The present disclosure relates to improvements in the field of chemistry applied to the production of alumina. For example, it relates to processes for the production of alumina via the extraction of aluminum from aluminum-containing materials. These processes can also be efficient for preparing other products such as hematite, MgO, silica and oxides of various metals, sulphates and chlorides of various metals, as well as rare earth elements, rare metals and aluminum.
There have been several known processes for the production of alumina. Many of them were using bauxite as starting material. These processes, that were mainly alkaline processes, have been employed throughout the years. Several of such alkaline processes have the disadvantage of being inefficient to segregate and extract value added secondary products, thus leaving an important environmental impact. There have also been development work employing hydrochloric acid for the leaching step but, it has been found that such processes were not efficient for removing most part of the impurities and especially iron. For example, removal of iron was also difficult to be carried out via adequate and economical techniques especially when using continuous processes.
According to one aspect, there is provided a process for preparing alumina and optionally other products, the process comprising:
According to another aspect, there is provided a process for preparing alumina and optionally other products, the process comprising:
According to another aspect, there is provided a process for preparing alumina and optionally other products, the process comprising:
According to another aspect, there is provided a process for preparing alumina and optionally other products, the process comprising:
According to another aspect, there is provided a process for preparing alumina and optionally other products, the process comprising:
According to another aspect, there is provided a process for preparing alumina and optionally other products, the process comprising:
According to one aspect, there is provided a process for preparing aluminum and optionally other products, the process comprising:
According to another aspect, there is provided a process for preparing aluminum and optionally other products, the process comprising:
In the following drawings, which represent by way of example only, various embodiments of the disclosure:
The following non-limiting examples further illustrate the technology described in the present disclosure.
The aluminum-containing material can be for example chosen from aluminum-containing ores (such as aluminosillicate minerals, clays, argillite, nepheline, mudstone, beryl, cryolite, garnet, spinel, bauxite, kaolin or mixtures thereof can be used). The aluminum-containing material can also be a recycled industrial aluminum-containing material such as slag, red mud or fly ashes.
The expression “red mud” as used herein refers, for example, to an industrial waste product generated during the production of alumina. For example, such a waste product can comprise silica, aluminum, iron, calcium, and optionally titanium. It can also comprise an array of minor constituents such as Na, K, Cr, V, Ni, Ba, Cu, Mn, Pb, and/or Zn etc. For example, red mud can comprises about 15 to about 80% by weight of Fe2O3, about 1 to about 35% by weight Al2O3, about 1 to about 65% by weight of SiO2, about 1 to about 20% by weight of Na2O, about 1 to about 20% by weight of CaO, and from 0 to about 35% by weight of TiO2. According to another example, red mud can comprise about 30 to about 65% by weight of Fe2O3, about 10 to about 20% by weight Al2O3, about 3 to about 50% by weight of SiO2, about 2 to about 10% by weight of Na2O, about 2 to about 8% by weight of CaO, and from 0 to about 25% by weight of TiO2.
The expression “fly ashes” as used herein refers, for example, to an industrial waste product generated in combustion. For example, such a waste product can contain various elements such as silica, oxygen, aluminum, iron, calcium. For example, fly ashes can comprise silicon dioxide (SiO2) and aluminium oxide (Al2O3). For example, fly ashes can further comprises calcium oxide (CaO) and/or iron oxide (Fe2O3). For example fly ashes can comprise fine particles that rise with flue gases. For example, fly ashes can be produced during combustion of coal. For example, fly ashes can also comprise at least one element chosen from arsenic, beryllium, boron, cadmium, chromium, chromium VI, cobalt, lead, manganese, mercury, molybdenum, selenium, strontium, thallium, and/or vanadium. For example, fly ashes can also comprise rare earth elements and rare metals. For example, fly ashes can be considered as an aluminum-containing material.
The expression “slag” as used herein refers, for example, to an industrial waste product comprising aluminum oxide and optionally other oxides such as oxides of calcium, magnesium, iron, and/or silicon.
The expression “rare earth element” (also described as “REE”) as used herein refers, for example, to a rare element chosen from scandium, yttrium, lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium. The expression “rare metals” as used herein refers, for example, to rare metals chosen from indium, zirconium, lithium, and gallium. These rare earth elements and rare metals can be in various form such as the elemental form (or metallic form), under the form of chlorides, oxides, hydroxides etc. The expression “rare earths” as used in the present disclosure as a synomym of “rare earth elements” that is described above.
The expression “at least one iron chloride” as used herein refers to FeCl3 or a mixture thereof.
The term “hematite” as used herein refers, for example, to a compound comprising α-Fe2O3, γ-Fe2O3, β-FeO.OH or mixtures thereof.
The expression “iron ions” as used herein refers, for example to ions comprising to at least one type of iron ion chosen from all possible forms of Fe ions. For example, the at least one type of iron ion can be Fe2+, Fe3+, or a mixture thereof.
The expression “aluminum ions” as used herein refers, for example to ions comprising to at least one type of aluminum ion chosen from all possible forms of Al ions. For example, the at least one type of aluminum ion can be Al3+.
The expression “at least one aluminum ion”, as used herein refers, for example, to at least one type of aluminum ion chosen from all possible forms of Al ions. For example, the at least one aluminum ion can be Al3+.
The expression “at least one iron ion”, as used herein refers, for example, to at least one type of iron ion chosen from all possible forms of Fe ions. For example, the at least one iron ion can be Fe2+, Fe3+, or a mixture thereof.
The expression “at least one precipitated iron ion”, as used herein refers, for example, to at least one type of iron ion chosen from all possible forms of Fe ions that was precipitated in a solid form. For example, the at least one iron ion present in such a precipitate can be Fe2+, Fe3+, or a mixture thereof.
Terms of degree such as “about” and “approximately” as used herein mean a reasonable amount of deviation of the modified term such that the end result is not significantly changed. These terms of degree should be construed as including a deviation of at least ±5% or at least ±10% of the modified term if this deviation would not negate the meaning of the word it modifies.
For example, the aluminum-containing material can be leached with HCl having a concentration of about 10 to about 50 weight %, about 15 to about 45 weight %, of about 18 to about 45 weight % of about 18 to about 32 weight %, of about 20 to about 45 weight %, of about 25 to about 45 weight %, of about 26 to about 42 weight %, of about 28 to about 40 weight %, of about 30 to about 38 weight %, or between 25 and 36 weight %.
For example, the aluminum-containing material can be leached at a temperature of about 125 to about 225° C., about 150 to about 200° C., about 160 to about 190° C., about 185 to about 190° C., about 160 to about 180° C., about 160 to about 175° C., or about 165 to about 170° C.
For example, the aluminum-containing material can be leached at a pressure of about 4 to about 10 barg, about 4 to about 8 barg, or about 5 to about 6 barg.
For example, the processes can further comprise recycling the gaseous HCl so-produced by contacting it with water so as to obtain a composition having a concentration of about 18 to about 45 weight % or 25 to about 45 weight %.
For example, the processes can further comprise recycling the gaseous HCl so-produced by contacting it with water so as to obtain a composition having a concentration of about 18 to about 45 weight % or about 25 to about 45 weight % and using the composition for leaching the aluminum-containing material.
For example, the liquid can comprise iron chloride. Iron chloride can comprise at least one of FeCl2, FeCl3, and a mixture thereof.
For example, the liquid can have an iron chloride concentration of at least 30% by weight; and can then be hydrolyzed at a temperature of about 155 to about 350° C.
For example, the liquid can be concentrated to a concentrated liquid having an iron chloride concentration of at least 30% by weight; and then the iron chloride can be hydrolyzed at a temperature of about 155 to about 350° C. while maintaining a ferric chloride concentration at a level of at least 65% by weight, to generate a composition comprising a liquid and precipitated hematite, and recovering the hematite.
For example, non-hydrolysable elements with hematite can be concentrated back to a concentration of about 0.125 to about 52% wt. in circulation loop in view of selective extraction.
For example, the liquid can be concentrated to a concentrated liquid having a concentration of the at least one iron chloride of at least 30% by weight; and then hydrolyzed at a temperature of about 155 to about 350° C.
For example, the liquid can be concentrated to a concentrated liquid having a concentration of the at least one iron chloride of at least 30% by weight; and then the at least one iron chloride is hydrolyzed at a temperature of about 155 to about 350° C. while maintaining a ferric chloride concentration at a level of at least 65% by weight, to generate a composition comprising a liquid and precipitated hematite, and recovering the hematite.
For example, the liquid can be concentrated to a concentrated liquid having a concentration of the at least one iron chloride of at least 30% by weight; and then the at least one iron chloride is hydrolyzed at a temperature of about 155 to about 350° C. while maintaining a ferric chloride concentration at a level of at least 65% by weight, to generate a composition comprising a liquid and precipitated hematite; recovering the hematite; and recovering rare earth elements and/or rare metals from the liquid.
For example, the at least one iron chloride can be hydrolyzed at a temperature of about, 150 to about 175, 155 to about 170 or 165 to about 170° C.
For example, the liquid can be concentrated to a concentrated liquid having an iron chloride concentration of at least 30% by weight; and then the iron chloride can be hydrolyzed at a temperature of about 155 to about 350° C. while maintaining a ferric chloride concentration at a level of at least 65% by weight, to generate a composition comprising a liquid and precipitated hematite; recovering the hematite; and recovering rare earth elements and/or rare metals from the liquid.
For example, the processes can further comprise, after recovery of the rare earth elements and/or rare metals, reacting the liquid with HCl so as to cause precipitation of MgCl2, and recovering same.
For example, the processes can further comprise calcining MgCl2 into MgO.
For example, the processes can further comprises, after recovery of the rare earth elements and/or rare metals, reacting the liquid with HCl, and substantially selectively precipitating Na2SO4. For example, Na2SO4 can be precipitated by reacting the liquid with H2SO4.
For example, the processes can further comprises, after recovery of the rare earth elements and/or rare metals, reacting the liquid with HCl, and substantially selectively precipitating K2SO4. For example, K2SO4 can be precipitated by adding H2SO4.
For example, the liquid can be concentrated to a concentrated liquid having an iron chloride concentration of at least 30% by weight; and then the iron chloride can be hydrolyzed at a temperature of about 155 to about 350° C. while maintaining a ferric chloride concentration at a level of at least 65% by weight, to generate a composition comprising a liquid and precipitated hematite; recovering the hematite; and reacting the liquid with HCl. For example, such processes can further comprises reacting the liquid with H2SO4 so as to substantially selectively precipitate Na2SO4. The processes can also comprise further reacting the liquid with H2SO4 so as to substantially selectively precipitating K2SO4.
For example, the processes can comprise reacting dry individual salts (for example Na or K salts) obtained during the processes with H2SO4 and recovering HCl while producing marketable K2SO4 and Na2SO4 and recovering hydrochloric acid of about 15 to about 90% wt.
For example, sodium chloride produced in the processes can undergo a chemical reaction with sulfuric acid so as to obtain sodium sulfate and regenerate hydrochloric acid. Potassium chloride can undergo a chemical reaction with sulfuric acid so as to obtain potassium sulfate and regenerate hydrochloric acid. Sodium and potassium chloride brine solution can alternatively be the feed material to adapted small chlor-alkali electrolysis cells. In this latter case, common bases (NaOH and KOH) and bleach (NaOCl and KOCl) are produced.
For example, the processes can further comprise, after recovery of the rare earth elements and/or rare metals, recovering NaCl from the liquid, reacting the NaCl with H2SO4, and substantially selectively precipitating Na2SO4.
For example, the processes can further comprise, downstream of recovery of the rare earth elements and/or rare metals, recovering KCl from the liquid, reacting the KCl with H2SO4, and substantially selectively precipitating K2SO4.
For example, the processes can further comprise, downstream of recovery of the rare earth elements and/or rare metals, recovering NaCl from the liquid, carrying out an electrolysis to generate NaOH and NaOCl.
For example, the processes can further comprise, downstream of recovery of the rare earth elements and/or rare metals, recovering KCl from the liquid, reacting the KCl, carrying out an electrolysis to generate KOH and KOCl.
For example, the liquid can be concentrated to a concentrated liquid having a concentration of the at least one iron chloride of at least 30% by weight; and then the at least one iron chloride is hydrolyzed at a temperature of about 155 to about 350° C. while maintaining a ferric chloride concentration at a level of at least 65% by weight, to generate a composition comprising a liquid and precipitated hematite; recovering the hematite; and extracting NaCl and/or KCl from the liquid.
For example, the processes can further comprise reacting the NaCl with H2SO4 so as to substantially selectively precipitate Na2SO4.
For example, the processes can further comprise reacting the KCl with H2SO4 so as to substantially selectively precipitate K2SO4.
For example, the processes can further comprise carrying out an electrolysis of the NaCl to generate NaOH and NaOCl.
For example, the processes can further comprise carrying out an electrolysis of the KCl to generate KOH and KOCl.
For example, the processes can comprise separating the solid from the leachate and washing the solid so as to obtain silica having a purity of at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, at least 99.5% or at least 99.9%.
For example, the processes can comprise reacting the leachate with gaseous HCl so as to obtain the liquid and the precipitate comprising the aluminum ions in the form of AlCl3.6H2O.
For example, the processes can comprise reacting the leachate with dry gaseous HCl so as to obtain the liquid and the precipitate comprising the aluminum ions in the form of AlCl3.6H2O.
For example, the processes can comprise reacting the leachate with acid of at least 30% wt. that was recovered, regenerated and/or purified as indicated in the present disclosure so as to obtain the liquid and the precipitate comprising the aluminum ions in the form of AlCl3.6H2O.
For example, the processes can comprise reacting the leachate with gaseous HCl so as to obtain the liquid and the precipitate comprising said aluminum ions, the precipitate being formed by crystallization of AlCl3.6H2O.
For example, the processes can comprise reacting the leachate with dry gaseous HCl so as to obtain the liquid and the precipitate comprising the aluminum ions, the precipitate being formed by crystallization of AlCl3.6H2O.
For example, the gaseous HCl can have a HCl concentration of at least 85% wt. or at least 90% wt.
For example, the gaseous HCl can have a HCl concentration of about 90% wt. or about 90% to about 95% wt.
For example, during the crystallization of AlCl3.6H2O, the liquid can be maintained at a concentration of HCl of about 25 to about 35% by weight or about 30 to about 32% by weight.
For example, the crystallization can be carried out at a temperature of about 45 to about 65° C. or about 50 to about 60° C.
For example, the HCl can be obtained from the gaseous HCl so-produced.
For example, in the processes of the present disclosure, a given batch or quantity of the aluminum-containing material will be leached, will then be converted into AlCl3 and when the HCl generated during calcination of AlCl3 into Al2O3 will be used for example to leach another given batch or quantity of the aluminum-containing material.
For example, the processes can comprise heating the precipitate at a temperature of at least 850, 900, 925, 930, 1000, 1100, 1200 or 1250° C. for converting AlCl3 into Al2O3.
For example, converting AlCl3 into Al2O3 can comprise calcination of AlCl3.
For example, calcination is effective for converting AlCl3 into beta-Al2O3.
For example, calcination is effective for converting AlCl3 into alpha-Al2O3.
For example, converting AlCl3 into Al2O3 can comprise carrying out a calcination via a two-stage circulating fluid bed reactor.
For example, converting AlCl3 into Al2O3 can comprise carrying out a calcination via a two-stage circulating fluid bed reactor that comprises a preheating system.
For example, converting AlCl3 into Al2O3 can comprise carrying out a calcination at low temperature, for example, about 300 to about 600° C., about 325 to about 550° C., about 350 to about 500° C., about 375 to about 450° C., about 375 to about 425° C., or about 385 to about 400° C. and/or injecting steam.
For example, converting AlCl3 into Al2O3 can comprise carrying out a calcination at low temperature, for example, at least 350° C. and/or injecting steam.
For example, converting AlCl3 into Al2O3 can comprise carrying out a calcination at low temperature, for example, less than 600° C. and/or injecting steam.
For example, converting AlCl3 into Al2O3 can comprise carrying out a calcination by using coal as combustion source and by using a degasification unit.
For example, steam (or water vapor) can be injected at a pressure of about 200 to about 700 psig, about 300 to about 700 psig, about 400 to about 700 psig, about 550 to about 650 psig, about 575 to about 625 psig, or about 590 to about 610 psig.
For example, steam (or water vapor) can be injected and a plasma torch can be used for carrying fluidization.
For example, the steam (or water vapor) can be overheated.
For example, converting AlCl3 into Al2O3 can comprise carrying out a calcination by means of carbon monoxide (CO).
For example, converting AlCl3 into Al2O3 can comprise carrying out a calcination by means of a Refinery Fuel Gas (RFG).
For example, calcination can be carried out by injecting water vapor or steam and/or by using a combustion source chosen from fossil fuels, carbon monoxide, a Refinery Fuel Gas, coal, or chlorinated gases and/or solvants.
For example, calcination can be carried out by injecting water vapor or steam and/or by using a combustion source chosen from natural gas or propane.
For example, calcination can be carried out by providing heat by means of electric heating, gas heating, microwave heating,
For example, the fluid bed reactor can comprise a metal catalyst chosen from metal chlorides.
For example, thee fluid bed reactor can comprise a metal catalyst that is FeCl3, FeCl2 or a mixture thereof.
For example, the fluid bed reactor can comprise a metal catalyst that is FeCl3.
For example, the preheating system can comprise a plasma torch.
For example, steam can be used as the fluidization medium heating. Heating can also be electrical.
For example, a plasma torch can be used for preheating the calcination reactor.
For example, a plasma torch can be used for preheating air entering in the calcination reactor.
For example, a plasma torch can be used for preheating a fluid bed.
For example, the calcination medium can be substantially neutral in terms of O2 (or oxidation). For example, the calcination medium can favorize reduction (for example a concentration of CO of about 100 ppm).
For example, the calcination medium is effective for preventing formation of Cl2.
For example, the processes can comprise converting AlCl3.6H2O into Al2O3 by carrying out a calcination of AlCl3.6H2O that is provided by the combustion of gas mixture that comprises:
CH4: 0 to about 1% vol;
C2H6: 0 to about 2% vol;
C3H8: 0 to about 2% vol;
C4H10: 0 to about 1% vol;
N2: 0 to about 0.5% vol;
H2: about 0.25 to about 15.1% vol;
CO: about 70 to about 82.5% vol; and
CO2: about 1.0 to about 3.5% vol.
Such a mixture can be efficient for reduction in off gas volume of 15.3 to 16.3%; therefore the capacity increases of 15.3 to 16.3% proven on practical operation of the circulating fluid bed. Thus for a same flow it represents an Opex of 0.65*16.3%=10.6%.
For example, the air to natural gas ratio of (Nm3/h over Nm3/h) in the fluid bed can be about 9.5 to about 10
For example, the air to CO gas ratio of (Nm3/h over Nm3/h) in the fluid bed can be about 2 to about 3.
For example, the processes can comprise, before leaching said aluminum-containing material, a pre-leaching removal of fluorine optionally contained in said aluminum-containing material.
For example, the processes can comprise leaching of the aluminum-containing material with HCl so as to obtain said leachate comprising aluminum ions and said solid, separating said solid from said leachate; and further treating said solid so as to separate SiO2 from TiO2 that are contained therein.
For example, the processes can comprise leaching said aluminum-containing material with HCl so as to obtain said leachate comprising aluminum ions and said solid, separating said solid from said leachate; and further treating said solid with HCl so as to separate SiO2 from TiO2 that are contained therein.
For example, the processes can comprise leaching said aluminum-containing material with HCl so as to obtain said leachate comprising aluminum ions and said solid, separating said solid from said leachate; and further treating said solid with HCl at a concentration of less than 20% wt., at a temperature of less than 85° C., in the presence of MgCl, so as to separate SiO2 from TiO2 that are contained therein.
For example, converting AlCl3 into Al2O3 can comprise carrying out a one-step calcination.
For example, calcination can be carried out at different temperatures with steam. Temperature applied of superheated steam can be of about 350° C. to about 550° C. or about 350° C. to about 940° C. or about 350° C. to about 1200° C.
For example, multi stage evaporation step of the hydrolyser can be carried out to reduce drastically energy consumption.
For example, the processes can be effective for providing an Al2O3 recovery yield of at least 93%, at least 94%, at least 95%, about 90 to about 95%, about 92 to about 95%, or about 93 to about 95%.
For example, the processes can be effective for providing a Fe2O3 recovery yield of at least 98%, at least 99%, about 98 to about 99.5%, or about 98.5 to about 99.5%.
For example, the processes can be effective for providing a MgO recovery yield of at least 96%, at least 97%, at least 98%, or about 96 to about 98%.
For example, the processes can be effective for providing a HCl recovery yield of at least 98%, at least 99%, or about 98 to about 99.9%.
For example, the processes can be effective for providing chlorides of rare earth elements (REE-Cl) and chlorides of rare metals (RM-Cl) in recovery yields of about 75% to about 96.5% by using internal processes via an internal concentration loop.
For example, the processes can be effective for providing hydrochloric acid recovery yield of about 99.75% with non-hydrolysable elements.
For example, the aluminum-containing material can be argillite.
For example, the aluminum-containing material can be bauxite.
For example, the aluminum-containing material can be red mud.
For example, the aluminum-containing material can be fly ashes.
For example, the aluminum-containing material can be chosen from industrial refractory materials.
For example, the aluminum-containing material chosen from aluminosilicate minerals.
For example, the processes can be effective for avoiding producing red mud.
For example, the alumina and the other products are substantially free of red mud.
For example, HCl can be recycled. For example, such a recycled HCl can be concentrated and/or purified.
For example, gaseous HCl can be concentrated and/or purified by means of H2SO4. For example, gaseous HCl can be passed through a packed column where it is contacted with a H2SO4 countercurrent flow. For example, by doing so, concentration of HCl can be increased by at least 50% wt., at least 60% wt., at least 70% wt., at least 75% wt., at least 80% wt., about 50% wt. to about 80% wt., about 55% wt. to about 75% wt., or about 60% wt. For example, the column can be packed with a polymer such as polypropylene(PP) or polytrimethylene terephthalate (PTT).
For example, gaseous HCl can be concentrated and/or purified by means of CaCl2. For example, gaseous HCl can be passed through a column packed with CaCl2.
For example, the processes can further comprise converting alumina (Al2O3) into aluminum. Conversion of alumina into aluminum can be carried out, for example, by using the Hall-Héroult process. References is made to such a well known process in various patents and patent applications such as US 20100065435; US 20020056650; U.S. Pat. No. 5,876,584; U.S. Pat. No. 6,565,733. Conversion can also be carried out by means of other methods such as those described in U.S. Pat. No. 7,867,373; U.S. Pat. No. 4,265,716; U.S. Pat. No. 6,565,733 (converting alumina into aluminum sulfide followed by the conversion of aluminum sulfide into aluminum). For example, aluminium can be produced by using a reduction environment and carbon at temperature below 200° C. Aluminum can also be produced by reduction using potassium and anhydrous aluminum chloride (Wohler Process).
According to one example as shown in
1—The aluminum-containing material is reduced to an average particle size of about 50 to about 80 μm.
2—The reduced and classified material is treated with hydrochloric acid which allows for dissolving, under a predetermined temperature and pressure, the aluminum with other elements like iron, magnesium and other metals including rare earth elements and/or rare metals. The silica and titanium (if present in raw material) remain totally undissolved.
3—The mother liquor from the leaching step then undergoes a separation, a cleaning stage in order to separate the purified silica from the metal chloride in solution.
4—The spent acid (leachate) obtained from step 1 is then brought up in concentration with dry and highly concentrated gaseous hydrogen chloride by sparging this one into a crystallizer. This results into the crystallization of aluminum chloride hexahydrate (precipitate) with a minimum of other impurities. Depending on the concentration of iron chloride at this stage, further crystallization step(s) can be required. The precipitate is then separated from the liquid.
5—The aluminum chloride hexahydrate is then calcined (for example by means of a rotary kiln, fluid bed, etc) at high temperature in order to obtain the alumina form. Highly concentrated gaseous hydrogen chloride is then recovered and excess is brought in aqueous form to the highest concentration possible so as to be used (recycled) in the acid leaching step.
6—Iron chloride (the liquid obtained from step 4) is then pre-concentrated and hydrolyzed at low temperature in view of the Fe2O3 (hematite form) extraction and acid recovery from its hydrolysis. All heat recovery from the calcination step (step 5), the leaching part exothermic reaction (step 1) and other section of the processes is being recovered into the pre-concentrator.
10—After the removal of hematite, a solution rich in rare earth elements and/or rare metals can be processed. As it can be seen in
Other non-hydrolysable metal chlorides (Me-Cl) such as MgCl2 and others then undergo the following steps:
7—The solution rich in magnesium chloride and other non-hydrolysable products at low temperature is then brought up in concentration with dry and highly concentrated gaseous hydrogen chloride by sparging it into a crystallizer. This results into the precipitation of magnesium chloride as an hexahydrate, for example after sodium and potassium chloride removal.
8—Magnesium chloride hexahydrate is then calcined (either through a rotary kiln, fluid bed, etc.) and hydrochloric acid at very high concentration is thus regenerated and brought back to the leaching step.
9—Other Me-Cl undergo a standard pyrohydrolysis step where mixed oxides (Me-O) can be produced and hydrochloric acid at the azeotropic point (20.2% wt.) is regenerated.
NaCl can undergo chemical reaction with H2SO4 to produce Na2SO4 and HCl at a concentration at or above azeotropic concentration. Moreover, KCl can undergo chemical reaction with H2SO4 to produce K2SO4 and HCl having a concentration that is above the azeotropic concentration. Sodium and potassium chloride brine solution can be the feed material to adapted small chlor-alkali electrolysis cells. In this latter case, common bases (NaOH and KOH) and bleach (NaOCl and KOCl) are produced as well as HCl.
For example, the liquid can be concentrated to a concentrated liquid having an iron chloride concentration of at least 30% by weight; and then the iron chloride can be hydrolyzed at a temperature of about 155 to about 350° C. while maintaining a ferric chloride concentration at a level of at least 65% by weight, to generate a composition comprising a liquid and precipitated hematite, and recovering the hematite.
For example, the liquid can be concentrated to a concentrated liquid having an iron chloride concentration of at least 30% by weight; and then the iron chloride can be hydrolyzed at a temperature of about 155 to about 350° C. while maintaining a ferric chloride concentration at a level of at least 65% by weight, to generate a composition comprising a liquid and precipitated hematite; recovering the hematite; and recovering rare earth elements and/or rare metals from the liquid. For example, the process can further comprise, after recovery of the rare earth elements and/or rare metals, reacting the liquid with HCl so as to cause precipitation of MgCl2, and recovering same.
As previously indicated, various aluminum-containing materials can be used as starting material of the processes disclosed in the present disclosure. Examples with clays and bauxite have been carried out. However, the person skilled in the art will understand that the continuous processes can handle high percentages of silica (>55%) and impurities as well as relatively low percentages of aluminum (for example as low as about 15%) and still being economically and technically viable. Satisfactory yields can be obtained (>93-95%) on Al2O3 and greater than 75% on rare earth elements and/or rare metals. No pre-thermal treatment in most cases are required. The processes disclosed in the present disclosure involve special techniques on leaching and acid recovery at very high strength, thereby offering several advantages over alkaline processes.
In step 1 the mineral, whether or not thermally treated is crushed, milled, dried and classified to have an average particle size of about 50 to about 80 μm.
In step 2, the milled raw material is introduced into the reactor and will undergo the leaching phase.
The leaching hydrochloric acid used in step 2 can be a recycled or regenerated acid from steps 5, 6, 8, 9, 10 and 11 (see
As previously indicated, alkali metals, iron, magnesium, sodium, calcium, potassium, rare earth elements and other elements will also be in a chloride form at different stages. Silica will remain undissolved and will undergo (step 3) a liquid/solid separation and cleaning stage. The processes of the present disclosure tend to recover maximum amount of free hydrochloric acid left and chlorides in solution in order to maximize hydrochloric acid recovery yield, using techniques such as rake classifying, filtration with band filters, centrifugation, and others. Pure SiO2 (one additional leaching stage) cleaning with nano water purity 99% min. Mother liquor free of silica is then named as spent acid (various metal chlorides and water) and goes to the crystallization step (step 4).
In step 4, the spent acid (or leachate) with a substantial amount of aluminum chloride is then saturated with dry and highly concentrated gaseous hydrogen chloride obtained or recycled from step 5 or with aqueous HCl>30% wt., which results in the precipitate of aluminum chloride hexahydrate (AlCl3.6H2O). The precipitate retained is then washed and filtered or centrifuged before being fed to the calcination stage (step 5). The remaining of the spent acid from step 4 is then processed to acid recovery system (steps 6 to 8) where pure secondary products will be obtained.
In step 5, aluminum oxide (alumina) is directly obtained from high temperature conditions. The highly concentrated hydrogen chloride in gaseous form obtained can be fed to steps 4 and 7 for crystallization where it can be treated through hydrophobic membranes. The excess hydrogen chloride is absorbed and used as regenerated acid to the leaching step 2 as highly concentrated acid, higher than the concentration at the azeotropic point (>20.2%). For example, such a concentration can be about 18 to about 45 weight %, about 25 to about 45 weight % or between 25 and 36 weight %.
After step 4, various chlorides derivatives (mainly iron with magnesium and rare earth elements and rare metals) are next subjected to an iron extraction step. Such a step can be carried out for example by using the technology disclosed in WO 2009/153321, which is hereby incorporated by reference in its entirety.
In step 6, a hydrolysis at low temperature (155-350° C.) is carried out and pure Fe2O3 (hematite) is being produced and hydrochloric acid of at least 15% concentration is being regenerated. The method as described in WO 2009/153321 is processing the solution of ferrous chloride and ferric chloride, possible mixtures thereof, and free hydrochloric acid through a series of steps pre-concentration step, oxidation step where ferrous chloride is oxidized into ferric form, and finally through an hydrolysis step into an operational unit called hydrolyser where the ferric chloride concentration is maintained at 65 weight % to generate a rich gas stream where concentration ensures a hydrogen chloride concentration of 15-20.2% and a pure hematite that will undergo a physical separation step. Latent heat of condensation is recovered to the pre-concentration and used as the heating input with excess heat from the calcination stage (step 5).
The mother liquor from the hydrolyser (step 6) can be recirculated partially to first step crystallization process where an increase in concentration of non-hydrolysable elements is observed. After iron removal, the liquor is rich in other non-hydrolysable elements and mainly comprises magnesium chloride or possible mixture of other elements (various chlorides) and rare earth elements and rare metals.
Rare earth elements and rare metals in form of chlorides are highly concentrated in percentage into the hydrolyser operational unit (step 6) and are extracted from the mother liquor (step 10) where various known techniques can be employed to extract a series of individual RE-O (rare earth oxides). Among others, the processes of the present disclosure allows to concentrate to high concentration the following elements, within the hydrolyser: scandium (Sc), galium (Ga), yttrium (Y), dysperosium (Dy), cerium (Ce), praseodynium (Pr), neodynium (Nd), europium (Eu), lanthanum (La), samarium (Sm), gadolinium, (Gd), erbium (Er), zirconium (Zr) and mixtures of thereof. Technologies that can be used for extracting rare earth elements and/or rare metals can be found, for example, in Zhou et al. in RARE METALS, Vol. 27, No. 3, 2008, p 223-227, and in US 2004/0042945, hereby incorporated by reference in their entirety. The person skilled in the art will also understand that various other processes normally used for extracting rare earth elements and/or rare metals from the Bayer process can also be used. For example, various solvent extraction techniques can be used. For certain elements, a technique involving octylphenyl acid phosphate (OPAP) and toluene can be used. HCl can be used as a stripping agent. This can be effective for recovering Ce2O3, Sc2O3, Er2O3 etc. For example, different sequence using oxalic acid and metallic iron for ferric chloride separation can be used.
The spent acid liquor from steps 6 and 10 rich in value added metals, mainly magnesium, is processed to step 7. The solution is saturated with dry and highly concentrated gaseous hydrogen chloride from step 5, which results in the precipitation of magnesium chloride hexahydrate. For example, same can be accomplished with HCl in aqueous form over 30% wt. The precipitate retained, is fed to a calcination stage step 8 where pure MgO (>98% wt.) is obtained and highly concentrated hydrochloric acid (for example of at least 38%) is regenerated and diverted to the leaching step (step 2). An alternative route for step 7 is using dry gaseous hydrochloric acid from step 8.
In step 9, metal chlorides unconverted are processed to a pyrohydrolysis step (700-900° C.) to generate mixed oxides and where hydrochloric acid from 15-20.2% wt. concentration can be recovered.
According to another example as shown in
In fact, as shown in
Such a step can be useful for significantly increasing the concentration of rare earth elements and/or rare metals, thereby facilitating their extraction in step 10.
With respect to step 7, the solution rich in magnesium chloride and other non-hydrolysable products at low temperature is, as previously discussed, then brought up in concentration with dry and highly concentrated gaseous hydrogen chloride by sparging it into a crystallizer. This can result into the precipitation of magnesium chloride as an hexahydrate (for example after sodium and potassium chloride removal). This can also be accomplished with HCl in aqueous form.
As shown in
The following are non-limitative examples.
Preparation of Alumina and Various Other Products
As a starting material a sample of clay was obtained from the Grande Vallée area in Québec, Canada.
These results represent an average of 80 tests carried out from samples of about 900 kg each.
Crude clay in the freshly mined state after grinding and classification had the following composition:
Al2O3: 15%-26%;
SiO2: 45%-50%;
Fe2O3: 8%-9%;
MgO: 1%-2%;
Rare earth elements and/or rare metals: 0.04%-0.07%;
LOI: 5%-10%.
This material is thereafter leached in a two-stage procedure at 140-170° C. with 18-32 weight % HCl. The HCl solution was used in a stoichiometric excess of 10-20% based on the stoichiometric quantity required for the removal of the acid leachable constituents of the clay. In the first leaching stage of the semi-continuous operation (step 2), the clay was contacted for 2.5 hours with required amount or certain proportion of the total amount of hydrochloric acid. After removal of the spent acid, the clay was contacted again with a minimum 18 weight % hydrochloric acid solution for about 1.5 hour at same temperature and pressure.
A typical extraction curve obtained for both iron and aluminum for a single stage leaching is shown in
The leachate was filtered and the solid was washed with water and analyzed using conventional analysis techniques (see step 3 of
After the leaching and silica removal, the concentration of the various metal chlorides was:
AlCl3: 15-20%;
FeCl2: 4-6%;
FeCl3: 0.5-2.0%;
MgCl2: 0.5-2.0%;
Free HCl: 5-50 g/l
Spent acid was then crystallized using about 90 to about 98% pure dry hydrochloric acid in gas phase in two stages with less than 25 ppm iron in the aluminum chloride hexahydrate formed. The concentration of HCl in solution (aqueous phase) was about 22 to about 32% or 25 to about 32% The recovered crystallized material (hydrate form of AlCl3 having a minimum purity of 99.8%) was then calcined at 930° C. or 1250° C., thus obtaining the α-portion of the alumina.
HCl concentration in gas phase exiting the calcination stage was having a concentration greater than 30% and was used (recycled) for crystallization of the AlCl3 and MgCl2. Excess of hydrochloric acid is absorbed at the required and targeted concentration for the leaching steps.
Iron chloride (about 90-95% in ferric form) is then sent to a hydrothermal process in view of its extraction as pure hematite (Fe2O3). This can be done by using the technology described in WO 2009/153321 of low temperature hydrolysis with full heat recovery from calcining, pyrohydrolysis and leaching stage.
Rare earth elements and rare metals are extracted from the mother liquor of the hydrolyzer where silica, aluminum, iron and a great portion of water have been removed and following preconcentration from hydrolyser to crystallization. It was observed that rare earth elements can be concentrated by a factor of about 4.0 to 10.0 on average within the hydrolyzer itself on a single pass through it i.e. without concentration loop. The following concentration factors have been noted within the hydrolyzer (single pass):
Remaining magnesium chloride is sparged with dry and highly concentrated hydrochloric acid and then calcinated to MgO while recovering high concentration acid (for example up to 38.4%).
Mixed oxides (Me-O) containing other non-hydrolysable components were then undergoing a pyrohydrolysis reaction at 700-800° C. and recovered acid (15-20.2% wt.) was rerouted for example to the leaching system.
Overall Yields Obtained:
Al2O3: 93-95% recovery;
Fe2O3: 98-99.5% recovery;
Rare earth elements and/or rare metals: 75-93% minimum recovery;
MgO: 96-98% recovery;
Material discarded: 0-5% maximum;
HCl global recovery: 99.75% minimum;
HCl strength as feed to leaching 18-32%;
Red mud production: None.
Preparation of Alumina and Various Other Products
A similar feed material (bauxite instead of clay) was processed as per in example 1 up to the leaching stage and revealed to be easily leachable under the conditions established in example 1. It provided an extraction percentage of 100% for the iron and over 90-95% for aluminum. The technology was found to be economically viable and no harmful by-products (red mud) were generated. Samples tested had various concentrations of Al2O3 (up to 51%), Fe2O3 (up to 27%) and MgO (up to 1.5%).
HCl Gas Enrichment and Purification: H2SO4 Route
H2SO4 can be used for carrying out purification of HCl. It can be carried out by using a packing column with H2SO4 flowing counter currently (see
Water is absorbed by H2SO4 and then H2SO4 regeneration is applied where H2SO4 is brought back to a concentration of about 95 to about 98% wt. Water release at this stage free of sulphur is recycled back and used for crystallization dissolution, etc. Packing of the column can comprise polypropylene or polytrimethylene terephthalate (PTT).
Combustion energy can be performed with off gas preheating air and oxygen enrichment. Oxygen enrichment: +2% represents flame temperature increase by: 400° C. maximum.
HCl Gas Enrichment and Purification: Calcium Chloride to Calcium Chloride Hexahydrate (Absorption/Desorption Process)
As shown in
The person skilled in the art would understand that the processes described in examples 3 and 4 can be used in various different manners. For example, these processes can be combined with the various processes presented in the present disclosure. For example, such purifications techniques can be integrated to the processes shown in
Preparation of Alumina and Various Other Products
This example was carried out by using a process as represented in
Raw Material Preparation
Raw material, clay for example, was processed in a secondary crusher in the clay preparation plant 101. Dry milling and classifying occurs on a dry basis in vertical roller mills (for example Fuller-Loesche LM 30.41). The clay preparation 101 included three roller mills; two running at a capacity of approximately 160-180 tph and one on standby. Raw material, if required, can be reduced to 85% less than 63 microns. Processed material was then stored in homogenization silos before being fed to the acid leaching plant 102. Below in Table 1 are shown results obtained during stage 101. If the ore contains the fluorine element, a special treatment can be applied before carrying out the 102 stage. In presence of hydrochloric acid, fluorine can produce hydrofluoric acid. This acid is extremely corrosive and damaging for human health. Thus, before leaching 102, an optional treatment fluorine separation 112 can be done. Stage 112 can comprise treating the processed material coming from stage 101 with an acid in a pre-leaching treatment so as to remove hydrofluoric acid. Therefore, depending on the composition of the raw material, a fluorine separation stage 112 (or pre-leaching stage 112) can be carried out.
Acid Leaching
Next, acid leaching 102 was performed semi-continuously in an 80 m3 glass-lined reactor. Semi-continuous mode comprises replacing reacted acid ⅓ in the reaction period with higher concentration regenerated acid, which greatly improves reaction kinetics. The reactor arrangement comprises for example, a series of three reactors.
Leaching was performed at high temperature and pressure (about 160 to about 195° C. and pressures of about 5 to about 8 barg) for a fixed period of time. Reaction time was a function of the reaction extent targeted (98% for Al2O3), leaching mode, acid strength, and temperature/pressure applied.
Spent acid recovered out of the acid leaching 102 was then filtered 103 from unreacted silica and titanium dioxide and washed through an automated filter press where all free HCl and chloride are recovered. This allows, for example, a maximum quantity of about 30 ppm SiO2 going into spent liquor. Cleaned silica at a concentration of ≈96%+SiO2 is then produced. Various options are possible at that point. For example, the 96% silica can undergo final neutralization through caustic bath, cleaning, and then bricketing before storage. According to another example, the silica purified by adding another leaching step followed by a solid separation step that ensures TiO2 removal (see stage 113 in
AlCl3 Crystallization
Spent acid, with an aluminum chloride content of about 20 to about 30%, was then processed in the crystallization stage 104. Dry and highly concentrated HCl (>90% wt.) in gas phase was sparged in a two-stage crystallization reactor, which allows the crystallization of aluminum chloride hexahydrate.
The flow rate of acid through these reactors is about 600 to about 675 m3/h and the reactor was maintained at about 50 to about 60° C. during this highly exothermic reaction. Heat was recovered and exchanged to the acid purification 107 part of the plant thus ensuring proper heat transfer and minimizing heat consumption of the plant. Aluminum chloride solubility decreases rapidly, compared to other elements, with the increase in concentration of free HCl in the crystallization reactor. The concentration of AlCl3 for precipitation/crystallization was about 30%
The HCl concentration during crystallization was thus about 30 to about 32% wt.
The aqueous solution from the crystallization stage 104 was then submitted to the hydrothermal acid recovery plant 105, while the crystals are processed through the decomposition/calcination stage in the calcination plant 106.
A one-step crystallization stage or a multi-step crystallization stage can be done. For example, a two-steps crystallization stage can be carried out.
Below in Tables 3A and 3B are shown results obtained during stage 104.
Calcination and Hydrothermal Acid Recovery
The calcination 106 comprises the use of a two-stage circulating fluid bed (CFB) with preheating systems. The preheating system can comprise a plasma torch to heat up steam to process. It processes crystals in the decomposition/calcination stage. The majority of the hydrochloric acid was released in the first stage which was operated at a temperature of about 350° C., while the second stage performs the calcination itself. Acid from both stages (about 66 to about 68% of the recovered acid from the processes) was then recovered and sent to either to the acid leaching 102 or to the acid purification 107. In the second reactor, which was operated at a temperature of about 930° C., acid was recovered through the condensation and absorption into two columns using mainly wash water from the acid leaching sector 102. Latent heat from this sector was recovered at the same time as large amounts of water, which limits net water input.
In the iron oxides productions and acid recovery 105 system, which comprises, aqueous solution from the crystallization 104 first undergoes a pre-concentration stage followed by processing in the hydrolyzer reactor. Here, hematite was produced during low temperature processing (about 165° C.). A recirculation loop was then taken from the hydrolyzer and is recirculated to the pre-concentrator, allowing the concentration of REE, Mg, K, and other elements. This recirculation loop, allows rare earth element chlorides and/or rare metal chlorides and various metal chlorides concentration to increase without having these products precipitating with hematite up to a certain extent.
Depending on acid balance in the plant, recovered acid is sent either directly to the 102 or 107 stage. Table 4 shows results obtained in stage 105.
Table 5 shows results obtained in stage 106.
Rare Earth Elements and Rare Metals Extractions
The stream that was taken out of 105 recirculation then was treated for rare earth elements and are metals extraction 108, in which the reduction of the remaining iron back to iron 2 (Fe2+), followed by a series of solvent extraction stages, was performed. The reactants were oxalic acid, NaOH, DEHPA (Di-(2-ethylhexyl)phosphoric acid) and TBP (tri-n-butyl phosphate) organic solution, kerosene, and HCl were used to convert rare earth element chlorides and rare metals chlorides to hydroxides. Countercurrent organic solvent with stripping of solution using HCl before proceeding to specific calcination from the rare earth elements and rare metals in form of hydroxide and conversion to high purity individual oxides. A ion exchange technique is also capable of achieving same results as polytrimethylen terephtalate (PET) membrane.
Iron powder from 105, or scrap metal as FeO, can be used at a rate dependent on Fe3+ concentration in the mother liquor. HCl (100% wt) at the rate of 1 tph can be required as the stripped solution in REE Solvent Extraction (SX) separation and re-leaching of rare earth elements and/or rare metals oxalates.
Water of very high quality, demineralized or nano, at the rate of 100 tph was added to the strip solution and washing of precipitates.
Oxalic acid as di-hydrate at a rate of 0.2 tph was added and contributes to the rare earth elements and rare metals oxalates precipitation. NaOH or MgOH at a rate of 0.5 tph can be used as a neutralization agent.
DEHPA SX organic solution at the rate of 500 g/h was used as active reagent in rare earth elements separation while TBP SX organic solution at the rate of 5 kg/h is used as the active reagent for gallium recovery and yttrium separation. Finally, a kerosene diluent was used at the rate of approximately 2 kg/h in all SX section. Calcination occurs in an electric rotary furnace via indirect heating to convert contents to REE2O3 (oxides form) and maintain product purity.
Results of various tests made regarding stage 108 are shown in Table 6.
Global Yield: 84.53%
Alternatively, stage 108 can be carried out as described in PCT/CA2012/000253 and/or PCT/CA2012000419.
The solution after stages 108 and 109 contained mainly MgCl2, NaCl, KCl, CaCl2, FeCl2/FeCl3, and AlCl3 (traces), and then undergoes the 111 stage.Na, K, Ca that follows the MgO can be extracted in stage 110 by crystallization in a specific order; Na first, followed by K, and then Ca. This technique can be employed for example in the Israeli Dead Sea salt processing plant to produce MgO and remove alkali from the raw material.
HCl Regeneration
Alkali (Na, K), once crystallized, was sent and processed in the alkali hydrochloric acid regeneration plant 110 for recovering highly concentrated hydrochloric acid (HCl). The process chosen for the conversion can generate value-added products
Various options are available to convert NaCl and KCl with intent of recovering HCl. One example can be to contact them with highly concentrated sulfuric acid (H2SO4), which generates sodium sulphate (Na2SO4) and potassium sulfate (K2SO4), respectively, and regenerates HCl at a concentration above 90% wt. Another example, is the use of a sodium and potassium chloride brine solution as the feed material to adapted small chlor-alkali electrolysis cells. In this latter case, common bases (NaOH and KOH) and bleach (NaOCl and KOCl) are produced. The electrolysis of both NaCl and KCl brine is done in different cells where the current is adjusted to meet the required chemical reaction. In both cases, it is a two-step process in which the brine is submitted to high current and base (NaOH or KOH) is produced with chlorine (Cl2) and hydrogen (H2). H2 and Cl2 are then submitted to a common flame where highly concentrated acid in gas (100% wt.) phase is produced and can be used directly in the crystallization stage 104, or to crystallization stages requiring dry highly concentrated acid.
Magnesium Oxide
The reduced flow, which was substantially free of most elements (for example AlCl3, FeCl3, REE-Cl, NaCl, KCl) and rich in MgCl2, was then submitted to the magnesium oxides plant 111. In the MgO, pyrohydrolysis of MgCl2 and any other leftover impurities were converted into oxide while regenerating acid. The first step was a pre-evaporator/crystallizer stage in which calcium is removed and converted into gypsum (CaSO4.2H2O) by a simple chemical reaction with sulfuric acid, for which separation of MgO is required. This increases the capacity of MgO roasting and also energy consumption slightly, while substantially recovering HCl. The next step was the specific pyrohydrolysis of MgO concentrated solution by spray roasting. Two (2) main products were generated; MgO that was further treated and HCl (about 18% wt.), which was either recycled back to the upstream leaching stage 102 or to the hydrochloric acid purification plant (107 The MgO-product derived from the spray roaster can require further washing, purification, and finally calcining depending on the quality targeted. The purification and calcining can comprise a washing-hydration step and standard calcining step.
The MgO from the spray roaster is highly chemically active and was directly charged into a water tank where it reacts with water to form magnesium hydroxide, which has poor solubility in water. The remaining traces of chlorides, like MgCl2, NaCl, dissolved in water. The Mg(OH)2 suspension, after settling in a thickener, was forwarded to vacuum drum filters, which remove the remaining water. The cleaned Mg(OH)2 is then forwarded into a calcination reactor where it is exposed to high temperatures in a vertical multi-stage furnace. Water from hydration is released and allows the transformation of the Mg(OH)2 to MgO and water. At this point, the magnesium oxide was of high purity (>99%).
HCl Purification
The hydrochloric acid purification stage 107 is effective for purifying HCl regenerated from different sectors (for example 105, 106, 111) and to increase its purity for crystallization, whereas dry highly concentrated acid (>90% wt.) can be used as the sparging agent. Stage 107 also allowed for controlling the concentration of the acid going back to stage 102 (about 22 to about 32% wt.) and allows total acid and water balance. Total plant water balance is performed mainly by reusing wash water as absorption medium, as quench agent or as dissolution medium at the crystallization stages
For example, purification can be carried out by means of a membrane distillation process. The membrane distillation process applied here occurs when two aqueous liquids with different temperatures are separated through a hydrophobic membrane. The driving force of the process was supplied by the partial pressure vapour difference caused by the temperature gradient between these solutions. Vapour travels from the warm to the cold side. Without wishing to be bound to such a theory, the separation mechanism was based on the vapour/liquid equilibrium of the HCl/water liquid mixture. Practical application of such a technology has been applied to HCl/water, H2SO4/water systems and also on large commercial scales on aqueous solution of sodium chloride with the purpose of obtaining potable water from seawater and nano water production. Therefore membrane distillation was a separation process based on evaporation through a porous hydrophobic membrane. The process was performed at about 60° C. and was effective to recover heat from the 104 and 102 stage with an internal water circulation loop, in order to maintain a constant incoming temperature to the membranes. For example, eight membranes of 300,000 m2 equivalent surface area can be used per membrane to obtain a concentration of HCl well above the azeotropic point (i.e. >36%) of the ≈750 m3/h and final 90% concentration is then obtained through pressure distillation (rectification column).
Purification of HCl by processing thus regenerated acid through hydrophobic membrane and separating water from HCl; therefore increasing HCl concentration up to about 36% (above azeotropic point) and therefore allowing with a single stage of rectification through a pressure stripping column to obtain >90% in gaseous phase, for crystallization stage (sparging); and therefore controlling acid concentration into crystallization stages up to 30-35%(aq).
As indicated stage 107 was operated at about 60° C. and heat input provided by heat recovery from stages 102 to 110. Rectification column was operated at about 140° C. in the reboiler part. Net energy requirement was neutral (negative in fact at −3.5 Gj/t Al2O3) since both systems were in equilibrium and in balance.
For example, the acid purification can be carried out by using adsorption technology over an activated alumina bed. In continuous mode, at least two adsorption columns are required to achieve either adsorption in one of them and regeneration in the other one. Regeneration can be performed by feeding in counter-current a hot or depressurized gas. This technology will result in a purified gas at 100% wt.
For example, the acid purification can be made by using calcium chloride as entrainer of water. A lean hydrochloric acid solution is contacted with a strong calcium chloride solution through a column. The water is then removed from the hydrochloric acid solution and 99.9% gaseous HCl comes out of the process. Cooling water and cryogenic coolant is used to condense water traces in the HCl. The weak CaCl2 solution is concentrated by an evaporator that ensures the recuperation of calcium chloride. Depending on the impurities in the incoming HCl solution feed to the column, some metals can contaminate the calcium chloride concentrated solution. A precipitation with Ca(OH)2 and a filtration allows the removal of those impurities. The column can operate for example at 0.5 barg. This technology can allow for the recuperation of 98% of the HCl.
Table 7 shows the results obtained concerning the process shown in
Tables 8 to 26 show results obtained concerning the products made in accordance with the process shown in
The processes of the present disclosure provide a plurality of important advantages and distinction over the known processes
The processes of the present disclosure provide fully continuous and economical solutions that can successfully extract alumina from various type of materials while providing ultra pure secondary products of high added value including highly concentrated rare earth elements and rare metals. The technology described in the present disclosure allows for an innovative amount of total acid recovery and also for a ultra high concentration of recovered acid. When combing it to the fact that combined with a semi-continuous leaching approach that favors very high extraction yields and allows a specific method of crystallization of the aluminum chloride and concentration of other value added elements. These processes also allow for preparing aluminum with such a produced alumina.
Specifically through the type of equipment used (for example vertical roller mill) and its specific operation, raw material grinding, drying and classifying can be applicable to various kinds of material hardness (furnace slag for example), various types of humidity (up to 30%) and incoming particle sizes. The particle size established provides the advantage, at the leaching stage, of allowing optimal contact between the minerals and the acid and then allowing faster kinetics of reaction. Particles size employed reduces drastically the abrasion issue and allows for the use of a simplified metallurgy/lining when in contact with hydrochloric acid.
A further advantage of the processes of the present disclosure is the combined high temperature and high incoming hydrochloric acid concentration. Combined with a semi continuous operation where the free HCl driving force is used systematically, iron and aluminum extraction yields do respectively reach 100% and 98% in less than about 40% of the reference time of a basic batch process. Another advantage of higher HCl concentration than the concentration at azeotropic point is the potential of capacity increase. Again a higher HCl concentration than the concentration of HCl at the azeotropic point and the semi-continuous approach represent a substantial advance in the art.
Another advantage in that technique used for the mother liquor separation from the silica after the leaching stage countercurrent wash, is that band filters provide ultra pure silica with expected purity exceeding 96%.
The crystallization of AlCl3 into AlCl3.6H2O using dried, cleaned and highly concentrated gaseous HCl as the sparging agent allows for a pure aluminum chloride hexahydrate with only few parts per million of iron and other impurities. A minimal number of stages are required to allow proper crystal growth.
The direct interconnection with the calcination of AlCl3.6H2O into Al2O3 which does produce very high concentration of gas allows the exact adjustment in continuous of the HCl concentration within the crystallizer and thus proper control of the crystal growth and crystallization process.
The applicants have now discovered fully integrated and continuous processes with substantially total hydrochloric acid recovery for the extraction of alumina and other value added products from various materials that contain aluminum (clay, bauxite, aluminosilicate materials, slag, red mud, fly ashes etc.) containing aluminum. In fact, the processes allows for the production of substantially pure alumina and other value added products purified such as purified silica, pure hematite, pure other minerals (ex: magnesium oxide) and rare earth elements products. In addition, the processes do not require thermal pre-treatment before the acid leach operation. Acid leach is carried out using semi-continuous techniques with high pressure and temperature conditions and very high regenerated hydrochloric acid concentration. In addition, the processes do not generate any residues not sellable, thus eliminating harmful residues to environment like in the case of alkaline processes.
The advantage of the high temperature calcination stage, in addition for allowing to control the α-form of alumina required, is effective for providing a concentration of hydrochloric acid in the aqueous form (>38%) that is higher than the concentration of HCl at the azeotropic point and thus providing a higher incoming HCl concentration to the leaching stage. The calcination stage hydrochloric acid network can be interconnected to two (2) crystallization systems and by pressure regulation excess HCl can be being absorbed at the highest possible aqueous concentration. The advantage of having a hexahydrate chloride with low moisture content (<2%) incoming feed allows for a continuous basis to recover acid at a concentration that is higher than the azeotropic concentration. This HCl balance and double usage into three (3) common parts of the processes and above azeotropic point is a substantial advance in the art.
Another advantage is the use of the incoming chemistry (ferric chloride) to the iron oxide and hydrochloric acid recovery unit where all excess heat load from any calcination part, pyrohydrolysis and leaching part is being recovered to preconcentrate the mother liquor in metal chloride, thus allowing, at very low temperature, the hydrolysis of the ferric chloride in the form of very pure hematite and the acid regeneration at the same concentration than at its azeotropic point.
A further major advantage of the instant process at the ferric chloride hydrolysis step is the possibility to concentrate rare earth elements in form of chlorides at very high concentration within the hydrolyser reactor through an internal loop between hydrolyzer and crystallization. The advantage in that the processes of the present disclosure benefit from the various steps where gradual concentration ratios are applied. Thus, at this stage, in addition to an internal concentration loop, having the silica, the aluminum, the iron and having in equilibrium a solution close to saturation (large amount of water evaporated, no presence of free hydrochloric acid) allows for taking rare earth elements and non-hydrolysable elements in parts per million into the incoming feed and to concentrate them in high percentage directly at the hydrolyser after ferric chloride removal Purification of the specific oxides (RE-O) can then be performed using various techniques when in percentage levels. The advantage is doubled here: concentration at very high level of rare earth elements using integrated process stages and most importantly the approach prevents from having the main stream (very diluted) of spent acid after the leaching step with the risk of contaminating the main aluminum chloride stream and thus affecting yields in Al2O3. Another important improvement of the art is that on top of being fully integrated, selective removal of components allows for the concentration of rare earth elements to relatively high concentration (percentages).
Another advantage of the process is again a selective crystallization of MgCl2 through the sparging of HCl from either the alumina calcination step or the magnesium oxide direct calcination where in both cases highly concentrated acid both in gaseous phase or in aqueous form are being generated. As per aluminum chloride specific crystallization, the direct interconnection with the calcination reactor, the HCl gas very high concentration (about 85 to about 95%, about 90 to 95% or about 90% by weight) allows for exact adjustment in continuous of the crystallizer based on quality of magnesium oxide targeted. Should this process step (MgO production or other value added metal oxide) be required based on incoming process feed chemistry, the rare earth elements extraction point then be done after this additional step; the advantage being the extra concentration effect applied.
The pyrohydrolysis allows for the final conversion of any remaining chloride and the production of refined oxides that can be used (in case of clay as starting material) as a fertilizer and allowing the processing of large amount of wash water from the processes with the recovery hydrochloric acid in close loop at the azeotropic point for the leaching step. The advantage of this last step is related to the fact that it does totally close the process loop in terms of acid recovery and the insurance that no residues harmful to the environment are being generated while processing any type of raw material, as previously described.
A major contribution to the art is that the proposed fully integrated processes of the present disclosure is really allowing, among others, the processing of bauxite in an economic way while generating no red mud or harmful residues. In addition to the fact of being applicable to other natural of raw materials (any suitable aluminum-containing material or aluminous ores), the fact of using hydrochloric acid total recovery and a global concentration that is higher than the concentration at the azeotropic point (for example about 21% to about 38%), the selective extraction of value added secondary products and compliance (while remaining highly competitive on transformation cost) with environmental requirements, represent major advantages in the art.
It was thus demonstrated that the present disclosure provides fully integrated processes for the preparation of pure aluminum oxide using a hydrochloric acid treatment while producing high purity and high quality products (minerals) and extracting rare earth elements and rare metals.
With respect to the above-mentioned examples 1 to 5, the person skilled in the art will also understand that depending on the starting material used i.e. argillite, bauxite, kaolin, nepheline, aluminosilicate materials, red mud, slag, fly ashes, industrial refractory materials etc., some parameters might need to be adjusted consequently. In fact, for example, certain parameters such as reaction time, concentration, temperature may vary in accordance with the reactivity of the selected starting material (aluminum-containing material).
While a description was made with particular reference to the specific embodiments, it will be understood that numerous modifications thereto will appear to those skilled in the art. Accordingly, the above description and accompanying drawings should be taken as specific examples and not in a limiting sense.
The present application is a continuation of U.S. patent application Ser. No. 14/345,000 filed on Mar. 14, 2014 (U.S. Pat. No. 9,382,600), that is a 35 USC 371 national stage entry of PCT/CA2012/000871 filed on Sep. 17, 2012 that claims priority on U.S. 61/535,435 filed on Sep. 16, 2011, on U.S. 61/584,937 filed on Jan. 10, 2012, and on U.S. 61/668,646 filed on Jul. 6, 2012. These documents are hereby incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
558726 | Gooch | Apr 1896 | A |
650763 | Raynaud | May 1900 | A |
1490021 | Pedemonte | Apr 1924 | A |
1494029 | Scofield et al. | May 1924 | A |
1501873 | Tyrer | Jul 1924 | A |
1519880 | Heinrich et al. | Dec 1924 | A |
1701510 | Sieurin | Feb 1929 | A |
1760962 | Phillips et al. | Jun 1930 | A |
1778083 | Marburg | Oct 1930 | A |
1868499 | Guertler | Jul 1932 | A |
1906467 | Heath | May 1933 | A |
1931515 | Fritz et al. | Oct 1933 | A |
1956139 | Staufer et al. | Apr 1934 | A |
1962498 | Frost | Jun 1934 | A |
1999773 | McMichael | Apr 1935 | A |
2024026 | Coleman et al. | Dec 1935 | A |
2144339 | Laist | Jan 1939 | A |
2189376 | Burman | Feb 1940 | A |
2354133 | Lyons | Jul 1944 | A |
2376696 | Hixson | May 1945 | A |
2398493 | Butt et al. | Apr 1946 | A |
2406577 | Alessandroni | Aug 1946 | A |
2413709 | Hoffman | Jan 1947 | A |
2471844 | Strelzoff | May 1949 | A |
2473534 | Lloyd | Jun 1949 | A |
2489309 | Mills et al. | Nov 1949 | A |
2642337 | Newsome | Jun 1953 | A |
2648595 | Kennedy | Aug 1953 | A |
2663620 | Hinsdale, III | Dec 1953 | A |
2707149 | McKinley | Apr 1955 | A |
2722471 | Hirsch et al. | Nov 1955 | A |
2761760 | Kamlet | Sep 1956 | A |
2769686 | Michener, Jr. et al. | Nov 1956 | A |
2771344 | Michel et al. | Nov 1956 | A |
2780525 | Wendell, Jr. et al. | Feb 1957 | A |
2804375 | Easton | Aug 1957 | A |
2806766 | Anderson | Sep 1957 | A |
2815264 | Calkins et al. | Dec 1957 | A |
2824783 | Peppard et al. | Feb 1958 | A |
2848398 | Inagaki | Aug 1958 | A |
2914381 | Wainer | Nov 1959 | A |
2914464 | Burton et al. | Nov 1959 | A |
2992893 | Soudan et al. | Jul 1961 | A |
3013859 | Kuhlman, Jr. et al. | Dec 1961 | A |
3104950 | Ellis | Sep 1963 | A |
3159452 | Lerner | Dec 1964 | A |
3192128 | Brandmair et al. | Jun 1965 | A |
3211521 | George et al. | Oct 1965 | A |
3473919 | Metcalfe et al. | Oct 1969 | A |
3479136 | Michener, Jr. et al. | Nov 1969 | A |
3540860 | Cochran | Nov 1970 | A |
3545920 | George et al. | Dec 1970 | A |
3586477 | Flood | Jun 1971 | A |
3620671 | Maurel et al. | Nov 1971 | A |
3642441 | Van Weert | Feb 1972 | A |
3649185 | Sato et al. | Mar 1972 | A |
3658483 | Lienau et al. | Apr 1972 | A |
3682592 | Kovacs | Aug 1972 | A |
3751553 | Oslo et al. | Aug 1973 | A |
3816605 | Schwandorf | Jun 1974 | A |
3852430 | Lienau et al. | Dec 1974 | A |
3862293 | Maurel et al. | Jan 1975 | A |
3903239 | Berkovich | Sep 1975 | A |
3922164 | Reid et al. | Nov 1975 | A |
3944648 | Solymar et al. | Mar 1976 | A |
3946103 | Hund | Mar 1976 | A |
3957504 | Ho et al. | May 1976 | A |
3966909 | Grunig et al. | Jun 1976 | A |
3983212 | Lowenstein et al. | Sep 1976 | A |
4042664 | Cardwell et al. | Aug 1977 | A |
4045537 | Hrishikesan | Aug 1977 | A |
4048285 | Szepesi et al. | Sep 1977 | A |
4069296 | Huang | Jan 1978 | A |
4080437 | Reh et al. | Mar 1978 | A |
4083923 | Lippman et al. | Apr 1978 | A |
4085190 | Shiah | Apr 1978 | A |
4091085 | Reh et al. | May 1978 | A |
4098868 | Tolley | Jul 1978 | A |
4107266 | Bauer et al. | Aug 1978 | A |
4107281 | Reh et al. | Aug 1978 | A |
4110399 | Gaudernack et al. | Aug 1978 | A |
4124680 | Cohen et al. | Nov 1978 | A |
4130627 | Russ et al. | Dec 1978 | A |
4133677 | Matsui et al. | Jan 1979 | A |
4151267 | Puskas | Apr 1979 | A |
4158042 | Deutschman | Jun 1979 | A |
4172879 | Miller et al. | Oct 1979 | A |
4177242 | Cohen et al. | Dec 1979 | A |
4193968 | Sullivan et al. | Mar 1980 | A |
4198231 | Gusset | Apr 1980 | A |
4198823 | Mathues et al. | Apr 1980 | A |
4222989 | Belsky | Sep 1980 | A |
4224287 | Ziegenbalg et al. | Sep 1980 | A |
4226844 | Reh et al. | Oct 1980 | A |
4233273 | Meyer et al. | Nov 1980 | A |
4237102 | Cohen et al. | Dec 1980 | A |
4239735 | Eisele et al. | Dec 1980 | A |
4241030 | Cohen et al. | Dec 1980 | A |
4259311 | Shah | Mar 1981 | A |
4297326 | Gjelsvik et al. | Oct 1981 | A |
4318896 | Schoonover | Mar 1982 | A |
4362703 | Boybay et al. | Dec 1982 | A |
4370422 | Panda et al. | Jan 1983 | A |
4378275 | Adamson et al. | Mar 1983 | A |
4392987 | Laine et al. | Jul 1983 | A |
4402932 | Miller et al. | Sep 1983 | A |
4414196 | Matsumoto et al. | Nov 1983 | A |
4435365 | Morris | Mar 1984 | A |
4437994 | Baker | Mar 1984 | A |
4465566 | Loutfy et al. | Aug 1984 | A |
4465659 | Cambridge et al. | Aug 1984 | A |
4486393 | Baksa et al. | Dec 1984 | A |
4490338 | De Schepper et al. | Dec 1984 | A |
4530819 | Czeglédi et al. | Jul 1985 | A |
4560541 | Davis | Dec 1985 | A |
4567026 | Liosowyj | Jan 1986 | A |
4585645 | Sucech | Apr 1986 | A |
4634581 | Cambridge et al. | Jan 1987 | A |
4650541 | Ciszek | Mar 1987 | A |
4652433 | Ashworth et al. | Mar 1987 | A |
4666694 | Jons et al. | May 1987 | A |
4676838 | Franz et al. | Jun 1987 | A |
4678482 | Müller et al. | Jul 1987 | A |
4710369 | Bergman | Dec 1987 | A |
4741831 | Grinstead | May 1988 | A |
4743347 | Harris et al. | May 1988 | A |
4797271 | Fleming et al. | Jan 1989 | A |
4798717 | Morency | Jan 1989 | A |
4816233 | Rourke et al. | Mar 1989 | A |
4820498 | Newkirk | Apr 1989 | A |
4826671 | Arndt et al. | May 1989 | A |
4830507 | Bagatto et al. | May 1989 | A |
4898719 | Rourke et al. | Feb 1990 | A |
4913884 | Feuling | Apr 1990 | A |
4938871 | Musikas et al. | Jul 1990 | A |
4965053 | Herchenroeder et al. | Oct 1990 | A |
4968504 | Rourke et al. | Nov 1990 | A |
4980141 | Kimura et al. | Dec 1990 | A |
4988487 | Lai et al. | Jan 1991 | A |
4995984 | Barkatt et al. | Feb 1991 | A |
5006753 | Hasker et al. | Apr 1991 | A |
5008089 | Moody et al. | Apr 1991 | A |
5011665 | Cailly et al. | Apr 1991 | A |
5015447 | Fulford et al. | May 1991 | A |
5019362 | Rourke et al. | May 1991 | A |
5030424 | Fulford et al. | Jul 1991 | A |
5035365 | Birmingham | Jul 1991 | A |
5037608 | Tarcy et al. | Aug 1991 | A |
5039336 | Feuling | Aug 1991 | A |
5043077 | Chandler et al. | Aug 1991 | A |
5045209 | Snyder et al. | Sep 1991 | A |
5053144 | Szirmai et al. | Oct 1991 | A |
5061474 | Pauli et al. | Oct 1991 | A |
5071472 | Traut et al. | Dec 1991 | A |
5080803 | Bagatto et al. | Jan 1992 | A |
5091159 | Connelly et al. | Feb 1992 | A |
5091161 | Harris et al. | Feb 1992 | A |
5093091 | Dauplaise et al. | Mar 1992 | A |
5104544 | Shimizu et al. | Apr 1992 | A |
5106797 | Allaire | Apr 1992 | A |
5112534 | Guon et al. | May 1992 | A |
5120513 | Moody et al. | Jun 1992 | A |
5124008 | Rendall et al. | Jun 1992 | A |
5149412 | Allaire | Sep 1992 | A |
5160482 | Ash et al. | Nov 1992 | A |
5180563 | Lai et al. | Jan 1993 | A |
5188809 | Crocker et al. | Feb 1993 | A |
5192443 | Delloye et al. | Mar 1993 | A |
5244649 | Ostertag et al. | Sep 1993 | A |
5274129 | Natale et al. | Dec 1993 | A |
5368736 | Horwitz et al. | Nov 1994 | A |
5409677 | Zinn | Apr 1995 | A |
5409678 | Smith et al. | Apr 1995 | A |
5433931 | Bosserman | Jul 1995 | A |
5443618 | Chapman | Aug 1995 | A |
5492680 | Odekirk | Feb 1996 | A |
5500043 | Harada et al. | Mar 1996 | A |
5505857 | Misra et al. | Apr 1996 | A |
5512256 | Bray et al. | Apr 1996 | A |
5531970 | Carlson | Jul 1996 | A |
5571308 | Duyvesteyn et al. | Nov 1996 | A |
5585080 | Andersen et al. | Dec 1996 | A |
5597529 | Tack | Jan 1997 | A |
5622679 | Yuan et al. | Apr 1997 | A |
5632963 | Schwab et al. | May 1997 | A |
5639433 | Yuan et al. | Jun 1997 | A |
5645652 | Okinaka et al. | Jul 1997 | A |
5665244 | Rothenberg et al. | Sep 1997 | A |
5720882 | Stendahl et al. | Feb 1998 | A |
5723097 | Barnett et al. | Mar 1998 | A |
5766478 | Smith et al. | Jun 1998 | A |
5787332 | Black et al. | Jul 1998 | A |
5792330 | Petersen et al. | Aug 1998 | A |
5795482 | Ehle et al. | Aug 1998 | A |
5868935 | Sirkar et al. | Feb 1999 | A |
5876584 | Cortellini | Mar 1999 | A |
5885545 | Pitzer | Mar 1999 | A |
5904856 | Kvant et al. | May 1999 | A |
5911967 | Ruthner | Jun 1999 | A |
5922403 | Tecle | Jul 1999 | A |
5942199 | Jokinen et al. | Aug 1999 | A |
5955042 | Barnett et al. | Sep 1999 | A |
5962125 | Masaki | Oct 1999 | A |
5993758 | Nehari et al. | Nov 1999 | A |
5997828 | Rendall | Nov 1999 | A |
6033579 | Riemer et al. | Mar 2000 | A |
6045631 | Tarcy et al. | Apr 2000 | A |
6077486 | Spitzer | Jun 2000 | A |
6093376 | Moore | Jul 2000 | A |
6153157 | McLaughlin | Nov 2000 | A |
6207131 | Magyar et al. | Mar 2001 | B1 |
6214306 | Aubert et al. | Apr 2001 | B1 |
6221233 | Rendall | Apr 2001 | B1 |
6238566 | Yoshida et al. | May 2001 | B1 |
6248302 | Barnett et al. | Jun 2001 | B1 |
6254782 | Kreisler | Jul 2001 | B1 |
6267936 | Delmas et al. | Jul 2001 | B1 |
6302952 | Mobbs et al. | Oct 2001 | B1 |
6309441 | Benz et al. | Oct 2001 | B1 |
6312653 | Delmau et al. | Nov 2001 | B1 |
6337061 | Iyatomi et al. | Jan 2002 | B1 |
6348154 | Stewart | Feb 2002 | B1 |
6365121 | Wurmbauer | Apr 2002 | B1 |
6377049 | Benz et al. | Apr 2002 | B1 |
6383255 | Sundkvist | May 2002 | B1 |
6395062 | Olafson et al. | May 2002 | B2 |
6395242 | Allen et al. | May 2002 | B1 |
6406676 | Sundkvist | Jun 2002 | B1 |
6447738 | Rendall et al. | Sep 2002 | B1 |
6468483 | Barnett et al. | Oct 2002 | B2 |
6500396 | Lakshmanan et al. | Dec 2002 | B1 |
6524549 | Mohri et al. | Feb 2003 | B1 |
6565733 | Sportel et al. | May 2003 | B1 |
6576204 | Johansen | Jun 2003 | B2 |
6716353 | Mirzadeh et al. | Apr 2004 | B1 |
6843970 | Hard | Jan 2005 | B1 |
6893474 | Jäfverström et al. | May 2005 | B2 |
7090809 | Harel et al. | Aug 2006 | B2 |
7118719 | Fugleberg | Oct 2006 | B2 |
7182931 | Turnbaugh, Jr. et al. | Feb 2007 | B2 |
7220394 | Sreeram et al. | May 2007 | B2 |
7282187 | Brown et al. | Oct 2007 | B1 |
7294319 | Lahtinen et al. | Nov 2007 | B2 |
7381690 | Ding et al. | Jun 2008 | B1 |
7442361 | Gloeckler et al. | Oct 2008 | B1 |
7498005 | Yadav | Sep 2009 | B2 |
7651676 | Beaulieu et al. | Jan 2010 | B2 |
7781365 | Okamoto | Aug 2010 | B2 |
7837961 | Boudreault et al. | Nov 2010 | B2 |
7892426 | Hayashi et al. | Feb 2011 | B2 |
7906097 | Beaulieu et al. | Mar 2011 | B2 |
7972412 | Bergeron et al. | Jul 2011 | B2 |
8038969 | Kondo et al. | Oct 2011 | B2 |
8147795 | Dolling et al. | Apr 2012 | B2 |
8216532 | Vierheilig | Jul 2012 | B1 |
8241594 | Boudreault et al. | Aug 2012 | B2 |
8287826 | Pettey | Oct 2012 | B2 |
8337789 | Boudreault et al. | Dec 2012 | B2 |
8568671 | Guo et al. | Oct 2013 | B2 |
8597600 | Boudreault et al. | Dec 2013 | B2 |
9023301 | Boudreault et al. | May 2015 | B2 |
9150428 | Boudreault et al. | Oct 2015 | B2 |
9181603 | Boudreault et al. | Nov 2015 | B2 |
9556500 | Boudreault et al. | Jan 2017 | B2 |
20010051121 | Barnett et al. | Dec 2001 | A1 |
20020014416 | Van Weert | Feb 2002 | A1 |
20020050230 | Meisen | May 2002 | A1 |
20020071802 | Fulton et al. | Jun 2002 | A1 |
20030075021 | Young et al. | Apr 2003 | A1 |
20030152502 | Lewis et al. | Aug 2003 | A1 |
20030183043 | Wai et al. | Oct 2003 | A1 |
20040042945 | Rao et al. | Mar 2004 | A1 |
20040062695 | Horwitz et al. | Apr 2004 | A1 |
20050166706 | Withers et al. | Aug 2005 | A1 |
20060018813 | Bray | Jan 2006 | A1 |
20060066998 | Ishiguro | Mar 2006 | A1 |
20070062669 | Song et al. | Mar 2007 | A1 |
20070278106 | Shaw | Dec 2007 | A1 |
20080047395 | Liu et al. | Feb 2008 | A1 |
20080069748 | Lien et al. | Mar 2008 | A1 |
20080115627 | Wang et al. | May 2008 | A1 |
20080286182 | Costa et al. | Nov 2008 | A1 |
20090241731 | Pereira et al. | Oct 2009 | A1 |
20090272230 | Mackowski et al. | Nov 2009 | A1 |
20100018347 | Holden et al. | Jan 2010 | A1 |
20100078382 | Naganawa et al. | Apr 2010 | A1 |
20100129277 | Kondo et al. | May 2010 | A1 |
20100150799 | Boudreault et al. | Jun 2010 | A1 |
20100160144 | Kim et al. | Jun 2010 | A1 |
20100260640 | Shindo et al. | Oct 2010 | A1 |
20100278720 | Wong et al. | Nov 2010 | A1 |
20100319491 | Sugahara et al. | Dec 2010 | A1 |
20100329970 | Lian et al. | Dec 2010 | A1 |
20110017020 | Homma et al. | Jan 2011 | A1 |
20110044869 | Boudreault et al. | Feb 2011 | A1 |
20110051121 | Degnan, III et al. | Mar 2011 | A1 |
20110120267 | Roche | May 2011 | A1 |
20110182786 | Burba, III | Jul 2011 | A1 |
20120073407 | Drinkard, Jr. et al. | Mar 2012 | A1 |
20120237418 | Boudreault et al. | Sep 2012 | A1 |
20130052103 | Boudreault et al. | Feb 2013 | A1 |
20130233130 | Boudreault et al. | Sep 2013 | A1 |
20140065038 | Boudreault et al. | Mar 2014 | A1 |
20140286841 | Boudreault et al. | Sep 2014 | A1 |
20140301920 | Boudreault et al. | Oct 2014 | A1 |
20140341790 | Kasaini | Nov 2014 | A1 |
20140348732 | Ozaki et al. | Nov 2014 | A1 |
20140356262 | Ruth et al. | Dec 2014 | A1 |
20140369904 | Boudreault et al. | Dec 2014 | A1 |
20140369907 | Boudreault et al. | Dec 2014 | A1 |
20140373683 | Boudreault et al. | Dec 2014 | A1 |
20150104361 | Boudreault et al. | Apr 2015 | A1 |
20150159239 | Boudreault et al. | Jun 2015 | A1 |
20150218720 | Picard et al. | Aug 2015 | A1 |
20150225808 | Boudreault et al. | Aug 2015 | A1 |
20150307965 | Boudreault et al. | Oct 2015 | A1 |
20160052796 | Boudreault et al. | Feb 2016 | A1 |
Number | Date | Country |
---|---|---|
631226 | Feb 1991 | AU |
4375001 | Dec 2001 | AU |
1065068 | Oct 1979 | CA |
1066872 | Nov 1979 | CA |
1088961 | Nov 1980 | CA |
1136380 | Nov 1982 | CA |
1176470 | Oct 1984 | CA |
1224327 | Jul 1987 | CA |
1226719 | Sep 1987 | CA |
2027519 | Apr 1991 | CA |
2027973 | Apr 1991 | CA |
2029623 | May 1991 | CA |
2036058 | Aug 1991 | CA |
2097809 | Jul 1992 | CA |
2137249 | Dec 1993 | CA |
2122364 | Feb 1994 | CA |
2156295 | Sep 1994 | CA |
2160488 | Nov 1994 | CA |
2193726 | Jan 1996 | CA |
2159534 | Apr 1996 | CA |
2167890 | Jul 1996 | CA |
2240067 | Jun 1997 | CA |
2251433 | Apr 1999 | CA |
2360447 | Aug 2000 | CA |
2306015 | Dec 2000 | CA |
2309225 | Dec 2000 | CA |
2377261 | Jan 2001 | CA |
2377600 | Jan 2001 | CA |
2317692 | Mar 2001 | CA |
2391394 | May 2001 | CA |
2400673 | Aug 2001 | CA |
2429889 | Jun 2002 | CA |
2431466 | Jun 2002 | CA |
2433448 | Jul 2002 | CA |
2189631 | Nov 2002 | CA |
2454812 | Feb 2003 | CA |
2468885 | Jul 2003 | CA |
2471179 | Jul 2003 | CA |
2378721 | Sep 2003 | CA |
2484134 | Nov 2003 | CA |
2514830 | Aug 2004 | CA |
2467288 | Nov 2004 | CA |
2548225 | Nov 2004 | CA |
2531913 | Jan 2005 | CA |
2385775 | May 2005 | CA |
2513309 | Jun 2005 | CA |
2556613 | Aug 2005 | CA |
2572190 | Jan 2006 | CA |
2597440 | Aug 2006 | CA |
2521817 | Mar 2007 | CA |
2624612 | Apr 2007 | CA |
2629167 | May 2007 | CA |
2639796 | Jun 2007 | CA |
2636379 | Jul 2007 | CA |
2641919 | Aug 2007 | CA |
2538962 | Sep 2007 | CA |
2608973 | Jan 2008 | CA |
2610918 | Feb 2008 | CA |
2659449 | Feb 2008 | CA |
2684696 | Nov 2008 | CA |
2685369 | Nov 2008 | CA |
2711013 | Nov 2008 | CA |
2697789 | Mar 2009 | CA |
2725391 | Nov 2009 | CA |
2678724 | Mar 2010 | CA |
2745572 | Jul 2010 | CA |
2747370 | Jul 2010 | CA |
2667029 | Nov 2010 | CA |
2667033 | Nov 2010 | CA |
2678276 | Mar 2011 | CA |
2773571 | Mar 2011 | CA |
2788965 | Aug 2011 | CA |
2797561 | Nov 2011 | CA |
2834356 | Dec 2012 | CA |
2884787 | Apr 2013 | CA |
2860491 | Aug 2013 | CA |
1099424 | Mar 1995 | CN |
1923730 | Mar 2007 | CN |
101773925 | Jul 2010 | CN |
101792185 | Aug 2010 | CN |
19903011 | Aug 2000 | DE |
157503 | Oct 1985 | EP |
0054976 | Jul 1986 | EP |
0238185 | Sep 1987 | EP |
0279672 | Aug 1988 | EP |
0327234 | Aug 1989 | EP |
0382383 | Aug 1990 | EP |
0399786 | Nov 1990 | EP |
508676 | Oct 1992 | EP |
466338 | Dec 1995 | EP |
0449942 | Apr 1996 | EP |
07755753 | May 1997 | EP |
0829454 | Mar 1998 | EP |
0692035 | Apr 1998 | EP |
0834584 | Apr 1998 | EP |
999185 | May 2000 | EP |
1496063 | Jan 2005 | EP |
2241649 | Oct 2010 | EP |
2298944 | Mar 2011 | EP |
2600635 | Dec 1987 | FR |
120035 | Mar 1919 | GB |
153500 | Nov 1920 | GB |
159086 | Feb 1921 | GB |
195295 | Mar 1923 | GB |
230916 | Mar 1925 | GB |
240834 | May 1926 | GB |
241184 | May 1926 | GB |
273999 | Jul 1927 | GB |
409710 | May 1934 | GB |
470305 | Aug 1937 | GB |
480921 | Mar 1938 | GB |
484136 | May 1938 | GB |
490099 | Aug 1938 | GB |
574818 | Jan 1946 | GB |
745601 | Feb 1956 | GB |
798750 | Jul 1958 | GB |
857245 | Dec 1960 | GB |
858026 | Jan 1961 | GB |
1021326 | Mar 1966 | GB |
1056488 | Jan 1967 | GB |
1307319 | Feb 1973 | GB |
2013164 | Aug 1979 | GB |
1552918 | Sep 1979 | GB |
2018230 | Oct 1979 | GB |
2238813 | Jun 1991 | GB |
05287405 | Nov 1993 | JP |
6056429 | Mar 1994 | JP |
010034 | Oct 1996 | OA |
8603521 | Jun 1986 | WO |
9103424 | Mar 1991 | WO |
9213637 | Aug 1992 | WO |
9313017 | Jul 1993 | WO |
9418122 | Aug 1994 | WO |
1996000698 | Jan 1996 | WO |
9621619 | Jul 1996 | WO |
9624555 | Aug 1996 | WO |
9722554 | Jun 1997 | WO |
0017408 | Mar 2000 | WO |
0104366 | Jan 2001 | WO |
2001004366 | Jan 2001 | WO |
2004056468 | Jul 2004 | WO |
2004056471 | Jul 2004 | WO |
2004101833 | Nov 2004 | WO |
2005123591 | Dec 2005 | WO |
2006084682 | Aug 2006 | WO |
2007074207 | Jul 2007 | WO |
2007079532 | Jul 2007 | WO |
2008067594 | Jun 2008 | WO |
2008104250 | Sep 2008 | WO |
2008141423 | Nov 2008 | WO |
2008154995 | Dec 2008 | WO |
2009085514 | Jul 2009 | WO |
2009153321 | Dec 2009 | WO |
2010002059 | Jan 2010 | WO |
2010009512 | Jan 2010 | WO |
2010056742 | May 2010 | WO |
2010079369 | Jul 2010 | WO |
2010133284 | Nov 2010 | WO |
2011025440 | Mar 2011 | WO |
2011094858 | Aug 2011 | WO |
2011100820 | Aug 2011 | WO |
2011100821 | Aug 2011 | WO |
2011147867 | Dec 2011 | WO |
2012126092 | Sep 2012 | WO |
2012145797 | Nov 2012 | WO |
2012149642 | Nov 2012 | WO |
2013037054 | Mar 2013 | WO |
2013142957 | Oct 2013 | WO |
WO2014029031 | Feb 2014 | WO |
2014047728 | Apr 2014 | WO |
2014075173 | May 2014 | WO |
2014094155 | Jun 2014 | WO |
2014094157 | Jun 2014 | WO |
2014124539 | Aug 2014 | WO |
2015179973 | Dec 2015 | WO |
Entry |
---|
English Abstract of WO 2007122720, published on Nov. 1, 2007. |
English Abstract of WO 2004085719, published on Oct. 7, 2004. |
English Abstract of SU 1 734 395, published on Oct. 27, 1996. |
English Abstract of RU2416655, published on Apr. 20, 2011. |
English Abstract of RU2008113385, published on Oct. 20, 2009. |
English Abstract of RU2361941, published on Jul. 20, 2009. |
English Abstract of RU2257348, published on Jul. 27, 2005. |
English Abstract of RU2247788, published on Mar. 10, 2005. |
English Abstract of RU2236375, published on Sep. 20, 2004. |
English Abstract of RU2205242, published on May 27, 2003. |
English Abstract of RU2201988, published on Apr. 10, 2003. |
English Abstract of RU2196184, published on Jan. 10, 2003. |
English Abstract of RU2189358, published on Sep. 20, 2002. |
English Abstract of RU2176680, published on Dec. 10, 2001. |
English Abstract of RU2162898, published on Feb. 10, 2001. |
English Abstract of RU2162112, published on Jan. 20, 2001. |
English Abstract of RU2158170, published on Oct. 27, 2000. |
English Abstract of RU2147623, published on Apr. 20, 2000. |
English Abstract of RU2147622, published on Apr. 20, 2000. |
English Abstract of RU2140998, published on Nov. 10, 1999. |
English Abstract of RU2119816, published on Oct. 10, 1998. |
English Abstract of KR20070028987, published on Mar. 13, 2007. |
English Abstract of JP9324227, published on Dec. 16, 1997. |
English Abstract of JP9324192, published on Dec. 16, 1997. |
English Abstract of JP9291320, published on Nov. 11, 1997. |
English Abstract of JP9249672, published on Sep. 22, 1997. |
English Abstract of JP9248463, published on Sep. 22, 1997. |
English Abstract of JP9208222, published on Aug. 12, 1997. |
English Abstract of JP9194211, published on Jul. 29, 1997. |
English Abstract of JP9176756, published on Jul. 8, 1997. |
English Abstract of JP9143589, published on Jun. 3, 1997. |
English Abstract of JP8232026, published on Sep. 10, 1996. |
English Abstract of JP5051208, published on Mar. 2, 1993. |
English Abstract of JP4198017, published on Jul. 17, 1992. |
English Abstract of JP4183832, published on Jun. 30, 1992. |
English Abstract of JP4046660, published on Feb. 17, 1992. |
English Abstract of JP3173725, published on Jul. 29, 1991. |
English Abstract of JP2179835, published on Jul. 12, 1990. |
English Abstract of JP2080530, published on Mar. 20, 1990. |
English Abstract of JP2011116622, published on Jun. 16, 2011. |
English Abstract of JP2011046588, published on Mar. 10, 2011. |
English Abstract of JP2010270359, published on Dec. 2, 2010. |
English Abstract of JP2008194684, published on Aug. 28, 2008. |
English Abstract of JP2007327126, published on Dec. 20, 2007. |
English Abstract of JP2007254822, published on Oct. 4, 2007. |
English Abstract of JP2006348359, published on Dec. 28, 2006. |
English Abstract of JP2006028187, published on Feb. 2, 2006. |
English Abstract of JP2005139047, published on Jun. 2, 2005. |
English Abstract of JP2000313928, published on Nov. 14, 2000. |
English Abstract of JP10158629, published on Jun. 16. 1998. |
Hem et al., Survey of Ferrous-Ferric Chemical Equilibria and Redox Potentials, from Chemistry of Iron in Natural Water, 1962, pp. 1-31. (The year of publication is sufficiently earlier than the effective U.S. filing date so that the particular month of publication is not an issue). |
English Abstract of CN101254951(A), “Method for reclaiming ferric oxide from coal ash and coal gangue”, published on Sep. 3, 2008. |
English Abstract of CN101285127(A), “Process for abstracting nickel and cobalt by using wet method to chloridize laterite-nickel ore”, published on Oct. 15, 2008. |
English Abstract of JP2001017939(A), “Treatment of cement kiln waste gas dust”, published on Jan. 23, 2001. |
English Abstract of JPH04103728(A), “Treatment of garnierite”, published on Apr. 6, 1992. |
English Abstract of RU2241670(C1), “Serpentinite processing method” published on Dec. 10, 2004. |
English Abstract of RU2424332(C2), “Procedure for leaching at presence of hydrochloric acid for regeneration of valuable metal from ore”, published on Jul. 20, 2011. |
English Translation—Machine Generated of CN101767807(A), “Method for extracting high-purity aluminum oxide and silica gel from beauxite”, published on Jul. 7, 2010. |
Becze et al., “Precipitation of Hematite and Recovery of Hydrochloric Acid from Concentrated Chloride Solutions by a Novel Hydrolytic Decomposition Process”, TMS (The Minerals & Materials Society, Jan. 2001). |
English Translation—Chi et al., Derwent Acc-No. 2010-L68306 for the patent family including CN 101811712 A, published on Apr. 27, 2010. |
English Translation of CN102849765(A), “Method for preparing alumina from low-grade bauxite by acid leaching”, published on Jan. 2, 2013. |
English Translation of CN102849767(A), “Method for preparing alumina by using power plant fly ash”, published on Jan. 2, 2013. |
English Translation of CN103420405(A), “Method for extracting aluminum oxides from aluminum-containing waste residues”, published on Dec. 4, 2013. |
English Abstract of CN1099424(A), “Method for treating blast furnace slag with diluted chlorhydric acid”, published on Mar. 1, 1995. |
English Abstract of CN103964480(A), “Processes for producing aluminum oxide by using hydrochloric acid method”, published on Aug. 6, 2014. |
English Abstract of CN203922759(U), “Devide for preparing aluminum oxide by roasting aluminum chloride heahydrate crystal through rotary kiln”, published on Nov. 5, 2014. |
English Abstract of EP0850881(A1), Processe and apparatus for the preparation of iron oxides solutions containing hydrochloric acid iron oxide chloride, published on Jul. 1, 1998. |
English Abstract of JPH0543252A, “Method for Removing Halogen Radical in Ferric Oxide”, published on Feb. 23, 1993. |
English Abstract of JPH0656429(A), “Production of Plate-Like Oxide Particulate Powder”, published on Mar. 1, 1994. |
English Abstract of JPH04354836(A), “Method for Leaching Silicomagnesionickel Ore”, Published on Dec. 9, 1992. |
English Abstract of RU2158787(C2), “Process of winning of magnesium”, published on Nov. 10, 2000. |
English Abstract of CN101121536(A), “Combination preparation method for anhydrous magnesium chloride and potassium sulphate”, published on Feb. 13, 2008. |
English Abstract of RU2048556(C1), “Method for Recovery of Aluminium, Calcium and Rare-Earth Metals From Red Mud”, published on Nov. 20, 1995. |
Tomaszewska et al., “The influence of salt in solutions on hydrochloric acid recovery by membrane distillation”, Separation and Purification Technology 14 (Mar. 6, 1998) 183-188. |
English Abstract of CN101509072(A), “Method for extracting valuable metals from laterite nickel mine with hydrochloric acid full-closed circulation method”, published on Aug. 19, 2009. |
English Abstract of RU2237111(C1), “Method of Recovering Magnesium from Silicon-Containing Wastes”, published on Sep. 27, 2004. |
English Abstract of RU2375306(C1), “Method of Producing Hydrate of Metal Oxide”, published on Dec. 10, 2009. |
English Abstract of WO2008070885(A2), “Method for Increasing the Specific Surface of Iron Oxides in Spray Roasting Plants”, published on Jun. 19, 2008. |
Perander et al., “The Nature and Impacts of Fines in Smelter-Grade Alumina”, Journal of Minerals, Metals & Materials Society 61.11 (2009): 33-39. Springer Link. Web. Aug. 12, 2015. <http://link.springer.com/article/10.1007/02Fs11837-009-0164-x>. |
Weissenbaeck et al., “Development of Chloride Based Metal Extraction Techniques”, Paper presented at ALTA May 28, 2013, Perth, WA. |
Shanks et al., “Options in the HC1 process for the production of alumina from clay”, Light Metals 1986, R.E. Miller, Editor, p. 1089. |
Kumar et al., “Refining of a low-grade molybdenite concentrate”, Hydrometallurgy 86 (2007) 56-62. |
Wang et al., “Metallurgical processes for scandium recovery from various resources: A review”, Hydrometallurgy 108 (2011) 100-108. |
Andritz Metals, “Regeneration Systems for Hydrochloric Waste Pickling Solutions”, 2011. |
Aluminium for Future Generations, “Bauxite Residual Management”, http://bauxite.worid-aluminium.org/refining/bauxite-residue-management.html. |
Vedanta Aluminium Limited, Lanjigarh, “Red Mud Filtration and Recovery of Valuable Metals”, 2001, http://marvels.engineeringwatch.in/eea025/. |
Wang et al., “Recovery of scandium from synthetic red mud leach solutions by solvent extraction with D2EHPA”, Separation and Purification Technology (2013), pp. 1-14. |
Weissenbaeck et al., “Development of Chloride Based Metal Extraction Techniques”, Paper presented at ALTA 2013, Perth, WA. |
Smirnov, V., “Alumina production in Russia Part I: Historical background”, Journal of Materials, vol. 48, Issue 8, 1996, pp. 24-26. |
Wei, X. et al., “Recovery of Iron and Aluminium from Acid Mine Drainage by selective precipitation”, Environmental Engineering Science, vol. 22, No. 6, 2005, pp. 745-755. |
English Abstract of AU2737892, published on May 13, 1993. |
English Abstract of CN101157453, published on Apr. 9, 2008. |
English Abstract of CN102502745, published on Jun. 20, 2012. |
English Abstract of CN102515590, published on Jun. 27, 2012. |
English Abstract of JPH09249420, published on Sep. 22, 1997. |
English Abstract of WO2007082447, published on Jul. 26, 2007. |
English Abstract of WO2011092292, published on Aug. 4, 2011. |
English Abstract of BE1019347 (A3), published on Jun. 5, 2012. |
Ajemba et al., “Application of the Shrinking Core Model to the Analysis of Alumina Leaching From Ukpor Clay Using Nitric Acid”, International Journal of Engineering Research & Technology (IJERT), ISSN: 2278-0181, vol. 1 Issue 3, May 2012. |
Zhou et al., “Extraction of Scandium from red mud by modified activated carbon and kinetics study”, Rare Metals, vol. 27, No. 3, Jun. 2008, pp. 223-227. |
English Abstract of RU 2 183 225, published on Jun. 10, 2002. |
Wang et al., “A novel recovery process of metal values from the cathode active materials of the lithium-ion secondary batteries”, Hydrometallurgy 99 (2009) 194-201. |
English Abstract of CN101781719, published on Jul. 27, 2010. |
English Abstract of JP2009249674, published on Oct. 29, 2009. |
Abstract of Kao et al., “Solvent extraction of La(III) and Nd(III) from nitrate solutions with 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester”, Chemical Engineering Journal, vol. 119, Issues 2-3, Jun. 15, 2006, pp. 167-174. |
Yatsenko et al., “Red Mud Pulp Carbonization with Scandium Extraction during alumina Production”, ISSN 0040-5795, Theoretical Foundations of Chemical Engineering, 2010, vol. 44, No. 4, pp. 563-568. |
Ouellet, Dissertation 9689, (Extraction de l'alumine de l'argile de la région de Murdochville, Québec, Canada), “Extraction of Alumina from Clay in the Murdochville region of Quebec”, Canada—Universite Laval—Original French Version, Oct. 2004. |
Ouellet, Dissertation 9689, (Extraction de l'alumine de l'argile de la région de Murdochville, Québec, Canada), “Extraction of Alumina from Clay in the Murdochville region of Quebec”, Canada—Universite Laval—English Translation, Oct. 2004. |
Translator Certification—Sep. 10, 2012. |
English Translation of CN102452677, published on May 16, 2012. |
English Abstract of CN102719674, “Method for extracting rare earth from oxidized neodymium iron boron waste”, published on Oct. 10, 2012. |
English Abstract of CN102694218, “Solvent extraction method of aluminum”, published on Sep. 26, 2012. |
English Abstract of CN102690954, “Back extraction and removement method for aluminium”, published on Sep. 26, 2012. |
English Abstract of CN102680423, “Method for fast detecting aluminum content”, published on Sep. 19, 2012. |
English Abstract of CN102643985, “Method for extracting valuable metals from high-iron bauxite with step-by-step acid leaching”, published on Aug. 22, 2012. |
English Abstract of CN102628105, “Method for comprehensively recycling and using baric waste slag in refined aluminum production process”, published on Aug. 8, 2012. |
English Abstract of JP10121164, published on May 12, 1998. |
English Abstract of EP1817437, published on Aug. 15, 2007. |
English Abstract of CN2292806, published on Sep. 30, 1998. |
English Abstract of CN1986895, published on Jun. 27, 2007. |
English Abstract of CN1796608, published on Jul. 5, 2006. |
English Abstract of CN1699609, published on Nov. 23, 2005. |
English Abstract of CN1410599, published on Apr. 16, 2003. |
English Abstract of CN1397653, published on Feb. 19, 2003. |
English Abstract of CN1192479, published on Sep. 9, 1998. |
English Abstract of CN1478600, published on Mar 3, 2004. |
English Abstract of CN1140148, published on Jan. 15, 1997. |
English Abstract of CN1127791, published on Jul. 31, 1996. |
English Abstract of CN1131200, published on Sep. 18, 1996. |
English Abstract of CN1061246, published on May 20, 1992. |
English Abstract of CN1043752, published on Jul. 11, 1990. |
English Abstract of CN102153128, published on Aug. 17, 2011. |
English Abstract of CN102139943, published on Aug. 3, 2011. |
English Abstract of CN102127641, published on Jul. 20, 2011. |
English Abstract of CN102071317, published on May 25, 2011. |
English Abstract of CN102071315, published on May 25, 2011. |
English Abstract of CN102061392, published on May 18, 2011. |
English Abstract of CN102030355, published on Apr. 27, 2011. |
English Abstract of CN102021343, published on Apr. 20, 2011. |
English Abstract of CN102011010, published on Apr. 13, 2011. |
English Abstract of CN101824555, published on Sep. 8, 2010. |
English Abstract of CN1045812, published on Oct. 3, 1990. |
English Abstract of CN101407879, published on Apr. 15, 2009. |
English Abstract of CN101307384, published on Nov. 19, 2008. |
English Abstract of CN101161834, published on Apr. 16, 2008. |
English Abstract of CN1844421, published on Oct. 11, 2006. |
English Abstract of CN101182601, published on May 21, 2008. |
English Abstract of CN1043752C, published on Jun. 23, 1999. |
English Abstract of CN87101034, published on Aug. 28, 1991. |
English Abstract of RU2079431, published on Mar. 20, 1997. |
English Abstract of RU2063458, published on Jul. 10, 1996. |
English Abstract of RU 2 048 565, published on Nov. 20, 1995. |
English Abstract of RU 2 040 587, published on Jul. 25, 1995. |
English Abstract of RU 2 034 074, published on Apr. 30, 1995 |
English Abstract of RU 2 031 168, published on Mar. 20, 1995. |
English Abstract of RU 2 020 175, published on Sep. 30, 1994. |
English Abstract of RU 2 010 876, published on Apr. 15, 1994. |
English Abstract of RU 2 094 374, published on Oct. 27, 1997. |
English Abstract of RU 2 081 831, published on Jun. 20, 1997. |
English Abstract of RU 2 070 596, published on Dec. 20, 1996. |
English Translation of Abstract of CN101045538, “Method for preparing modified silicon oxide using coal series kaolin rock or flyash”, Oct. 3, 2007. |
English Translation of Abstract of CN101249965, “Method for preparing ultra-fine white carbon black and nano alumina by using kaolinite as raw material”, Aug. 27, 2008. |
English Translation of Abstract of CN101045543, “Method for preparing sheet alumina using coal series kaolin rock or flyash as raw material”, Oct. 3, 2007. |
English Translation of Abstract of CN101434484, “Processes for producing alumina ceramic valve body and use thereof”, May 20, 2009. |
English Translation of Abstract of CN101462757, “Preparation of nano Na-beat-alumina powder”, Jun. 24, 2009. |
Cablik, “Characterization and applications of red mud from bauxite processing”, VSB-Technical University of Ostrava, Faculty of Mining and Geology, pp. 27-37, 2007. |
An English Abstract of JP57145027 “Preparation of Granular Alumina”, published on Sep. 7, 1982. |
Abstract of Dash et al., “Acid dissolution of alumina from waste aluminium dross”, Hydrometallurgy, vol. 92, issues 1-2, May 2008, pp. 48-53. |
Khan et al., “Production of Aluminum Sulphate from Indigenous Bauxite without Precalcination of the Ore”, Jour. Chem Soc. Pak., vol. 17, No. 4, pp. 213-216, 1995. |
Sahoo et al., “Characterization of γ- and α-Fe2O3 nano powders synthesized by emulsion precipitation-calcination route and rheological behavior of α-Fe2O3”, International Journal of Engineering, Science and Technology, vol. 2, No. 8, pp. 118-126, 2010. |
Bharathi et al., “Highly mesoporous α-Fe2O3 nanostructures: preparation, characterization and improved photocatalytic performance towards Rhodamine B (RhB)”, J. Phys. D: Appl. Phys. 43 015501, pp. 1-9, 2010. |
“Industrial Inorganic Pigments”, Wiley—VCH Verlag GmbH and Co. KgaA, pp. 105-112, 1993. |
Andrieux et al., Abstract of: “Hydrothermal synthesis of dioctahedral smectites: The Al—Fe3+ chemical series: Part I: Influence of experimental conditions”, Universite de Poitiers, 2009. |
Bazin et al., “Alumina from clays”, Department of Mining, Metallurgical and Materials Engineering; Alcan International Limitee; Groupe Conseil PROCD Inc.; Conseil de Developpement economique de Murdochville, pp. 24-38, 2005. |
Aleksandrovich, “The receipt of alumina from clay materials”, 2011. |
Copson et al., “Extraction of Alumina from Clays by the Lime-sinter Modification of the Pedersen Process”, New York Meeting, Feb. 1944, pp. 241-254. |
Ai-Zahrani et al., “Extraction of Alumina from Local Clays by Hydrochloric Acid Process”, JKAU: Eng. Sci., vol. 20, No. 2, pp. 29-41, 2009. |
Dutrizac et al., “The Precipitation of Hematite from Ferric Chloride Media at Atmospheric Pressure”, Mining and Mineral Sciences Laboratories, vol. 30B, Dec. 1999, pp. 993-1001. |
Riveros et al., “The precipitation of hematite from ferric chloride media”, Mining and Mineral Sciences Laboratories, Hydrometallurgy 46 (1997), pp. 85-104. |
English Abstract of AU2008286599A1, “A process of smelting monazite rare earth ore rich in Fe”, published on Feb. 19, 2009. |
English Abstract of KR820001546, “Production of Titanium Metal Valves”, published on Aug. 31, 1982. |
English Abstract of KR100927466, published on Nov. 19, 2009. |
English Abstract of RU 2 069 180, published on Nov. 20, 1996. |
English Abstract of RU 2 068 392, published on Oct. 27, 1996. |
English Abstract of RU 2 062 810, published on Jun. 27, 1996. |
English Abstract of RU 2 055 828, published on Mar. 10, 1996. |
English Abstract of RU 2 049 728, published on Dec. 10, 1995. |
English Abstract of RU 1704483, published on Oct. 27, 1996. |
English Abstract of SU1567518, published on May 30, 1990. |
English Abstract of SU1424174, published on Jul. 23, 1991. |
English Abstract of RU2038309, published on Jun. 27, 1995. |
English Abstract of HU51574, published on May 28, 1990. |
English Abstract of JP2008253142, published on Oct. 23, 2008. |
English Abstract of JP2005152756, published on Jun. 16, 2005. |
English Abstract of JP2005082462, published on Mar. 31, 2005. |
English Abstract of JP2005219938, published on Aug. 18, 2005. |
English Abstract of JP2004036003, published on Feb. 5, 2004. |
English Abstract of JP2005112636, published on Apr. 28, 2005. |
English Abstract of CN101509072(A), “Method for extracting valuable metals from laterite nickel with hydrochloric acid full-closed circulation method”, published on Aug. 19, 2009. |
Fang et al., “Recovery of gallium from coal fly ash”, Hydrometallurgy 41 (1996) 187-200. |
Gutiérrez et al., “Recovery of gallium from coal fly ash by a dual reactive extraction process”, Waste Management & Research (1997) 16, 371-382. |
English Abstract of CN101285127, published on Oct. 15, 2008. |
Bengston et al., “Alumina process feasibility study and preliminary pilot plant design. Task 3 report: preliminary design of 25 ton per day pilot plant”, vol. 1, Process Technology and Costs. Bureau of Mines Open File Report PB81-125031, Nov. 1979. |
Liu et al., “High Purity Alumina Powders Extracted from Aluminum Dross by the Calcining-Leaching Process”, TMS (The Minerals, Metals & Materials Society), 2011, pp. 197-200. |
Brand et al., “Formation of α-Al2O3 by thermal decomposition of basic aluminum chlorides at low temperatures”, Crystal Research and Technology 1989 (24) 671-675. |
Park et al., “Manufacture of low-soda alumina from clay”, Industrial and Engineering Chemistry 1996 (35) 4379-4385. |
Yanagida et al., “The role of water vapor in formation of alpha alumina from transient alumina” Journal of Ceramic Association Japan 1966 (74) 371-77. |
Pijolat et al., “Influence of additives and water vapor on the transformation of transition aluminas into alpha alumina”, Thermochimica Acta 1987 (122) 71-77. |
Bagwell et al., “Effect of seeding and water vapor on the nucleation and growth of α-Al2O3 from γ-Al2O3”, Journal of the American Ceramic Society 1999 (82) 825-832. |
Hrabe et al., “The influence of water vapor on thermal transformations of boehmite”, Journal of Material Research 1992 (7) 444-449. |
English Abstract of Petzold et al., “Thermoanalytical studies on the decomposition of aluminum chloride hexahydrate”, Journal of thermal analysis 1981 (20) 71-86. |
Hoffman et al., “Development of a hydrochloric acid process for the production of alumina from clay”, Journal of research of the national bureau of standards 1946 (37) 409-428. |
Marchessaux et al., “Thermal decomposition of aluminum hexahydrate chloride (AlCl3+6H2 O) for alumina production”, Light metals 1979 (1) 189-204. |
Miller et al., “Fluidized-bed decomposition of aluminum chloride hexahydrate”, Light Metals: Proceedings of Sessions, AIME Annual Meeting (Warrendale, Pennsylvania), 1983 253-271. |
English Abstract of CN101781719, “Method for recovering rare earth from oil shale waste slag”, published on Jul. 21, 2010. |
Hudson et al., “Direct Calcination of AlCl3·6H20 with Off-Gas use for Crystallization”, United States Department of the Interior Bureau of Mines, Contract No. J0188096, 1979, pp. 1-28. |
Elsner et al., “Alumina via hydrochloric acid leaching of high silica bauxites—Process Development”, 1984, pp. 411-429. |
Maysilles et al., “Aluminum Chloride Hexahydrate Crystallization by HCl Gas Sparging”, U.S. Dept. of the Interior, Bureau of Mines, 1982, pp. 1-38. |
An English translation of Zhang et al., “Research on the Kinetics of Alumina from Kaolinite Leaching in Sulphuric Acid”, Journal of Hefei University of Technology, vol. 24, No. 1, Feb. 2001, pp. 71-74. |
An English translation of Zhang et al., “Research of the Controlling Steps of the Reaction of Kaolin and Hydrochloric Acid”, Journal of Hefei University of Technology, vol. 21, No. 1, Feb. 1998, pp. 50-53. |
An English translation of Zhang et al., “Kinetics Research on Alumina in Kaolinite Leached by Hydrochloric Acid”, Journal of Hefei University of Technology, vol. 22, No. 2, Apr. 1999, pp. 33-36. |
Certification of translation from Park IP Translations dated May 14, 2012. |
An English Abstract of CN101450811 “Method for extracting alumina from coal gangue”, published on Jun. 10, 2009. |
An English Abstract of JP2001162108 “Method for Manufacturing Iron-Aluminum Combined Flocculant”, published on Jun. 19, 2001. |
Tceisele, “Primary Metal Production”, Dec. 3, 2007. |
US EPA, “Alumina & Aluminum”, Office of Resource Conservation and Recovery, Apr. 2, 2012. |
Wahab et al., “Alumina Recovery From Iraqi Kaolinitic Clay by Hydrochloric Acid Route”, Iraqi Bulletin of Geology and Mining, vol. 2, No. 1, 2006, pp. 67-76. |
An English Abstract of CA1065068 “Method of Selectively Precipitating Metals From Solutions”, published on Oct. 23, 1979. |
English Translation of Abstract of CN101289705, “Process for abstracting vanadium from iron-smeltin waste slag of vanadium-containing iron ore”, Jul. 14, 2010. |
English Translation of Abstract of CN102220487, “Method for extracting vanadium and aluminum from vanadium-containing stone coal and clay vanadium ore”, Oct. 19, 2011. |
English Translation of Abstract of CN102241410, “Ecological and Comprehensive Utilization Method of Coal Ash”, Nov. 16, 2011. |
English Translation of Abstract of RU2363748, “Method of Producing Aluminium”, Aug. 10, 2009. |
English Translation of Abstract of ES2194586, “Separation procedure for contaminatory metals present in acid solutions involves liquid-liquid extraction with mixtures based on phosphonated dialkyl alkyl, trialkyl phosphates and acid phosphates”, Mar. 1, 2005. |
English Translation of Abstract of WO2009005115, “Composition for promotion of reduction in size of adipocyte”, Jan. 8, 2009. |
Cohen et al., “Precipitation of iron from concentrated chloride solutions: Literature observations, challenges and Preliminary experimental results”, Minerals Engineering 18 (2005), pp. 1344-1347. |
Elmolla et al., “Effect of Photo-Fenton Operating Conditions on the Performance of Photo-Fenton-SBR Process for Recalcitrant Wastewater Treatment”, Journal of Applied Sciences 10 (24): 3236-3242, 2010. |
Gunnar et al., Abstract of “Extraction of iron compounds from wood from the Vasa”, Department of Chemistry, Swedish University of Agricultural Sciences, vol. 60, No. 6, pp. 678-684, 2006. |
Adham et al., “Fluid Bed Dehydration of Magnesium Chloride”, Magnesium Technology 2012, pp. 49-53. |
English Abstract of CN1044126(C), “Stretched polypropylene film”, published on Jul. 14, 1999. |
Dutrizac et al., “Fundamentals of Serpentine Leaching in Hydrochloric Acid Media”, Magnesium Technology 2000, pp. 41-51. |
Australia Minerals & Mining Group Ltd., “AMMG Updates Process Design for HPA Chemical Project”, Oct. 3, 2014. |
Becze et al., “Precipitation of Hematite and Recovery of Hydrochloric Acid from Concentrated Chloride Solutions by a Novel Hydrolytic Decomposition Process”, TMS (The Minerals & Materials Society, 2001. |
Demopoulos et al., “New Technologies for HCl Regeneration in Chloride Hydrometallurgy”, World of Metallurgy—ERZMETALL 61 (2008) No. 2. |
Number | Date | Country | |
---|---|---|---|
20160304987 A1 | Oct 2016 | US |
Number | Date | Country | |
---|---|---|---|
61535435 | Sep 2011 | US | |
61584937 | Jan 2012 | US | |
61668646 | Jul 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14345000 | US | |
Child | 15196971 | US |