particle has a diameter of 100 to 600 microns.
  • 50. The method of claim 33, wherein the particle has a diameter of 600 to 1000 microns.
  • 51. The method of claim 33, wherein the template polymer comprises alginate, the structural polymer comprises a polyvinyl alcohol, and the particle has a diameter of less than 600 microns.
  • 52. A method, comprising: contacting a first polymer with a second polymer to form a particle comprising the first and second polymers; and removing at least a portion of the first polymer from the particle, wherein the particle has a diameter of about 1000 microns or less.
  • 53. The method of claim 52, wherein the first polymer comprises a polysaccharide.
  • 54. The method of claim 53, wherein the polysaccharide comprises alginate.
  • 55. The method of claim 52, wherein the first polymer is selected from the group consisting of carrageenans, chitosan, hyaluronic acid, carboxylic-functionalized polymers, sulfate-functionalized polymers, amine-functionalized polymers, blends thereof, and derivatives thereof.
  • 56. The method of claim 52, wherein the second polymer is selected from the group consisting of vinyl polymers, polyacrylamides, polyethylene glycols, polyamides, polyureas, polyurethanes, polyvinyl alcohols, and derivatives thereof.
  • 57. The method of claim 52, wherein the second polymer comprises a polyvinyl alcohol.
US Referenced Citations (308)
Number Name Date Kind
2275154 Merrill et al. Mar 1942 A
2609347 Wilson Sep 1952 A
3663470 Nishimura et al. May 1972 A
3737398 Yamaguchi Jun 1973 A
3957933 Egli et al. May 1976 A
4025686 Zion May 1977 A
4034759 Haerr Jul 1977 A
4055377 Erickson et al. Oct 1977 A
4076640 Forgensi et al. Feb 1978 A
4094848 Naito Jun 1978 A
4096230 Haerr Jun 1978 A
4098728 Rosenblatt Jul 1978 A
4110529 Stoy Aug 1978 A
4159719 Haerr Jul 1979 A
4191672 Salome et al. Mar 1980 A
4198318 Stowell et al. Apr 1980 A
4243794 White et al. Jan 1981 A
4246208 Dundas Jan 1981 A
4266030 Tschang et al. May 1981 A
4268495 Muxfeldt et al. May 1981 A
4271281 Kelley et al. Jun 1981 A
4402319 Handa et al. Sep 1983 A
4413070 Rembaum Nov 1983 A
4427794 Lange et al. Jan 1984 A
4428869 Munteanu et al. Jan 1984 A
4429062 Pasztor et al. Jan 1984 A
4442843 Rasor et al. Apr 1984 A
4444961 Timm Apr 1984 A
4452773 Molday Jun 1984 A
4456693 Welsh Jun 1984 A
4459145 Elsholz Jul 1984 A
4472552 Blouin Sep 1984 A
4477255 Pasztor et al. Oct 1984 A
4492720 Mosier Jan 1985 A
4522953 Barby et al. Jun 1985 A
4542178 Zimmermann et al. Sep 1985 A
4551132 Pasztor et al. Nov 1985 A
4551436 Johnson et al. Nov 1985 A
4573967 Hargrove et al. Mar 1986 A
4622362 Rembaum Nov 1986 A
4623706 Timm et al. Nov 1986 A
4640807 Afghan et al. Feb 1987 A
4657756 Rasor et al. Apr 1987 A
4661137 Garnier et al. Apr 1987 A
4663358 Hyon et al. May 1987 A
4671954 Goldberg et al. Jun 1987 A
4674480 Lemelson Jun 1987 A
4675113 Graves et al. Jun 1987 A
4678710 Sakimoto et al. Jul 1987 A
4678814 Rembaum Jul 1987 A
4680320 Uku et al. Jul 1987 A
4681119 Rasor et al. Jul 1987 A
4695466 Morishita et al. Sep 1987 A
4713076 Draenert Dec 1987 A
4742086 Masamizu et al. May 1988 A
4743507 Franses et al. May 1988 A
4772635 Mitschker et al. Sep 1988 A
4782097 Jain et al. Nov 1988 A
4789501 Day et al. Dec 1988 A
4793980 Torobin Dec 1988 A
4795741 Leshchiner et al. Jan 1989 A
4801458 Hidaka et al. Jan 1989 A
4804366 Zdeb et al. Feb 1989 A
4819637 Dormandy, Jr. et al. Apr 1989 A
4822535 Ekman et al. Apr 1989 A
4833237 Kawamura et al. May 1989 A
4850978 Dudar et al. Jul 1989 A
4859711 Jain et al. Aug 1989 A
4863972 Itagaki et al. Sep 1989 A
4897255 Fritzberg et al. Jan 1990 A
4929400 Rembaum et al. May 1990 A
4933372 Feibush et al. Jun 1990 A
4946899 Kennedy et al. Aug 1990 A
4954399 Tani et al. Sep 1990 A
4981625 Rhim et al. Jan 1991 A
4990340 Hidaka et al. Feb 1991 A
4999188 Solodovnik et al. Mar 1991 A
5007940 Berg Apr 1991 A
5011677 Day et al. Apr 1991 A
H915 Gibbs May 1991 H
5015423 Eguchi et al. May 1991 A
5032117 Motta Jul 1991 A
5034324 Shinozaki et al. Jul 1991 A
5047438 Feibush et al. Sep 1991 A
5079274 Schneider et al. Jan 1992 A
5091205 Fan Feb 1992 A
5106903 Vanderhoff et al. Apr 1992 A
5114421 Polak May 1992 A
5116387 Berg May 1992 A
5120349 Stewart et al. Jun 1992 A
5125892 Drudik Jun 1992 A
5147631 Glajch et al. Sep 1992 A
5147937 Frazza et al. Sep 1992 A
5149543 Cohen et al. Sep 1992 A
5158573 Berg Oct 1992 A
5171214 Kolber et al. Dec 1992 A
5181921 Makita et al. Jan 1993 A
5190766 Ishihara Mar 1993 A
5192301 Kamiya et al. Mar 1993 A
5202352 Okada et al. Apr 1993 A
5216096 Hattori et al. Jun 1993 A
5253991 Yokota et al. Oct 1993 A
5260002 Wang Nov 1993 A
5262176 Palmacci et al. Nov 1993 A
5263992 Guire Nov 1993 A
5288763 Li et al. Feb 1994 A
5292814 Bayer et al. Mar 1994 A
5302369 Day et al. Apr 1994 A
5314974 Ito et al. May 1994 A
5316774 Eury et al. May 1994 A
RE34640 Kennedy et al. Jun 1994 E
5320639 Rudnick Jun 1994 A
5328936 Leifholtz et al. Jul 1994 A
5336263 Ersek et al. Aug 1994 A
5344452 Lemperle Sep 1994 A
5344867 Morgan et al. Sep 1994 A
5354290 Gross Oct 1994 A
5369133 Ihm et al. Nov 1994 A
5369163 Chiou et al. Nov 1994 A
5382260 Dormandy, Jr. et al. Jan 1995 A
5384124 Courteille et al. Jan 1995 A
5397303 Sancoff et al. Mar 1995 A
5398851 Sancoff et al. Mar 1995 A
5403870 Gross Apr 1995 A
5417982 Modi May 1995 A
5431174 Knute Jul 1995 A
5435645 Faccioli et al. Jul 1995 A
5443495 Buscemi et al. Aug 1995 A
5456693 Conston et al. Oct 1995 A
5468801 Antonelli et al. Nov 1995 A
5476472 Dormandy, Jr. et al. Dec 1995 A
5484584 Wallace et al. Jan 1996 A
5490984 Freed Feb 1996 A
5494682 Cohen et al. Feb 1996 A
5494940 Unger et al. Feb 1996 A
5512604 Demopolis Apr 1996 A
5514090 Kriesel et al. May 1996 A
5525334 Ito et al. Jun 1996 A
5534589 Hager et al. Jul 1996 A
5541031 Yamashita et al. Jul 1996 A
5542935 Unger et al. Aug 1996 A
5553741 Sancoff et al. Sep 1996 A
5556610 Yan et al. Sep 1996 A
5556931 Cercone et al. Sep 1996 A
5558255 Sancoff et al. Sep 1996 A
5558822 Gitman et al. Sep 1996 A
5558856 Klaveness et al. Sep 1996 A
5559266 Klaveness et al. Sep 1996 A
5567415 Porter Oct 1996 A
5569193 Hofstetter et al. Oct 1996 A
5569449 Klaveness et al. Oct 1996 A
5569468 Modi Oct 1996 A
5571182 Ersek et al. Nov 1996 A
5583162 Li et al. Dec 1996 A
5585112 Unger et al. Dec 1996 A
5595821 Hager et al. Jan 1997 A
5622657 Takada et al. Apr 1997 A
5624685 Takahashi et al. Apr 1997 A
5635215 Boschetti et al. Jun 1997 A
5637087 O'Neil et al. Jun 1997 A
5639710 Lo et al. Jun 1997 A
5648095 Illum et al. Jul 1997 A
5648100 Boschetti et al. Jul 1997 A
5650116 Thompson Jul 1997 A
5651990 Takada et al. Jul 1997 A
5653922 Li et al. Aug 1997 A
5657756 Vrba Aug 1997 A
5681576 Henry Oct 1997 A
5695480 Evans et al. Dec 1997 A
5695740 Porter Dec 1997 A
5698271 Liberti et al. Dec 1997 A
5701899 Porter Dec 1997 A
5716981 Hunter et al. Feb 1998 A
5718884 Klaveness et al. Feb 1998 A
5723269 Akagi et al. Mar 1998 A
5725534 Rasmussen Mar 1998 A
5733925 Kunz et al. Mar 1998 A
5741331 Pinchuk Apr 1998 A
5746734 Dormandy, Jr. et al. May 1998 A
5752974 Rhee et al. May 1998 A
5756127 Grisoni et al. May 1998 A
5760097 Li et al. Jun 1998 A
5766147 Sancoff et al. Jun 1998 A
5770222 Unger et al. Jun 1998 A
5779668 Grabenkort Jul 1998 A
5785642 Wallace et al. Jul 1998 A
5785682 Grabenkort Jul 1998 A
5792478 Lawin et al. Aug 1998 A
5795562 Klaveness et al. Aug 1998 A
5797953 Tekulve Aug 1998 A
5807323 Kriesel et al. Sep 1998 A
5813411 Van Bladel et al. Sep 1998 A
5823198 Jones et al. Oct 1998 A
5827502 Klaveness et al. Oct 1998 A
5827531 Morrison et al. Oct 1998 A
5830178 Jones et al. Nov 1998 A
5833361 Funk Nov 1998 A
5840387 Berlowitz-Tarrant et al. Nov 1998 A
5846518 Yan et al. Dec 1998 A
5855615 Bley et al. Jan 1999 A
5863957 Li et al. Jan 1999 A
5876372 Grabenkort et al. Mar 1999 A
5877224 Brocchini et al. Mar 1999 A
5885216 Evans, III et al. Mar 1999 A
5885547 Gray Mar 1999 A
5888930 Smith et al. Mar 1999 A
5891155 Irie Apr 1999 A
5895398 Wensel et al. Apr 1999 A
5895411 Irie Apr 1999 A
5899877 Leibitzki et al. May 1999 A
5902832 Van Bladel et al. May 1999 A
5902834 Porrvik May 1999 A
5922025 Hubbard Jul 1999 A
5928626 Klaveness et al. Jul 1999 A
5951160 Ronk Sep 1999 A
5959073 Schlameus et al. Sep 1999 A
6003566 Thibault et al. Dec 1999 A
6015546 Sutton et al. Jan 2000 A
6027472 Kriesel et al. Feb 2000 A
6028066 Unger Feb 2000 A
6047861 Vidal et al. Apr 2000 A
6048908 Kitagawa Apr 2000 A
6051247 Hench et al. Apr 2000 A
6056721 Shulze May 2000 A
6056844 Guiles et al. May 2000 A
6059766 Greff May 2000 A
6063068 Fowles et al. May 2000 A
6071497 Steiner et al. Jun 2000 A
6073759 Lamborne et al. Jun 2000 A
6090925 Woiszwillo et al. Jul 2000 A
6096344 Liu et al. Aug 2000 A
6099864 Morrison et al. Aug 2000 A
6100306 Li et al. Aug 2000 A
6139963 Fujii et al. Oct 2000 A
6149623 Reynolds Nov 2000 A
6160084 Langer et al. Dec 2000 A
6162377 Ghosh et al. Dec 2000 A
6165193 Greene, Jr. et al. Dec 2000 A
6179817 Zhong Jan 2001 B1
6191193 Lee et al. Feb 2001 B1
6214331 Vanderhoff et al. Apr 2001 B1
6214384 Pallado et al. Apr 2001 B1
6224630 Bao et al. May 2001 B1
6224794 Amsden et al. May 2001 B1
6235224 Mathiowitz et al. May 2001 B1
6238403 Greene, Jr. et al. May 2001 B1
6245090 Gilson et al. Jun 2001 B1
6251661 Urabe et al. Jun 2001 B1
6258338 Gray Jul 2001 B1
6261585 Sefton et al. Jul 2001 B1
6264861 Tavernier et al. Jul 2001 B1
6267154 Felicelli et al. Jul 2001 B1
6268053 Woiszwillo et al. Jul 2001 B1
6277392 Klein Aug 2001 B1
6280457 Wallace et al. Aug 2001 B1
6291605 Freeman et al. Sep 2001 B1
6296604 Garibaldi et al. Oct 2001 B1
6296622 Kurz et al. Oct 2001 B1
6296632 Luscher et al. Oct 2001 B1
6306418 Bley Oct 2001 B1
6306419 Vachon et al. Oct 2001 B1
6306425 Tice et al. Oct 2001 B1
6306427 Annonier et al. Oct 2001 B1
6312407 Zadno-Azizi et al. Nov 2001 B1
6312942 Pluss-Wenzinger et al. Nov 2001 B1
6315709 Garibaldi et al. Nov 2001 B1
6335384 Evans et al. Jan 2002 B1
6344182 Sutton et al. Feb 2002 B1
6355275 Klein Mar 2002 B1
6368658 Schwarz et al. Apr 2002 B1
6379373 Sawhney et al. Apr 2002 B1
6388043 Langer et al. May 2002 B1
6394965 Klein May 2002 B1
6423332 Huxel et al. Jul 2002 B1
6432437 Hubbard Aug 2002 B1
6436112 Wensel et al. Aug 2002 B1
6443941 Slepian et al. Sep 2002 B1
6458296 Heinzen et al. Oct 2002 B1
6476069 Krall et al. Nov 2002 B1
6495155 Tice et al. Dec 2002 B1
6544503 Vanderhoff et al. Apr 2003 B1
6545097 Pinchuk et al. Apr 2003 B1
6575896 Silverman et al. Jun 2003 B1
6602261 Greene, Jr. et al. Aug 2003 B1
6602524 Batich et al. Aug 2003 B1
6605111 Bose et al. Aug 2003 B1
6629947 Sahatjian et al. Oct 2003 B1
6632531 Blankenship Oct 2003 B1
6652883 Goupil et al. Nov 2003 B1
6680046 Boschetti Jan 2004 B1
6699222 Jones et al. Mar 2004 B1
20010016210 Mathiowitz et al. Aug 2001 A1
20010036451 Goupil et al. Nov 2001 A1
20010051670 Goupil et al. Dec 2001 A1
20020054912 Kim et al. May 2002 A1
20020061954 Davis et al. May 2002 A1
20020160109 Yeo et al. Oct 2002 A1
20020182190 Naimark et al. Dec 2002 A1
20020197208 Ruys et al. Dec 2002 A1
20030007928 Gray Jan 2003 A1
20030032935 Damiano et al. Feb 2003 A1
20030108614 Volkinsky et al. Jun 2003 A1
20030187320 Freyman Oct 2003 A1
20030194390 Krall et al. Oct 2003 A1
20030206864 Mangin Nov 2003 A1
20040186377 Zhong et al. Sep 2004 A1
20050025800 Tan Feb 2005 A1
20050037047 Song Feb 2005 A1
Foreign Referenced Citations (79)
Number Date Country
A-7618698 Oct 1998 AU
3834705 Apr 1990 DE
9414868.6 Sep 1994 DE
94 14 868.6 Feb 1995 DE
100 26 620 May 2000 DE
297 24 255 Oct 2000 DE
100 26 620 A 1 Mar 2002 DE
0 067 459 Dec 1982 EP
0122624 Oct 1984 EP
0123235 Oct 1984 EP
0 243 165 Oct 1987 EP
0 294 206 Dec 1988 EP
0 402 031 May 1990 EP
0 422 258 Apr 1991 EP
0458745 May 1991 EP
0458079 Nov 1991 EP
0548079 Nov 1991 EP
0 470 569 Feb 1992 EP
0 547 530 Jun 1993 EP
0 600 529 Dec 1993 EP
0 623 012 Nov 1994 EP
0 706 376 Apr 1996 EP
0 730 847 Sep 1996 EP
0 744 940 Dec 1996 EP
0 797 988 Oct 1997 EP
0067459 Oct 1998 EP
0 764 047 Aug 2003 EP
0 993 337 Apr 2004 EP
2 096 521 Mar 1997 ES
59-196738 Nov 1884 JP
62-45637 Feb 1987 JP
4-74117 Mar 1992 JP
6-57012 Mar 1994 JP
9-110678 Apr 1997 JP
9-165328 Jun 1997 JP
9-316271 Dec 1997 JP
10-130329 May 1998 JP
2002 017848 Jan 2002 JP
255409 Feb 1997 NZ
517377 Aug 2003 NZ
WO9112823 May 1991 WO
WO 9221327 Dec 1992 WO
WO 9300063 Jan 1993 WO
WO 9319702 Oct 1993 WO
WO 9410936 May 1994 WO
WO 9503036 Feb 1995 WO
WO 9522318 Aug 1995 WO
WO 9533553 Dec 1995 WO
WO 9637165 Nov 1996 WO
WO 9639464 Dec 1996 WO
WO 9804616 Feb 1998 WO
WO 9810798 Mar 1998 WO
WO 9826737 Jun 1998 WO
WO9847532 Oct 1998 WO
WO 9900187 Jan 1999 WO
WO 9912577 Mar 1999 WO
WO 9943380 Sep 1999 WO
WO 9951278 Oct 1999 WO
WO 9957176 Nov 1999 WO
WO 0023054 Apr 2000 WO
WO 0040259 Jul 2000 WO
WO 0071196 Nov 2000 WO
WO 0074633 Dec 2000 WO
WO 0112359 Feb 2001 WO
WO 0166016 Sep 2001 WO
WO 0170291 Sep 2001 WO
WO 0176845 Oct 2001 WO
WO 0193920 Dec 2001 WO
WO 0211696 Feb 2002 WO
WO 0234298 May 2002 WO
WO 0234299 May 2002 WO
WO 0234300 May 2002 WO
WO 0243580 Jun 2002 WO
WO 03016364 Feb 2003 WO
WO03051451 Jun 2003 WO
WO03082359 Sep 2003 WO
WO 2004019999 Mar 2004 WO
WO 04073688 Sep 2004 WO
WO 2004075989 Sep 2004 WO
Related Publications (1)
Number Date Country
20030183962 A1 Oct 2003 US