Claims
- 1. A process for preparing 6-hydroxy-3,4-dihydroquinolinone by cyclization of N-(4-methoxyphenyl)-3-chloropropionamide comprising the steps of:
a) contacting an equivalent of N-(4-methoxyphenyl)-3-chloropropionamide with about 3 to about 5 equivalents of a Lewis acid catalyst in a diluent selected from the group consisting of dimethyl sulfoxide, N,N-disubstituted amides and amines having a boiling point of 150° C. or above, the diluent being present in an amount of from about 1 to about 1.3 equivalents with respect to the N-(4-methoxyphenyl)-3-chloropropionamide, at an elevated temperature of from about 150° C. to about 220° C. for a period of time sufficient to cause substantially all of the N-(4-methoxyphenyl)-3-chloropropionamide to cyclize and demethylate resulting in the formation of a Lewis acid salt of 6-hydroxy-3,4-dihydroquinolinone, and thereafter, b) decomposing the Lewis acid salt of 6-hydroxy-3,4-dihydroquinolinone, and c) isolating 6-hydroxy-3,4-dihydroquinolinone.
- 2. The process of claim 1 wherein the Lewis acid is selected from the group consisting of AlCl3, AlBr3, FeCl3, FeBr3, SbF5, TiCl4, SnCl4 and BF3.
- 3. The process of claim 2 wherein the Lewis acid is AlCl3.
- 4. The process of claim 3 wherein the N-(4-methoxyphenyl)-3-chloropropionamide is contacted with about 4 equivalents of AlCl3.
- 5. The process of claim 1 wherein the time sufficient to cause substantially all of the N-(4-methoxyphenyl)-3-chloropropionamide to cyclize is three hours or less.
- 6. The process of claim 1 wherein the N-(4-methoxyphenyl)-3-chloropropionamide and Lewis acid are contacted at an elevated temperature of from about 150° C. to about 160° C.
- 7. The process of claim 1 and thereafter converting the 6-hydroxy-3,4-dihydroquinolinone to 6-[4-(1-cyclohexyl-1H-tetrazol-5-yl)butoxy]-3,4-dihydro-2(1H)-quinolinone or a pharmaceutically acceptable salt thereof.
- 8. The process of claim 7 wherein the conversion of 6-hydroxy-3,4-dihydroquinolinone to 6-[4-(1-cyclohexyl-1H-tetrazol-5-yl)butoxy]-3,4-dihydro-2(1H)-quinolinone or a pharmaceutically acceptable salt thereof is by reaction of 6-hydroxy-3,4-dihydroquinolinone with a 1-cyclohexyl-5-(4-halobutyl)-tetrazole in the presence of an organic or inorganic base.
- 9. 6-Hydroxy-3,4-dihydroquinolinone prepared by the process of claim 1.
- 10. A process for preparing 6-hydroxy-3,4-dihydroquinolinone by cyclization of N-(4-methoxyphenyl)-3-chloropropionamide comprising the steps of:
a) contacting an equivalent of N-(4-methoxyphenyl)-3-chloropropionamide with about 3 to about 5 equivalents of a Lewis acid catalyst in a reaction medium consisting essentially of a diluent selected from the group consisting of dimethyl sulfoxide, N,N-disubstituted amides and amines having a boiling point of 150° C. or above, the diluent being present in an amount of from about 1 to about 1.3 equivalents with respect to the N-(4-methoxyphenyl)-3-chloropropionamide, at an elevated temperature of from about 150° C. to about 220° C. for a period of time sufficient to cause substantially all of the N-(4-methoxyphenyl)-3-chloropropionamide to cyclize and demethylate resulting in the formation of a Lewis acid salt of 6-hydroxy-3,4-dihydroquinolinone, and thereafter, b) decomposing the Lewis acid salt of 6-hydroxy-3,4-dihydroquinolinone, and c) isolating 6-hydroxy-3,4-dihydroquinolinone.
- 11. 6-Hydroxy-3,4-dihydroquinolinone prepared by the process of claim 10.
- 12. A process for preparing N-(4-methoxyphenyl)-3-chloropropionamide comprising the steps of adding p-anisidine and from about 1 to 1.2 equivalents of sodium bicarbonate with respect to the p-anisidine to toluene to form a suspension of sodium bicarbonate in a p-anisidine solution, slowly adding from about 0.9 to about 1.1 equivalents of 3-chloropropionyl chloride to the suspension, maintaining the temperature of the suspension at from about 25° C. to about 111° C. for a period of time sufficient to cause substantially all of the p-anisidine to be converted to N-(4-methoxyphenyl)-3-chloropropionamide, quenching the mixture with aqueous mineral acid, wherein quenching causes precipitation of solid, and isolating the solid from the quenched mixture, further wherein after washing with water and toluene, followed by drying to a constant weight, the solid that is obtained is N-(4-methoxyphenyl)-3-chloropropionamide in greater than 98% purity.
- 13. N-(4-methoxyphenyl)-3-chloropropionamide made by the process of claim 12.
- 14. A process for preparing N-(4-methoxyphenyl)-3-chloropropionamide comprising the steps of adding p-anisidine and from about 1 to 1.2 equivalents of triethylamine with respect to the p-anisidine to methyl ethyl ketone, slowly adding from about 0.9 to about 1.1 equivalents of 3-chloropropionyl chloride, heating the resulting mixture to reflux temperature, precipitating a solid from the reaction mixture by cooling, and isolating the solid from the mixture, wherein after washing with water and drying to constant weight the solid that is obtained is N-(4-methoxyphenyl)-3-chloropropionamide in greater than 98% purity.
- 15. N-(4-methoxyphenyl)-3-chloropropionamide made by the process of claim 14.
- 16. A process for preparing N-(4-methoxyphenyl)-3-chloropropionamide comprising the steps of dissolving p-anisidine in dichloromethane to form a N-(4-methoxyphenyl)-3-chloropropionamide solution and adding from about 0.9 to about 1.1 equivalents of 3-chloropropionyl chloride and from about 0.9 to about 1.1 equivalents sodium hydroxide at a temperature of 0° C. or less and in a concerted manner that maintains approximately neutral pH in the (4-methoxyphenyl)-3-chloropropionamide solution, precipitating a solid from the dichlormethane phase of the resulting two phase mixture and separating the solid from the dichloromethane, wherein after washing with water and drying to constant weight the solid that is obtained is N-(4-methoxyphenyl)-3-chloropropionamide in greater than 98% purity.
- 17. N-(4-methoxyphenyl)-3-chloropropionamide made by the process of claim 16.
- 18. A process for preparing N-(4-methoxyphenyl)-3-chloropropionamide comprising the steps of dissolving p-anisidine in N,N-dimethylformamide and adding from about 0.9 to about 1.1 equivalents 3-chloropropionyl chloride with respect to the p-anisidine to the solution for a time sufficient to form N-(4-methoxyphenyl)-3-chloropropionamide, adding water to the mixture, whereupon addition of the water causes a solid to precipitate from the mixture, isolating the solid from the mixture, wherein after washing with water and drying to a constant weight the solid is N-(4-methoxyphenyl)-3-chloropropionamide in greater than 98% purity.
- 19. N-(4-methoxyphenyl)-3-chloropropionamide made by the process of claim 18.
CROSS-REFERENCE TO RELATED APPLICATION
[0001] This invention claims the benefit under 35 U.S.C. 1.119(e) of provisional application Serial No. 60/190,588, filed Mar. 20, 2000.
Provisional Applications (1)
|
Number |
Date |
Country |
|
60190588 |
Mar 2000 |
US |
Divisions (2)
|
Number |
Date |
Country |
Parent |
10094050 |
Mar 2002 |
US |
Child |
10465885 |
Jun 2003 |
US |
Parent |
09812454 |
Mar 2001 |
US |
Child |
10094050 |
Mar 2002 |
US |