PROCESSES FOR THE PRODUCTION OF TUMOR INFILTRATING LYMPHOCYTES (TILS) AND METHODS OF USING THE SAME

Information

  • Patent Application
  • 20230220341
  • Publication Number
    20230220341
  • Date Filed
    December 08, 2020
    4 years ago
  • Date Published
    July 13, 2023
    a year ago
Abstract
The present invention relates to methods for expanding TILs from tumor tissue using a long first expansion process and a shorter second expansion process. A method for expanding TIL includes obtaining a first population of TILs from a tumor resected from a subject, performing a first expansion for a period of about 21 day to about 35 days by culturing the first population of TILs in a cell culture medium comprising 4-1BB agonist, IL-2, and OKT-3 to produce a second population of TILs, and performing a second expansion for a period of about 7 days to about 10 days by supplementing the cell culture medium of the second population of TILs with antigen presenting cells (APCs) and additional 4-1BB agonist, IL-2, and OKT-3, and culturing to produce a third population of TILs, wherein the third population of TILs is a therapeutic population of TILs.
Description
FIELD OF THE INVENTION

The present invention relates to methods for producing tumor infiltrating lymphocytes (TILs) from tumors, and methods for using such TILs in the treatment of cancer.


BACKGROUND OF THE INVENTION

Adoptive cell therapy utilizing TILs cultured ex vivo by the Rapid Expansion Protocol (REP) has produced successful adoptive cell therapy following host immunosuppression in patients with melanoma. Current infusion acceptance parameters rely on readouts of the composition of TILs (e.g., CD28, CD8, or CD4 positivity) and on the numerical folds of expansion and viability of the REP product.


Current REP protocols give little insight into the health of the TIL that will be infused into the patient. T cells undergo a profound metabolic shift during the course of their maturation from naïve to effector T cells (see Chang, et al., Nat. Immunol. 2016, 17, 364, hereby expressly incorporated in its entirety, and in particular for the discussion and markers of anaerobic and aerobic metabolism). For example, naïve T cells rely on mitochondrial respiration to produce ATP, while mature, healthy effector T cells such as TIL are highly glycolytic, relying on aerobic glycolysis to provide the bioenergetics substrates they require for proliferation, migration, activation, and anti-tumor efficacy.


Previous papers report that limiting glycolysis and promoting mitochondrial metabolism in TILs prior to transfer is desirable as cells that are relying heavily on glycolysis will suffer nutrient deprivation upon adoptive transfer which results in a majority of the transferred cells dying. Thus, the art teaches that promoting mitochondrial metabolism might promote in vivo longevity and in fact suggests using inhibitors of glycolysis before induction of the immune response. See Chang et al. (Chang, et al., Nat. Immunol. 2016, 17(364), 574-582).


The present invention is directed in preferred aspects to novel methods of augmenting REPs with an additional restimulation protocol, sometimes referred to herein as a “restimulation Rapid Expansion Protocol” or “reREP”, which leads surprisingly to expanded memory T cell subsets, including the central memory (CD45RACCR7+) or effector memory (CD45RACCR7) phenotypes, and/or to marked enhancement in the glycolytic respiration as compared to freshly harvested TILs or thawed cryopreserved TILs for the restimulated TILs (sometimes referred to herein as “reTILs”). That is, by using a reREP procedure (i.e., a procedure comprising a first expansion and a second expansion) on cryopreserved TILs, patients can receive highly metabolically active, healthy TILs, leading to more favorable outcomes.


The present invention is further directed in some embodiments to methods for evaluating and quantifying this increase in metabolic health. Thus, the present invention provides methods of assaying the relative health of a TIL population using one or more general evaluations of metabolism, including, but not limited to, rates and amounts of glycolysis, oxidative phosphorylation, spare respiratory capacity (SRC) and glycolytic reserve.





BRIEF DESCRIPTION OF THE FIGURES


FIG. 1 illustrates a flow chart of the expansion method according to the present invention.



FIG. 2 illustrates TIL cell growth success for endometrial cancer and thyroid cancer samples.



FIG. 3A illustrates the percent of CD45+ cells in normal, tumor, and pre-REP TIL at freezing in endometrial carcinoma tumor samples. The percent CD45+ cells is increased in pre-REP TIL as compared with normal and tumor tissue. FIG. 3B illustrates the percent of CD45+CD3+ cells in normal, tumor, and pre-REP TIL at freezing in endometrial carcinoma tumor samples. The percent CD45+CD3+ cells is increased in pre-REP TIL as compared with normal and tumor tissue.



FIG. 4A illustrates the percent of CD45+CD3+ in CD4+ and CD8+ cells from normal endometrial tissue and endometrial carcinoma tumor samples. The normal vs. tumor samples show similar results. FIG. 4B illustrates the percent of CD45+CD3+ in CD4+ and CD8+ cells from endometrial carcinoma tumor samples and pre-REP TIL at freezing samples. The percent CD45+CD3+ is decreased in CD4+ cells and increased in CD8+ cells in pre-REP TIL as compared with tumor tissue.



FIG. 5 illustrates CD3+CD8+ TIL subset phenotyping in endometrial carcinoma samples. FIG. 5A illustrates the percent CD3+CD8+ TIL in normal (left) and tumor (right) tissue for the following markers: BTLA, CTLA-4, ICOS, Ki67, LAG3, PD-1, CD103+CD69+, CD103+CD69−, TIGIT, and TIM3. FIG. 5B illustrates the percent CD3+CD8+ TIL in tumor (left) and pre-REP TIL at freeze (right) for the same markers. To the extent possible, comparative samples are from the same patient, i.e., each patient provided a normal, tumor, and pre-REP TIL at freeze sample.



FIG. 6 illustrates CD3+CD8+CD103+CD69+ subset phenotyping in normal (left) and tumor (right) endometrial tissue samples for the following markers: BTLA, CTLA-4, ICOS, Ki67, LAG3, PD-1, TIGIT, and TIM3. To the extent possible, comparative samples are from the same patient, i.e., each patient provided a tumor and pre-REP TIL at freeze sample.



FIG. 7 illustrates CD3+CD4+ TIL subset phenotyping in endometrial carcinoma samples. FIG. 7A illustrates the percent CD3+CD4+ TIL in normal (left) and tumor (right) tissue for the following markers: BTLA, CTLA-4, ICOS, Ki67, LAG3, PD-1, CD103+CD69+, CD103+CD69−, TIGIT, TIM3, and Treg. FIG. 7B illustrates the percent CD3+CD4+ TIL in tumor (left) and pre-REP TIL at freeze (right) for the same markers. To the extent possible, comparative samples are from the same patient, i.e., each patient provided a normal, tumor, and pre-REP TIL at freeze sample.



FIG. 8 illustrates CD3+CD4+CD103+CD69+ subset phenotyping in normal (left) and tumor (right) endometrial tissue samples for the following markers: BTLA, CTLA-4, ICOS, Ki67, LAG3, PD-1, TIGIT, and TIM3. To the extent possible, comparative samples are from the same patient, i.e., each patient provided a tumor and pre-REP TIL at freeze sample.



FIG. 9A illustrates the percent of CD45+ cells in normal, tumor, and pre-REP TIL at freezing in anaplastic thyroid cancer samples. The percent CD45+ cells is increased in pre-REP TIL as compared with normal and tumor tissue. FIG. 9B illustrates the percent of CD45+CD3+ cells in normal, tumor, and pre-REP TIL at freezing in anaplastic thyroid cancer samples. The percent CD45+CD3+ cells is increased in pre-REP TIL as compared with normal and tumor tissue.



FIG. 10A illustrates the percent of CD45+CD3+ in CD4+ and CD8+ cells from normal endometrial tissue and anaplastic thyroid cancer samples. The normal vs. tumor samples show similar results. FIG. 10B illustrates the percent of CD45+CD3+ in CD4+ and CD8+ cells from anaplastic thyroid cancer samples and pre-REP TIL at freezing samples. The percent CD45+CD3+ appears similar for both CD4+ and CD8+ subsets in tumor and pre-REP TIL.



FIG. 11 illustrates CD3+CD8+ TIL subset phenotyping in anaplastic thyroid cancer samples. FIG. 11A illustrates the percent CD3+CD8+ TIL in normal (left) and tumor (right) tissue for the following markers: BTLA, CTLA-4, ICOS, Ki67, LAG3, PD-1, CD103+CD69+, CD103+CD69−, TIGIT, and TIM3. FIG. 11B illustrates the percent CD3+CD8+ TIL in tumor (left) and pre-REP TIL at freeze (right) for the same markers. To the extent possible, comparative samples are from the same patient, i.e., each patient provided a normal, tumor, and pre-REP TIL at freeze sample.



FIG. 12 illustrates CD3+CD8+CD103+CD69+ subset phenotyping in normal (left) and tumor (right) endometrial tissue samples for the following markers: BTLA, CTLA-4, ICOS, Ki67, LAG3, PD-1, TIGIT, and TIM3. To the extent possible, comparative samples are from the same patient, i.e., each patient provided a tumor and pre-REP TIL at freeze sample.



FIG. 13 illustrates CD3+CD4+ TIL subset phenotyping in anaplastic thyroid cancer samples. FIG. 13A illustrates the percent CD3+CD4+ TIL in normal (left) and tumor (right) tissue for the following markers: BTLA, CTLA-4, ICOS, Ki67, LAG3, PD-1, CD103+CD69+, CD103+CD69−, TIGIT, TIM3, and Treg. FIG. 13B illustrates the percent CD3+CD4+ TIL in tumor (left) and pre-REP TIL at freeze (right) for the same markers. To the extent possible, comparative samples are from the same patient, i.e., each patient provided a normal, tumor, and pre-REP TIL at freeze sample.



FIG. 14 illustrates CD3+CD4+CD103+CD69+ subset phenotyping in normal (left) and tumor (right) endometrial tissue samples for the following markers: BTLA, CTLA-4, ICOS, Ki67, LAG3, PD-1, TIGIT, and TIM3. To the extent possible, comparative samples are from the same patient, i.e., each patient provided a tumor and pre-REP TIL at freeze sample.



FIG. 15 illustrates the structures I-A and I-B, the cylinders refer to individual polypeptide binding domains. Structures I-A and I-B comprise three linearly-linked TNFRSF binding domains derived from e.g., 4-1BBL or an antibody that binds 4-1BB, which fold to form a trivalent protein, which is then linked to a second trivalent protein through IgG1-Fc (including CH3 and CH2 domains) is then used to link two of the trivalent proteins together through disulfide bonds (small elongated ovals), stabilizing the structure and providing an agonists capable of bringing together the intracellular signaling domains of the six receptors and signaling proteins to form a signaling complex. The TNFRSF binding domains denoted as cylinders may be scFv domains comprising, e.g., a VH and a VL chain connected by a linker that may comprise hydrophilic residues and Gly and Ser sequences for flexibility, as well as Glu and Lys for solubility.





SUMMARY OF THE INVENTION

The present invention describes a method for expanding tumor infiltrating lymphocytes (TILs) into a therapeutic population of TILs comprising obtaining a first population of TILs from a tumor resected from a subject; performing a first expansion for a period of about 21 day to about 35 days by culturing the first population of TILs in a cell culture medium comprising 4-1BB, IL-2, and OKT-3 to produce a second population of TILs; and performing a second expansion for a period of about 6 days to about 12 days by supplementing the cell culture medium of the second population of TILs with antigen presenting cells (APCs) and additional 4-1BB, IL-2, and OKT-3, and culturing to produce a third population of TILs, wherein the third population of TILs is a therapeutic population of TILs.


In an embodiment of the invention, method further comprises harvesting the therapeutic population of TILs obtained from the second expansion step; and transferring the harvested TIL population to an infusion bag.


In some embodiments, the method comprises performing the first expansion step in the presence of antigen presenting cells (APCs). In one embodiment, the APCs are peripheral blood mononuclear cells (PBMCs). In some embodiments, the ratio of the number of APCs in the second expansion to the number of APCs in the first expansion is in a range of from about 1.5:1 to about 20:1. In some embodiments, the ratio is about 2:1.


In an embodiment, the TILs may be cryopreserved at some point during the first or second expansion process. In one embodiment, the second population of TILs is cryopreserved.


In some embodiments of the invention, the first expansion is performed over a period of about 21 days, and the second expansion is performed over a period of about 6 to 10 days. In some embodiments, the first expansion is performed over a period of about 35 days, and the second expansion is performed over a period of about 6 to 10 days. In some embodiments, the first expansion is performed over a period of about 28 days, and the second expansion is performed over a period of about 7 to 10 days.


In some embodiments, the second or third population of TILs comprises a subpopulation of cells with increased expression of certain markers indicative of T-cell function, and decreased expression of certain exhaustion markers. In one embodiment, one or both of the second or third population of TILs comprises an increased subpopulation of effector T cells and/or central memory T cells relative to the first or second population of TILs. In another embodiment, one or both of the second or third population of TILs comprises an increased subpopulation of cells expressing one or more of BTLA, Ki67, LAG3, TIGIT, and TIM3. In another embodiment, one or both of the second or third population of TILs comprises a decreased subpopulation of cells expressing one or more of CTLA-4, ICOS, PD-1, CD103+CD69+, and CD103+CD69−. In one embodiment, one or both of the second or third population of TILs comprises an increased subpopulation of CD45+ cells. In one embodiment, one or both of the second or third population of TILs comprises an increased subpopulation of CD45+CD3+ cells. In one embodiment, one or both of the second or third population of TILs comprises an increased subpopulation of CD8+ cells. In one embodiment, one or both of the second or third population of TILs comprises a decreased subpopulation of CD4+ cells.


In some embodiments, the tumor is of a cancer type selected from the group consisting of thyroid cancer, melanoma (including uveal melanoma and cutaneous melanoma), cervical cancer, endometrial cancer, colon cancer, and colorectal cancer.


In some embodiments, the second population of TILs is at least 50-fold greater in number than the first population of TILs. In some embodiments, the second population of TILs is at least 4×107 cells.


DETAILED DESCRIPTION
Definitions

Unless defined otherwise, all technical and scientific terms used herein have the same meaning as is commonly understood by one of skill in the art to which this invention belongs. All patents and publications referred to herein are incorporated by reference in their entireties.


The term “in vivo” refers to an event that takes place in a subject's body.


The term “in vitro” refers to an event that takes places outside of a subject's body. In vitro assays encompass cell-based assays in which cells alive or dead are employed and may also encompass a cell-free assay in which no intact cells are employed.


The term “ex vivo” refers to an event which involves treating or performing a procedure on a cell, tissue and/or organ which has been removed from a subject's body. Aptly, the cell, tissue and/or organ may be returned to the subject's body in a method of surgery or treatment.


The term “second expansion” means an increase in the number of antigen-specific TILs of at least about 3-fold (or 4-, 5-, 6-, 7-, 8-, or 9-fold) over a period of a week, more preferably at least about 10-fold (or 20-, 30-, 40-, 50-, 60-, 70-, 80-, or 90-fold) over a period of a week, or most preferably at least about 100-fold over a period of a week. A number of second expansion protocols are outlined below.


By “tumor infiltrating lymphocytes” or “TILs” herein is meant a population of cells originally obtained as white blood cells that have left the bloodstream of a subject and migrated into a tumor. TILs include, but are not limited to, CD8+ cytotoxic T cells (lymphocytes), Th1 and Th17 CD4+ T cells, natural killer cells, dendritic cells and M1 macrophages. TILs include both primary and secondary TILs. “Primary TILs” are those that are obtained from patient tissue samples as outlined herein (sometimes referred to as “freshly harvested”), and “secondary TILs” are any TIL cell populations that have been expanded or proliferated as discussed herein, including, but not limited to bulk TILs, expanded TILs (“REP TILs”) as well as “reREP TILs” as discussed herein.


TILs can generally be defined either biochemically, using cell surface markers, or functionally, by their ability to infiltrate tumors and effect treatment. TILs can be generally categorized by expressing one or more of the following biomarkers: CD4, CD8, TCR αβ, CD27, CD28, CD56, CCR7, CD45Ra, CD95, PD-1, and CD25. Additionally, and alternatively, TILs can be functionally defined by their ability to infiltrate solid tumors upon reintroduction into a patient. TILS may further be characterized by potency—for example, TILS may be considered potent if, for example, interferon (IFN) release is greater than about 50 μg/mL, greater than about 100 pg/mL, greater than about 150 pg/mL, or greater than about 200 pg/mL. Interferon can include interferon gamma (IFNγ).


By “cryopreserved TILs” herein is meant that TILs, either primary, bulk, or expanded (REP TILs), are treated and stored in the range of about −150° C. to −60° C. General methods for cryopreservation are also described elsewhere herein, including in the Examples. For clarity, “cryopreserved TILs” are distinguishable from frozen tissue samples which may be used as a source of primary TILs.


By “thawed cryopreserved TILs” herein is meant a population of TILs that was previously cryopreserved and then treated to return to room temperature or higher, including but not limited to cell culture temperatures or temperatures wherein TILs may be administered to a patient.


By “population of cells” (including TILs) herein is meant a number of cells that share common traits. In general, populations generally range from 1×106 to 1×1010 in number, with different TIL populations comprising different numbers. For example, initial growth of primary TILs in the presence of IL-2 results in a population of bulk TILs of roughly 1×108 cells. REP expansion is generally done to provide populations of 1.5×109 to 1.5×1010 cells for infusion.


In general, TILs are initially obtained from a patient tumor sample (“primary TILs”) and then expanded into a larger population for further manipulation as described herein, optionally cryopreserved, restimulated as outlined herein and optionally evaluated for phenotype and metabolic parameters as an indication of TIL health.


In general, the harvested cell suspension is called a “primary cell population” or a “freshly harvested” cell population.


In general, as discussed herein, the TILs are initially prepared by obtaining a primary population of TILs from a tumor resected from a patient as discussed herein (the “primary cell population” or “first cell population”). This is followed with an initial bulk expansion utilizing a culturing of the cells with IL-2, forming a second population of cells (sometimes referred to herein as the “bulk TIEL population” or “second population”).


The term “cytotoxic lymphocyte” includes cytotoxic T (CTL) cells (including CD8+ cytotoxic T lymphocytes and CD4+ T-helper lymphocytes), natural killer T (NKT) cells and natural killer (NK) cells. Cytotoxic lymphocytes can include, for example, peripheral blood-derived α/βTCR-positive or α/βTCR-positive T cells activated by tumor associated antigens and/or transduced with tumor specific chimeric antigen receptors or T-cell receptors, and tumor-infiltrating lymphocytes (TILs).


The term “central memory T cell” refers to a subset of T cells that in the human are CD45RO+ and constitutively express CCR7 (CCR7 hi) and CD62L (CD62 hi). The surface phenotype of central memory T cells also includes TCR, CD3, CD127 (IL-7R), and IL-15R. Transcription factors for central memory T cells include BCL-6, BCL-6B, MBD2, and BMII. Central memory T cells primarily secret IL-2 and CD40L as effector molecules after TCR triggering. Central memory T cells are predominant in the CD4 compartment in blood, and in the human are proportionally enriched in lymph nodes and tonsils.


The term “effector memory T cell” refers to a subset of human or mammalian T cells that, like central memory T cells, are CD45R0+, but have lost the constitutive expression of CCR7 (CCR7lo) and are heterogeneous or low for CD62L expression (CD62Llo). The surface phenotype of central memory T cells also includes TCR, CD3, CD127 (IL-7R), and IL-15R. Transcription factors for central memory T cells include BLIMPI. Effector memory T cells rapidly secret high levels of inflammatory cytokines following antigenic stimulation, including interferon-7, IL-4, and IL-5. Effector memory T cells are predominant in the CD8 compartment in blood, and in the human are proportionally enriched in the lung, liver, and gut. CD8+ effector memory T cells carry large amounts of perform. The term “closed system” refers to a system that is closed to the outside environment. Any closed system appropriate for cell culture methods can be employed with the methods of the present invention. Closed systems include, for example, but are not limited to closed G-containers. Once a tumor segment is added to the closed system, the system is no opened to the outside environment until the TILs are ready to be administered to the patient.


The terms “peripheral blood mononuclear cells” and “PBMCs” refers to a peripheral blood cell having a round nucleus, including lymphocytes (T cells, B cells, NK cells) and monocytes. Preferably, the peripheral blood mononuclear cells are irradiated allogeneic peripheral blood mononuclear cells.


The term “rapid expansion” means an increase in the number of antigen-specific TILs of at least about 3-fold (or 4-, 5-, 6-, 7-, 8-, or 9-fold) over a period of a week, more preferably at least about 10-fold (or 20-, 30-, 40-, 50-, 60-, 70-, 80-, or 90-fold) over a period of a week, or most preferably at least about 100-fold over a period of a week. A number of rapid expansion protocols are described herein.


In some embodiments, methods of the present disclosure further include a “pre-REP” stage in which tumor tissue or cells from tumor tissue are grown in standard lab media (including without limitation RPMI) and treated the with reagents such as irradiated feeder cells and anti-CD3 antibodies to achieve a desired effect, such as increase in the number of TILS and/or an enrichment of the population for cells containing desired cell surface markers or other structural, biochemical or functional features. The pre-REP stage may utilize lab grade reagents (under the assumption that the lab grade reagents get diluted out during a later REP stage), making it easier to incorporate alternative strategies for improving TIL production. Therefore, in some embodiments, the disclosed TLR agonist and/or peptide or peptidomimetics can be included in the culture medium during the pre-REP stage. The pre-REP culture can in some embodiments, include IL-2.


The present invention is directed in preferred aspects to novel methods of augmenting REPs with an additional restimulation protocol, sometimes referred to herein as a “restimulation Rapid Expansion Protocol” or “reREP”, which leads surprisingly to expanded memory T cell subsets, including the memory effector T cell subset, and/or to marked enhancement in the glycolytic respiration as compared to freshly harvested TILs or thawed cryopreserved TILs for the restimulated TILs (sometimes referred to herein as “reTILs”). That is, by using a reREP procedure on cryopreserved TILs, patients can receive highly metabolically active, healthy TILs, leading to more favorable outcomes. Such restimulation protocols, also referred to herein as additional “expansions” of the cell populations, are described in further detail herein.


The terms “fragmenting,” “fragment,” and “fragmented,” as used herein to describe processes for disrupting a tumor, includes mechanical fragmentation methods such as crushing, slicing, dividing, and morcellating tumor tissue as well as any other method for disrupting the physical structure of tumor tissue. The term “in vivo” refers to an event that takes place in a subject's body.


The term “in vitro” refers to an event that takes places outside of a subject's body. In vitro assays encompass cell-based assays in which cells alive or dead are employed and may also encompass a cell-free assay in which no intact cells are employed.


The term “anti-CD3 antibody” refers to an antibody or variant thereof, e.g., a monoclonal antibody and including human, humanized, chimeric or murine antibodies which are directed against the CD3 receptor in the T cell antigen receptor of mature T cells. Anti-CD3 antibodies include OKT-3, also known as muromonab, and UCHT-1. Other anti-CD3 antibodies include, for example, otelixizumab, teplizumab, and visilizumab.


The term “OKT-3” (also referred to herein as “OKT3”) refers to a monoclonal antibody or biosimilar or variant thereof, including human, humanized, chimeric, or murine antibodies, directed against the CD3 receptor in the T cell antigen receptor of mature T cells, and includes commercially-available forms such as OKT-3 (30 ng/mL, MACS GMP CD3 pure, Miltenyi Biotech, Inc., San Diego, Calif., USA) and muromonab or variants, conservative amino acid substitutions, glycoforms, or biosimilars thereof. The amino acid sequences of the heavy and light chains of muromonab are given in Table 1 (SEQ ID NO:1 and SEQ ID NO:2). A hybridoma capable of producing OKT-3 is deposited with the American Type Culture Collection and assigned the ATCC accession number CRL 8001. A hybridoma capable of producing OKT-3 is also deposited with European Collection of Authenticated Cell Cultures (ECACC) and assigned Catalogue No. 86022706.









TABLE 1







Amino acid sequences of muromonab.








Identifier
Sequence (One-Letter Amino Acid Symbols)





SEQ ID NO: 1
QVQLQQSGAE LARPGASVKM SCKASGYTFT RYTMHWVKQR PGQGLEWIGY INPSRGYTNY  60


Muromonab
NQKFKDKATL TTDKSSSTAY MQLSSLTSED SAVYYCARYY DDHYCLDYWG QGTTLTVSSA 120


heavy chain
KTTAPSVYPL APVCGGTTGS SVTLGCLVKG YFPEPVTLTW NSGSLSSGVH TFPAVLQSDL 180



YTLSSSVTVT SSTWPSQSIT CNVAHPASST KVDKKIEPRP KSCDKTHTCP PCPAPELLGG 240



PSVFLFPPKP KDTLMISRTP EVTCVVVDVS HEDPEVKFNW YVDGVEVHNA KTKPREEQYN 300



STYRVVSVLT VLHQDWLNGK EYKCKVSNKA LPAPIEKTIS KAKGQPREPQ VYTLPPSRDE 360



LTKNQVSLTC LVKGFYPSDI AVEWESNGQP ENNYKTTPPV LDSDGSFFLY SKLTVDKSRW 420



QQGNVFSCSV MHEALHNHYT QKSLSLSPGK                                  450





SEQ ID NO: 2
QIVLTQSPAI MSASPGEKVT MTCSASSSVS YMNWYQQKSG TSPKRWIYDT SKLASGVPAH  60


Muromonab
FRGSGSGTSY SLTISGMEAE DAATYYCQQW SSNPFTFGSG TKLEINRADT APTVSIFPPS 120


light chain
SEQLTSGGAS VVCFLNNFYP KDINVKWKID GSERQNGVLN SWTDQDSKDS TYSMSSTLTL 180



TKDEYERHNS YTCEATHKTS TSPIVKSFNR NEC                              213









The term “IL-2” (also referred to herein as “IL2”) refers to the T cell growth factor known as interleukin-2, and includes all forms of IL-2 including human and mammalian forms, conservative amino acid substitutions, glycoforms, biosimilars, and variants thereof. 1L1-2 is described, e.g., in Nelson, J. Immunol. 2004, 172, 3983-88 and Malek, Annu. Rev. Immunol. 2008, 26, 453-79, the disclosures of which are incorporated by reference herein. The amino acid sequence of recombinant human IL-2 suitable for use in the invention is given in Table 2 (SEQ ID NO:3). For example, the term IL-2 encompasses human, recombinant forms of IL-2 such as aldesleukin (PROLEUKINT, available commercially from multiple suppliers in 22 million IU per single use vials), as well as the form of recombinant IL-2 commercially supplied by CellGenix, Inc., Portsmouth, N.H., USA (CELLGRO GMP) or ProSpec-Tany TechnoGene Ltd., East Brunswick, N.J., USA (Cat. No. CYT-209-b) and other commercial equivalents from other vendors. Aldesleukin (des-alanyl-1, serine-125 human IL-2) is a nonglycosylated human recombinant form of IL-2 with a molecular weight of approximately 15 kDa. The amino acid sequence of aldesleukin suitable for use in the invention is given in Table 2 (SEQ ID NO:4). The term IL1-2 also encompasses pegylated forms of IL-2, as described herein, including the pegylated IL2 prodrug NKTR-214, available from Nektar Therapeutics, South San Francisco, Calif., USA. NKTR-214 and pegylated IL-2 suitable for use in the invention is described in U.S. Patent Application Publication No. US 2014/0328791 A1 and International Patent Application Publication No. WO 2012/065086 A1, the disclosures of which are incorporated by reference herein. Alternative forms of conjugated IL-2 suitable for use in the invention are described in U.S. Pat. Nos. 4,766,106, 5,206,344, 5,089,261 and 4902,502, the disclosures of which are incorporated by reference herein. Formulations of IL-2 suitable for use in the invention are described in U.S. Pat. No. 6,706,289, the disclosure of which is incorporated by reference herein.









TABLE 2 







Amino acid sequences of interleukins.








Identifier
Sequence (One-Letter Amino Acid Symbols)





SEQ ID NO: 3
MAPTSSSTKK TQLQLEHLLL DLQMILNGIN NYKNPKLTRM LTFKFYMPKK ATELKHLQCL  60


recombinant
EEELKPLEEV LNLAQSKNFH LRPRDLISNI NVIVLELKGS ETTFMCEYAD ETATIVEFLN 120


human IL-2
RWITFCQSII STLT                                                   134


(rhIL-2)






SEQ ID NO: 4
PTSSSTKKTQ LQLEHLLLDL QMILNGINNY KNPKLTRMLT FKFYMPKKAT ELKHLQCLEE  60


Aldesleukin
ELKPLEEVLN LAQSKNFHLR PRDLISNINV IVLELKGSET TFMCEYADET ATIVEFLNRW 120



ITFSQSII STLT                                                     132





SEQ ID NO: 5
MHKCDITLQE IIKTLNSLTE QKTLCTELTV TDIFAASKNT TEKETFCRAA TVLRQFYSHH  60


recombinant
EKDTRCLGAT AQQFHRHKQL IRFLKRLDRN LWGLAGLNSC PVKEANQSTL ENFLERLKTI 120


human IL-4
MREKYSKCSS                                                        130


(rhIL-4)






SEQ ID NO: 6
MDCDIEGKDG KQYESVLMVS IDQLLDSMKE IGSNCLNNEF NFFKRHICDA NKEGMFLFRA  60


recombinant
ARKLRQFLKM NSTGDFDLHL LKVSEGTTIL LNCTGQVKGR KPAALGEAQP TKSLEENKSL 120


human IL-7
KEQKKLNDLC FLKRLLQEIK TCWNKILMGT KEH                              153


(rhIL-7)






SEQ ID NO: 7
MNWVNVISDL KKIEDLIQSM HIDATLYTES DVHPSCKVTA MKCFLLELQV ISLESGDASI  60


recombinant
HDTVENLIIL ANNSLSSNGN VTESGCKECE ELEEKNIKEF LQSFVHIVQM FINTS      115


human IL-15



(rhIL-15)






SEQ ID NO: 8
MQDRHMIRMR QLIDIVDQLK NYVNDLVPEF LPAPEDVETN CEWSAFSCFQ KAQLKSANTG  60


recombinant
NNERIINVSI KKLKRKPPST NAGRRQKHRL TCPSCDSYEK KPPKEFLERF KSLLQKMIHQ 120


human IL-21
HLSSRTHGSEDS                                                      132


(rhIL-21)









The term “IL-4” (also referred to herein as “IL4”) refers to the cytokine known as interleukin 4, which is produced by Th2 T cells and by eosinophils, basophils, and mast cells. IL-4 regulates the differentiation of naïve helper T cells (Th0 cells) to Th2 T cells. Steinke and Borish, Respir. Res. 2001, 2, 66-70. Upon activation by IL-4, Th2 T cells subsequently produce additional IL-4 in a positive feedback loop. IL-4 also stimulates B cell proliferation and class II MHC expression, and induces class switching to IgE and IgG1 expression from B cells. Recombinant human IL-4 suitable for use in the invention is commercially available from multiple suppliers, including ProSpec-Tany TechnoGene Ltd., East Brunswick, N.J., USA (Cat. No. CYT-211) and ThermoFisher Scientific, Inc., Waltham, Mass., USA (human IL-15 recombinant protein, Cat. No. Gibco CTP0043). The amino acid sequence of recombinant human IL-4 suitable for use in the invention is given in Table 2 (SEQ ID NO:5).


The term “IL-7” (also referred to herein as “IL7”) refers to a glycosylated tissue-derived cytokine known as interleukin 7, which may be obtained from stromal and epithelial cells, as well as from dendritic cells. Fry and Mackall, Blood 2002, 99, 3892-904. IL-7 can stimulate the development of T cells. IL-7 binds to the IL-7 receptor, a heterodimer consisting of IL-7 receptor alpha and common gamma chain receptor, which in a series of signals important for T cell development within the thymus and survival within the periphery. Recombinant human IL-4 suitable for use in the invention is commercially available from multiple suppliers, including ProSpec-Tany TechnoGene Ltd., East Brunswick, N.J., USA (Cat. No. CYT-254) and ThermoFisher Scientific, Inc., Waltham, Mass., USA (human IL-15 recombinant protein, Cat. No. Gibco PHC0071). The amino acid sequence of recombinant human IL-7 suitable for use in the invention is given in Table 2 (SEQ ID NO:6).


The term “IL-15” (also referred to herein as “IL15”) refers to the T cell growth factor known as interleukin-15, and includes all forms of IL-2 including human and mammalian forms, conservative amino acid substitutions, glycoforms, biosimilars, and variants thereof. IL-15 is described, e.g., in Fehniger and Caligiuri, Blood 2001, 97, 14-32, the disclosure of which is incorporated by reference herein. IL-15 shares 3 and 7 signaling receptor subunits with IL-2. Recombinant human IL-15 is a single, non-glycosylated polypeptide chain containing 114 amino acids (and an N-terminal methionine) with a molecular mass of 12.8 kDa. Recombinant human IL-15 is commercially available from multiple suppliers, including ProSpec-Tany TechnoGene Ltd., East Brunswick, N.J., USA (Cat. No. CYT-230-b) and ThermoFisher Scientific, Inc., Waltham, Mass., USA (human IL-15 recombinant protein, Cat. No. 34-8159-82). The amino acid sequence of recombinant human IL-15 suitable for use in the invention is given in Table 2 (SEQ ID NO:7).


The term “IL-21” (also referred to herein as “IL21”) refers to the pleiotropic cytokine protein known as interleukin-21, and includes all forms of IL-21 including human and mammalian forms, conservative amino acid substitutions, glycoforms, biosimilars, and variants thereof. IL-21 is described, e.g., in Spolski and Leonard, Nat. Rev. Drug. Disc. 2014, 13, 379-95, the disclosure of which is incorporated by reference herein. IL-21 is primarily produced by natural killer T cells and activated human CD4+ T cells. Recombinant human IL-21 is a single, non-glycosylated polypeptide chain containing 132 amino acids with a molecular mass of 15.4 kDa. Recombinant human IL-21 is commercially available from multiple suppliers, including ProSpec-Tany TechnoGene Ltd., East Brunswick, N.J., USA (Cat. No. CYT-408-b) and ThermoFisher Scientific, Inc., Waltham, Mass., USA (human IL-21 recombinant protein, Cat. No. 14-8219-80). The amino acid sequence of recombinant human IL-21 suitable for use in the invention is given in Table 2 (SEQ ID NO:8).


When “an anti-tumor effective amount”, “an tumor-inhibiting effective amount”, or “therapeutic amount” is indicated, the precise amount of the compositions of the present invention to be administered can be determined by a physician with consideration of individual differences in age, weight, tumor size, extent of infection or metastasis, and condition of the patient (subject). It can generally be stated that a pharmaceutical composition comprising the genetically modified cytotoxic lymphocytes described herein may be administered at a dosage of 104 to 1011 cells/kg body weight (e.g., 101 to 106, 105 to 1010, 105 to 1011, 106 to 1010, 106 to 1011, 107 to 1011, 107 to 1010, 108 to 1011, 108 to 1010, 109 to 1011, or 109 to 1010 cells/kg body weight), including all integer values within those ranges. Genetically modified cytotoxic lymphocytes compositions may also be administered multiple times at these dosages. The genetically modified cytotoxic lymphocytes can be administered by using infusion techniques that are commonly known in immunotherapy (see, e.g., Rosenberg et al., New Eng. J. of Med. 319: 1676, 1988). The optimal dosage and treatment regime for a particular patient can readily be determined by one skilled in the art of medicine by monitoring the patient for signs of disease and adjusting the treatment accordingly.


The term “hematological malignancy” refers to mammalian cancers and tumors of the hematopoietic and lymphoid tissues, including but not limited to tissues of the blood, bone marrow, lymph nodes, and lymphatic system. Hematological malignancies are also referred to as “liquid tumors.” Hematological malignancies include, but are not limited to, acute lymphoblastic leukemia (ALL), chronic lymphocytic lymphoma (CLL), small lymphocytic lymphoma (SLL), acute myelogenous leukemia (AML), chronic myelogenous leukemia (CML), acute monocytic leukemia (AMoL), Hodgkin's lymphoma, and non-Hodgkin's lymphomas. The term “B cell hematological malignancy” refers to hematological malignancies that affect B cells.


The term “solid tumor” refers to an abnormal mass of tissue that usually does not contain cysts or liquid areas. Solid tumors may be benign or malignant. The term “solid tumor cancer refers to malignant, neoplastic, or cancerous solid tumors. Solid tumor cancers include, but are not limited to, sarcomas, carcinomas, and lymphomas, such as cancers of the lung, breast, prostate, colon, rectum, and bladder. The tissue structure of solid tumors includes interdependent tissue compartments including the parenchyma (cancer cells) and the supporting stromal cells in which the cancer cells are dispersed and which may provide a supporting microenvironment.


The term “liquid tumor” refers to an abnormal mass of cells that is fluid in nature. Liquid tumor cancers include, but are not limited to, leukemias, myelomas, and lymphomas, as well as other hematological malignancies. TILs obtained from liquid tumors may also be referred to herein as marrow infiltrating lymphocytes (MILs).


The term “microenvironment,” as used herein, may refer to the solid or hematological tumor microenvironment as a whole or to an individual subset of cells within the microenvironment. The tumor microenvironment, as used herein, refers to a complex mixture of “cells, soluble factors, signaling molecules, extracellular matrices, and mechanical cues that promote neoplastic transformation, support tumor growth and invasion, protect the tumor from host immunity, foster therapeutic resistance, and provide niches for dominant metastases to thrive,” as described in Swartz, et al., Cancer Res., 2012, 72, 2473. Although tumors express antigens that should be recognized by T cells, tumor clearance by the immune system is rare because of immune suppression by the microenvironment.


In an embodiment, the invention includes a method of treating a cancer with a population of rTILs, wherein a patient is pre-treated with non-myeloablative chemotherapy prior to an infusion of rTILs according to the invention. In some embodiments, the population of rTILs may be provided with a population of eTils, wherein a patient is pre-treated with nonmyeloablative chemotherapy prior to an infusion of rTILs and eTils according to the invention. In an embodiment, the non-myeloablative chemotherapy is cyclophosphamide 60 mg/kg/d for 2 days (days 27 and 26 prior to rTIL infusion) and fludarabine 25 mg/m2/d for 5 days (days 27 to 23 prior to rTIL infusion). In an embodiment, after non-myeloablative chemotherapy and rTIL infusion (at day 0) according to the invention, the patient receives an intravenous infusion of IL-2 intravenously at 720,000 IU/kg every 8 hours to physiologic tolerance.


Experimental findings indicate that lymphodepletion prior to adoptive transfer of tumor-specific T lymphocytes plays a key role in enhancing treatment efficacy by eliminating regulatory T cells and competing elements of the immune system (“cytokine sinks”). Accordingly, some embodiments of the invention utilize a lymphodepletion step (sometimes also referred to as “immunosuppressive conditioning”) on the patient prior to the introduction of the rTILs of the invention.


The terms “co-administration,” “co-administering,” “administered in combination with,” “administering in combination with,” “simultaneous,” and “concurrent,” as used herein, encompass administration of two or more active pharmaceutical ingredients (in a preferred embodiment of the present invention, for example, at least one potassium channel agonist in combination with a plurality of TILs) to a subject so that both active pharmaceutical ingredients and/or their metabolites are present in the subject at the same time. Co-administration includes simultaneous administration in separate compositions, administration at different times in separate compositions, or administration in a composition in which two or more active pharmaceutical ingredients are present. Simultaneous administration in separate compositions and administration in a composition in which both agents are present are preferred.


The term “effective amount” or “therapeutically effective amount” refers to that amount of a compound or combination of compounds as described herein that is sufficient to effect the intended application including, but not limited to, disease treatment. A therapeutically effective amount may vary depending upon the intended application (in vitro or in vivo), or the subject and disease condition being treated (e.g., the weight, age and gender of the subject), the severity of the disease condition, or the manner of administration. The term also applies to a dose that will induce a particular response in target cells (e.g., the reduction of platelet adhesion and/or cell migration). The specific dose will vary depending on the particular compounds chosen, the dosing regimen to be followed, whether the compound is administered in combination with other compounds, timing of administration, the tissue to which it is administered, and the physical delivery system in which the compound is carried.


The terms “treatment”, “treating”, “treat”, and the like, refer to obtaining a desired pharmacologic and/or physiologic effect. The effect may be prophylactic in terms of completely or partially preventing a disease or symptom thereof and/or may be therapeutic in terms of a partial or complete cure for a disease and/or adverse effect attributable to the disease. “Treatment”, as used herein, covers any treatment of a disease in a mammal, particularly in a human, and includes: (a) preventing the disease from occurring in a subject which may be predisposed to the disease but has not yet been diagnosed as having it; (b) inhibiting the disease, i.e., arresting its development or progression; and (c) relieving the disease, i.e., causing regression of the disease and/or relieving one or more disease symptoms. “Treatment” is also meant to encompass delivery of an agent in order to provide for a pharmacologic effect, even in the absence of a disease or condition. For example, “treatment” encompasses delivery of a composition that can elicit an immune response or confer immunity in the absence of a disease condition, e.g., in the case of a vaccine.


The term “heterologous” when used with reference to portions of a nucleic acid or protein indicates that the nucleic acid or protein comprises two or more subsequences that are not found in the same relationship to each other in nature. For instance, the nucleic acid is typically recombinantly produced, having two or more sequences from unrelated genes arranged to make a new functional nucleic acid, e.g., a promoter from one source and a coding region from another source, or coding regions from different sources. Similarly, a heterologous protein indicates that the protein comprises two or more subsequences that are not found in the same relationship to each other in nature (e.g., a fusion protein).


The terms “sequence identity,” “percent identity,” and “sequence percent identity” (or synonyms thereof, e.g., “99% identical”) in the context of two or more nucleic acids or polypeptides, refer to two or more sequences or subsequences that are the same or have a specified percentage of nucleotides or amino acid residues that are the same, when compared and aligned (introducing gaps, if necessary) for maximum correspondence, not considering any conservative amino acid substitutions as part of the sequence identity. The percent identity can be measured using sequence comparison software or algorithms or by visual inspection. Various algorithms and software are known in the art that can be used to obtain alignments of amino acid or nucleotide sequences. Suitable programs to determine percent sequence identity include for example the BLAST suite of programs available from the U.S. Government's National Center for Biotechnology Information BLAST web site. Comparisons between two sequences can be carried using either the BLASTN or BLASTP algorithm. BLASTN is used to compare nucleic acid sequences, while BLASTP is used to compare amino acid sequences. ALIGN, ALIGN-2 (Genentech, South San Francisco, Calif.) or MegAlign, available from DNASTAR, are additional publicly available software programs that can be used to align sequences. One skilled in the art can determine appropriate parameters for maximal alignment by particular alignment software. In certain embodiments, the default parameters of the alignment software are used.


As used herein, the term “variant” encompasses but is not limited to antibodies or fusion proteins which comprise an amino acid sequence which differs from the amino acid sequence of a reference antibody by way of one or more substitutions, deletions and/or additions at certain positions within or adjacent to the amino acid sequence of the reference antibody. The variant may comprise one or more conservative substitutions in its amino acid sequence as compared to the amino acid sequence of a reference antibody. Conservative substitutions may involve, e.g., the substitution of similarly charged or uncharged amino acids. The variant retains the ability to specifically bind to the antigen of the reference antibody. The term variant also includes pegylated antibodies or proteins.


The term “in vivo” refers to an event that takes place in a subject's body.


The term “in vitro” refers to an event that takes places outside of a subject's body. In vitro assays encompass cell-based assays in which cells alive or dead are employed and may also encompass a cell-free assay in which no intact cells are employed.


The term “rapid expansion” means an increase in the number of antigen-specific TILs of at least about 3-fold (or 4-, 5-, 6-, 7-, 8-, or 9-fold) over a period of a week, more preferably at least about 10-fold (or 20-, 30-, 40-, 50-, 60-, 70-, 80-, or 90-fold) over a period of a week, or most preferably at least about 100-fold over a period of a week. A number of rapid expansion protocols are outlined below.


Embodiment of the TIL Manufacturing Process

The “Step” Designations A, B, C, etc., are exemplary and any combination or order of steps, as well as additional steps, repetition of steps, and/or omission of steps is contemplated by the present application and the methods disclosed herein.


A. Step A: Obtain Patient Tumor Sample

In general, TILs are initially obtained from a patient tumor sample (“primary TILs”) and then expanded into a larger population for further manipulation as described herein, optionally cryopreserved, restimulated as outlined herein and optionally evaluated for phenotype and metabolic parameters as an indication of TIL health.


A patient tumor sample may be obtained using methods known in the art, generally via surgical resection, needle biopsy or other means for obtaining a sample that contains a mixture of tumor and TIL cells. In general, the tumor sample may be from any solid tumor, including primary tumors, invasive tumors or metastatic tumors. The tumor sample may also be a liquid tumor, such as a tumor obtained from a hematological malignancy. The solid tumor may be of any cancer type, including, but not limited to, breast, pancreatic, prostate, colorectal, lung, brain, renal, stomach, and skin (including but not limited to squamous cell carcinoma, basal cell carcinoma, and melanoma). In some embodiments, useful TILs are obtained from malignant melanoma tumors, as these have been reported to have particularly high levels of TILs.


Once obtained, the tumor sample is generally fragmented using sharp dissection into small pieces of between 1 to about 8 mm3, with from about 2-3 mm3 being particularly useful. The TILs are cultured from these fragments using enzymatic tumor digests. Such tumor digests may be produced by incubation in enzymatic media (e.g., Roswell Park Memorial Institute (RPMI) 1640 buffer, 2 mM glutamate, 10 mcg/mL gentamicine, 30 units/mL of DNase and 1.0 mg/mL of collagenase) followed by mechanical dissociation (e.g., using a tissue dissociator). Tumor digests may be produced by placing the tumor in enzymatic media and mechanically dissociating the tumor for approximately 1 minute, followed by incubation for 30 minutes at 37° C. in 5% CO2, followed by repeated cycles of mechanical dissociation and incubation under the foregoing conditions until only small tissue pieces are present. At the end of this process, if the cell suspension contains a large number of red blood cells or dead cells, a density gradient separation using FICOLL branched hydrophilic polysaccharide may be performed to remove these cells. Alternative methods known in the art may be used, such as those described in U.S. Patent Application Publication No. 2012/0244133 A1, the disclosure of which is incorporated by reference herein. Any of the foregoing methods may be used in any of the embodiments described herein for methods of expanding TILs or methods treating a cancer.


In some embodiments, fragmentation includes physical fragmentation, including for example, dissection as well as digestion. In some embodiments, the fragmentation is physical fragmentation. In some embodiments, the fragmentation is dissection. In some embodiments, the fragmentation is by digestion. In some embodiments, TILs can be initially cultured from enzymatic tumor digests and tumor fragments obtained from patients.


In some embodiments, where the tumor is a solid tumor, the tumor undergoes physical fragmentation after the tumor sample is obtained. In some embodiments, the fragmentation occurs before cryopreservation. In some embodiments, the fragmentation occurs after cryopreservation. In some embodiments, the fragmentation occurs after obtaining the tumor and in the absence of any cryopreservation. In some embodiments, the tumor is fragmented and 2, 3, or 4 fragments or pieces are placed in each container for the first expansion. In some embodiments, the tumor is fragmented and 3 or 4 fragments or pieces are placed in each container for the first expansion. In some embodiments, the tumor is fragmented and 4 fragments or pieces are placed in each container for the first expansion,


In some embodiments, the TILs are obtained from tumor fragments. In some embodiments, the tumor fragment is obtained by sharp dissection. In some embodiments, the tumor fragment is between about 1 mm3 and 10 mm3. In some embodiments, the tumor fragment is between about 1 mm3 and 8 mm3. In some embodiments, the tumor fragment is about 1 mm3. In some embodiments, the tumor fragment is about 2 mm3. In some embodiments, the tumor fragment is about 3 mm3. In some embodiments, the tumor fragment is about 4 mm3. In some embodiments, the tumor fragment is about 5 mm3. In some embodiments, the tumor fragment is about 6 mm3. In some embodiments, the tumor fragment is about 7 mm3. In some embodiments, the tumor fragment is about 8 mm3. In some embodiments, the tumor fragment is about 9 mm3. In some embodiments, the tumor fragment is about 10 mm3.


1. Core/Small Biopsy Derived TILS


In some embodiments, TILs are initially obtained from a patient tumor sample (“primary TILs”) obtained by a core biopsy or similar procedure and then expanded into a larger population for further manipulation as described herein, optionally cryopreserved, and optionally evaluated for phenotype and metabolic parameters.


In some embodiments, a patient tumor sample may be obtained using methods known in the art, generally via small biopsy, core biopsy, needle biopsy or other means for obtaining a sample that contains a mixture of tumor and TIL cells. In general, the tumor sample may be from any solid tumor, including primary tumors, invasive tumors or metastatic tumors. The tumor sample may also be a liquid tumor, such as a tumor obtained from a hematological malignancy. In some embodiments, the sample can be from multiple small tumor samples or biopsies. In some embodiments, the sample can comprise multiple tumor samples from a single tumor from the same patient. In some embodiments, the sample can comprise multiple tumor samples from one, two, three, or four tumors from the same patient. In some embodiments, the sample can comprise multiple tumor samples from multiple tumors from the same patient. The solid tumor may be of any cancer type, including, but not limited to, breast, pancreatic, prostate, colorectal, lung, brain, renal, stomach, and skin (including but not limited to squamous cell carcinoma, basal cell carcinoma, and melanoma). In some embodiments, the cancer is selected from cervical cancer, head and neck cancer (including, for example, head and neck squamous cell carcinoma (HNSCC)), glioblastoma (GBM), gastrointestinal cancer, ovarian cancer, sarcoma, pancreatic cancer, bladder cancer, breast cancer, triple negative breast cancer, and non-small cell lung carcinoma (NSCLC). In some embodiments, useful TILs are obtained from malignant melanoma tumors, as these have been reported to have particularly high levels of TILs.


In general, the cell suspension obtained from the tumor core or fragment is called a “primary cell population” or a “freshly obtained” or a “freshly isolated” cell population. In certain embodiments, the freshly obtained cell population of TILs is exposed to a cell culture medium comprising antigen presenting cells, IL-2 and OKT-3.


In some embodiments, if the tumor is metastatic and the primary lesion has been efficiently treated/removed in the past, removal of one of the metastatic lesions may be needed. In some embodiments, the least invasive approach is to remove a skin lesion, or a lymph node on the neck or axillary area when available. In some embodiments, a skin lesion is removed or small biopsy thereof is removed. In some embodiments, a lymph node or small biopsy thereof is removed. In some embodiments, a lung or liver metastatic lesion, or an intra-abdominal or thoracic lymph node or small biopsy can thereof can be employed.


In some embodiments, the tumor is a melanoma. In some embodiments, the small biopsy for a melanoma comprises a mole or portion thereof.


In some embodiments, the small biopsy is a punch biopsy. In some embodiments, the punch biopsy is obtained with a circular blade pressed into the skin. In some embodiments, the punch biopsy is obtained with a circular blade pressed into the skin. around a suspicious mole. In some embodiments, the punch biopsy is obtained with a circular blade pressed into the skin, and a round piece of skin is removed. In some embodiments, the small biopsy is a punch biopsy and round portion of the tumor is removed.


In some embodiments, the small biopsy is an excisional biopsy. In some embodiments, the small biopsy is an excisional biopsy and the entire mole or growth is removed. In some embodiments, the small biopsy is an excisional biopsy and the entire mole or growth is removed along with a small border of normal-appearing skin.


In some embodiments, the small biopsy is an incisional biopsy. In some embodiments, the small biopsy is an incisional biopsy and only the most irregular part of a mole or growth is taken. In some embodiments, the small biopsy is an incisional biopsy and the incisional biopsy is used when other techniques can't be completed, such as if a suspicious mole is very large.


In some embodiments, the small biopsy is a lung biopsy. In some embodiments, the small biopsy is obtained by bronchoscopy. Generally, bronchoscopy, the patient is put under anesthesia, and a small tool goes through the nose or mouth, down the throat, and into the bronchial passages, where small tools are used to remove some tissue. In some embodiments, where the tumor or growth cannot be reached via bronchoscopy, a transthoracic needle biopsy can be employed. Generally, for a transthoracic needle biopsy, the patient is also under anesthesia and a needle is inserted through the skin directly into the suspicious spot to remove a small sample of tissue. In some embodiments, a transthoracic needle biopsy may require interventional radiology (for example, the use of x-rays or CT scan to guide the needle). In some embodiments, the small biopsy is obtained by needle biopsy. In some embodiments, the small biopsy is obtained endoscopic ultrasound (for example, an endoscope with a light and is placed through the mouth into the esophagus). In some embodiments, the small biopsy is obtained surgically.


In some embodiments, the small biopsy is a head and neck biopsy. In some embodiments, the small biopsy is an incisional biopsy. In some embodiments, the small biopsy is an incisional biopsy, wherein a small piece of tissue is cut from an abnormal-looking area. In some embodiments, if the abnormal region is easily accessed, the sample may be taken without hospitalization. In some embodiments, if the tumor is deeper inside the mouth or throat, the biopsy may need to be done in an operating room, with general anesthesia. In some embodiments, the small biopsy is an excisional biopsy. In some embodiments, the small biopsy is an excisional biopsy, wherein the whole area is removed. In some embodiments, the small biopsy is a fine needle aspiration (FNA). In some embodiments, the small biopsy is a fine needle aspiration (FNA), wherein a very thin needle attached to a syringe is used to extract (aspirate) cells from a tumor or lump. In some embodiments, the small biopsy is a punch biopsy. In some embodiments, the small biopsy is a punch biopsy, wherein punch forceps are used to remove a piece of the suspicious area.


In some embodiments, the small biopsy is a cervical biopsy. In some embodiments, the small biopsy is obtained via colposcopy. Generally, colposcopy methods employ the use of a lighted magnifying instrument attached to magnifying binoculars (a colposcope) which is then used to biopsy a small section of the surface of the cervix. In some embodiments, the small biopsy is a conization/cone biopsy. In some embodiments, the small biopsy is a conization/cone biopsy, wherein an outpatient surgery may be needed to remove a larger piece of tissue from the cervix. In some embodiments, the cone biopsy, in addition to helping to confirm a diagnosis, a cone biopsy can serve as an initial treatment.


In some embodiments, the sample from the tumor is obtained as a fine needle aspirate (FNA), a core biopsy, a small biopsy (including, for example, a punch biopsy). In some embodiments, sample is placed first into a G-Rex 10. In some embodiments, sample is placed first into a G-Rex 10 when there are 1 or 2 core biopsy and/or small biopsy samples. In some embodiments, sample is placed first into a G-Rex 100 when there are 3, 4, 5, 6, 8, 9, or 10 or more core biopsy and/or small biopsy samples. In some embodiments, sample is placed first into a G-Rex 500 when there are 3, 4, 5, 6, 8, 9, or 10 or more core biopsy and/or small biopsy samples.


The FNA can be obtained from a tumor selected from the group consisting of lung, melanoma, head and neck, cervical, ovarian, pancreatic, glioblastoma, colorectal, and sarcoma. In some embodiments, the FNA is obtained from a lung tumor, such as a lung tumor from a patient with non-small cell lung cancer (NSCLC). In some cases, the patient with NSCLC has previously undergone a surgical treatment.


TILs described herein can be obtained from an FNA sample. In some cases, the FNA sample is obtained or isolated from the patient using a fine gauge needle ranging from an 18 gauge needle to a 25 gauge needle. The fine gauge needle can be 18 gauge, 19 gauge, 20 gauge, 21 gauge, 22 gauge, 23 gauge, 24 gauge, or 25 gauge. In some embodiments, the FNA sample from the patient can contain at least 400,000 TILs, e.g., 400,000 TILs, 450,000 TILs, 500,000 TILs, 550,000 TILs, 600,000 TILs, 650,000 TILs, 700,000 TILs, 750,000 TILs, 800,000 TILs, 850,000 TILs, 900,000 TILs, 950,000 TILs, or more.


In some cases, the TILs described herein are obtained from a core biopsy sample. In some cases, the core biopsy sample is obtained or isolated from the patient using a surgical or medical needle ranging from an 11 gauge needle to a 16 gauge needle. The needle can be 11 gauge, 12 gauge, 13 gauge, 14 gauge, 15 gauge, or 16 gauge. In some embodiments, the core biopsy sample from the patient can contain at least 400,000 TILs, e.g., 400,000 TILs, 450,000 TILs, 500,000 TILs, 550,000 TILs, 600,000 TILs, 650,000 TILs, 700,000 TILs, 750,000 TILs, 800,000 TILs, 850,000 TILs, 900,000 TILs, 950,000 TILs, or more.


In some embodiments, the TILs are obtained from tumor digests. In some embodiments, tumor digests were generated by incubation in enzyme media, for example but not limited to RPMI 1640, 2 mM GlutaMAX, 10 mg/mL gentamicin, 30 U/mL DNase, and 1.0 mg/mL collagenase, followed by mechanical dissociation (GentleMACS, Miltenyi Biotec, Auburn, Calif.). After placing the tumor in enzyme media, the tumor can be mechanically dissociated for approximately 1 minute. The solution can then be incubated for 30 minutes at 37° C. in 5% CO2 and it then mechanically disrupted again for approximately 1 minute. After being incubated again for 30 minutes at 37° C. in 5% CO2, the tumor can be mechanically disrupted a third time for approximately 1 minute. In some embodiments, after the third mechanical disruption if large pieces of tissue were present, 1 or 2 additional mechanical dissociations were applied to the sample, with or without 30 additional minutes of incubation at 37° C. in 5% CO2. In some embodiments, at the end of the final incubation if the cell suspension contained a large number of red blood cells or dead cells, a density gradient separation using Ficoll can be performed to remove these cells.


In some embodiments, the harvested cell suspension prior to the first expansion step is called a “primary cell population” or a “freshly harvested” cell population.


In some embodiments, cells can be optionally frozen after sample harvest and stored frozen prior to entry into Step B, which is described in further detail below.


B. Step B: First Expansion

In some embodiments, a first expansion of TILs (also referred to as a first expansion or first TIL expansion) may be performed using an initial bulk TIL expansion step (for example, a first expansion step; this can include an expansion step referred to as preREP) as described below and herein, followed by a second expansion step (for example, what is referred to as a rapid expansion protocol (REP) step) as described below and herein, followed by optional cryopreservation, and followed by an additional second expansion (for example, what is sometimes referred to as a restimulation REP step) as described below and herein. The TILs obtained from this process may be optionally characterized for phenotypic characteristics and metabolic parameters as described herein. In some embodiments, the TILs are frozen (i.e., cryopreserved) after the first expansion and stored until phenotyped for selection then thawed prior to proceeding to one or more second expansion steps.


In some embodiments, where the cells are frozen after being obtained from the tumor sample, the cells are thawed prior to the first expansion.


In embodiments where TIL cultures are initiated in 24-well plates, for example, using Costar 24-well cell culture cluster, flat bottom (Corning Incorporated, Corning, N.Y., each well can be seeded with 1×106 tumor digest cells or one tumor fragment in 2 mL of complete medium (CM) with IL-2 (6000 IU/mL; Chiron Corp., Emeryville, Calif.). In some embodiments, the tumor fragment is between about 1 mm3 and 10 mm3.


After preparation of the tumor fragments, the resulting cells (i.e., fragments) are cultured in serum containing IL-2, OKT-3, and 4-1BB agonist under conditions that favor the growth of TILs over tumor and other cells. In some embodiments, the tumor digests are incubated in 2 mL wells in media comprising inactivated human AB serum (or, in some cases, as outlined herein, in the presence of an APC cell population) with 6000 IU/mL of IL-2. This primary cell population is cultured for a period of days, generally from 21 to 35 days, resulting in a second TIL population. In some embodiments, the growth media during the first expansion comprises IL-2 or a variant thereof. In some embodiments, the IL-2 is recombinant human IL-2 (rhIL-2). In some embodiments the IL-2 stock solution has a specific activity of 20-30×106 IU/mg for a 1 mg vial. In some embodiments the IL-2 stock solution has a specific activity of 20-×106 IU/mg for a 1 mg vial. In some embodiments the IL-2 stock solution has a specific activity of 25×106 IU/mg for a 1 mg vial. In some embodiments the IL-2 stock solution has a specific activity of 30×106 IU/mg for a 1 mg vial. In some embodiments, the IL-2 stock solution has a final concentration of 4-8×106 IU/mg of IL-2. In some embodiments, the IL-2 stock solution has a final concentration of 5-7×106 IU/mg of IL-2. In some embodiments, the IL-2 stock solution has a final concentration of 6×106 IU/mg of IL-2. In some embodiments, the IL-2 stock solution is prepare as described in Example 4. In some embodiments, first expansion culture media comprises about 10,000 IU/mL of IL-2, about 9,000 IU/mL of IL-2, about 8,000 IU/mL of IL-2, about 7,000 IU/mL of IL-2, about 6000 IU/mL of IL-2 or about 5,000 IU/mL of IL-2. In some embodiments, first expansion culture media comprises about 9,000 IU/mL of IL-2, to about 5,000 IU/mL of IL-2. In some embodiments, first expansion culture media comprises about 8,000 IU/mL of IL-2, to about 6,000 IU/mL of IL-2. In some embodiments, first expansion culture media comprises about 7,000 IU/mL of IL-2, to about 6,000 IU/mL of IL-2. In some embodiments, first expansion culture media comprises about 6,000 IU/mL of IL-2. In an embodiment, the cell culture medium further comprises IL-2. In some embodiments, the cell culture medium comprises about 3000 IU/mL of IL-2. In an embodiment, the cell culture medium comprises about 1000 IU/mL, about 1500 IU/mL, about 2000 IU/mL, about 2500 IU/mL, about 3000 IU/mL, about 3500 IU/mL, about 4000 IU/mL, about 4500 IU/mL, about 5000 IU/mL, about 5500 IU/mL, about 6000 IU/mL, about 6500 IU/mL, about 7000 IU/mL, about 7500 IU/mL, or about 8000 IU/mL of IL-2. In an embodiment, the cell culture medium comprises between 1000 and 2000 IU/mL, between 2000 and 3000 IU/mL, between 3000 and 4000 IU/mL, between 4000 and 5000 IU/mL, between 5000 and 6000 IU/mL, between 6000 and 7000 IU/mL, between 7000 and 8000 IU/mL, or between 8000 IU/mL of IL-2.


In some embodiments, the first expansion culture medium comprises an anti-CD3 antibody, such as OKT-3, which is a mouse monoclonal anti-CD3 antibody (commercially available from Ortho-McNeil, Raritan, N J or Miltenyi Biotech, Auburn, Calif.) or UHCT-1 (commercially available from BioLegend, San Diego, Calif., USA). In some embodiments, the anti-CD3 antibody, for example, OKT-3, is present in an amount of about 20 ng/ml to about 80 ng/ml. In some embodiment, the anti-CD3 antibody is present in an amount of about 20 ng/ml, 25 ng/ml, 30 ng/ml, 35 ng/ml, 40 ng/ml, 45 ng/ml, 50 ng/ml, 55 ng/ml, 60 ng/ml, 65 ng/ml, 70 ng/ml, 75 ng/ml, 80 ng/ml, 85 ng/ml, or 90 ng/ml. In some embodiments, the anti-CD3 antibody is present in amount of about 30 ng/ml. In some embodiments, the anti-CD3 antibody is present in an amount of about 45 ng/ml. In some embodiments, the anti-CD3 antibody is present in an amount of about 60 ng/ml.


In some embodiments, the first expansion cell culture medium comprises one or more tumor necrosis factor superfamily (TNFRSF) agonists. In some embodiments, the TNFRSF agonist comprises a 4-1BB agonist. In some embodiments, the TNFRSF agonist is a 4-1BB agonist, and the 4-1BB agonist is selected from the group consisting of urelumab, utomilumab, EU-101, a fusion protein, and fragments, derivatives, variants, biosimilars, and combinations thereof. In some embodiments, the TNFRSF agonist is added in an amount sufficient to achieve a concentration in the cell culture medium of between 0.1 μg/mL and 100 μg/mL. In some embodiments, the TNFRSF agonist is added at a concentration sufficient to achieve a concentration in the cell culture medium of between 5 μg/mL and 40 μg/mL. In some embodiments, the TNFRSF agonist is present in a concentration of about 5 μg/mL. In some embodiments, the TNFRSF agonist is present in a concentration of about 10 μg/mL. In some embodiments, the TNFRSF agonist is present in a concentration of about 15 μg/mL. In some embodiments, the TNFRSF agonist is present in a concentration of about 20 μg/mL. In some embodiments, the TNFRSF agonist is present in a concentration of about 25 μg/mL. In some embodiments, the TNFRSF agonist is present in a concentration of about 30 μg/mL. In some embodiments, the TNFRSF agonist is present in a concentration of about 35 μg/mL. In some embodiments, the TNFRSF agonist is present in a concentration of about 40 μg/mL.


In some embodiments, the first expansion may take place in the presence of feeder cells, also called antigen presenting cells, or APCs.


In an embodiment, the first expansion procedures described herein require feeder cells (also referred to herein as “antigen-presenting cells”) at the initiation of the TIL expansion. In many embodiments, the feeder cells are peripheral blood mononuclear cells (PBMCs) obtained from standard whole blood units from allogeneic healthy blood donors. The PBMCs are obtained using standard methods such as Ficoll-Paque gradient separation. In some embodiments, 2.5×108 feeder cells are used during the first expansion. In some embodiments, 2.5×108 feeder cells per container are used during the first expansion. In some embodiments, 2.5×108 feeder cells per GREX-10 are used during the first expansion. In some embodiments, 2.5×108 feeder cells per GREX-100 are used during the first expansion.


In general, the allogenic PBMCs are inactivated, either via irradiation or heat treatment, and used in the REP procedures, as described in the examples, which provides an exemplary protocol for evaluating the replication incompetence of irradiate allogeneic PBMCs.


In some embodiments, PBMCs are considered replication incompetent and acceptable for use in the TIL expansion procedures described herein if the total number of viable cells on day 14 is less than the initial viable cell number put into culture on day 0 of the first expansion.


In some embodiments, the antigen-presenting feeder cells are PBMCs. In some embodiments, the antigen-presenting feeder cells are artificial antigen-presenting feeder cells. In an embodiment, the ratio of TILs to antigen-presenting feeder cells in the first expansion is about 1 to 25, about 1 to 50, about 1 to 100, about 1 to 125, about 1 to 150, about 1 to 175, about 1 to 200, about 1 to 225, about 1 to 250, about 1 to 275, about 1 to 300, about 1 to 325, about 1 to 350, about 1 to 375, about 1 to 400, or about 1 to 500. In an embodiment, the ratio of TILs to antigen-presenting feeder cells in the first expansion is between 1 to 50 and 1 to 300. In an embodiment, the ratio of TILs to antigen-presenting feeder cells in the first expansion is between 1 to 100 and 1 to 200.


In an embodiment, the first expansion procedures described herein require a ratio of about 2.5×108 feeder cells to about 100×106 TILs. In another embodiment, the first expansion procedures described herein require a ratio of about 2.5×108 feeder cells to about 50×106 TILs. In yet another embodiment, the first expansion described herein require about 2.5×108 feeder cells to about 25×106 TILs. In yet another embodiment, the first expansion described herein require about 2.5×108 feeder cells. In yet another embodiment, the first expansion requires one-fourth, one-third, five-twelfths, or one-half of the number of feeder cells used in the second expansion.


In an embodiment, the first expansion procedures described herein require an excess of feeder cells over TILs during the first expansion. In many embodiments, the feeder cells are peripheral blood mononuclear cells (PBMCs) obtained from standard whole blood units from allogeneic healthy blood donors. The PBMCs are obtained using standard methods such as Ficoll-Paque gradient separation. In an embodiment, artificial antigen-presenting (aAPC) cells are used in place of PBMCs.


In general, the allogenic PBMCs are inactivated, either via irradiation or heat treatment, and used in the TIL expansion procedures described herein, including the exemplary procedures described in the figures and examples.


In an embodiment, artificial antigen presenting cells are used in the first expansion as a replacement for, or in combination with, PBMCs.


In some embodiments, PBMCs are considered replication incompetent and acceptable for use in the TIL expansion procedures described herein if the total number of viable cells on day 7 or 14 is less than the initial viable cell number put into culture on day 0 of the first expansion (i.e., the start day of the first expansion).


In some embodiments, PBMCs are considered replication incompetent and acceptable for use in the TIL expansion procedures described herein if the total number of viable cells, cultured in the presence of OKT3, 4-1BB agonist, and IL-2, on day 7 and day 14 has not increased from the initial viable cell number put into culture on day 0 of the first expansion (i.e., the start day of the first expansion). In some embodiments, the PBMCs are cultured in the presence of 30 ng/ml OKT3 antibody, 10 ug/ml anti-4-1BB antibody, and 3000 IU/ml IL-2. In some embodiments, the PBMCs are cultured in the presence of 60 ng/ml OKT3 antibody, 10 ug/ml anti-4-1BB antibody, and 6000 IU/ml IL-2. In some embodiments, the PBMCs are cultured in the presence of 60 ng/ml OKT3 antibody, 10 ug/ml anti-4-1BB antibody, and 3000 IU/ml IL-2. In some embodiments, the PBMCs are cultured in the presence of 30 ng/ml OKT3 antibody, 10 ug/ml anti-4-1BB antibody, and 6000 IU/ml IL-2.


In some embodiments, PBMCs are considered replication incompetent and acceptable for use in the TIL expansion procedures described herein if the total number of viable cells, cultured in the presence of OKT3, 4-1BB agonist, and IL-2, on day 7 and day 14 has not increased from the initial viable cell number put into culture on day 0 of the first expansion (i.e., the start day of the first expansion). In some embodiments, the PBMCs are cultured in the presence of 30-60 ng/ml OKT3 antibody, 5-40 μg/mL 4-1BB agonist, and 1000-6000 IU/ml IL-2. In some embodiments, the PBMCs are cultured in the presence of 30-60 ng/ml OKT3 antibody, 5-40 μg/mL 4-1BB agonist, and 2000-5000 IU/ml IL-2. In some embodiments, the PBMCs are cultured in the presence of 30-60 ng/ml OKT3 antibody, 5-40 μg/mL 4-1BB agonist, and 2000-4000 IU/ml IL-2. In some embodiments, the PBMCs are cultured in the presence of 30-60 ng/ml OKT3 antibody, 5-40 μg/mL 4-1BB agonist, and 2500-3500 IU/ml IL-2. In some embodiments, the PBMCs are cultured in the presence of 30-60 ng/ml OKT3 antibody, 5-40 μg/mL 4-1BB agonist, and 6000 IU/ml IL-2.


In some embodiments, the first expansion culture medium is referred to as “CM”, an abbreviation for culture media. In some embodiments, it is referred to as CM1 (culture medium 1). In some embodiments, CM consists of RPMI 1640 with GlutaMAX, supplemented with 10% human AB serum, 25 mM Hepes, and 10 mg/mL gentamicin. In embodiments where cultures are initiated in gas-permeable flasks with a 40 mL capacity and a 10 cm2 gas-permeable silicon bottom (for example, G-Rex10; Wilson Wolf Manufacturing, New Brighton, Minn.), each flask is loaded with 10-40×106 viable tumor digest cells or 5-30 tumor fragments in 10-40 mL of CM with IL-2. Both the G-Rex10 and 24-well plates are incubated in a humidified incubator at 37° C. in 5% CO2 and 5 days after culture initiation, half the media is removed and replaced with fresh CM and IL-2 and after day 5, half the media is changed every 2-3 days. In some embodiments, the first expansion occurs in an initial cell culture medium or a first cell culture medium. In some embodiments, the initial cell culture medium or the first cell culture medium comprises IL-2, OKT-3, and 4-1BB agonist.


In some embodiments, the first TIL expansion can proceed for 11 days, 12 days, 13 days, 14 days, 15 days, 16 days, 17 days, 18 days, 19 days, 20 days, or 21 days. In some embodiments, the first TIL expansion can proceed for 11 days to 21 days. In some embodiments, the first TIL expansion can proceed for 12 days to 21 days. In some embodiments, the first TIL expansion can proceed for 13 days to 21 days. In some embodiments, the first TIL expansion can proceed for 14 days to 21 days. In some embodiments, the first TIL expansion can proceed for 15 days to 21 days. In some embodiments, the first TIL expansion can proceed for 16 days to 21 days. In some embodiments, the first TIL expansion can proceed for 17 days to 21 days. In some embodiments, the first TIL expansion can proceed for 18 days to 21 days. In some embodiments, the first TIL expansion can proceed for 19 days to 21 days. In some embodiments, the first TIL expansion can proceed for 20 days to 21 days. In some embodiments, the first TIL expansion can proceed for 21 days. In some embodiments, the first TIL expansion can proceed for up to 22 days, 23 days, 24 days, 25 days, 26 days, 27 days, 28 days, 29 days, 30 days, 31 days, 32 days, 33 days, 34 days, or 35 days.


In some embodiments, 4 or 5 days after initiation of the first TIL expansion the culture is refed with additional culture medium supplemented with IL-2. In other embodiments, 4 or 5 days after initiation of the first TIL expansion the culture is refed with additional culture medium supplemented with IL-2, and every 3 or 4 days thereafter until the end of the first expansion one half of the volume of the culture medium is exchanged with an equal volume of fresh culture medium supplemented with IL-2.


In some embodiments, 4 or 5 days after initiation of the first TIL expansion the culture is refed with additional culture medium supplemented with IL-2 and 4-1BB agonist. In other embodiments, 4 or 5 days after initiation of the first TIL expansion the culture is refed with additional culture medium supplemented with IL-2 and 4-1BB agonist, and every 3 or 4 days thereafter until the end of the first expansion one half of the volume of the culture medium is exchanged with an equal volume of fresh culture medium supplemented with IL-2. In other embodiments, 4 or 5 days after initiation of the first TIL expansion the culture is refed with additional culture medium supplemented with IL-2 and 4-1BB agonist, and every 3 or 4 days thereafter until the end of the first expansion one half of the volume of the culture medium is exchanged with an equal volume of fresh culture medium supplemented with IL-2 and 4-1BB agonist.


In some embodiments, 4 or 5 days after initiation of the first TIL expansion the culture is refed with additional culture medium supplemented with IL-2, 4-1BB agonist and OKT-3. In other embodiments, 4 or 5 days after initiation of the first TIL expansion the culture is refed with additional culture medium supplemented with IL-2, 4-1BB agonist and OKT-3, and every 3 or 4 days thereafter until the end of the first expansion one half of the volume of the culture medium is exchanged with an equal volume of fresh culture medium supplemented with IL-2. In other embodiments, 4 or 5 days after initiation of the first TIL expansion the culture is refed with additional culture medium supplemented with IL-2, 4-1BB agonist and OKT-3, and every 3 or 4 days thereafter until the end of the first expansion one half of the volume of the culture medium is exchanged with an equal volume of fresh culture medium supplemented with IL-2 and 4-1BB agonist. In other embodiments, 4 or 5 days after initiation of the first TIL expansion the culture is refed with additional culture medium supplemented with IL-2, 4-1BB agonist and OKT-3, and every 3 or 4 days thereafter until the end of the first expansion one half of the volume of the culture medium is exchanged with an equal volume of fresh culture medium supplemented with IL-2, 4-1BB agonist and OKT-3.


C. Step C: First Expansion to Second Expansion Transition

In some embodiments, the TILs obtained from the first expansion are stored until phenotyped for selection. In some embodiments, the TILs obtained from the first expansion are cryopreserved after the first expansion and prior to the second expansion. In some embodiments, the TILs are cryopreserved as part of the first expansion to second expansion transition. For example, in some embodiments, the TILs are cryopreserved after Step B and before Step D. In some embodiments, the TILs are cryopreserved and thawed as part of the first expansion to second expansion transition. For example, in some embodiments, the TILs are cryopreserved after Step B then thawed prior to proceeding to Step D. In some embodiments, the transition from the first expansion to the second expansion occurs at about 22 days, 23, days, 24 days, 25 days, 26 days, 27 days, 28 days, 29 days, or 30 days from when tumor fragmentation occurs. In some embodiments, the transition from the first expansion to the second expansion occurs at about 22 days to 30 days from when fragmentation occurs. In some embodiments, the transition from the first expansion to the second expansion occurs at about 24 days to 30 days from when fragmentation occurs. In some embodiments, the transition from the first expansion to the second expansion occurs at about 26 days to 30 days from when fragmentation occurs. In some embodiments, the transition from the first expansion to the second expansion occurs at about 28 days to 30 days from when fragmentation occurs. In some embodiments, the transition from the first expansion to the second expansion occurs at about 30 days from when fragmentation occurs.


D. Step D: Second Expansion

In some embodiments, the TIL cell population is further expanded in number after harvest and the first expansion, after Step A and Step B, and the transition referred to as Step C. This further expansion is referred to herein as the second expansion, which can include expansion processes generally referred to in the art as a rapid expansion process (Rapid Expansion Protocol or REP). The second expansion is generally accomplished using a culture media comprising one or more of a number of components, including feeder cells, a cytokine source, an anti-CD3 antibody, and a TNFRSF agonist in a gas-permeable container or other closed system. In some embodiments, 1 day, 2 days, 3 days, or 4 days after initiation of the second expansion, the TILs are transferred to a larger volume container.


In some embodiments, the second expansion (which can include expansions sometimes referred to as REP) of TIL can be performed using any TIL flasks or containers known by those of skill in the art. In some embodiments, the second TIL expansion can proceed for 1 day, 2 days, 3 days, 4, days, 5 days, 6 days, 7 days, 8 days, 9 days, 10 days, 11 days, 12 days, 13 days, or 14 days after initiation of the second expansion. In some embodiments, the second TIL expansion can proceed for about 1 days to about 9 days after initiation of the second expansion. In some embodiments, the second TIL expansion can proceed for about 2 days to about 9 days after initiation of the second expansion. In some embodiments, the second TIL expansion can proceed for about 3 days to about 9 days after initiation of the second expansion. In some embodiments, the second TIL expansion can proceed for about 4 days to about 9 days after initiation of the second expansion. In some embodiments, the second TIL expansion can proceed for about 5 days to about 9 days after initiation of the second expansion. In some embodiments, the second TIL expansion can proceed for about 6 days to about 9 days after initiation of the second expansion. In some embodiments, the second TIL expansion can proceed for about 7 days to about 9 days after initiation of the second expansion. In some embodiments, the second TIL expansion can proceed for about 1 day after initiation of the second expansion. In some embodiments, the second TIL expansion can proceed for about 2 days after initiation of the second expansion. In some embodiments, the second TIL expansion can proceed for about 3 days after initiation of the second expansion. In some embodiments, the second TIL expansion can proceed for about 4 days after initiation of the second expansion. In some embodiments, the second TIL expansion can proceed for about 5 days after initiation of the second expansion. In some embodiments, the second TIL expansion can proceed for about 6 days after initiation of the second expansion. In some embodiments, the second TIL expansion can proceed for about 7 days after initiation of the second expansion. In some embodiments, the second TIL expansion can proceed for about 8 days after initiation of the second expansion. In some embodiments, the second TIL expansion can proceed for about 9 days after initiation of the second expansion. In some embodiments, the second TIL expansion can proceed for about 10 days after initiation of the second expansion. In some embodiments, the second TIL expansion can proceed for about 11 days after initiation of the second expansion. In some embodiments, the second TIL expansion can proceed for about 12 days after initiation of the second expansion. In some embodiments, the second TIL expansion can proceed for about 13 days after initiation of the second expansion. In some embodiments, the second TIL expansion can proceed for about 14 days after initiation of the second expansion.


In an embodiment of the invention, the second expansion step can be performed in the presence of one or more of IL-2, OKT-3, and 41-BB agonist in the concentrations described above for the first expansion step. In an embodiment, the cell culture medium at the start of the second expansion step comprises about 30 ng/ml OKT-3, 6000 IU/ml IL-2, and 10 μg/ml 4-1BB agonist.


In an embodiment, the second expansion can be performed in a gas permeable container using the methods of the present disclosure (including, for example, expansions referred to as REP). In some embodiments, the TILs are expanded in the second expansion in the presence of feeder cells (also referred herein as “antigen-presenting cells”). In some embodiments, the TILs are expanded in the second expansion in the presence of feeder cells, wherein the feeder cells are added to a final concentration that is twice, 2.4 times, 2.5 times, 3 times, 3.5 times or 4 times the concentration of feeder cells present in the first expansion. For example, TILs can be expanded using non-specific T-cell receptor stimulation in the presence of interleukin-2 (IL-2) or interleukin-15 (IL-15). The non-specific T-cell receptor stimulus can include, for example, an anti-CD3 antibody, such as about 30 ng/ml of OKT3, a mouse monoclonal anti-CD3 antibody (commercially available from Ortho-McNeil, Raritan, N J or Miltenyi Biotech, Auburn, Calif.) or UHCT-1 (commercially available from BioLegend, San Diego, Calif., USA). TILs can be expanded to induce further stimulation of the TILs in vitro by including one or more antigens during the second expansion, including antigenic portions thereof, such as epitope(s), of the cancer, which can be optionally expressed from a vector, such as a human leukocyte antigen A2 (HLA-A2) binding peptide, e.g., 0.3 μM MART-1:26-35 (27 L) or gpl 00:209-217 (210M), optionally in the presence of a T-cell growth factor, such as 300 IU/mL IL-2 or IL-15. Other suitable antigens may include, e.g., NY-ESO-1, TRP-1, TRP-2, tyrosinase cancer antigen, MAGE-A3, SSX-2, and VEGFR2, or antigenic portions thereof. TIL may also be rapidly expanded by re-stimulation with the same antigen(s) of the cancer pulsed onto HLA-A2-expressing antigen-presenting cells. Alternatively, the TILs can be further restimulated with, e.g., example, irradiated, autologous lymphocytes or with irradiated HLA-A2+ allogeneic lymphocytes and IL-2. In some embodiments, the re-stimulation occurs as part of the second expansion. In some embodiments, the second expansion occurs in the presence of irradiated, autologous lymphocytes or with irradiated HLA-A2+ allogeneic lymphocytes and IL-2.


In an embodiment, the cell culture medium further comprises IL-2. In some embodiments, the cell culture medium comprises about 3000 IU/mL of IL-2. In an embodiment, the cell culture medium comprises about 1000 IU/mL, about 1500 IU/mL, about 2000 IU/mL, about 2500 IU/mL, about 3000 IU/mL, about 3500 IU/mL, about 4000 IU/mL, about 4500 IU/mL, about 5000 IU/mL, about 5500 IU/mL, about 6000 IU/mL, about 6500 IU/mL, about 7000 IU/mL, about 7500 IU/mL, or about 8000 IU/mL of IL-2. In an embodiment, the cell culture medium comprises between 1000 and 2000 IU/mL, between 2000 and 3000 IU/mL, between 3000 and 4000 IU/mL, between 4000 and 5000 IU/mL, between 5000 and 6000 IU/mL, between 6000 and 7000 IU/mL, between 7000 and 8000 IU/mL, or between 8000 IU/mL of IL-2.


In an embodiment, the cell culture medium comprises OKT-3 antibody. In some embodiments, the cell culture medium comprises about 30 ng/mL of OKT-3 antibody. In an embodiment, the cell culture medium comprises about 0.1 ng/mL, about 0.5 ng/mL, about 1 ng/mL, about 2.5 ng/mL, about 5 ng/mL, about 7.5 ng/mL, about 10 ng/mL, about 15 ng/mL, about 20 ng/mL, about 25 ng/mL, about 30 ng/mL, about 35 ng/mL, about 40 ng/mL, about 50 ng/mL, about 60 ng/mL, about 70 ng/mL, about 80 ng/mL, about 90 ng/mL, about 100 ng/mL, about 200 ng/mL, about 500 ng/mL, and about 1 μg/mL of OKT-3 antibody. In an embodiment, the cell culture medium comprises between 0.1 ng/mL and 1 ng/mL, between 1 ng/mL and 5 ng/mL, between 5 ng/mL and 10 ng/mL, between 10 ng/mL and 20 ng/mL, between 20 ng/mL and 30 ng/mL, between 30 ng/mL and 40 ng/mL, between 40 ng/mL and 50 ng/mL, and between 50 ng/mL and 100 ng/mL of OKT-3 antibody. In an embodiment, the cell culture medium comprises between 30 ng/ml and 60 ng/mL of OKT-3 antibody. In an embodiment, the cell culture medium comprises about 60 ng/mL OKT-3. In some embodiments, the OKT-3 antibody is muromonab.


In some embodiments, the media in the second expansion comprises IL-2. In some embodiments, the media comprises 6000 IU/mL of IL-2. In some embodiments, the media in the second expansion comprises antigen-presenting feeder cells. In some embodiments, the media in the second expansion comprises 7.5×108 antigen-presenting feeder cells per container. In some embodiments, the media in the second expansion comprises OKT-3. In some embodiments, the in the second expansion media comprises 500 mL of culture medium and 30 μg of OKT-3 per container. In some embodiments, the container is a GREX100 MCS flask. In some embodiments, the in the second expansion media comprises 6000 IU/mL of IL-2, 60 ng/mL of OKT-3, and 7.5×108 antigen-presenting feeder cells. In some embodiments, the media comprises 500 mL of culture medium and 6000 IU/mL of IL-2, 30 μg of OKT-3, and 7.5×109 antigen-presenting feeder cells per container.


In some embodiments, the media in the second expansion comprises IL-2. In some embodiments, the media comprises 6000 IU/mL of IL-2. In some embodiments, the media in the second expansion comprises antigen-presenting feeder cells. In some embodiments, the media comprises between 5×108 and 7.5×108 antigen-presenting feeder cells per container. In some embodiments, the media in the second expansion comprises OKT-3. In some embodiments, the media in the second expansion comprises 500 mL of culture medium and 30 μg of OKT-3 per container. In some embodiments, the container is a GREX100 MCS flask. In some embodiments, the media in the second expansion comprises 6000 IU/mL of IL-2, 60 ng/mL of OKT-3, and between 5×108 and 7.5×108 antigen-presenting feeder cells. In some embodiments, the media in the second expansion comprises 500 mL of culture medium and 6000 IU/mL of IL-2, 30 μg of OKT-3, and between 5×108 and 7.5×108 antigen-presenting feeder cells per container.


In some embodiments, the cell culture medium comprises one or more TNFRSF agonists in a cell culture medium. In some embodiments, the TNFRSF agonist comprises a 4-1BB agonist. In some embodiments, the TNFRSF agonist is a 4-1BB agonist, and the 4-1BB agonist is selected from the group consisting of urelumab, utomilumab, EU-101, a fusion protein, and fragments, derivatives, variants, biosimilars, and combinations thereof. In some embodiments, the TNFRSF agonist is added at a concentration sufficient to achieve a concentration in the cell culture medium of between 0.1 μg/mL and 100 μg/mL. In some embodiments, the TNFRSF agonist is added at a concentration sufficient to achieve a concentration in the cell culture medium of between 20 μg/mL and 40 μg/mL.


In some embodiments, in addition to one or more TNFRSF agonists, the cell culture medium further comprises IL-2 at an initial concentration of about 3000 IU/mL and OKT-3 antibody at an initial concentration of about 30 ng/mL, and wherein the one or more TNFRSF agonists comprises a 4-1BB agonist.


In some embodiments, a combination of IL-2, IL-7, IL-15, and/or IL-21 are employed as a combination during the second expansion. In some embodiments, IL-2, IL-7, IL-15, and/or IL-21 as well as any combinations thereof can be included during the second expansion, including, for example during a Step D process as described herein. In some embodiments, a combination of IL-2, IL-15, and IL-21 are employed as a combination during the second expansion. In some embodiments, IL-2, IL-15, and IL-21 as well as any combinations thereof can be included during Step D processes as described herein.


In some embodiments, the second expansion can be conducted in a supplemented cell culture medium comprising IL-2, OKT-3, 4-1BB agonist or other TNFRSF agonist, and optionally, antigen-presenting feeder cells.


In some embodiments, the second expansion culture media comprises about 500 IU/mL of IL-15, about 400 IU/mL of IL-15, about 300 IU/mL of IL-15, about 200 IU/mL of IL-15, about 180 IU/mL of IL-15, about 160 IU/mL of IL-15, about 140 IU/mL of IL-15, about 120 IU/mL of IL-15, or about 100 IU/mL of IL-15. In some embodiments, the second expansion culture media comprises about 500 IU/mL of IL-15 to about 100 IU/mL of IL-15. In some embodiments, the second expansion culture media comprises about 400 IU/mL of IL-15 to about 100 IU/mL of IL-15. In some embodiments, the second expansion culture media comprises about 300 IU/mL of IL-15 to about 100 IU/mL of IL-15. In some embodiments, the second expansion culture media comprises about 200 IU/mL of IL-15. In some embodiments, the cell culture medium comprises about 180 IU/mL of IL-15. In an embodiment, the cell culture medium further comprises IL-15. In a preferred embodiment, the cell culture medium comprises about 180 IU/mL of IL-15.


In some embodiments, the second expansion culture media comprises about 20 IU/mL of IL-21, about 15 IU/mL of IL-21, about 12 IU/mL of IL-21, about 10 IU/mL of IL-21, about 5 IU/mL of IL-21, about 4 IU/mL of IL-21, about 3 IU/mL of IL-21, about 2 IU/mL of IL-21, about 1 IU/mL of IL-21, or about 0.5 IU/mL of IL-21. In some embodiments, the second expansion culture media comprises about 20 IU/mL of IL-21 to about 0.5 IU/mL of IL-21. In some embodiments, the second expansion culture media comprises about 15 IU/mL of IL-21 to about 0.5 IU/mL of IL-21. In some embodiments, the second expansion culture media comprises about 12 IU/mL of IL-21 to about 0.5 IU/mL of IL-21. In some embodiments, the second expansion culture media comprises about 10 IU/mL of IL-21 to about 0.5 IU/mL of IL-21. In some embodiments, the second expansion culture media comprises about 5 IU/mL of IL-21 to about 1 IU/mL of IL-21. In some embodiments, the second expansion culture media comprises about 2 IU/mL of IL-21. In some embodiments, the cell culture medium comprises about 1 IU/mL of IL-21. In some embodiments, the cell culture medium comprises about 0.5 IU/mL of IL-21. In an embodiment, the cell culture medium further comprises IL-21. In a preferred embodiment, the cell culture medium comprises about 1 IU/mL of IL-21.


In some embodiments the antigen-presenting feeder cells (APCs) are PBMCs. In an embodiment, the ratio of TILs to PBMCs and/or antigen-presenting cells in the expansion and/or the second expansion is about 1 to 10, about 1 to 15, about 1 to 20, about 1 to 25, about 1 to 30, about 1 to 35, about 1 to 40, about 1 to 45, about 1 to 50, about 1 to 75, about 1 to 100, about 1 to 125, about 1 to 150, about 1 to 175, about 1 to 200, about 1 to 225, about 1 to 250, about 1 to 275, about 1 to 300, about 1 to 325, about 1 to 350, about 1 to 375, about 1 to 400, or about 1 to 500. In an embodiment, the ratio of TILs to PBMCs in the expansion and/or the second expansion is between 1 to 50 and 1 to 300. In an embodiment, the ratio of TILs to PBMCs in the expansion and/or the second expansion is between 1 to 100 and 1 to 200.


In an embodiment, the second expansion is performed in flasks with the second TIL population being mixed with a 100- or 200-fold excess of inactivated feeder cells, wherein the feeder cell concentration is at least 1.1 times (1.1×), 1.2×, 1.3×, 1.4×, 1.5×, 1.6×, 1.7×, 1.8×, 1.8×, 2×, 2.1×, 2.2×, 2.3×, 2.4×, 2.5×, 2.6×, 2.7×, 2.8×, 2.9×, 3.0×, 3.1×, 3.2×, 3.3×, 3.4×, 3.5×, 3.6×, 3.7×, 3.8×, 3.9× or 4.0× the feeder cell concentration in the first expansion, 30 ng/mL OKT3 anti-CD3 antibody, 10 μg/mL anti-4-1BB antibody agonist, and 6000 IU/mL IL-2 in 150 ml media. Media replacement is done (generally ⅔ media replacement via aspiration of ⅔ of spent media and replacement with an equal volume of fresh media) until the cells are transferred to an alternative growth chamber. Alternative growth chambers include G-REX flasks and gas permeable containers as more fully discussed below.


In some embodiments, the second expansion (which can include processes referred to as the REP process) is 7 to 9 days, as discussed in the examples and figures. In some embodiments, the second expansion is 7 days. In some embodiments, the second expansion is 8 days. In some embodiments, the second expansion is 9 days.


In an embodiment, the second expansion (which can include expansions referred to as REP, as well as those referred to in Step D may be performed in 500 mL capacity gas permeable flasks with 100 cm gas-permeable silicon bottoms (G-Rex 100, commercially available from Wilson Wolf Manufacturing Corporation, New Brighton, Minn., USA), 5×106 or 10×106 TIL may be cultured with PBMCs in 400 mL of 50/50 medium, supplemented with 5% human AB serum, 3000 IU/mL of IL-2 and 30 ng/mL of anti-CD3 (OKT3). The G-Rex 100 flasks may be incubated at 37° C. in 5% CO2. On day 5, 250 mL of supernatant may be removed and placed into centrifuge bottles and centrifuged at 1500 rpm (491×g) for 10 minutes. The TIL pellets may be re-suspended with 150 mL of fresh medium with 5% human AB serum, 6000 IU per mL of IL-2, and added back to the original GREX-100 flasks. When TIL are expanded serially in GREX-100 flasks, on day 10 or 11 the TILs can be moved to a larger flask, such as a GREX-500. The cells may be harvested on day 14 of culture. The cells may be harvested on day 15 of culture. The cells may be harvested on day 16 of culture. In some embodiments, media replacement is done until the cells are transferred to an alternative growth chamber. In some embodiments, ⅔ of the media is replaced by aspiration of spent media and replacement with an equal volume of fresh media. In some embodiments, alternative growth chambers include GREX flasks and gas permeable containers as more fully discussed below.


In an embodiment, the second expansion (including expansions referred to as REP) is performed and further comprises a step wherein TILs are selected for superior tumor reactivity.


In some embodiments, the second expansion culture medium (e.g., sometimes referred to as CM2 or the second cell culture medium), comprises one or more of IL-2, OKT-3, 4-1BB agonist, as well as the antigen-presenting feeder cells (APCs), as discussed in more detail below. In some embodiments, the second expansion culture medium (e.g., sometimes referred to as CM2 or the second cell culture medium), comprises 6000 IU/mL IL-2, 30 ug/flask OKT-3, 10 μg/mL 4-1BB agonist, as well as 7.5×108 antigen-presenting feeder cells (APCs), as discussed in more detail below. In some embodiments, the second expansion culture medium (e.g., sometimes referred to as CM2 or the second cell culture medium), comprises IL-2, OKT-3, 4-1BB agonist, as well as the antigen-presenting feeder cells (APCs), as discussed in more detail below. In some embodiments, the second expansion culture medium (e.g., sometimes referred to as CM2 or the second cell culture medium), comprises 6000 IU/mL IL-2, 30 ug/flask OKT-3, 10 μg/mL 4-1BB agonist as well as 5×108 antigen-presenting feeder cells (APCs), as discussed in more detail below.


In some embodiments, the second expansion, for example, Step D, is performed in a closed system bioreactor. In some embodiments, a closed system is employed for the TIL expansion, as described herein. In some embodiments, a bioreactor is employed. In some embodiments, a bioreactor is employed as the container. In some embodiments, the bioreactor employed is for example a G-REX-100 or a G-REX-500. In some embodiments, the bioreactor employed is a G-REX-100. In some embodiments, the bioreactor employed is a G-REX-500.


In an embodiment, the second expansion (including expansions referred to as REP) is performed and further comprises a step wherein TILs are selected for superior tumor reactivity. Any selection method known in the art may be used. For example, the methods described in U.S. Patent Application Publication No. 2016/0010058 A1, the disclosures of which are incorporated herein by reference, may be used for selection of TILs for superior tumor reactivity.


E. Step E: Harvest TILS

After the second expansion step, cells can be harvested. In some embodiments the TILs are harvested after one, two, three, four or more expansion steps. In some embodiments the TILs are harvested after two expansion steps. In some embodiments the TILs are harvested after two expansion steps, one first expansion and one second expansion. In some embodiments, the TILs are harvested after one expansion step, the first expansion step.


TILs can be harvested in any appropriate and sterile manner, including, for example by centrifugation. Methods for TIL harvesting are well known in the art and any such known methods can be employed with the present process. In some embodiments, TILS are harvested using an automated system.


Cell harvesters and/or cell processing systems are commercially available from a variety of sources, including, for example, Fresenius Kabi, Tomtec Life Science, Perkin Elmer, and Inotech Biosystems International, Inc. Any cell based harvester can be employed with the present methods. In some embodiments, the cell harvester and/or cell processing system is a membrane-based cell harvester. In some embodiments, cell harvesting is via a cell processing system, such as the LOVO system (manufactured by Fresenius Kabi). The term “LOVO cell processing system” also refers to any instrument or device manufactured by any vendor that can pump a solution comprising cells through a membrane or filter such as a spinning membrane or spinning filter in a sterile and/or closed system environment, allowing for continuous flow and cell processing to remove supernatant or cell culture media without pelletization. In some embodiments, the cell harvester and/or cell processing system can perform cell separation, washing, fluid-exchange, concentration, and/or other cell processing steps in a closed, sterile system.


In some embodiments, the second expansion, for example, Step D is performed in a closed system bioreactor. In some embodiments, a closed system is employed for the TIL expansion, as described herein. In some embodiments, a bioreactor is employed. In some embodiments, a bioreactor is employed as the container. In some embodiments, the bioreactor employed is for example a G-REX-100 or a G-REX-500. In some embodiments, the bioreactor employed is a G-REX-100. In some embodiments, the bioreactor employed is a G-REX-500.


In some embodiments, Step E is performed according to the processes described herein. In some embodiments, the closed system is accessed via syringes under sterile conditions in order to maintain the sterility and closed nature of the system. In some embodiments, a closed system as described herein is employed.


In some embodiments, TILs are harvested according to the methods described in herein. In some embodiments, TILs between days 14 and 16 are harvested using the methods as described herein. In some embodiments, TILs are harvested at 14 days using the methods as described herein. In some embodiments, TILs are harvested at 15 days using the methods as described herein. In some embodiments, TILs are harvested at 16 days using the methods as described herein.


F. Step F: Final Formulation/Transfer to Infusion Bag

After Steps A through E as provided in an exemplary order as outlined in detailed above and herein are complete, cells are transferred to a container for use in administration to a patient. In some embodiments, once a therapeutically sufficient number of TILs are obtained using the expansion methods described above, they are transferred to a container for use in administration to a patient.


In an embodiment, TILs expanded using the methods of the present disclosure are administered to a patient as a pharmaceutical composition. In an embodiment, the pharmaceutical composition is a suspension of TILs in a sterile buffer. TILs expanded as disclosed herein may be administered by any suitable route as known in the art. In some embodiments, the TILs are administered as a single intra-arterial or intravenous infusion, which preferably lasts approximately 30 to 60 minutes. Other suitable routes of administration include intraperitoneal, intrathecal, and intralymphatic.


Feeder Cells and Antigen Presenting Cells

In an embodiment, the second expansion procedures described herein (for example including expansion such as those described in Step D from FIG. 1, as well as those referred to as REP) require an excess of feeder cells during REP TIL expansion and/or during the second expansion. In many embodiments, the feeder cells are peripheral blood mononuclear cells (PBMCs) obtained from standard whole blood units from healthy blood donors. The PBMCs are obtained using standard methods such as Ficoll-Paque gradient separation. In an embodiment, artificial antigen-presenting (aAPC) cells are used in place of PBMCs.


In general, the allogenic PBMCs are inactivated, either via irradiation or heat treatment, and used in the TIL expansion procedures described herein, including the exemplary procedures described in the figures and examples.


In an embodiment, artificial antigen presenting cells are used in the second expansion as a replacement for, or in combination with, PBMCs.


In some embodiments, PBMCs are considered replication incompetent and acceptable for use in the TILL expansion procedures described herein if the total number of viable cells on day 7 or 14 is less than the initial viable cell number put into culture on day 0 of the REP and/or day 0 of the second expansion (i.e., the start day of the second expansion).


In some embodiments, PBMCs are considered replication incompetent and acceptable for use in the TIL expansion procedures described herein if the total number of viable cells, cultured in the presence of OKT3 and IL-2, on day 7 and day 14 has not increased from the initial viable cell number put into culture on day 0 of the REP and/or day 0 of the second expansion (i.e., the start day of the second expansion). In some embodiments, the PBMCs are cultured in the presence of 30 ng/ml OKT3 antibody and 3000 IU/ml IL-2. In some embodiments, the PBMCs are cultured in the presence of 60 ng/ml OKT3 antibody and 6000 IU/ml IL-2. In some embodiments, the PBMCs are cultured in the presence of 60 ng/ml OKT3 antibody and 3000 IU/ml IL-2. In some embodiments, the PBMCs are cultured in the presence of 30 ng/ml OKT3 antibody and 6000 IU/ml IL-2.


In some embodiments, PBMCs are considered replication incompetent and acceptable for use in the TIL expansion procedures described herein if the total number of viable cells, cultured in the presence of OKT3 and IL-2, on day 7 and day 14 has not increased from the initial viable cell number put into culture on day 0 of the REP and/or day 0 of the second expansion (i.e., the start day of the second expansion). In some embodiments, the PBMCs are cultured in the presence of 30-60 ng/ml OKT3 antibody and 1000-6000 rI/ml IL-2. In some embodiments, the PBMCs are cultured in the presence of 30-60 ng/ml OKT3 antibody and 2000-5000 IU/ml IL-2. In some embodiments, the PBMCs are cultured in the presence of 30-60 ng/ml OKT3 antibody and 2000-4000 IU/ml IL-2. In some embodiments, the PBMCs are cultured in the presence of 30-60 ng/ml OKT3 antibody and 2500-3500 IU/ml IL-2. In some embodiments, the PBMCs are cultured in the presence of 30-60 ng/ml OKT3 antibody and 6000 IU/ml IL-2. In some embodiments, the PBMCs are cultured in the presence of 30 ng/ml OKT3 antibody, 10 ug/ml anti-4-1BB antibody, and 3000 IU/ml IL-2. In some embodiments, the PBMCs are cultured in the presence of 60 ng/ml OKT3 antibody, 10 ug/ml anti-4-1BB antibody, and 6000 IU/ml IL-2. In some embodiments, the PBMCs are cultured in the presence of 60 ng/ml OKT3 antibody, 10 ug/ml anti-4-1BB antibody, and 3000 LU/ml IL-2. In some embodiments, the PBMCs are cultured in the presence of 30 ng/ml OKT3 antibody, 10 ug/ml anti-4-1BB antibody, and 6000 IU/ml IL-2.


In some embodiments, PBMCs are considered replication incompetent and acceptable for use in the TIL expansion procedures described herein if the total number of viable cells, cultured in the presence of OKT3, 4-1BB agonist, and IL-2, on day 7 and day 14 has not increased from the initial viable cell number put into culture day 0 of the REP and/or day 0 of the second expansion (i.e., the start day of the second expansion). In some embodiments, the PBMCs are cultured in the presence of 30-60 ng/ml OKT3 antibody, 5-40 μg/mL 4-1BB agonist, and 1000-6000 IU/ml IL-2. In some embodiments, the PBMCs are cultured in the presence of 30-60 ng/ml OKT3 antibody, 5-40 μg/mL 4-1BB agonist, and 2000-5000 IU/ml IL-2. In some embodiments, the PBMCs are cultured in the presence of 30-60 ng/ml OKT3 antibody, 5-40 μg/mL 4-1BB agonist, and 2000-4000 IU/ml IL-2. In some embodiments, the PBMCs are cultured in the presence of 30-60 ng/ml OKT3 antibody, 5-40 μg/mL 4-1BB agonist, and 2500-3500 IU/ml IL-2. In some embodiments, the PBMCs are cultured in the presence of 30-60 ng/ml OKT3 antibody, 5-40 μg/mL 4-1BB agonist, and 6000 IU/ml IL-2.


In some embodiments, the antigen-presenting feeder cells are PBMCs. In some embodiments, the antigen-presenting feeder cells are artificial antigen-presenting feeder cells. In an embodiment, the ratio of TILs to antigen-presenting feeder cells in the second expansion is about 1 to 10, about 1 to 25, about 1 to 50, about 1 to 100, about 1 to 125, about 1 to 150, about 1 to 175, about 1 to 200, about 1 to 225, about 1 to 250, about 1 to 275, about 1 to 300, about 1 to 325, about 1 to 350, about 1 to 375, about 1 to 400, or about 1 to 500. In an embodiment, the ratio of TILs to antigen-presenting feeder cells in the second expansion is between 1 to 50 and 1 to 300. In an embodiment, the ratio of TILs to antigen-presenting feeder cells in the second expansion is between 1 to 100 and 1 to 200.


In an embodiment, the second expansion procedures described herein require a ratio of about 5×108 feeder cells to about 100×106 TILs. In an embodiment, the second expansion procedures described herein require a ratio of about 7.5×108 feeder cells to about 100×106 TILs. In another embodiment, the second expansion procedures described herein require a ratio of about 5×108 feeder cells to about 50×106 TILs. In another embodiment, the second expansion procedures described herein require a ratio of about 7.5×108 feeder cells to about 50×106 TILs. In yet another embodiment, the second expansion procedures described herein require about 5×108 feeder cells to about 25×106 TILs. In yet another embodiment, the second expansion procedures described herein require about 7.5×108 feeder cells to about 25×106 TILs. In yet another embodiment, the second expansion requires twice the number of feeder cells as the first expansion. In yet another embodiment, when the first expansion described herein requires about 2.5×108 feeder cells, the second expansion requires about 5×108 feeder cells. In yet another embodiment, when the first expansion described herein requires about 2.5×108 feeder cells, the second expansion requires about 7.5×108 feeder cells. In yet another embodiment, the second expansion requires two times (2.0×), 2.5×, 3.0×, 3.5× or 4.0× the number of feeder cells as the first expansion.


In an embodiment, the second expansion procedures described herein require an excess of feeder cells during the second expansion. In many embodiments, the feeder cells are peripheral blood mononuclear cells (PBMCs) obtained from standard whole blood units from allogeneic healthy blood donors. The PBMCs are obtained using standard methods such as Ficoll-Paque gradient separation. In an embodiment, artificial antigen-presenting (aAPC) cells are used in place of PBMCs. In some embodiments, the PBMCs are added to the second expansion at twice the concentration of PBMCs that were added to the first expansion.


In general, the allogenic PBMCs are inactivated, either via irradiation or heat treatment, and used in the TIL expansion procedures described herein, including the exemplary procedures described in the figures and examples.


In an embodiment, artificial antigen presenting cells are used in the second expansion as a replacement for, or in combination with, PBMCs.


PBMC Feeder Cell Ratios

In an embodiment, the number of PBMC feeder layers is calculated as follows:


A. Volume of a T-cell (10 μm diameter): V=(4/3) πr3=523.6 μm3


B. Column of G-Rex 100 (M) with a 40 μm (4 cells) height: V=(4/3) πr3=4×1012 μm3


C. Number cell required to fill column B: 4×1012 μm3/523.6 m3=7.6×108 μm3*0.64=4.86×108


D. Number cells that can be optimally activated in 4D space: 4.86×108/24=20.25×106


E. Number of feeders and TIL extrapolated to G-Rex 500: TIL: 100×106 and Feeder: 2.5×109


In this calculation, an approximation of the number of mononuclear cells required to provide an icosahedral geometry for activation of TIL in a cylinder with a 100 cm2 base is used. The calculation derives the experimental result of ˜5×108 for threshold activation of T-cells which closely mirrors NCI experimental data. (1) (C) The multiplier (0.64) is the random packing density for equivalent spheres as calculated by Jaeger and Nagel in 1992 (2). (D) The divisor 24 is the number of equivalent spheres that could contact a similar object in 4 dimensional space “the Newton number.” (3).


(1) Jin, Jianjian, et. al., Simplified Method of the Growth of Human Tumor Infiltrating Lymphocytes (TIL) in Gas-Permeable Flasks to Numbers Needed for Patient Treatment. J Immunother. 2012 April; 35(3): 283-292.


(2) Jaeger H M, Nagel S R. Physics of the granular state. Science. 1992 Mar. 20; 255(5051):1523-31.


(3) O. R. Musin (2003). “The problem of the twenty-five spheres”. Russ. Math. Surv. 58 (4): 794-795.


In an embodiment, the number of antigen-presenting feeder cells exogenously supplied during the first expansion is approximately one-half the number of antigen-presenting feeder cells exogenously supplied during the second expansion. In certain embodiments, the method comprises performing the first expansion in a cell culture medium which comprises approximately 50% fewer antigen presenting cells as compared to the cell culture medium of the second expansion.


In another embodiment, the number of antigen-presenting feeder cells (APCs) exogenously supplied during the second expansion is greater than the number of APCs exogenously supplied during the first expansion.


In another embodiment, the ratio of the number of APCs exogenously supplied during the second expansion to the number of APCs exogenously supplied during the first expansion is selected from a range of from at or about 1.1:1 to at or about 20:1.


In another embodiment, the ratio of the number of APCs exogenously supplied during the second expansion to the number of APCs exogenously supplied during the first expansion is selected from a range of from at or about 1.1:1 to at or about 10:1.


In another embodiment, the ratio of the number of APCs exogenously supplied during the second expansion to the number of APCs exogenously supplied during the first expansion is selected from a range of from at or about 1.1:1 to at or about 9:1.


In another embodiment, the ratio of the number of APCs exogenously supplied during the second expansion to the number of APCs exogenously supplied during the first expansion is selected from a range of from at or about 1.1:1 to at or about 8:1.


In another embodiment, the ratio of the number of APCs exogenously supplied during the second expansion to the number of APCs exogenously supplied during the first expansion is selected from a range of from at or about 1.1:1 to at or about 7:1.


In another embodiment, the ratio of the number of APCs exogenously supplied during the second expansion to the number of APCs exogenously supplied during the first expansion is selected from a range of from at or about 1.1:1 to at or about 6:1.


In another embodiment, the ratio of the number of APCs exogenously supplied during the second expansion to the number of APCs exogenously supplied during the first expansion is selected from a range of from at or about 1.1:1 to at or about 5:1.


In another embodiment, the ratio of the number of APCs exogenously supplied during the second expansion to the number of APCs exogenously supplied during the first expansion is selected from a range of from at or about 1.1:1 to at or about 4:1.


In another embodiment, the ratio of the number of APCs exogenously supplied during the second expansion to the number of APCs exogenously supplied during the first expansion) is selected from a range of from at or about 1.1:1 to at or about 3:1.


In another embodiment, the ratio of the number of APCs exogenously supplied during the second expansion to the number of APCs exogenously supplied during the first expansion is selected from a range of from at or about 1.1:1 to at or about 2.9:1.


In another embodiment, the ratio of the number of APCs exogenously supplied during the second expansion to the number of APCs exogenously supplied during the first expansion is selected from a range of from at or about 1.1:1 to at or about 2.8:1.


In another embodiment, the ratio of the number of APCs exogenously supplied during the second expansion to the number of APCs exogenously supplied during the first expansion is selected from a range of from at or about 1.1:1 to at or about 2.7:1.


In another embodiment, the ratio of the number of APCs exogenously supplied during the second expansion to the number of APCs exogenously supplied during the first expansion is selected from a range of from at or about 1.1:1 to at or about 2.6:1.


In another embodiment, the ratio of the number of APCs exogenously supplied during the second expansion to the number of APCs exogenously supplied during the first expansion is selected from a range of from at or about 1.1:1 to at or about 2.5:1.


In another embodiment, the ratio of the number of APCs exogenously supplied during the second expansion to the number of APCs exogenously supplied during the first expansion is selected from a range of from at or about 1.1:1 to at or about 2.4:1.


In another embodiment, the ratio of the number of APCs exogenously supplied during the second expansion to the number of APCs exogenously supplied during the first expansion is selected from a range of from at or about 1.1:1 to at or about 2.3:1.


In another embodiment, the ratio of the number of APCs exogenously supplied during the second expansion to the number of APCs exogenously supplied during the first expansion is selected from a range of from at or about 1.1:1 to at or about 2.2:1.


In another embodiment, the ratio of the number of APCs exogenously supplied during the second expansion to the number of APCs exogenously supplied during the first expansion is selected from a range of from at or about 1.1:1 to at or about 2.1:1.


In another embodiment, the ratio of the number of APCs exogenously supplied during the second expansion to the number of APCs exogenously supplied during the first expansion is selected from a range of from at or about 1.1:1 to at or about 2:1.


In another embodiment, the ratio of the number of APCs exogenously supplied during the second expansion to the number of APCs exogenously supplied during the first expansion is selected from a range of from at or about 2:1 to at or about 10:1.


In another embodiment, the ratio of the number of APCs exogenously supplied during the second expansion to the number of APCs exogenously supplied during the first expansion is selected from a range of from at or about 2:1 to at or about 5:1.


In another embodiment, the ratio of the number of APCs exogenously supplied during the second expansion to the number of APCs exogenously supplied during the first expansion is selected from a range of from at or about 2:1 to at or about 4:1.


In another embodiment, the ratio of the number of APCs exogenously supplied during the second expansion to the number of APCs exogenously supplied during the first expansion is selected from a range of from at or about 2:1 to at or about 3:1.


In another embodiment, the ratio of the number of APCs exogenously supplied during the second expansion to the number of APCs exogenously supplied during the first expansion is selected from a range of from at or about 2:1 to at or about 2.9:1.


In another embodiment, the ratio of the number of APCs exogenously supplied during the second expansion to the number of APCs exogenously supplied during the first expansion is selected from a range of from at or about 2:1 to at or about 2.8:1.


In another embodiment, the ratio of the number of APCs exogenously supplied during the second expansion to the number of APCs exogenously supplied during the first expansion is selected from a range of from at or about 2:1 to at or about 2.7:1.


In another embodiment, the ratio of the number of APCs exogenously supplied during the second expansion to the number of APCs exogenously supplied during the first expansion is selected from a range of from at or about 2:1 to at or about 2.6:1.


In another embodiment, the ratio of the number of APCs exogenously supplied during the second expansion to the number of APCs exogenously supplied during the first expansion is selected from a range of from at or about 2:1 to at or about 2.5:1.


In another embodiment, the ratio of the number of APCs exogenously supplied during the second expansion to the number of APCs exogenously supplied during the first expansion is selected from a range of from at or about 2:1 to at or about 2.4:1.


In another embodiment, the ratio of the number of APCs exogenously supplied during the second expansion to the number of APCs exogenously supplied during the first expansion is selected from a range of from at or about 2:1 to at or about 2.3:1.


In another embodiment, the ratio of the number of APCs exogenously supplied during the second expansion to the number of APCs exogenously supplied during the first expansion is selected from a range of from at or about 2:1 to at or about 2.2:1.


In another embodiment, the ratio of the number of APCs exogenously supplied during the second expansion to the number of APCs exogenously supplied during the first expansion is selected from a range of from at or about 2:1 to at or about 2.1:1.


In another embodiment, the ratio of the number of APCs exogenously supplied during the second expansion to the number of APCs exogenously supplied during the first expansion is at or about 2:1.


In another embodiment, the ratio of the number of APCs exogenously supplied during the second expansion to the number of APCs exogenously supplied during the first expansion is at or about 1.1:1, 1.2:1, 1.3:1, 1.4:1, 1.5:1, 1.6:1, 1.7:1, 1.8:1, 1.9:1, 2:1, 2.1:1, 2.2:1, 2.3:1, 2.4:1, 2.5:1, 2.6:1, 2.7:1, 2.8:1, 2.9:1, 3:1, 3.1:1, 3.2:1, 3.3:1, 3.4:1, 3.5:1, 3.6:1, 3.7:1, 3.8:1, 3.9:1, 4:1, 4.1:1, 4.2:1, 4.3:1, 4.4:1, 4.5:1, 4.6:1, 4.7:1, 4.8:1, 4.9:1, or 5:1.


In another embodiment, the number of APCs exogenously supplied during the first expansion is at or about 1×108, 1.1×108, 1.2×108, 1.3×108, 1.4×108, 1.5×108, 1.6×10′, 1.7×108, 1.8×108, 1.9×108, 2×108, 2.1×108, 2.2×108, 2.3×108, 2.4×108, 2.5×108, 2.6×108, 2.7×108, 2.8×108, 2.9×108, 3×10, 3.1×108, 3.2×108, 3.3×108, 3.4×108 or 3.5×108 APCs, and the number of APCs exogenously supplied during the second expansion is at or about 3.5×108, 3.6×108, 3.7×108, 3.8×108, 3.9×108, 4×10, 4.1×108, 4.2×108, 4.3×108, 4.4×108, 4.5×108, 4.6×108, 4.7×108, 4.8×108, 4.9×108, 5×10, 5.1×108, 5.2×108, 5.3×108, 5.4×108, 5.5×108, 5.6×108, 5.7×108, 5.8×108, 5.9×108, 6×108, 6.1×10, 6.2×108, 6.3×108, 6.4×108, 6.5×108, 6.6×108, 6.7×108, 6.8×108, 6.9×108, 7×108, 7.1×108, 7.2×108, 7.3×10′, 7.4×108, 7.5×108, 7.6×108, 7.7×108, 7.8×108, 7.9×108, 8×108, 8.1×108, 8.2×108, 8.3×108, 8.4×108, 8.5×108, 8.6×108, 8.7×108, 8.8×108, 8.9×108, 9×108, 9.1×108, 9.2×108, 9.3×108, 9.4×108, 9.5×108, 9.6×108, 9.7×108, 9.8×108, 9.9×108 or 1×109 APCs.


In another embodiment, the number of APCs exogenously supplied during the first expansion is selected from the range of at or about 1.5×108 APCs to at or about 3×108 APCs, and the number of APCs exogenously supplied during the second expansion is selected from the range of at or about 4×108 APCs to at or about 7.5×108 APCs.


In another embodiment, the number of APCs exogenously supplied during the first expansion is selected from the range of at or about 2×108 APCs to at or about 2.5×108 APCs, and the number of APCs exogenously supplied during the second expansion is selected from the range of at or about 4.5×108 APCs to at or about 5.5×108 APCs.


In another embodiment, the number of APCs exogenously supplied during the first expansion is at or about 2.5×108 APCs, and the number of APCs exogenously supplied during the second expansion is at or about 5×108 APCs.


In another embodiment, the APCs exogenously supplied in the first expansion are seeded in the culture flask at a density selected from a range of at or about 1.0×106 APCs/cm2 to at or about 4.5×106 APCs/cm2.


In another embodiment, the APCs exogenously supplied in the first expansion are seeded in the culture flask at a density selected from a range of at or about 1.5×106 APCs/cm2 to at or about 3.5×106 APCs/cm2.


In another embodiment, the APCs exogenously supplied in the first expansion are seeded in the culture flask at a density selected from a range of at or about 2×106 APCs/cm2 to at or about 3×106 APCs/cm2.


In another embodiment, the APCs exogenously supplied in the first expansion are seeded in the culture flask at a density of at or about 2×106 APCs/cm2.


In another embodiment, the APCs exogenously supplied in the first expansion are seeded in the culture flask at a density of at or about 1.0×106, 1.1×106, 1.2×106, 1.3×106, 1.4×106, 1.5×106, 1.6×106, 1.7×106, 1.8×106, 1.9×106, 2×106, 2.1×106, 2.2×106, 2.3×106, 2.4×106, 2.5×106, 2.6×106, 2.7×106, 2.8×106, 2.9×106, 3×106, 3.1×106, 3.2×106, 3.3×106, 3.4×106, 3.5×106, 3.6×106, 3.7×106, 3.8×106, 3.9×106, 4×106, 4.1×106, 4.2×106, 4.3×106, 4.4×106 or 4.5×106 APCs/cm2.


In another embodiment, the APCs exogenously supplied in the second expansion are seeded in the culture flask at a density selected from a range of at or about 2.5×106 APCs/cm2 to at or about 7.5×106 APCs/cm2.


In another embodiment, the APCs exogenously supplied in the second expansion are seeded in the culture flask at a density selected from a range of at or about 3.5×106 APCs/cm2 to about 6.0×106 APCs/cm2.


In another embodiment, the APCs exogenously supplied in the second expansion are seeded in the culture flask at a density selected from a range of at or about 4.0×106 APCs/cm2 to about 5.5×106 APCs/cm2.


In another embodiment, the APCs exogenously supplied in the second expansion are seeded in the culture flask at a density selected from a range of at or about 4.0×106 APCs/cm2.


In another embodiment, the APCs exogenously supplied in the second expansion are seeded in the culture flask at a density of at or about 2.5×106 APCs/cm2, 2.6×106 APCs/cm2, 2.7×106 APCs/cm2, 2.8×106, 2.9×106, 3×106, 3.1×106, 3.2×106, 3.3×106, 3.4×106, 3.5×106, 3.6×106, 3.7×106, 3.8×106, 3.9×106, 4×106, 4.1×106, 4.2×106, 4.3×106, 4.4×106, 4.5×106, 4.6×106, 4.7×106, 4.8×106, 4.9×106, 5×106, 5.1×106, 5.2×106, 5.3×106, 5.4×106, 5.5×106, 5.6×106, 5.7×106, 5.8×106, 5.9×106, 6×106, 6.1×106, 6.2×106, 6.3×106, 6.4×106, 6.5×106, 6.6×106, 6.7×106, 6.8×106, 6.9×106, 7×106, 7.1×106, 7.2×106, 7.3×106, 7.4×106 or 7.5×106 APCs/cm2.


In another embodiment, the APCs exogenously supplied in the first expansion are seeded in the culture flask at a density of at or about 1.0×106, 1.1×106, 1.2×106, 1.3×106, 1.4×106, 1.5×106, 1.6×106, 1.7×106, 1.8×106, 1.9×106, 2×106, 2.1×106, 2.2×106, 2.3×106, 2.4×106, 2.5×106, 2.6×106, 2.7×106, 2.8×106, 2.9×106, 3×106, 3.1×106, 3.2×106, 3.3×106, 3.4×106, 3.5×106, 3.6×106, 3.7×106, 3.8×106, 3.9×106, 4×106, 4.1×106, 4.2×106, 4.3×106, 4.4×106 or 4.5×106 APCs/cm2 and the APCs exogenously supplied in the second expansion are seeded in the culture flask at a density of at or about 2.5×106 APCs/cm2, 2.6×106 APCs/cm2, 2.7×106 APCs/cm2, 2.8×106, 2.9×106, 3×106, 3.1×106, 3.2×106, 3.3×106, 3.4×106, 3.5×106, 3.6×106, 3.7×106, 3.8×106, 3.9×106, 4×106, 4.1×106, 4.2×106, 4.3×106, 4.4×106, 4.5×106, 4.6×106, 4.7×106, 4.8×106, 4.9×106, 5×106, 5.1×106, 5.2×106, 5.3×106, 5.4×106, 5.5×106, 5.6×106, 5.7×106, 5.8×106, 5.9×106, 6×106, 6.1×106, 6.2×106, 6.3×106, 6.4×106, 6.5×106, 6.6×106, 6.7×106, 6.8×106, 6.9×106, 7×106, 7.1×106, 7.2×106, 7.3×106, 7.4×106 or 7.5×106 APCs/cm2.


In another embodiment, the APCs exogenously supplied in the first expansion are seeded in the culture flask at a density in a range of at or about 1.0×106 APCs/cm2 to at or about 4.5×106 APCs/cm2, and the APCs exogenously supplied in the second expansion are seeded in the culture flask at a density in a range of at or about 2.5×106 APCs/cm2 to at or about 7.5×106 APCs/cm2.


In another embodiment, the APCs exogenously supplied in the first expansion are seeded in the culture flask at a density in a range of at or about 1.5×106 APCs/cm2 to at or about 3.5×106 APCs/cm2, and the APCs exogenously supplied in the second expansion are seeded in the culture flask at a density in a range of at or about 3.5×106 APCs/cm2 to at or about 6×106 APCs/cm2.


In another embodiment, the APCs exogenously supplied in the first expansion are seeded in the culture flask at a density in a range of at or about 2×106 APCs/cm2 to at or about 3×106 APCs/cm2, and the APCs exogenously supplied in the second expansion are seeded in the culture flask at a density in a range of at or about 4×106 APCs/cm2 to at or about 5.5×106 APCs/cm2.


In another embodiment, the APCs exogenously supplied in the first expansion are seeded in the culture flask at a density at or about 2×106 APCs/cm2 and the APCs exogenously supplied in the second expansion are seeded in the culture flask at a density of at or about 4×106 APCs/cm2.


In another embodiment, the ratio of the number of APCs (including, for example, PBMCs) exogenously supplied at day 0 (at the initiation) of the second expansion to the number of PBMCs exogenously supplied at day 0 (at the initiation) of the first expansion is in a range of from at or about 1.1:1 to at or about 20:1.


In another embodiment, the ratio of the number of APCs (including, for example, PBMCs) exogenously supplied at day 0 (at the initiation) of the second expansion to the number of PBMCs exogenously supplied at day 0 (at the initiation) of the first expansion is in a range of from at or about 1.1:1 to at or about 10:1.


In another embodiment, the ratio of the number of APCs (including, for example, PBMCs) exogenously supplied at day 0 (at the initiation) of the second expansion to the number of PBMCs exogenously supplied at day 0 (at the initiation) of the first expansion is in a range of from at or about 1.1:1 to at or about 9:1.


In another embodiment, the ratio of the number of APCs (including, for example, PBMCs) exogenously supplied at day 0 (at the initiation) of the second expansion to the number of APCs (including, for example, PBMCs) exogenously supplied at day 0 (at the initiation) of the first expansion is in a range of from at or about 1.1:1 to at or about 8:1.


In another embodiment, the ratio of the number of APCs (including, for example, PBMCs) exogenously supplied at day 0 (at the initiation) of the second expansion to the number of APCs (including, for example, PBMCs) exogenously supplied at day 0 (at the initiation) of the first expansion is in a range of from at or about 1.1:1 to at or about 7:1.


In another embodiment, the ratio of the number of APCs (including, for example, PBMCs) exogenously supplied at day 0 (at the initiation) of the second expansion to the number of APCs (including, for example, PBMCs) exogenously supplied at day 0 (at the initiation) of the first expansion is in a range of from at or about 1.1:1 to at or about 6:1.


In another embodiment, the ratio of the number of APCs (including, for example, PBMCs) exogenously supplied at day 0 (at the initiation) of the second expansion to the number of APCs (including, for example, PBMCs) exogenously supplied at day 0 (at the initiation) of the first expansion is in a range of from at or about 1.1:1 to at or about 5:1.


In another embodiment, the ratio of the number of APCs (including, for example, PBMCs) exogenously supplied at day 0 (at the initiation) of the second expansion to the number of APCs (including, for example, PBMCs) exogenously supplied at day 0 (at the initiation) of the first expansion is in a range of from at or about 1.1:1 to at or about 4:1.


In another embodiment, the ratio of the number of APCs (including, for example, PBMCs) exogenously supplied at day 0 (at the initiation) of the second expansion to the number of APCs (including, for example, PBMCs) exogenously supplied at day 0 (at the initiation) of the first expansion is in a range of from at or about 1.1:1 to at or about 3:1.


In another embodiment, the ratio of the number of APCs (including, for example, PBMCs) exogenously supplied at day 0 (at the initiation) of the second expansion to the number of APCs (including, for example, PBMCs) exogenously supplied at day 0 (at the initiation) of the first expansion is in a range of from at or about 1.1:1 to at or about 2.9:1.


In another embodiment, the ratio of the number of APCs (including, for example, PBMCs) exogenously supplied at day 0 (at the initiation) of the second expansion to the number of APCs (including, for example, PBMCs) exogenously supplied at day 0 (at the initiation) of the first expansion is in a range of from at or about 1.1:1 to at or about 2.8:1.


In another embodiment, the ratio of the number of APCs (including, for example, PBMCs) exogenously supplied at day 0 (at the initiation) of the second expansion to the number of APCs (including, for example, PBMCs) exogenously supplied at day 0 (at the initiation) of the first expansion is in a range of from at or about 1.1:1 to at or about 2.7:1.


In another embodiment, the ratio of the number of APCs (including, for example, PBMCs) exogenously supplied at day 0 (at the initiation) of the second expansion to the number of APCs (including, for example, PBMCs) exogenously supplied at day 0 (at the initiation) of the first expansion is in a range of from at or about 1.1:1 to at or about 2.6:1.


In another embodiment, the ratio of the number of APCs (including, for example, PBMCs) exogenously supplied at day 0 (at the initiation) of the second expansion to the number of APCs (including, for example, PBMCs) exogenously supplied at day 0 (at the initiation) of the first expansion is in a range of from at or about 1.1:1 to at or about 2.5:1.


In another embodiment, the ratio of the number of APCs (including, for example, PBMCs) exogenously supplied at day 0 (at the initiation) of the second expansion to the number of APCs (including, for example, PBMCs) exogenously supplied at day 0 (at the initiation) of the first expansion is in a range of from at or about 1.1:1 to at or about 2.4:1.


In another embodiment, the ratio of the number of APCs (including, for example, PBMCs) exogenously supplied at day 0 (at the initiation) of the second expansion to the number of APCs (including, for example, PBMCs) exogenously supplied at day 0 (at the initiation) of the first expansion is in a range of from at or about 1.1:1 to at or about 2.3:1.


In another embodiment, the ratio of the number of APCs (including, for example, PBMCs) exogenously supplied at day 0 (at the initiation) of the second expansion to the number of APCs (including, for example, PBMCs) exogenously supplied at day 0 (at the initiation) of the first expansion is in a range of from at or about 1.1:1 to at or about 2.2:1.


In another embodiment, the ratio of the number of APCs (including, for example, PBMCs) exogenously supplied at day 0 (at the initiation) of the second expansion to the number of APCs (including, for example, PBMCs) exogenously supplied at day 0 (at the initiation) of the first expansion is in a range of from at or about 1.1:1 to at or about 2.1:1.


In another embodiment, the ratio of the number of APCs (including, for example, PBMCs) exogenously supplied at day 0 (at the initiation) of the second expansion to the number of APCs (including, for example, PBMCs) exogenously supplied at day 0 (at the initiation) of the first expansion is in a range of from at or about 1.1:1 to at or about 2:1.


In another embodiment, the ratio of the number of APCs (including, for example, PBMCs) exogenously supplied at day 0 (at the initiation) of the second expansion to the number of APCs (including, for example, PBMCs) exogenously supplied at day 0 (at the initiation) of the first expansion is in a range of from at or about 2:1 to at or about 10:1.


In another embodiment, the ratio of the number of APCs (including, for example, PBMCs) exogenously supplied at day 0 (at the initiation) of the second expansion to the number of APCs (including, for example, PBMCs) exogenously supplied at day 0 (at the initiation) of the first expansion is in a range of from at or about 2:1 to at or about 5:1.


In another embodiment, the ratio of the number of APCs (including, for example, PBMCs) exogenously supplied at day 0 (at the initiation) of the second expansion to the number of APCs (including, for example, PBMCs) exogenously supplied at day 0 (at the initiation) of the first expansion is in a range of from at or about 2:1 to at or about 4:1.


In another embodiment, the ratio of the number of APCs (including, for example, PBMCs) exogenously supplied at day 0 (at the initiation) of the second expansion to the number of APCs (including, for example, PBMCs) exogenously supplied at day 0 (at the initiation) of the first expansion is in a range of from at or about 2:1 to at or about 3:1.


In another embodiment, the ratio of the number of APCs (including, for example, PBMCs) exogenously supplied at day 0 (at the initiation) of the second expansion to the number of APCs (including, for example, PBMCs) exogenously supplied at day 0 (at the initiation) of the first expansion is in a range of from at or about 2:1 to at or about 2.9:1.


In another embodiment, the ratio of the number of APCs (including, for example, PBMCs) exogenously supplied at day 0 (at the initiation) of the second expansion to the number of APCs (including, for example, PBMCs) exogenously supplied at day 0 (at the initiation) of the first expansion is in a range of from at or about 2:1 to at or about 2.8:1.


In another embodiment, the ratio of the number of APCs (including, for example, PBMCs) exogenously supplied at day 0 (at the initiation) of the second expansion to the number of APCs (including, for example, PBMCs) exogenously supplied at day 0 (at the initiation) of the first expansion is in a range of from at or about 2:1 to at or about 2.7:1.


In another embodiment, the ratio of the number of APCs (including, for example, PBMCs) exogenously supplied at day 0 (at the initiation) of the second expansion to the number of APCs (including, for example, PBMCs) exogenously supplied at day 0 (at the initiation) of the first expansion is selected from a range of from at or about 2:1 to at or about 2.6:1.


In another embodiment, the ratio of the number of APCs (including, for example, PBMCs) exogenously supplied at day 0 (at the initiation) of the second expansion to the number of APCs (including, for example, PBMCs) exogenously supplied at day 0 (at the initiation) of the first expansion is in a range of from at or about 2:1 to at or about 2.5:1.


In another embodiment, the ratio of the number of APCs (including, for example, PBMCs) exogenously supplied at day 0 (at the initiation) of the second expansion to the number of APCs (including, for example, PBMCs) exogenously supplied at day 0 (at the initiation) of the first expansion is in a range of from at or about 2:1 to at or about 2.4:1.


In another embodiment, the ratio of the number of APCs (including, for example, PBMCs) exogenously supplied at day 0 (at the initiation) of the second expansion to the number of APCs (including, for example, PBMCs) exogenously supplied at day 0 (at the initiation) of the first expansion is in a range of from at or about 2:1 to at or about 2.3:1.


In another embodiment, the ratio of the number of APCs (including, for example, PBMCs) exogenously supplied at day 0 (at the initiation) of the second expansion to the number of APCs (including, for example, PBMCs) exogenously supplied at day 0 (at the initiation) of the first expansion is in a range of from at or about 2:1 to at or about 2.2:1.


In another embodiment, the ratio of the number of APCs (including, for example, PBMCs) exogenously supplied at day 0 (at the initiation) of the second expansion to the number of APCs (including, for example, PBMCs) exogenously supplied at day 0 (at the initiation) of the first expansion is in a range of from at or about 2:1 to at or about 2.1:1.


In another embodiment, the ratio of the number of APCs (including, for example, PBMCs) exogenously supplied at day 0 (at the initiation) of the second expansion to the number of APCs (including, for example, PBMCs) exogenously supplied at day 0 (at the initiation) of the first expansion is at or about 2:1.


In another embodiment, the ratio of the number of APCs (including, for example, PBMCs) exogenously supplied at day 0 (at the initiation) of the second expansion to the number of APCs (including, for example, PBMCs) exogenously supplied at day 0 (at the initiation) of the first expansion is at or about 1.1:1, 1.2:1, 1.3:1, 1.4:1, 1.5:1, 1.6:1, 1.7:1, 1.8:1, 1.9:1, 2:1, 2.1:1, 2.2:1, 2.3:1, 2.4:1, 2.5:1, 2.6:1, 2.7:1, 2.8:1, 2.9:1, 3:1, 3.1:1, 3.2:1, 3.3:1, 3.4:1, 3.5:1, 3.6:1, 3.7:1, 3.8:1, 3.9:1, 4:1, 4.1:1, 4.2:1, 4.3:1, 4.4:1, 4.5:1, 4.6:1, 4.7:1, 4.8:1, 4.9:1, or 5:1.


In another embodiment, the number of APCs (including, for example, PBMCs) exogenously supplied at day 0 (at the initiation) of the first expansion is at or about 1×108, 1.1×108, 1.2×108, 1.3×108, 1.4×108, 1.5×108, 1.6×108, 1.7×108, 1.8×108, 1.9×108, 2×108, 2.1×108, 2.2×108, 2.3×108, 2.4×108, 2.5×108, 2.6×108, 2.7×108, 2.8×108, 2.9×108, 3×108, 3.1×108, 3.2×108, 3.3×108, 3.4×108 or 3.5×108 APCs (including, for example, PBMCs), and the number of APCs (including, for example, PBMCs) exogenously supplied at day 0 (at the initiation) of the second expansion is at or about 3.5×108, 3.6×108, 3.7×108, 3.8×108, 3.9×108, 4×108, 4.1×108, 4.2×108, 4.3×108, 4.4×108, 4.5×108, 4.6×108, 4.7×108, 4.8×108, 4.9×108, 5×108, 5.1×108, 5.2×108, 5.3×108, 5.4×108, 5.5×108, 5.6×108, 5.7×108, 5.8×108, 5.9×108, 6×108, 6.1×108, 6.2×108, 6.3×108, 6.4×108, 6.5×108, 6.6×108, 6.7×10, 6.8×108, 6.9×108, 7×108, 7.1×108, 7.2×108, 7.3×108, 7.4×108, 7.5×108, 7.6×108, 7.7×108, 7.8×10, 7.9×108, 8×108, 8.1×108, 8.2×108, 8.3×108, 8.4×108, 8.5×108, 8.6×108, 8.7×108, 8.8×108, 8.9×108, 9×108, 9.1×108, 9.2×108, 9.3×108, 9.4×108, 9.5×108, 9.6×108, 9.7×108, 9.8×108, 9.9×108 or 1×109 APCs (including, for example, PBMCs).


In another embodiment, the number of APCs (including, for example, PBMCs) exogenously supplied at day 0 (at the initiation) of the first expansion is in the range of at or about 1×108 APCs (including, for example, PBMCs) to at or about 3.5×108 APCs (including, for example, PBMCs), and the number of APCs (including, for example, PBMCs) exogenously supplied at day 0 (at the initiation) of the second expansion is in the range of at or about 3.5×108 APCs (including, for example, PBMCs) to at or about 1×109 APCs (including, for example, PBMCs).


In another embodiment, the number of APCs (including, for example, PBMCs) exogenously supplied at day 0 (at the initiation) of the first expansion is in the range of at or about 1.5×108 APCs to at or about 3×108 APCs (including, for example, PBMCs), and the number of APCs (including, for example, PBMCs) exogenously supplied at day 0 (at the initiation) of the second expansion is in the range of at or about 4×108 APCs (including, for example, PBMCs) to at or about 7.5×108 APCs (including, for example, PBMCs).


In another embodiment, the number of APCs (including, for example, PBMCs) exogenously supplied at day 0 (at the initiation) of the first expansion is in the range of at or about 2×108 APCs (including, for example, PBMCs) to at or about 2.5×108 APCs (including, for example, PBMCs), and the number of APCs (including, for example, PBMCs) exogenously supplied at day 0 (at the initiation) of the second expansion is in the range of at or about 4.5×108 APCs (including, for example, PBMCs) to at or about 5.5×108 APCs (including, for example, PBMCs).


In another embodiment, the number of APCs (including, for example, PBMCs) exogenously supplied at day 0 (at the initiation) of the first expansion is at or about 2.5×108 APCs (including, for example, PBMCs) and the number of APCs (including, for example, PBMCs) exogenously supplied at day 0 (at the initiation) of the second expansion is at or about 5×108 APCs (including, for example, PBMCs).


In an embodiment, the number of layers of APCs (including, for example, PBMCs) added at day 0 (at the initiation) of the first expansion is approximately one-half of the number of layers of APCs (including, for example, PBMCs) added at day 0 (at the initiation) of the second expansion. In certain embodiments, the method comprises adding antigen presenting cell layers at day 0 (at the initiation) of the first expansion to the first population of TILs and adding antigen presenting cell layers at day 0 (at the initiation) of the second expansion to the second population of TILs, wherein the number of antigen presenting cell layer added to the first population of TILs is approximately 50% of the number of antigen presenting cell layers added to the second population of TILs.


In another embodiment, the number of layers of APCs (including, for example, PBMCs) exogenously supplied at day 0 (at the initiation) of the second expansion is greater than the number of layers of APCs (including, for example, PBMCs) exogenously supplied at day 0 (at the initiation) of the first expansion.


In another embodiment, day 0 (at the initiation) of the first expansion occurs in the presence of layered APCs (including, for example, PBMCs) with an average thickness of at or about 2 cell layers and day 0 (at the initiation) of the second expansion occurs in the presence of layered APCs (including, for example, PBMCs) with an average thickness of at or about 4 cell layers.


In another embodiment, day 0 (at the initiation) of the first expansion occurs in the presence of layered APCs (including, for example, PBMCs) with an average thickness of at or about one cell layer and day 0 (at the initiation) of the second expansion occurs in the presence of layered APCs (including, for example, PBMCs) with an average thickness of at or about 3 cell layers.


In another embodiment, day 0 (at the initiation) of the first expansion occurs in the presence of layered APCs (including, for example, PBMCs) with an average thickness of at or about 1.5 cell layers to at or about 2.5 cell layers and day 0 (at the initiation) of the second expansion occurs in the presence of layered APCs (including, for example, PBMCs) with an average thickness of at or about 3 cell layers.


In another embodiment, day 0 (at the initiation) of the first expansion occurs in the presence of layered APCs (including, for example, PBMCs) with an average thickness of at or about one cell layer and day 0 (at the initiation) of the second expansion occurs in the presence of layered APCs (including, for example, PBMCs) with an average thickness of at or about 2 cell layers.


In another embodiment, day 0 (at the initiation) of the first expansion occurs in the presence of layered APCs (including, for example, PBMCs) with an average thickness of of at or about 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9 or 3 cell layers and day 0 (at the initiation) of the second expansion occurs in the presence of layered APCs (including, for example, PBMCs) with an average thickness of at or about 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 4, 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 5, 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, 6, 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 6.8, 6.9, 7, 7.1, 7.2, 7.3, 7.4, 7.5, 7.6, 7.7, 7.8, 7.9 or 8 cell layers.


In another embodiment, day 0 (at the initiation) of the first expansion occurs in the presence of layered APCs (including, for example, PBMCs) with an average thickness of at or about 1 cell layer to at or about 2 cell layers and day 0 (at the initiation) of the second expansion occurs in the presence of layered APCs (including, for example, PBMCs) with an average thickness of at or about 3 cell layers to at or about 10 cell layers.


In another embodiment, day 0 (at the initiation) of the first expansion occurs in the presence of layered APCs (including, for example, PBMCs) with an average thickness of at or about 2 cell layers to at or about 3 cell layers and day 0 (at the initiation) of the second expansion occurs in the presence of layered APCs (including, for example, PBMCs) with an average thickness of at or about 4 cell layers to at or about 8 cell layers.


In another embodiment, day 0 (at the initiation) of the first expansion occurs in the presence of layered APCs (including, for example, PBMCs) with an average thickness of at or about 2 cell layers and day 0 (at the initiation) of the second expansion occurs in the presence of layered APCs (including, for example, PBMCs) with an average thickness of at or about 4 cell layers to at or about 8 cell layers.


In another embodiment, day 0 (at the initiation) of the first expansion occurs in the presence of layered APCs (including, for example, PBMCs) with an average thickness of at or about 1, 2 or 3 cell layers and day 0 (at the initiation) of the second expansion occurs in the presence of layered APCs (including, for example, PBMCs) with an average thickness of at or about 3, 4, 5, 6, 7, 8, 9 or 10 cell layers.


In another embodiment, day 0 (at the initiation) of the first expansion occurs in the presence of layered APCs (including, for example, PBMCs) with a first average thickness equal to a first number of layers of APCs (including, for example, PBMCs) and day 0 (at the initiation) of the second expansion occurs in the presence of layered APCs (including, for example, PBMCs) with a second average thickness equal to a second number of layers of APCs (including, for example, PBMCs), wherein the ratio of the first number of layers of APCs (including, for example, PBMCs) to the second number of layers of APCs (including, for example, PBMCs) is in the range of at or about 1:1.1 to at or about 1:10.


In another embodiment, day 0 (at the initiation) of the first expansion occurs in the presence of layered APCs (including, for example, PBMCs) with a first average thickness equal to a first number of layers of APCs (including, for example, PBMCs) and day 0 (at the initiation) of the second expansion occurs in the presence of layered APCs (including, for example, PBMCs) with a second average thickness equal to a second number of layers of APCs (including, for example, PBMCs), wherein the ratio of the first number of layers of APCs (including, for example, PBMCs) to the second number of layers of APCs (including, for example, PBMCs) is in the range of at or about 1:1.1 to at or about 1:8.


In another embodiment, day 0 (at the initiation) of the first expansion occurs in the presence of layered APCs (including, for example, PBMCs) with a first average thickness equal to a first number of layers of APCs (including, for example, PBMCs) and day 0 (at the initiation) of the second expansion occurs in the presence of layered APCs (including, for example, PBMCs) with a second average thickness equal to a second number of layers of APCs (including, for example, PBMCs), wherein the ratio of the first number of layers of APCs (including, for example, PBMCs) to the second number of layers of APCs (including, for example, PBMCs) is in the range of at or about 1:1.1 to at or about 1:7.


In another embodiment, day 0 (at the initiation) of the first expansion occurs in the presence of layered APCs (including, for example, PBMCs) with a first average thickness equal to a first number of layers of APCs (including, for example, PBMCs) and day 0 (at the initiation) of the second expansion occurs in the presence of layered APCs (including, for example, PBMCs) with a second average thickness equal to a second number of layers of APCs (including, for example, PBMCs), wherein the ratio of the first number of layers of APCs (including, for example, PBMCs) to the second number of layers of APCs (including, for example, PBMCs) is in the range of at or about 1:1.1 to at or about 1:6.


In another embodiment, day 0 (at the initiation) of the first expansion occurs in the presence of layered APCs (including, for example, PBMCs) with a first average thickness equal to a first number of layers of APCs (including, for example, PBMCs) and day 0 (at the initiation) of the second expansion occurs in the presence of layered APCs (including, for example, PBMCs) with a second average thickness equal to a second number of layers of APCs (including, for example, PBMCs), wherein the ratio of the first number of layers of APCs (including, for example, PBMCs) to the second number of layers of APCs (including, for example, PBMCs) is in the range of at or about 1:1.1 to at or about 1:5.


In another embodiment, day 0 (at the initiation) of the first expansion occurs in the presence of layered APCs (including, for example, PBMCs) with a first average thickness equal to a first number of layers of APCs (including, for example, PBMCs) and day 0 (at the initiation) of the second expansion occurs in the presence of layered APCs (including, for example, PBMCs) with a second average thickness equal to a second number of layers of APCs (including, for example, PBMCs), wherein the ratio of the first number of layers of APCs (including, for example, PBMCs) to the second number of layers of APCs (including, for example, PBMCs) is in the range of at or about 1:1.1 to at or about 1:4.


In another embodiment, day 0 (at the initiation) of the first expansion occurs in the presence of layered APCs (including, for example, PBMCs) with a first average thickness equal to a first number of layers of APCs (including, for example, PBMCs) and day 0 (at the initiation) of the second expansion occurs in the presence of layered APCs (including, for example, PBMCs) with a second average thickness equal to a second number of layers of APCs (including, for example, PBMCs), wherein the ratio of the first number of layers of APCs (including, for example, PBMCs) to the second number of layers of APCs (including, for example, PBMCs) is in the range of at or about 1:1.1 to at or about 1:3.


In another embodiment, day 0 (at the initiation) of the first expansion occurs in the presence of layered APCs (including, for example, PBMCs) with a first average thickness equal to a first number of layers of APCs (including, for example, PBMCs) and day 0 (at the initiation) of the second expansion occurs in the presence of layered APCs (including, for example, PBMCs) with a second average thickness equal to a second number of layers of APCs (including, for example, PBMCs), wherein the ratio of the first number of layers of APCs (including, for example, PBMCs) to the second number of layers of APCs (including, for example, PBMCs) is in the range of at or about 1:1.1 to at or about 1:2.


In another embodiment, day 0 (at the initiation) of the first expansion occurs in the presence of layered APCs (including, for example, PBMCs) with a first average thickness equal to a first number of layers of APCs (including, for example, PBMCs) and day 0 (at the initiation) of the second expansion occurs in the presence of layered APCs (including, for example, PBMCs) with a second average thickness equal to a second number of layers of APCs (including, for example, PBMCs), wherein the ratio of the first number of layers of APCs (including, for example, PBMCs) to the second number of layers of APCs (including, for example, PBMCs) is in the range of at or about 1:1.2 to at or about 1:8.


In another embodiment, day 0 (at the initiation) of the first expansion occurs in the presence of layered APCs (including, for example, PBMCs) with a first average thickness equal to a first number of layers of APCs (including, for example, PBMCs) and day 0 (at the initiation) of the second expansion occurs in the presence of layered APCs (including, for example, PBMCs) with a second average thickness equal to a second number of layers of APCs (including, for example, PBMCs), wherein the ratio of the first number of layers of APCs (including, for example, PBMCs) to the second number of layers of APCs (including, for example, PBMCs) is in the range of at or about 1:1.3 to at or about 1:7.


In another embodiment, day 0 (at the initiation) of the first expansion occurs in the presence of layered APCs (including, for example, PBMCs) with a first average thickness equal to a first number of layers of APCs (including, for example, PBMCs) and day 7 (at the initiation) of the second expansion occurs in the presence of layered APCs (including, for example, PBMCs) with a second average thickness equal to a second number of layers of APCs (including, for example, PBMCs), wherein the ratio of the first number of layers of APCs (including, for example, PBMCs) to the second number of layers of APCs (including, for example, PBMCs) is in the range of at or about 1:1.4 to at or about 1:6.


In another embodiment, day 0 (at the initiation) of the first expansion occurs in the presence of layered APCs (including, for example, PBMCs) with a first average thickness equal to a first number of layers of APCs (including, for example, PBMCs) and day 0 (at the initiation) of the second expansion occurs in the presence of layered APCs (including, for example, PBMCs) with a second average thickness equal to a second number of layers of APCs (including, for example, PBMCs), wherein the ratio of the first number of layers of APCs (including, for example, PBMCs) to the second number of layers of APCs (including, for example, PBMCs) is in the range of at or about 1:1.5 to at or about 1:5.


In another embodiment, day 0 (at the initiation) of the first expansion occurs in the presence of layered APCs (including, for example, PBMCs) with a first average thickness equal to a first number of layers of APCs (including, for example, PBMCs) and day 0 (at the initiation) of the second expansion occurs in the presence of layered APCs (including, for example, PBMCs) with a second average thickness equal to a second number of layers of APCs (including, for example, PBMCs), wherein the ratio of the first number of layers of APCs (including, for example, PBMCs) to the second number of layers of APCs (including, for example, PBMCs) is in the range of at or about 1:1.6 to at or about 1:4.


In another embodiment, day 0 (at the initiation) of the first expansion occurs in the presence of layered APCs (including, for example, PBMCs) with a first average thickness equal to a first number of layers of APCs (including, for example, PBMCs) and day 0 (at the initiation) of the d second expansion occurs in the presence of layered APCs (including, for example, PBMCs) with a second average thickness equal to a second number of layers of APCs (including, for example, PBMCs), wherein the ratio of the first number of layers of APCs (including, for example, PBMCs) to the second number of layers of APCs (including, for example, PBMCs) is in the range of at or about 1:1.7 to at or about 1:3.5.


In another embodiment, day 0 (at the initiation) of the first expansion occurs in the presence of layered APCs (including, for example, PBMCs) with a first average thickness equal to a first number of layers of APCs (including, for example, PBMCs) and day 0 (at the initiation) of the second expansion occurs in the presence of layered APCs (including, for example, PBMCs) with a second average thickness equal to a second number of layers of APCs (including, for example, PBMCs), wherein the ratio of the first number of layers of APCs (including, for example, PBMCs) to the second number of layers of APCs (including, for example, PBMCs) is in the range of at or about 1:1.8 to at or about 1:3.


In another embodiment, day 0 (at the initiation) of the first expansion occurs in the presence of layered APCs (including, for example, PBMCs) with a first average thickness equal to a first number of layers of APCs (including, for example, PBMCs) and day 0 (at the initiation) of the second expansion occurs in the presence of layered APCs (including, for example, PBMCs) with a second average thickness equal to a second number of layers of APCs (including, for example, PBMCs), wherein the ratio of the first number of layers of APCs (including, for example, PBMCs) to the second number of layers of APCs (including, for example, PBMCs) is in the range of at or about 1:1.9 to at or about 1:2.5.


In another embodiment, day 0 (at the initiation) of the first expansion occurs in the presence of layered APCs (including, for example, PBMCs) with a first average thickness equal to a first number of layers of APCs (including, for example, PBMCs) and day 0 (at the initiation) of the second expansion occurs in the presence of layered APCs (including, for example, PBMCs) with a second average thickness equal to a second number of layers of APCs (including, for example, PBMCs), wherein the ratio of the first number of layers of APCs (including, for example, PBMCs) to the second number of layers of APCs (including, for example, PBMCs) is at or about 1:2.


In another embodiment, day 0 (at the initiation) of the first expansion occurs in the presence of layered APCs (including, for example, PBMCs) with a first average thickness equal to a first number of layers of APCs (including, for example, PBMCs) and day 0 (at the initiation) of the second expansion occurs in the presence of layered APCs (including, for example, PBMCs) with a second average thickness equal to a second number of layers of APCs (including, for example, PBMCs), wherein the ratio of the first number of layers of APCs (including, for example, PBMCs) to the second number of layers of APCs (including, for example, PBMCs) is selected from at or about 1:1.1, 1:1.2, 1:1.3, 1:1.4, 1:1.5, 1:1.6, 1:1.7, 1:1.8, 1:1.9, 1:2, 1:2.1, 1:2.2, 1:2.3, 1:2.4, 1:2.5, 1:2.6, 1:2.7, 1:2.8, 1:2.9, 1:3, 1:3.1, 1:3.2, 1:3.3, 1:3.4, 1:3.5, 1:3.6, 1:3.7, 1:3.8, 1:3.9, 1:4, 1:4.1, 1:4.2, 1:4.3, 1:4.4, 1:4.5, 1:4.6, 1:4.7, 1:4.8, 1:4.9, 1:5, 1:5.1, 1:5.2, 1:5.3, 1:5.4, 1:5.5, 1:5.6, 1:5.7, 1:5.8, 1:5.9, 1:6, 1:6.1, 1:6.2, 1:6.3, 1:6.4, 1:6.5, 1:6.6, 1:6.7, 1:6.8, 1:6.9, 1:7, 1:7.1, 1:7.2, 1:7.3, 1:7.4, 1:7.5, 1:7.6, 1:7.7, 1:7.8, 1:7.9, 1:8, 1:8.1, 1:8.2, 1:8.3, 1:8.4, 1:8.5, 1:8.6, 1:8.7, 1:8.8, 1:8.9, 1:9, 1:9.1, 1:9.2, 1:9.3, 1:9.4, 1:9.5, 1:9.6, 1:9.7, 1:9.8, 1:9.9 or 1:10.


In some embodiments, the number of APCs in the first expansion is in the range of about 1.0×106 APCs/cm2 to about 4.5×106 APCs/cm2, and the number of APCs in the second expansion is in the range of about 2.5×106 APCs/cm2 to about 7.5×106 APCs/cm2.


In some embodiments, the number of APCs in the first expansion is in the range of about 1.5×106 APCs/cm2 to about 3.5×106 APCs/cm2, and the number of APCs in the second expansion is in the range of about 3.5×106 APCs/cm2 to about 6.0×106 APCs/cm2.


In some embodiments, the number of APCs in the first expansion is in the range of about 2.0×106 APCs/cm2 to about 3.0×106 APCs/cm2, and the number of APCs in the second expansion is in the range of about 4.0×106 APCs/cm2 to about 5.5×106 APCs/cm2.


In some embodiments, the TIL manufacturing process includes a first expansion step (or pre-REP) of at least 14 days, 15 days, 16 days, 17 days, 18 days, 19 days, 20 days, 21 days, 22 days, 23 days, 24 days, 25 days, 26 days, 27 days, 28 days, 29 days, 30 days, 31 days, 32 days, 33 days, 34 days, or 35 days, and a second expansion step (or REP) of at least 3 days, 4 days, 5 days, 6 days, 7 days, 8 days, 9 days, 10 days, 11 days, 12 days, 13 days, or 14 days.


In some embodiments, the TIL manufacturing process includes a first expansion step of about 21-35 days and second expansion step of about 6-12 days. In some embodiments the TIL manufacturing process includes a first expansion step of about 21-25 days and a second expansion step of about 7-11 days.


The steps below apply to any TIL manufacturing embodiment disclosed herein.


G. Optional Cell Viability Analyses

Optionally, a cell viability assay can be performed after the first or second expansion, using standard assays known in the art. For example, a trypan blue exclusion assay can be done on a sample of the TILs, which selectively labels dead cells and allows a viability assessment. Other assays for use in testing viability can include but are not limited to the Alamar blue assay; and the MTT assay. In some embodiments, TIL samples can be counted and viability determined using a Cellometer K2 automated cell counter (Nexcelom Bioscience, Lawrence, Mass.). In some embodiments, viability is determined according to the standard Cellometer K2 Image Cytometer Automatic Cell Counter protocol.


In some embodiments, cell counts and/or viability are measured. The expression of markers such as but not limited CD3, CD4, CD8, CD45, and CD56, as well as any other disclosed or described herein, can be measured by flow cytometry with antibodies, for example but not limited to those commercially available from BD Bio-sciences (BD Biosciences, San Jose, Calif.) using a FACSCanto™ flow cytometer (BD Biosciences). The cells can be counted manually using a disposable c-chip hemocytometer (VWR, Batavia, IL) and viability can be assessed using any method known in the art, including but not limited to trypan blue staining.


In some embodiment, expression of markers such as B and T Lymphocyte Attneuator (BTLA), Cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4; also called CD152), Inducible T-cell co-stimulator (ICOS), Ki67 (also called MK167), Lymphocyte activating gene 3 (LAG3; also called CD223), programmed cell death protein 1 (PD1), integrin, alpha E (ITGAE; also known as CD103), CD69, T-cell immunoreceptor with Ig and ITIM domains (TIGIT), and T-cell immunoglobulin and mucin-domain containing-3 (TIM3; also knowns as hepatitis A virus cellular receptor 2 (HAVCR2)) are measured. Expression of these markers may be measured at any time during the process disclosed herein, including at the first expansion, the second expansion, or after harvest of the third population of TILs.


In some cases, the second TIL population can be cryopreserved immediately, using the protocols discussed below. Alternatively, the second TIL population can be subjected to REP and then cryopreserved as discussed below. Similarly, in the case where genetically modified TILs will be used in therapy, the second or third TIL populations can be subjected to genetic modifications for suitable treatments.


Any selection method known in the art may be used. For example, the methods described in U.S. Patent Application Publication No. 2016/0010058 A1, the disclosures of which are incorporated herein by reference, may be used for selection of TILs for superior tumor reactivity.


The diverse antigen receptors of T and B lymphocytes are produced by somatic recombination of a limited, but large number of gene segments. These gene segments: V (variable), D (diversity), J (joining), and C (constant), determine the binding specificity and downstream applications of immunoglobulins and T-cell receptors (TCRs). The present invention provides a method for generating TILs which exhibit an increase the T-cell repertoire diversity. In some embodiments, the TILs obtained by the present method exhibit an increase in the T-cell repertoire diversity. In some embodiments, the TILs obtained in the first or second expansion exhibit an increase in the T-cell repertoire diversity. In some embodiments, the increase in diversity is an increase in the immunoglobulin diversity and/or the T-cell receptor diversity. In some embodiments, the diversity is in the immunoglobulin is in the immunoglobulin heavy chain. In some embodiments, the diversity is in the immunoglobulin is in the immunoglobulin light chain. In some embodiments, the diversity is in the T-cell receptor. In some embodiments, the diversity is in one of the T-cell receptors selected from the group consisting of alpha, beta, gamma, and delta receptors. In some embodiments, there is an increase in the expression of T-cell receptor (TCR) alpha and/or beta. In some embodiments, there is an increase in the expression of T-cell receptor (TCR) alpha. In some embodiments, there is an increase in the expression of T-cell receptor (TCR) beta. In some embodiments, there is an increase in the expression of TCRab (i.e., TCRα/β).


Cell Culture Materials and Methods Useful in the Present Invention

In an embodiment of the invention, a method for expanding TILs may include using about 5,000 mL to about 25,000 mL of cell medium, about 5,000 mL to about 10,000 mL of cell medium, or about 5,800 mL to about 8,700 mL of cell medium. In an embodiment, expanding the number of TILs uses no more than one type of cell culture medium. Any suitable cell culture medium may be used, e.g., AIM-V cell medium (L-glutamine, 50 μM streptomycin sulfate, and M gentamicin sulfate) cell culture medium (Invitrogen, Carlsbad Calif.). In this regard, the inventive methods advantageously reduce the amount of medium and the number of types of medium required to expand the number of TIL. In an embodiment, expanding the number of TIL may comprise adding fresh cell culture media to the cells (also referred to as feeding the cells) no more frequently than every third or fourth day. Expanding the number of cells in a gas permeable container simplifies the procedures necessary to expand the number of cells by reducing the feeding frequency necessary to expand the cells.


In some embodiments, the culture medium used in the expansion processes disclosed herein is a serum-free medium or a defined medium. In some embodiments, the serum-free or defined medium comprises a basal cell medium and a serum supplement and/or a serum replacement. In some embodiments, the serum-free or defined medium is used to prevent and/or decrease experimental variation due in part to the lot-to-lot variation of serum-containing media.


In some embodiments, the serum-free or defined medium comprises a basal cell medium and a serum supplement and/or serum replacement. In some embodiments, the basal cell medium includes, but is not limited to CTS™ OpTmizer™ T-cell Expansion Basal Medium, CTS™ OpTmizer™ T-Cell Expansion SFM, CTS™ AIM-V Medium, CTS™ AIM-V SFM, LymphoONE™ T-Cell Expansion Xeno-Free Medium. Dulbecco's Modified Eagle's Medium (DMEM), Minimal Essential Medium (MEM), Basal Medium Eagle (BME), RPMI 1640, F-10, F-12, Minimal Essential Medium (αMEM), Glasgow's Minimal Essential Medium (G-MEM), RPMI growth medium, and Iscove's Modified Dulbecco's Medium.


In some embodiments, the serum supplement or serum replacement includes, but is not limited to one or more of CTS™ OpTmizer T-Cell Expansion Serum Supplement, CTS™ Immune Cell Serum Replacement, one or more albumins or albumin substitutes, one or more amino acids, one or more vitamins, one or more transferrins or transferrin substitutes, one or more antioxidants, one or more insulins or insulin substitutes, one or more collagen precursors, one or more antibiotics, and one or more trace elements. In some embodiments, the defined medium comprises albumin and one or more ingredients selected from the group consisting of glycine, L-histidine, L-isoleucine, L-methionine, L-phenylalanine, L-proline, L-hydroxyproline, L-serine, L-threonine, L-tryptophan, L-tyrosine, L-valine, thiamine, reduced glutathione, L-ascorbic acid-2-phosphate, iron saturated transferrin, insulin, and compounds containing the trace element moieties Ag+, Al3+, Ba2+, Cd2+, Co2+, Cr3″, Ge4+, Se4−, Br, T, Mn2+, P, Si4+, V5+, Mo6+, Ni2+, Rb+, Sn2+ and Zr4+. In some embodiments, the defined medium further comprises L-glutamine, sodium bicarbonate and/or 2-mercaptoethanol.


In some embodiments, the CTS™ OpTmizer™ T-cell Immune Cell Serum Replacement is used with conventional growth media, including but not limited to CTS™ OpTmizer™ T-cell Expansion Basal Medium, CTS™ OpTmizer™ T-cell Expansion SFM, CTS™ AIM-V Medium, CST™ AIM-V SFM, LymphoONE™ T-Cell Expansion Xeno-Free Medium, Dulbecco's Modified Eagle's Medium (DMEM), Minimal Essential Medium (MEM), Basal Medium Eagle (BME), RPMI 1640, F-10, F-12, Minimal Essential Medium (αMEM), Glasgow's Minimal Essential Medium (G-MEM), RPMI growth medium, and Iscove's Modified Dulbecco's Medium.


In some embodiments, the total serum replacement concentration (vol %) in the serum-free or defined medium is from about 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, or 20% by volume of the total serum-free or defined medium. In some embodiments, the total serum replacement concentration is about 3% of the total volume of the serum-free or defined medium. In some embodiments, the total serum replacement concentration is about 5% of the total volume of the serum-free or defined medium. In some embodiments, the total serum replacement concentration is about 10% of the total volume of the serum-free or defined medium.


In some embodiments, the serum-free or defined medium is CTS™ OpTmizer™ T-cell Expansion SFM (ThermoFisher Scientific). Any formulation of CTS™ OpTmizer™ is useful in the present invention. CTS™ OpTmizer™ T-cell Expansion SFM is a combination of 1 L CTS™ OpTmizer™ T-cell Expansion Basal Medium and 26 mL CTS™ OpTmizer™ T-Cell Expansion Supplement, which are mixed together prior to use. In some embodiments, the CTS™ OpTmizer™ T-cell Expansion SFM is supplemented with about 3% of the CTS™ Immune Cell Serum Replacement (SR) (ThermoFisher Scientific). In some embodiments, the CTS™ OpTmizer™ T-cell Expansion SFM is supplemented with about 3% of the CTS™ Immune Cell Serum Replacement (SR) (ThermoFisher Scientific), along with 2-mercaptoethanol at 55 mM. In some embodiments, the CTS™ OpTmizer™ T-cell Expansion SFM is supplemented with about 3% of the CTS™ Immune Cell Serum Replacement (SR) (ThermoFisher Scientific) and the final concentration of 2-mercaptoethanol in the media is 55 μM.


In some embodiments, the defined medium is CTS™ OpTmizer™ T-cell Expansion SFM (ThermoFisher Scientific). Any formulation of CTS™ OpTmizer™ is useful in the present invention. CTS™ OpTmizer™ T-cell Expansion SFM is a combination of 1 L CTS™ OpTmizer™ T-cell Expansion Basal Medium and 26 mL CTS™ OpTmizer™ T-Cell Expansion Supplement, which are mixed together prior to use. In some embodiments, the CTS™ OpTmizer™ T-cell Expansion SFM is supplemented with about 3% of the CTS™ Immune Cell Serum Replacement (SR) (ThermoFisher Scientific), along with 2-mercaptoethanol at 55 mM. In some embodiments, the CTS™ OpTmizer™ T-cell Expansion SFM is supplemented with about 3% of the CTS™ Immune Cell Serum Replacement (SR) (Thermofisher Scientific), 55 mM of 2-mercaptoethanol, and 2 mM of L-glutamine. In some embodiments, the CTS™ OpTmizer™ T-cell Expansion SFM is supplemented with about 3% of the CTS™ Immune Cell Serum Replacement (SR) (ThermoFisher Scientific), 55 mM of 2-mercaptoethanol, and 2 mM of L-glutamine, and further comprises about 1000 IU/mL to about 8000 IU/mL of IL-2. In some embodiments, the CTS™ OpTmizer™ T-cell Expansion SFM is supplemented with about 3% of the CTS™ Immune Cell Serum Replacement (SR) (ThermoFisher Scientific), 55 mM of 2-mercaptoethanol, and 2 mM of L-glutamine, and further comprises about 3000 IU/mL of IL-2. In some embodiments, the CTS™ OpTmizer™ T-cell Expansion SFM is supplemented with about 3% of the CTS™ Immune Cell Serum Replacement (SR) (ThermoFisher Scientific), 55 mM of 2-mercaptoethanol, and 2 mM of L-glutamine, and further comprises about 6000 IU/mL of IL-2. In some embodiments, the CTS™ OpTmizer™ T-cell Expansion SFM is supplemented with about 3% of the CTS™ Immune Cell Serum Replacement (SR) (ThermoFisher Scientific) and 55 mM of 2-mercaptoethanol, and further comprises about 1000 IU/mL to about 8000 IU/mL of IL-2. In some embodiments, the CTS™ OpTmizer™ T-cell Expansion SFM is supplemented with about 3% of the CTS™ Immune Cell Serum Replacement (SR) (ThermoFisher Scientific) and 55 mM of 2-mercaptoethanol, and further comprises about 3000 IU/mL of IL-2. In some embodiments, the CTS™ OpTmizer™ T-cell Expansion SFM is supplemented with about 3% of the CTS™ Immune Cell Serum Replacement (SR) (ThermoFisher Scientific) and 55 mM of 2-mercaptoethanol, and further comprises about 1000 IU/mL to about 6000 IU/mL of IL-2. In some embodiments, the CTS™ OpTmizer™ T-cell Expansion SFM is supplemented with about 3% of the CTS™ Immune Cell Serum Replacement (SR) (ThermoFisher Scientific) and about 2 mM glutamine, and further comprises about 1000 IU/mL to about 8000 IU/mL of IL-2. In some embodiments, the CTS™ OpTmizer™ T-cell Expansion SFM is supplemented with about 3% of the CTS™ Immune Cell Serum Replacement (SR) (ThermoFisher Scientific) and about 2 mM glutamine, and further comprises about 3000 IU/mL of IL-2. In some embodiments, the CTS™ OpTmizer™ T-cell Expansion SFM is supplemented with about 3% of the CTS™ Immune Cell Serum Replacement (SR) (ThermoFisher Scientific) and about 2 mM glutamine, and further comprises about 6000 IU/mL of IL-2. In some embodiments, the CTS™ OpTmizer™ T-cell Expansion SFM is supplemented with about 3% of the CTS™ Immune Cell Serum Replacement (SR) (ThermoFisher Scientific) and the final concentration of 2-mercaptoethanol in the media is 55 μM.


In some embodiments, the serum-free medium or defined medium is supplemented with glutamine (i.e., GlutaMAX®) at a concentration of from about 0.1 mM to about 10 mM, 0.5 mM to about 9 mM, 1 mM to about 8 mM, 2 mM to about 7 mM, 3 mM to about 6 mM, or 4 mM to about 5 mM. In some embodiments, the serum-free medium or defined medium is supplemented with glutamine (i.e., GlutaMAX®) at a concentration of about 2 mM.


In some embodiments, the serum-free medium or defined medium is supplemented with 2-mercaptoethanol at a concentration of from about 5 mM to about 150 mM, 10 mM to about 140 mM, 15 mM to about 130 mM, 20 mM to about 120 mM, 25 mM to about 110 mM, 30 mM to about 100 mM, 35 mM to about 95 mM, 40 mM to about 90 mM, 45 mM to about 85 mM, 50 mM to about 80 mM, 55 mM to about 75 mM, 60 mM to about 70 mM, or about 65 mM. In some embodiments, the serum-free medium or defined medium is supplemented with 2-mercaptoethanol at a concentration of about 55 mM.


In some embodiments, the defined media described in International PCT Publication No. WO/1998/030679, which is herein incorporated by reference, are useful in the present invention. In that publication, serum-free eukaryotic cell culture media are described. The serum-free, eukaryotic cell culture medium includes a basal cell culture medium supplemented with a serum-free supplement capable of supporting the growth of cells in serum-free culture. The serum-free eukaryotic cell culture medium supplement comprises or is obtained by combining one or more ingredients selected from the group consisting of one or more albumins or albumin substitutes, one or more amino acids, one or more vitamins, one or more transferrins or transferrin substitutes, one or more antioxidants, one or more insulins or insulin substitutes, one or more collagen precursors, one or more trace elements, and one or more antibiotics. In some embodiments, the defined medium further comprises L-glutamine, sodium bicarbonate and/or beta-mercaptoethanol. In some embodiments, the defined medium comprises an albumin or an albumin substitute and one or more ingredients selected from group consisting of one or more amino acids, one or more vitamins, one or more transferrins or transferrin substitutes, one or more antioxidants, one or more insulins or insulin substitutes, one or more collagen precursors, and one or more trace elements. In some embodiments, the defined medium comprises albumin and one or more ingredients selected from the group consisting of glycine, L-histidine, L-isoleucine, L-methionine, L-phenylalanine, L-proline, L-hydroxyproline, L-serine, L-threonine, L-tryptophan, L-tyrosine, L-valine, thiamine, reduced glutathione, L-ascorbic acid-2-phosphate, iron saturated transferrin, insulin, and compounds containing the trace element moieties Ag+, Al3+, Ba2+, Cd2+, Co2+, Cr3″, Ge4+, Se4−, Br, T, Mn2+, P, Si4−, V5−, Mo6−, Ni2+, Rb+, Sn2+ and Zr4+. In some embodiments, the basal cell media is selected from the group consisting of Dulbecco's Modified Eagle's Medium (DMEM), Minimal Essential Medium (MEM), Basal Medium Eagle (BME), RPMI 1640, F-10, F-12, Minimal Essential Medium ((MEM), Glasgow's Minimal Essential Medium (G-MEM), RPMI growth medium, and Iscove's Modified Dulbecco's Medium.


In some embodiments, the concentration of glycine in the defined medium is in the range of from about 5-200 mg/L, the concentration of L-histidine is about 5-250 mg/L, the concentration of L-isoleucine is about 5-300 mg/L, the concentration of L-methionine is about 5-200 mg/L, the concentration of L-phenylalanine is about 5-400 mg/L, the concentration of L-proline is about 1-1000 mg/L, the concentration of L-hydroxyproline is about 1-45 mg/L, the concentration of L-serine is about 1-250 mg/L, the concentration of L-threonine is about 10-500 mg/L, the concentration of L-tryptophan is about 2-110 mg/L, the concentration of L-tyrosine is about 3-175 mg/L, the concentration of L-valine is about 5-500 mg/L, the concentration of thiamine is about 1-20 mg/L, the concentration of reduced glutathione is about 1-20 mg/L, the concentration of L-ascorbic acid-2-phosphate is about 1-200 mg/L, the concentration of iron saturated transferrin is about 1-50 mg/L, the concentration of insulin is about 1-100 mg/L, the concentration of sodium selenite is about 0.000001-0.0001 mg/L, and the concentration of albumin (e.g., AlbuMAX® I) is about 5000-50,000 mg/L.


In some embodiments, the non-trace element moiety ingredients in the defined medium are present in the concentration ranges listed in the column under the heading “Concentration Range in 1×Medium” in Table A below. In other embodiments, the non-trace element moiety ingredients in the defined medium are present in the final concentrations listed in the column under the heading “A Preferred Embodiment of the 1×Medium” in Table A below. In other embodiments, the defined medium is a basal cell medium comprising a serum free supplement. In some of these embodiments, the serum free supplement comprises non-trace moiety ingredients of the type and in the concentrations listed in the column under the heading “A Preferred Embodiment in Supplement” in Table A below.









TABLE A







Concentrations of Non-Trace Element Moiety Ingredients











A preferred

A preferred



embodiment
Concentration
embodiment



in
range
in1×



supplement
in IX medium
medium



(mg/L)
(mg/L)
(mg/L)


Ingredient
(About)
(About)
(About)













Glycine
150
5-200
53


L-Histidine
940
5-250
183


L-Isoleucine
3400
5-300
615


L-Methionine
90
5-200
44


L-Phenylalanine
1800
5-400
336


L-Proline
4000
 1-1000
600


L-Hydroxyproline
100
1-45 
15


L-Serine
800
1-250
162


L-Threonine
2200
10-500 
425


L-Tryptophan
440
2-110
82


L-Tyrosine
77
3-175
84


L-Valine
2400
5-500
454


Thiamine
33
1-20 
9


Reduced Glutathione
10
1-20 
1.5


Ascorbic Acid-2-PO4
330
1-200
50


(Mg Salt)





Transferrin (iron
55
1-50 
8


saturated)





Insulin
100
1-100
10


Sodium Selenite
0.07
0.000001-
0.00001




0.0001



AlbuMAX ®I
83,000
5000-50,000 
12,500









In some embodiments, the osmolarity of the defined medium is between about 260 and 350 mOsmol. In some embodiments, the osmolarity is between about 280 and 310 mOsmol. In some embodiments, the defined medium is supplemented with up to about 3.7 g/L, or about 2.2 g/L sodium bicarbonate. The defined medium can be further supplemented with L-glutamine (final concentration of about 2 mM), one or more antibiotics, non-essential amino acids (NEAA; final concentration of about 100 μM), 2-mercaptoethanol (final concentration of about 100 μM).


In some embodiments, the defined media described in Smith, et al., “Ex vivo expansion of human T cells for adoptive immunotherapy using the novel Xeno-free CTS Immune Cell Serum Replacement,”Clin Transl Immunology, 4(1) 2015 (doi: 10.1038/cti.2014.31) are useful in the present invention. Briefly, RPMI or CTS™ OpTmizer™ was used as the basal cell medium, and supplemented with either 0, 2%, 5%, or 10% CTS™ Immune Cell Serum Replacement.


In an embodiment, the cell medium in the first and/or second gas permeable container is unfiltered. The use of unfiltered cell medium may simplify the procedures necessary to expand the number of cells. In an embodiment, the cell medium in the first and/or second gas permeable container lacks beta-mercaptoethanol (BME or βME; also known as 2-mercaptoethanol, CAS 60-24-2).


In an embodiment, the cell medium is unfiltered. The use of unfiltered cell medium may simplify the procedures necessary to expand the number of cells. In an embodiment, the cell medium lacks beta-mercaptoethanol (BME).


In an embodiment, the duration of the methods described herein is from about 27 to about 50 days. In another embodiment, the duration is from about 28 to about 46 days. In another embodiment, the duration is from about 30 to about 42 days. In an embodiment of the invention, the duration of the method from the start of the first expansion to the end of the second expansion is about 31 days. In an embodiment of the invention, the duration of the method from the start of the first expansion to the end of the second expansion is about 35 days.


In an embodiment, TILs are expanded in gas-permeable containers. Gas-permeable containers have been used to expand TILs using methods, compositions, and devices known in the art, including those described in U.S. Patent Application Publication No. 2005/0106717 A1, the disclosures of which are incorporated herein by reference. In an embodiment, TILs are expanded in gas-permeable bags. In an embodiment, TILs are expanded using a cell expansion system that expands TILs in gas permeable bags, such as the Xuri Cell Expansion System W25 (GE Healthcare). In an embodiment, TILs are expanded using a cell expansion system that expands TILs in gas permeable bags, such as the WAVE Bioreactor System, also known as the Xuri Cell Expansion System W5 (GE Healthcare). In an embodiment, the cell expansion system includes a gas permeable cell bag with a volume selected from the group consisting of about 100 mL, about 200 mL, about 300 mL, about 400 mL, about 500 mL, about 600 mL, about 700 mL, about 800 mL, about 900 mL, about 1 L, about 2 L, about 3 L, about 4 L, about 5 L, about 6 L, about 7 L, about 8 L, about 9 L, and about 10 L. In an embodiment, TILs can be expanded in G-Rex flasks (commercially available from Wilson Wolf Manufacturing). Such embodiments allow for cell populations to expand from about 5×105 cells/cm2 to between 10×106 and 30×106 cells/cm2. In an embodiment this expansion is conducted without adding fresh cell culture media to the cells (also referred to as feeding the cells). In an embodiment, this is without feeding so long as medium resides at a height of about 10 cm in the GRex flask. In an embodiment this is without feeding but with the addition of one or more cytokines. In an embodiment, the cytokine can be added as a bolus without any need to mix the cytokine with the medium. Such containers, devices, and methods are known in the art and have been used to expand TILs, and include those described in U.S. Patent Application Publication No. US 2014/0377739A1, International Publication No. WO 2014/210036 A1, U.S. Patent Application Publication No. U.S. 2013/0115617 A1, International Publication No. WO 2013/188427 A1, U.S. Patent Application Publication No. US 2011/0136228 A1, U.S. Pat. No. 8,809,050 B2, International publication No. WO 2011/072088 A2, U.S. Patent Application Publication No. US 2016/0208216 A1, U.S. Patent Application Publication No. US 2012/0244133 A1, International Publication No. WO 2012/129201 A1, U.S. Patent Application Publication No. US 2013/0102075 A1, U.S. Pat. No. 8,956,860 B2, International Publication No. WO 2013/173835 A1, U.S. Patent Application Publication No. US 2015/0175966 A1, the disclosures of which are incorporated herein by reference. Such processes are also described in Jin et al., J. Immunotherapy, 2012, 35:283-292.


a. Anti-CD3 Antibodies


In some embodiments, the culture media used in expansion methods described herein include an anti-CD3 antibody. An anti-CD3 antibody in combination with IL-2 induces T cell activation and cell division in the TIL population. This effect can be seen with full length antibodies as well as Fab and F(ab′)2 fragments, with the former being generally preferred; see, e.g., Tsoukas et al., J. Immunol. 1985, 135, 1719, hereby incorporated by reference in its entirety.


As will be appreciated by those in the art, there are a number of suitable anti-human CD3 antibodies that find use in the invention, including anti-human CD3 polyclonal and monoclonal antibodies from various mammals, including, but not limited to, murine, human, primate, rat, and canine antibodies. In particular embodiments, the OKT3 anti-CD3 antibody is used (commercially available from Ortho-McNeil, Raritan, N J or Miltenyi Biotech, Auburn, Calif.).









TABLE 5







Amino acid sequences of muromonab (exemplary OKT-3 antibody)








Identifier
Sequence (One-Letter Amino Acid Symbols)





SEQ ID NO: 1
QVQLQQSGAE LARPGASVKM SCKASGYTFT RYTMHWVKQR PGQGLEWIGY INPSRGYTNY  60


Muromonab
NQKFKDKATL TTDKSSSTAY MQLSSLTSED SAVYYCARYY DDHYCLDYWG QGTTLTVSSA 120


heavy chain
KTTAPSVYPL APVCGGTTGS SVTLGCLVKG YFPEPVTLTW NSGSLSSGVH TFPAVLQSDL 180



YTLSSSVTVT SSTWPSQSIT CNVAHPASST KVDKKIEPRP KSCDKTHTCP PCPAPELLGG 240



PSVFLFPPKP KDTLMISRTP EVTCVVVDVS HEDPEVKFNW YVDGVEVHNA KTKPREEQYN 300



STYRVVSVLT VLHQDWLNGK EYKCKVSNKA LPAPIEKTIS KAKGQPREPQ VYTLPPSRDE 360



LTKNQVSLTC LVKGFYPSDI AVEWESNGQP ENNYKTTPPV LDSDGSFFLY SKLTVDKSRW 420



QQGNVFSCSV MHEALHNHYT QKSLSLSPGK                                  450





SEQ ID NO: 2
QIVLTQSPAI MSASPGEKVT MTCSASSSVS YMNWYQQKSG TSPKRWIYDT SKLASGVPAH  60


Muromonab
FRGSGSGTSY SLTISGMEAE DAATYYCQQW SSNPFTFGSG TKLEINRADT APTVSIFPPS 120


light chain
SEQLTSGGAS VVCFLNNFYP KDINVKWKID GSERQNGVLN SWTDQDSKDS TYSMSSTLTL 180



TKDEYERHNS YTCEATHKTS TSPIVKSFNR NEC                              213










b. TNFRSF Agonists (4-1BB (CD137))


In an embodiment, the cell culture medium of the first expansion and/or the second expansion comprises a TNFRSF agonist. In an embodiment, the TNFRSF agonist is a 4-1BB (CD137) agonist. The 4-1BB agonist may be any 4-1BB binding molecule known in the art. The 4-1BB binding molecule may be a monoclonal antibody or fusion protein capable of binding to human or mammalian 4-1BB. The 4-1BB agonists or 4-1BB binding molecules may comprise an immunoglobulin heavy chain of any isotype (e.g., IgG, IgE, IgM, IgD, IgA, and IgY), class (e.g., IgG1, IgG2, IgG3, IgG4, IgA1 and IgA2) or subclass of immunoglobulin molecule. The 4-1BB agonist or 4-1BB binding molecule may have both a heavy and a light chain. As used herein, the term binding molecule also includes antibodies (including full length antibodies), monoclonal antibodies (including full length monoclonal antibodies), polyclonal antibodies, multispecific antibodies (e.g., bispecific antibodies), human, humanized or chimeric antibodies, and antibody fragments, e.g., Fab fragments, F(ab′) fragments, fragments produced by a Fab expression library, epitope-binding fragments of any of the above, and engineered forms of antibodies, e.g., scFv molecules, that bind to 4-1BB. In an embodiment, the 4-1BB agonist is an antigen binding protein that is a fully human antibody. In an embodiment, the 4-1BB agonist is an antigen binding protein that is a humanized antibody. In some embodiments, 4-1BB agonists for use in the presently disclosed methods and compositions include anti-4-1BB antibodies, human anti-4-1BB antibodies, mouse anti-4-1BB antibodies, mammalian anti-4-1BB antibodies, monoclonal anti-4-1BB antibodies, polyclonal anti-4-1BB antibodies, chimeric anti-4-1BB antibodies, anti-4-1BB adnectins, anti-4-1BB domain antibodies, single chain anti-4-1BB fragments, heavy chain anti-4-1BB fragments, light chain anti-4-1BB fragments, anti-4-1BB fusion proteins, and fragments, derivatives, conjugates, variants, or biosimilars thereof. Agonistic anti-4-1BB antibodies are known to induce strong immune responses. Lee, et al., PLOS One 2013, 8, e69677. In a preferred embodiment, the 4-1BB agonist is an agonistic, anti-4-1BB humanized or fully human monoclonal antibody (i.e., an antibody derived from a single cell line). In an embodiment, the 4-1BB agonist is EU-101 (Eutilex Co. Ltd.), utomilumab, or urelumab, or a fragment, derivative, conjugate, variant, or biosimilar thereof. In a preferred embodiment, the 4-1BB agonist is utomilumab or urelumab, or a fragment, derivative, conjugate, variant, or biosimilar thereof.


In a preferred embodiment, the 4-1BB agonist or 4-1BB binding molecule may also be a fusion protein. In a preferred embodiment, a multimeric 4-1BB agonist, such as a trimeric or hexameric 4-1BB agonist (with three or six ligand binding domains), may induce superior receptor (4-1BBL) clustering and internal cellular signaling complex formation compared to an agonistic monoclonal antibody, which typically possesses two ligand binding domains. Trimeric (trivalent) or hexameric (or hexavalent) or greater fusion proteins comprising three TNFRSF binding domains and IgG1-Fc and optionally further linking two or more of these fusion proteins are described, e.g., in Gieffers, et al., Mol. Cancer Therapeutics 2013, 12, 2735-47.


Agonistic 4-1BB antibodies and fusion proteins are known to induce strong immune responses. In a preferred embodiment, the 4-1BB agonist is a monoclonal antibody or fusion protein that binds specifically to 4-1BB antigen in a manner sufficient to reduce toxicity. In some embodiments, the 4-1BB agonist is an agonistic 4-1BB monoclonal antibody or fusion protein that abrogates antibody-dependent cellular toxicity (ADCC), for example NK cell cytotoxicity. In some embodiments, the 4-1BB agonist is an agonistic 4-1BB monoclonal antibody or fusion protein that abrogates antibody-dependent cell phagocytosis (ADCP). In some embodiments, the 4-1BB agonist is an agonistic 4-1BB monoclonal antibody or fusion protein that abrogates complement-dependent cytotoxicity (CDC). In some embodiments, the 4-1BB agonist is an agonistic 4-1BB monoclonal antibody or fusion protein which abrogates Fc region functionality.


In some embodiments, the 4-1BB agonists are characterized by binding to human 4-1BB (SEQ ID NO:9) with high affinity and agonistic activity. In an embodiment, the 4-1BB agonist is a binding molecule that binds to human 4-1BB (SEQ ID NO:9). In an embodiment, the 4-1BB agonist is a binding molecule that binds to murine 4-1BB (SEQ ID NO:10). The amino acid sequences of 4-1BB antigen to which a 4-1BB agonist or binding molecule binds are summarized in Table 6.









TABLE 6







Amino acid sequences of 4-1BB antigens.








Identifier
Sequence (One-Letter Amino Acid Symbols)





SEQ ID NO: 9
MGNSCYNIVA TLLLVLNFER TRSLQDPCSN CPAGTFCDNN RNQICSPCPP NSFSSAGGQR  60


human 4-1BB,
TCDICRQCKG VFRTRKECSS TSNAECDCTP GFHCLGAGCS MCEQDCKQGQ ELTKKGCKDC 120


Tumor necrosis
CFGTFNDQKR GICRPWTNCS LDGKSVLVNG TKERDVVCGP SPADLSPGAS SVTPPAPARE 180


factor receptor
PGHSPQIISF FLALTSTALL FLLFFLTLRF SVVKRGRKKL LYIFKQPFMR PVQTTQEEDG 240


superfamily,
CSCRFPEEEE GGCEL                                                  255


member 9



(Homosapiens)






SEQ ID NO: 10
MGNNCYNVVV IVLLLVGCEK VGAVQNSCDN CQPGTFCRKY NPVCKSCPPS TFSSIGGQPN  60


murine 4-1BB,
CNICRVCAGY FRFKKFCSST HNAECECIEG FHCLGPQCTR CEKDCRPGQE LTKQGCKTCS 120


Tumor necrosis
LGTFNDQNGT GVCRPWTNCS LDGRSVLKTG TTEKDVVCGP PVVSFSPSTT ISVTPEGGPG 180


factor receptor
GHSLQVLTLF LALTSALLLA LIFITLLFSV LKWIRKKFPH IFKQPFKKTT GAAQEEDACS 240


superfamily,
CRCPQEEEGG GGGYEL                                                 256


member 9 (Mus




musculus) 










In some embodiments, the compositions, processes and methods described include a 4-1BB agonist that binds human or murine 4-1BB with a KD of about 100 μM or lower, binds human or murine 4-1BB with a KD of about 90 μM or lower, binds human or murine 4-1BB with a KD of about 80 μM or lower, binds human or murine 4-1BB with a KD of about 70 μM or lower, binds human or murine 4-1BB with a KD of about 60 μM or lower, binds human or murine 4-1BB with a KD of about 50 μM or lower, binds human or murine 4-1BB with a KD of about 40 μM or lower, or binds human or murine 4-1BB with a KD of about 30 μM or lower.


In some embodiments, the compositions, processes and methods described include a 4-1BB agonist that binds to human or murine 4-1BB with a kassoc of about 7.5×105 l/M s or faster, binds to human or murine 4-1BB with a kassoc of about 7.5×105 l/M s or faster, binds to human or murine 4-1BB with a kassoc of about 8×105 l/M s or faster, binds to human or murine 4-1BB with a kassoc of about 8.5×105 l/M s or faster, binds to human or murine 4-1BB with a kassoc of about 9×105 l/M s or faster, binds to human or murine 4-1BB with a kassoc of about 9.5×105 l/M s or faster, or binds to human or murine 4-1BB with a kassoc of about 1×106 1/M·s or faster.


In some embodiments, the compositions, processes and methods described include a 4-1BB agonist that binds to human or murine 4-1BB with a kdissoc of about 2×10−5 l/s or slower, binds to human or murine 4-1BB with a kdissoc of about 2.1×10−5 l/s or slower, binds to human or murine 4-1BB with a kdissoc of about 2.2×10−5 l/s or slower, binds to human or murine 4-1BB with a kdissoc of about 2.3×10−5 l/s or slower, binds to human or murine 4-1BB with a kdissoc of about 2.4×10−5 l/s or slower, binds to human or murine 4-1BB with a kdissoc of about 2.5×10−5 l/s or slower, binds to human or murine 4-1BB with a kdissoc of about 2.6×10−5 l/s or slower or binds to human or murine 4-1BB with a kdissoc of about 2.7×10−5 l/s or slower, binds to human or murine 4-1BB with a kdissoc of about 2.8×10−5 l/s or slower, binds to human or murine 4-1BB with a kdissoc of about 2.9×10−5 l/s or slower, or binds to human or murine 4-1BB with a kdissoc of about 3×10−5 l/s or slower.


In some embodiments, the compositions, processes and methods described include a 4-1BB agonist that binds to human or murine 4-1BB with an IC50 of about 10 nM or lower, binds to human or murine 4-1BB with an IC50 of about 9 nM or lower, binds to human or murine 4-1BB with an IC50 of about 8 nM or lower, binds to human or murine 4-1BB with an IC50 of about 7 nM or lower, binds to human or murine 4-1BB with an IC50 of about 6 nM or lower, binds to human or murine 4-1BB with an IC50 of about 5 nM or lower, binds to human or murine 4-1BB with an IC50 of about 4 nM or lower, binds to human or murine 4-1BB with an IC50 of about 3 nM or lower, binds to human or murine 4-1BB with an IC50 of about 2 nM or lower, or binds to human or murine 4-1BB with an IC50 of about 1 nM or lower.


In a preferred embodiment, the 4-1BB agonist is utomilumab, also known as PF-05082566 or MOR-7480, or a fragment, derivative, variant, or biosimilar thereof. Utomilumab is available from Pfizer, Inc. Utomilumab is an immunoglobulin G2-lambda, anti-[Homo sapiens TNFRSF9 (tumor necrosis factor receptor (TNFR) superfamily member 9, 4-1BB, T cell antigen ILA, CD137)], Homo sapiens (fully human) monoclonal antibody. The amino acid sequences of utomilumab are set forth in Table 7. Utomilumab comprises glycosylation sites at Asn59 and Asn292; heavy chain intrachain disulfide bridges at positions 22-96 (VH-VL), 143-199 (CH1-CL), 256-316 (CH2) and 362-420 (CH3); light chain intrachain disulfide bridges at positions 22′-87′ (VH-VL) and 136′-195′ (CH1-CL); interchain heavy chain-heavy chain disulfide bridges at IgG2A isoform positions 218-218, 219-219, 222-222, and 225-225, at IgG2A/B isoform positions 218-130, 219-219, 222-222, and 225-225, and at IgG2B isoform positions 219-130 (2), 222-222, and 225-225; and interchain heavy chain-light chain disulfide bridges at IgG2A isoform positions 130-213′ (2), IgG2A/B isoform positions 218-213′ and 130-213′, and at IgG2B isoform positions 218-213′ (2). The preparation and properties of utomilumab and its variants and fragments are described in U.S. Pat. Nos. 8,821,867; 8,337,850; and 9,468,678, and International Patent Application Publication No. WO 2012/032433 A1, the disclosures of each of which are incorporated by reference herein. Preclinical characteristics of utomilumab are described in Fisher, et al., Cancer Immunolog. & Immunother. 2012, 61, 1721-33. Current clinical trials of utomilumab in a variety of hematological and solid tumor indications include U.S. National Institutes of Health clinicaltrials.gov identifiers NCT02444793, NCT01307267, NCT02315066, and NCT02554812.


In an embodiment, a 4-1BB agonist comprises a heavy chain given by SEQ ID NO:11 and a light chain given by SEQ ID NO:12. In an embodiment, a 4-1BB agonist comprises heavy and light chains having the sequences shown in SEQ ID NO:11 and SEQ ID NO:12, respectively, or antigen binding fragments, Fab fragments, single-chain variable fragments (scFv), variants, or conjugates thereof. In an embodiment, a 4-1BB agonist comprises heavy and light chains that are each at least 99% identical to the sequences shown in SEQ ID NO:1 l and SEQ ID NO:12, respectively. In an embodiment, a 4-1BB agonist comprises heavy and light chains that are each at least 98% identical to the sequences shown in SEQ ID NO:11 and SEQ ID NO:12, respectively. In an embodiment, a 4-1BB agonist comprises heavy and light chains that are each at least 97% identical to the sequences shown in SEQ ID NO:11 and SEQ ID NO:12, respectively. In an embodiment, a 4-1BB agonist comprises heavy and light chains that are each at least 96% identical to the sequences shown in SEQ ID NO:11 and SEQ ID NO:12, respectively. In an embodiment, a 4-1BB agonist comprises heavy and light chains that are each at least 95% identical to the sequences shown in SEQ ID NO:11 and SEQ ID NO:12, respectively.


In an embodiment, the 4-1BB agonist comprises the heavy and light chain CDRs or variable regions (VRs) of utomilumab. In an embodiment, the 4-1BB agonist heavy chain variable region (VH) comprises the sequence shown in SEQ ID NO:13, and the 4-1BB agonist light chain variable region (VL) comprises the sequence shown in SEQ ID NO:14, and conservative amino acid substitutions thereof. In an embodiment, a 4-1BB agonist comprises VH and VL regions that are each at least 99% identical to the sequences shown in SEQ ID NO:13 and SEQ ID NO:14, respectively. In an embodiment, a 4-1BB agonist comprises VH and VL regions that are each at least 98% identical to the sequences shown in SEQ ID NO:13 and SEQ ID NO:14, respectively. In an embodiment, a 4-1BB agonist comprises VH and VL regions that are each at least 97% identical to the sequences shown in SEQ ID NO:13 and SEQ ID NO:14, respectively. In an embodiment, a 4-1BB agonist comprises VH and VL regions that are each at least 96% identical to the sequences shown in SEQ ID NO:13 and SEQ ID NO:14, respectively. In an embodiment, a 4-1BB agonist comprises VH and VL regions that are each at least 95% identical to the sequences shown in SEQ ID NO:13 and SEQ ID NO:14, respectively. In an embodiment, a 4-1BB agonist comprises an scFv antibody comprising VH and VL regions that are each at least 99% identical to the sequences shown in SEQ ID NO:13 and SEQ ID NO:14.


In an embodiment, a 4-1BB agonist comprises heavy chain CDR1, CDR2 and CDR3 domains having the sequences set forth in SEQ ID NO:15, SEQ ID NO:16, and SEQ ID NO:17, respectively, and conservative amino acid substitutions thereof, and light chain CDR1, CDR2 and CDR3 domains having the sequences set forth in SEQ ID NO:18, SEQ ID NO:19, and SEQ ID NO:20, respectively, and conservative amino acid substitutions thereof.


In an embodiment, the 4-1BB agonist is a 4-1BB agonist biosimilar monoclonal antibody approved by drug regulatory authorities with reference to utomilumab. In an embodiment, the biosimilar monoclonal antibody comprises an 4-1BB antibody comprising an amino acid sequence which has at least 97% sequence identity, e.g., 97%, 98%, 99% or 100% sequence identity, to the amino acid sequence of a reference medicinal product or reference biological product and which comprises one or more post-translational modifications as compared to the reference medicinal product or reference biological product, wherein the reference medicinal product or reference biological product is utomilumab. In some embodiments, the one or more post-translational modifications are selected from one or more of: glycosylation, oxidation, deamidation, and truncation. In some embodiments, the biosimilar is a 4-1BB agonist antibody authorized or submitted for authorization, wherein the 4-1BB agonist antibody is provided in a formulation which differs from the formulations of a reference medicinal product or reference biological product, wherein the reference medicinal product or reference biological product is utomilumab. The 4-1BB agonist antibody may be authorized by a drug regulatory authority such as the U.S. FDA and/or the European Union's EMA. In some embodiments, the biosimilar is provided as a composition which further comprises one or more excipients, wherein the one or more excipients are the same or different to the excipients comprised in a reference medicinal product or reference biological product, wherein the reference medicinal product or reference biological product is utomilumab. In some embodiments, the biosimilar is provided as a composition which further comprises one or more excipients, wherein the one or more excipients are the same or different to the excipients comprised in a reference medicinal product or reference biological product, wherein the reference medicinal product or reference biological product is utomilumab.









TABLE 7







Amino acid sequences for 4-1BB agonist antibodies


related to utomilumab.








Identifier
Sequence (One-Letter Amino Acid Symbols)












SEQ ID NO: 11
EVQLVQSGAE VKKPGESLRI SCKGSGYSFS TYWISWVRQM
60


heavy chain for
PGKGLEWMGK IYPGDSYTNY



utomilumab
SPSFQGQVTI SADKSISTAY LQWSSLKASD TAMYYCARGY
120



GIFDYWGQGT LVTVSSASTK




GPSVFPLAPC SRSTSESTAA LGCLVKDYFP EPVTVSWNSG
180



ALTSGVHTFP AVLQSSGLYS




LSSVVTVPSS NFGTQTYTCN VDHKPSNTKV DKTVERKCCV
240



ECPPCPAPPV AGPSVFLFPP




KPKDTLMISR TPEVTCVVVD VSHEDPEVQF NWYVDGVEVH
300



NAKTKPREEQ FNSTFRVVSV




LTVVHQDWLN GKEYKCKVSN KGLPAPIEKT ISKTKGQPRE
360



PQVYTLPPSR EEMTKNQVSL




TCLVKGFYPS DIAVEWESNG QPENNYKTTP PMLDSDGSFF
420



LYSKLTVDKS RWQQGNVFSC




SVMHEALHNH YTQKSLSLSP G
441





SEQ ID NO: 12
SYELTQPPSV SVSPGQTASI TCSGDNIGDQ YAHWYQQKPG
60


light chain for
QSPVLVIYQD KNRPSGIPER



utomilumab
FSGSNSGNTA TLTISGTQAM DEADYYCATY TGFGSLAVFG
120



GGTKLTVLGQ PKAAPSVTLF




PPSSEELQAN KATLVCLISD FYPGAVTVAW KADSSPVKAG
180



VETTTPSKQS NNKYAASSYL




SLTPEQWKSH RSYSCQVTHE GSTVEKTVAP TECS
214





SEQ ID NO: 13
EVQLVQSGAE VKKPGESLRI SCKGSGYSFS TYWISWVRQM
60


heavy chain
PGKGLEWMGK FYPGDSYTN



variable region
YSPSFQGQVT ISADKSISTA YLQWSSLKAS DTAMYYCARG
118


for utomilumab
YGIFDYWGQ GTLVTVSS






SEQ ID NO: 14
SYELTQPPSV SVSPGQTASI TCSGDNIGDQ YAHWYQQKPG
60


light chain
QSPVLVIYQD KNRPSGIPER



variable region
FSGSNSGNTA TLTISGTQAM DEADYYCATY TGFGSLAVFG
108


for utomilumab
GGTKLTVL






SEQ ID NO: 15
STYWIS
6


heavy chain




CDR1 for




utomilumab







SEQ ID NO: 16
KIYPGDSYTN YSPSFQG
17


heavy chain




CDR2 for




utomilumab







SEQ ID NO: 17
RGYGIFDY
8


heavy chain




CDR3 for




utomilumab







SEQ ID NO: 18
SGDNIGDQYA H
11


light chain




CDR1 for




utomilumab







SEQ ID NO: 19
QDKNRPS
7


light chain




CDR2 for




utomilumab







SEQ ID NO: 20
ATYTGFGSLA V
11


light chain




CDR3 for




utomilumab









In a preferred embodiment, the 4-1BB agonist is the monoclonal antibody urelumab, also known as BMS-663513 and 20H4.9.h4a, or a fragment, derivative, variant, or biosimilar thereof. Urelumab is available from Bristol-Myers Squibb, Inc., and Creative Biolabs, Inc. Urelumab is an immunoglobulin G4-kappa, anti-[Homo sapiens TNFRSF9 (tumor necrosis factor receptor superfamily member 9, 4-1BB, T cell antigen ILA, CD137)], Homo sapiens (fully human) monoclonal antibody. The amino acid sequences of urelumab are set forth in Table EE. Urelumab comprises N-glycosylation sites at positions 298 (and 298″); heavy chain intrachain disulfide bridges at positions 22-95 (VH-VL), 148-204 (CH1-CL), 262-322 (CH2) and 368-426 (CH3) (and at positions 22″-95″, 148″-204″, 262″-322″, and 368″-426″); light chain intrachain disulfide bridges at positions 23′-88′ (VH-VL) and 136′-196′ (CH1-CL) (and at positions 23″′-88″′ and 136″′-196″′); interchain heavy chain-heavy chain disulfide bridges at positions 227-227″ and 230-230″; and interchain heavy chain-light chain disulfide bridges at 135-216′ and 135″-216″′. The preparation and properties of urelumab and its variants and fragments are described in U.S. Pat. Nos. 7,288,638 and 8,962,804, the disclosures of which are incorporated by reference herein. The preclinical and clinical characteristics of urelumab are described in Segal, et al., Clin. Cancer Res. 2016, available at http:/dx.doi.org/10.1158/1078-0432.CCR-16-1272. Current clinical trials of urelumab in a variety of hematological and solid tumor indications include U.S. National Institutes of Health clinicaltrials.gov identifiers NCT01775631, NCT02110082, NCT02253992, and NCT01471210.


In an embodiment, a 4-1BB agonist comprises a heavy chain given by SEQ ID NO:21 and a light chain given by SEQ ID NO:22. In an embodiment, a 4-1BB agonist comprises heavy and light chains having the sequences shown in SEQ ID NO:21 and SEQ ID NO:22, respectively, or antigen binding fragments, Fab fragments, single-chain variable fragments (scFv), variants, or conjugates thereof. In an embodiment, a 4-1BB agonist comprises heavy and light chains that are each at least 99% identical to the sequences shown in SEQ ID NO:21 and SEQ ID NO:22, respectively. In an embodiment, a 4-1BB agonist comprises heavy and light chains that are each at least 98% identical to the sequences shown in SEQ ID NO:21 and SEQ ID NO:22, respectively. In an embodiment, a 4-1BB agonist comprises heavy and light chains that are each at least 97% identical to the sequences shown in SEQ ID NO:21 and SEQ ID NO:22, respectively. In an embodiment, a 4-1BB agonist comprises heavy and light chains that are each at least 96% identical to the sequences shown in SEQ ID NO:21 and SEQ ID NO:22, respectively. In an embodiment, a 4-1BB agonist comprises heavy and light chains that are each at least 95% identical to the sequences shown in SEQ ID NO:21 and SEQ ID NO:22, respectively.


In an embodiment, the 4-1BB agonist comprises the heavy and light chain CDRs or variable regions (VRs) of urelumab. In an embodiment, the 4-1BB agonist heavy chain variable region (VH) comprises the sequence shown in SEQ ID NO:23, and the 4-1BB agonist light chain variable region (VL) comprises the sequence shown in SEQ ID NO:24, and conservative amino acid substitutions thereof. In an embodiment, a 4-1BB agonist comprises VH and VL regions that are each at least 99% identical to the sequences shown in SEQ ID NO:23 and SEQ ID NO:24, respectively. In an embodiment, a 4-1BB agonist comprises VH and VL regions that are each at least 98% identical to the sequences shown in SEQ ID NO:23 and SEQ ID NO:24, respectively. In an embodiment, a 4-1BB agonist comprises VH and VL regions that are each at least 97% identical to the sequences shown in SEQ ID NO:23 and SEQ ID NO:24, respectively. In an embodiment, a 4-1BB agonist comprises VH and VL regions that are each at least 96% identical to the sequences shown in SEQ ID NO:23 and SEQ ID NO:24, respectively. In an embodiment, a 4-1BB agonist comprises VH and VL regions that are each at least 95% identical to the sequences shown in SEQ ID NO:23 and SEQ ID NO:24, respectively. In an embodiment, a 4-1BB agonist comprises an scFv antibody comprising VH and VL regions that are each at least 99% identical to the sequences shown in SEQ ID NO:23 and SEQ ID NO:24.


In an embodiment, a 4-1BB agonist comprises heavy chain CDR1, CDR2 and CDR3 domains having the sequences set forth in SEQ ID NO:25, SEQ ID NO:26, and SEQ ID NO:27, respectively, and conservative amino acid substitutions thereof, and light chain CDR1, CDR2 and CDR3 domains having the sequences set forth in SEQ ID NO:28, SEQ ID NO:29, and SEQ ID NO:30, respectively, and conservative amino acid substitutions thereof.


In an embodiment, the 4-1BB agonist is a 4-1BB agonist biosimilar monoclonal antibody approved by drug regulatory authorities with reference to urelumab. In an embodiment, the biosimilar monoclonal antibody comprises an 4-1BB antibody comprising an amino acid sequence which has at least 97% sequence identity, e.g., 97%, 98%, 99% or 100% sequence identity, to the amino acid sequence of a reference medicinal product or reference biological product and which comprises one or more post-translational modifications as compared to the reference medicinal product or reference biological product, wherein the reference medicinal product or reference biological product is urelumab. In some embodiments, the one or more post-translational modifications are selected from one or more of: glycosylation, oxidation, deamidation, and truncation. In some embodiments, the biosimilar is a 4-1BB agonist antibody authorized or submitted for authorization, wherein the 4-1BB agonist antibody is provided in a formulation which differs from the formulations of a reference medicinal product or reference biological product, wherein the reference medicinal product or reference biological product is urelumab. The 4-1BB agonist antibody may be authorized by a drug regulatory authority such as the U.S. FDA and/or the European Union's EMA. In some embodiments, the biosimilar is provided as a composition which further comprises one or more excipients, wherein the one or more excipients are the same or different to the excipients comprised in a reference medicinal product or reference biological product, wherein the reference medicinal product or reference biological product is urelumab. In some embodiments, the biosimilar is provided as a composition which further comprises one or more excipients, wherein the one or more excipients are the same or different to the excipients comprised in a reference medicinal product or reference biological product, wherein the reference medicinal product or reference biological product is urelumab.









TABLE 8







Amino acid sequences for 4-1BB agonist antibodies


related to urelumab.








Identifier
Sequence (One-Letter Amino Acid Symbols)












SEQ ID NO: 21
QVQLQQWGAG LLKPSETLSL TCAVYGGSFS GYYWSWIRQS
60


heavy chain for
PEKGLEWIGE INHGGYVTYN



urelumab
PSLESRVTIS VDTSKNQFSL KLSSVTAADT AVYYCARDYG
120



PGNYDWYFDL WGRGTLVTVS




SASTKGPSVF PLAPCSRSTS ESTAALGCLV KDYFPEPVTV
180



SWNSGALTSG VHTFPAVLQS




SGLYSLSSVV TVPSSSLGTK TYTCNVDHKP SNTKVDKRVE
240



SKYGPPCPPC PAPEFLGGPS




VFLFPPKPKD TLMISRTPEV TCVVVDVSQE DPEVQFNWYV
300



DGVEVHNAKT KPREEQFNST




YRVVSVLTVL HQDWLNGKEY KCKVSNKGLP SSIEKTISKA
360



KGQPREPQVY TLPPSQEEMT




KNQVSLTCLV KGFYPSDIAV EWESNGQPEN NYKTTPPVLD
420



SDGSFFLYSR LTVDKSRWQE




GNVFSCSVMH EALHNHYTQK SLSLSLGK
448





SEQ ID NO: 22
EIVLTQSPAT LSLSPGERAT LSCRASQSVS SYLAWYQQKP
60


light chain for
GQAPRLLIYD ASNRATGIPA



urelumab
RFSGSGSGTD FTLTISSLEP EDFAVYYCQQ RSNWPPALTF
120



CGGTKVEIKR TVAAPSVFIF




PPSDEQLKSG TASVVCLLNN FYPREAKVQW KVDNALQSGN
180



SQESVTEQDS KDSTYSLSST




LTLSKADYEK HKVYACEVTH QGLSSPVTKS FNRGEC
216





SEQ ID NO: 23
MKHLWFFLLL VAAPRWVLSQ VQLQQWGAGL LKPSETLSLT
60


variable heavy
CAVYGGSFSG YYWSWIRQSP



chain for
EKGLEWIGEI NHGGYVTYNP SLESRVTISV DTSKNQFSLK
120


urelumab
LSSVTAADTA VYYCARDYGP






SEQ ID NO: 24
MEAPAQLLFL LLLWLPDTTG EIVLTQSPAT LSLSPGERAT
60


variable light
LSCRASQSVS SYLAWYQQKP



chain for
GQAPRLLIYD ASNRATGIPA RFSGSGSGTD FTLTISSLEP
110


urelumab
EDFAVYYCQQ






SEQ ID NO: 25
GYYWS
5


heavy chain




CDR1 for




urelumab







SEQ ID NO: 26
EINHGGYVTY NPSLES
16


heavy chain




CDR2 for




urelumab







SEQ ID NO: 27
DYGPGNYDWY FDL
13


heavy chain




CDR3 for




urelumab







SEQ ID NO: 28
RASQSVSSYL A
11


light chain




CDR1 for




urelumab







SEQ ID NO: 29
DASNRAT
7


light chain




CDR2 for




urelumab







SEQ ID NO: 30
QQRSDWPPAL T
11


light chain




CDR3 for




urelumab









In an embodiment, the 4-1BB agonist is selected from the group consisting of 1D8, 3Elor, 4B4 (BioLegend 309809), H4-1BB-M127 (BD Pharmingen 552532), BBK2 (Thermo Fisher MS621PABX), 145501 (Leinco Technologies B591), the antibody produced by cell line deposited as ATCC No. HB-11248 and disclosed in U.S. Pat. Nos. 6,974,863, 5F4 (BioLegend 31 1503), C65-485 (BD Pharmingen 559446), antibodies disclosed in U.S. Patent Application Publication No. US 2005/0095244, antibodies disclosed in U.S. Pat. No. 7,288,638 (such as 20H4.9-IgG1 (BMS-663031)), antibodies disclosed in U.S. Pat. No. 6,887,673 (such as 4E9 or BMS-554271), antibodies disclosed in U.S. Pat. No. 7,214,493, antibodies disclosed in U.S. Pat. No. 6,303,121, antibodies disclosed in U.S. Pat. No. 6,569,997, antibodies disclosed in U.S. Pat. No. 6,905,685 (such as 4E9 or BMS-554271), antibodies disclosed in U.S. Pat. No. 6,362,325 (such as 1D8 or BMS-469492; 3H3 or BMS-469497; or 3E1), antibodies disclosed in U.S. Pat. No. 6,974,863 (such as 53A2); antibodies disclosed in U.S. Pat. No. 6,210,669 (such as 1D8, 3B8, or 3E1), antibodies described in U.S. Pat. No. 5,928,893, antibodies disclosed in U.S. Pat. No. 6,303,121, antibodies disclosed in U.S. Pat. No. 6,569,997, antibodies disclosed in International Patent Application Publication Nos. WO 2012/177788, WO 2015/119923, and WO 2010/042433, and fragments, derivatives, conjugates, variants, or biosimilars thereof, wherein the disclosure of each of the foregoing patents or patent application publications is incorporated by reference here.


In an embodiment, the 4-1BB agonist is a 4-1BB agonistic fusion protein described in International Patent Application Publication Nos. WO 2008/025516 A1, WO 2009/007120 A1, WO 2010/003766 A1, WO 2010/010051 A1, and WO 2010/078966 A1; U.S. Patent Application Publication Nos. US 2011/0027218 A1, US 2015/0126709 A1, US 2011/0111494 A1, US 2015/0110734 A1, and US 2015/0126710 A1; and U.S. Pat. Nos. 9,359,420, 9,340,599, 8,921,519, and 8,450,460, the disclosures of which are incorporated by reference herein.


In an embodiment, the 4-1BB agonist is a 4-1BB agonistic fusion protein as depicted in Structure I-A (C-terminal Fc-antibody fragment fusion protein) or Structure I-B (N-terminal Fc-antibody fragment fusion protein) of FIG. 15, or a fragment, derivative, conjugate, variant, or biosimilar thereof.


In structures I-A and I-B, the cylinders refer to individual polypeptide binding domains. Structures I-A and I-B comprise three linearly-linked TNFRSF binding domains derived from e.g., 4-1BBL or an antibody that binds 4-1BB, which fold to form a trivalent protein, which is then linked to a second triavelent protein through IgG1-Fc (including CH3 and CH2 domains) is then used to link two of the trivalent proteins together through disulfide bonds (small elongated ovals), stabilizing the structure and providing an agonists capable of bringing together the intracellular signaling domains of the six receptors and signaling proteins to form a signaling complex. The TNFRSF binding domains denoted as cylinders may be scFv domains comprising, e.g., a VH and a VL chain connected by a linker that may comprise hydrophilic residues and Gly and Ser sequences for flexibility, as well as Glu and Lys for solubility. Any scFv domain design may be used, such as those described in de Marco, Microbial Cell Factories, 2011, 10, 44; Ahmad, et al., Clin. & Dev. Immunol. 2012, 980250; Monnier, et al., Antibodies, 2013, 2, 193-208; or in references incorporated elsewhere herein. Fusion protein structures of this form are described in U.S. Pat. Nos. 9,359,420, 9,340,599, 8,921,519, and 8,450,460, the disclosures of which are incorporated by reference herein.


Amino acid sequences for the other polypeptide domains of structure I-A are given in Table 9. The Fc domain preferably comprises a complete constant domain (amino acids 17-230 of SEQ ID NO:31) the complete hinge domain (amino acids 1-16 of SEQ ID NO:31) or a portion of the hinge domain (e.g., amino acids 4-16 of SEQ ID NO:31). Preferred linkers for connecting a C-terminal Fc-antibody may be selected from the embodiments given in SEQ ID NO:32 to SEQ ID NO:41, including linkers suitable for fusion of additional polypeptides.









TABLE 9







Amino acid sequences for TNFRSF fusion proteins,


including 4-1BB fusion proteins, with C-terminal


Fc-antibody fragment fusion protein design


(structure I-A).








Identifier
Sequence (One-Letter Amino Acid Symbols)












SEQ ID NO: 31
KSCDKTHTCP PCPAPELLGG PSVFLFPPKP KDTLMISRTP
60


Fc domain
EVTCVVVDVS HEDPEVKFNW




YVDGVEVHNA KTKPREEQYN STYRVVSVLT VLHQDWLNGK
120



EYKCKVSNKA LPAPIEKTIS




KAKGQPREPQ VYTLPPSREE MTKNQVSLTC LVKGFYPSDI
180



AVEWESNGQP ENNYKTTPPV




LDSDGSFFLY SKLTVDKSRW QQGNVFSCSV MHEALHNHYT
230



QKSLSLSPGK






SEQ ID NO: 32
GGPGSSKSCD KTHTCPPCPA PE
22


linker







SEQ ID NO: 33
GGSGSSKSCD KTHTCPPCPA PE
22


linker







SEQ ID NO: 34
GGPGSSSSSS SKSCDKTHTC PPCPAPE
27


linker







SEQ ID NO: 35
GGSGSSSSSS SKSCDKTHTC PPCPAPE
27


linker







SEQ ID NO: 36
GGPGSSSSSS SSSKSCDKTH TCPPCPAPE
29


linker







SEQ ID NO: 37
GGSGSSSSSS SSSKSCDKTH TCPPCPAPE
29


linker







SEQ ID NO: 38
GGPGSSGSGS SDKTHTCPPC PAPE
24


linker







SEQ ID NO: 39
GGPGSSGSGS DKTHTCPPCP APE
23


linker







SEQ ID NO: 40
GGPSSSGSDK THTCPPCPAP E
21


linker







SEQ ID NO: 41
GGSSSSSSSS GSDKTHTCPP CPAPE
25


linker









Amino acid sequences for the other polypeptide domains of structure I-B are given in Table 10. If an Fc antibody fragment is fused to the N-terminus of an TNRFSF fusion protein as in structure I-B, the sequence of the Fc module is preferably that shown in SEQ ID NO:42, and the linker sequences are preferably selected from those embodiments set forth in SED ID NO:43 to SEQ ID NO:45.









TABLE 10







Amino acid sequences for TNFRSF fusion proteins,


including 4-1BB fusion proteins, with N-terminal


Fc-antibody fragment fusion protein design


(structure I-B).








Identifier
Sequence (One-Letter Amino Acid Symbols)












SEQ ID NO: 42
METDTLLLWV LLLWVPAGNG DKTHTCPPCP APELLGGPSV
60


Fc domain
FLFPPKPKDT LMISRTPEVT




CVVVDVSHED PEVKFNWYVD GVEVHNAKTK PREEQYNSTY
120



RVVSVLTVLH QDWLNGKEYK




CKVSNKALPA PIEKTISKAK GQPREPQVYT LPPSREEMTK
180



NQVSLTCLVK GFYPSDIAVE




WESNGQPENN YKTTPPVLDS DGSFFLYSKL TVDKSRWQQG
240



NVFSCSVMHE ALHNHYTQKS




LSLSPG
246





SEQ ID NO: 43
SGSGSGSGSG S
11


linker







SEQ ID NO: 44
SSSSSSGSGS GS
12


linker







SEQ ID NO: 45
SSSSSSGSGS GSGSGS
16


linker









In an embodiment, a 4-1BB agonist fusion protein according to structures I-A or I-B comprises one or more 4-1BB binding domains selected from the group consisting of a variable heavy chain and variable light chain of utomilumab, a variable heavy chain and variable light chain of urelumab, a variable heavy chain and variable light chain of utomilumab, a variable heavy chain and variable light chain selected from the variable heavy chains and variable light chains described in Table 10, any combination of a variable heavy chain and variable light chain of the foregoing, and fragments, derivatives, conjugates, variants, and biosimilars thereof,


In an embodiment, a 4-1BB agonist fusion protein according to structures I-A or I-B comprises one or more 4-1BB binding domains comprising a 4-1BBL sequence. In an embodiment, a 4-1BB agonist fusion protein according to structures I-A or I-B comprises one or more 4-1BB binding domains comprising a sequence according to SEQ ID NO:46. In an embodiment, a 4-1BB agonist fusion protein according to structures I-A or I-B comprises one or more 4-11B1 binding domains comprising a soluble 4-1BBL sequence. In an embodiment, a 4-1BB agonist fusion protein according to structures I-A or I-B comprises one or more 4-1BB binding domains comprising a sequence according to SEQ ID NO:47.


In an embodiment, a 4-1BB agonist fusion protein according to structures I-A or I-B comprises one or more 4-1BB binding domains that is a scFv domain comprising VH and VL regions that are each at least 9500 identical to the sequences shown in SEQ ID NO:13 and SEQ ID NO:14, respectively, wherein the VH and VL domains are connected by a linker. In an embodiment, a 4-1BB agonist fusion protein according to structures I-A or I-B comprises one or more 4-1BB binding domains that is a scFv domain comprising VH and VL regions that are each at least 95 identical to the sequences shown in SEQ ID No:23 and SEQ ID No:24, respectively, wherein the VH and VL domains are connected by a linker. In an embodiment, a 4-1BB agonist fusion protein according to structures I-A or I-B comprises one or more 4-11B1 binding domains that is a scFv domain comprising VH and VL regions that are each at least 9500 identical to the VH and VL sequences given in Table 11, wherein the VH and VL domains are connected by a linker.









TABLE 11







Additional polypeptide domains useful as 4-1BB


binding domains in fusion proteins or as scFv


4-1BB agonist antibodies.








Identifier
Sequence (One-Letter Amino Acid Symbols)












SEQ ID NO: 46
MEYASDASLD PEAPWPPAPR ARACRVLPWA LVAGLLLLLL
60


4-1BBL
LAAACAVFLA CPWAVSGARA




SPGSAASPRL REGPELSPDD PAGLLDLRQG MFAQLVAQNV
120



LLIDGPLSWY SDPGLAGVSL




TGGLSYKEDT KELVVAKAGV YYVFFQLELR RVVAGEGSGS
180



VSLALHLQPL RSAAGAAALA




LTVDLPPASS EARNSAFGFQ GRLLHLSAGQ RLGVHLHTEA
240



RARHAWQLTQ GATVLGLFRV




TPEIPAGLPS PRSE
254





SEQ ID NO: 47
LRQGMFAQLV AQNVLLIDGP LSWYSDPGLA GVSLTGGLSY
60


4-1BBL soluble
KEDTKELVVA KAGVYYVFFQ



domain
LELRRVVAGE GSGSVSLALH LQPLRSAAGA AALALTVDLP
120



PASSEARNSA FGFQGRLLHL




SAGQRLGVHL HTEARARHAW QLTQGATVLG LFRVTPEIPA
168



GLPSPRSE






SEQ ID NO: 48
QVQLQQPGAE LVKPGASVKL SCKASGYTFS SYWMHWVKQR
60


variable heavy
PGQVLEWIGE INPGNGHTNY



chain for 4B4-
NEKFKSKATL TVDKSSSTAY MQLSSLTSED SAVYYCARSF
118


1-1 version 1
TTARGFAYWG QGTLVTVS






SEQ ID NO: 49
DIVMTQSPAT QSVTPGDRVS LSCRASQTIS DYLHWYQQKS
60


variable light
HESPRLLIKY ASQSISGIPS



chain for 4B4-
RFSGSGSGSD FTLSINSVEP EDVGVYYCQD GHSFPPTFGG
107


1-1 version 1
GTKLEIK






SEQ ID NO: 50
QVQLQQPGAE LVKPGASVKL SCKASGYTFS SYWMHWVKQR
60


variable heavy
PGQVLEWIGE INPGNGHTNY



chain for 4B4-
NEKFKSKATL TVDKSSSTAY MQLSSLTSED SAVYYCARSF
119


1-1 version 2
TTARGFAYWG QGTLVTVSA






SEQ ID NO: 51
DIVMTQSPAT QSVTPGDRVS LSCRASQTIS DYLHWYQQKS
60


variable light
HESPRLLIKY ASQSISGIPS



chain for 4B4-
RFSGSGSGSD FTLSINSVEP EDVGVYYCQD GHSFPPTFGG
108


1-1 version 2
GTKLEIKR






SEQ ID NO: 52
MDWTWRILFL VAAATGAHSE VQLVESGGGL VQPGGSLRLS
60


variable heavy
CAASGFTFSD YWMSWVRQAP



chain for
GKGLEWVADI KNDGSYTNYA PSLTNRFTIS RDNAKNSLYL
120


H39E3-2
QMNSLRAEDT AVYYCARELT






SEQ ID NO: 53
MEAPAQLLFL LLLWLPDTTG DIVMTQSPDS LAVSLGERAT
60


variable light
INCKSSQSLL SSGNQKNYL



chain for
WYQQKPGQPP KLLIYYASTR QSGVPDRFSG SGSGTDFTLT
110


H39E3-2
ISSLQAEDVA









In an embodiment, the 4-1BB agonist is a 4-1BB1 agonistic single-chain fusion polypeptide comprising (i) a first soluble 4-1BB binding domain, (ii) a first peptide linker, (iii) a second soluble 4-1BB1 binding domain, (iv) a second peptide linker, and (v) a third soluble 4-1BB binding domain, further comprising an additional domain at the N-terminal and/or C-terminal end, and wherein the additional domain is a Fab or Fe fragment domain. In an embodiment, the 4-1BB agonist is a 4-1BB agonistic single-chain fusion polypeptide comprising (i) a first soluble 4-1BB binding domain, (ii) a first peptide linker, (iii) a second soluble 4-1BB binding domain, (iv) a second peptide linker, and (v) a third soluble 4-1BB1 binding domain, further comprising an additional domain at the N-terminal and/or C-terminal end, wherein the additional domain is a Fab or Fc fragment domain, wherein each of the soluble 4-1BB domains lacks a stalk region (which contributes to trimerisation and provides a certain distance to the cell membrane, but is not part of the 4-1BB binding domain) and the first and the second peptide linkers independently have a length of 3-8 amino acids.


In an embodiment, the 4-1BB agonist is a 4-1BB agonistic single-chain fusion polypeptide comprising (i) a first soluble tumor necrosis factor (TNF) superfamily cytokine domain, (ii) a first peptide linker, (iii) a second soluble TNF superfamily cytokine domain, (iv) a second peptide linker, and (v) a third soluble TNF superfamily cytokine domain, wherein each of the soluble TNF superfamily cytokine domains lacks a stalk region and the first and the second peptide linkers independently have a length of 3-8 amino acids, and wherein each TNF superfamily cytokine domain is a 4-1BB binding domain.


In an embodiment, the 4-1BB agonist is a 4-1BB agonistic scFv antibody comprising any of the foregoing VH domains linked to any of the foregoing VL domains.


In an embodiment, the 4-1BB agonist is BPS Bioscience 4-1BB agonist antibody catalog no. 79097-2, commercially available from BPS Bioscience, San Diego, Calif., USA. In an embodiment, the 4-1BB agonist is Creative Biolabs 4-1BB agonist antibody catalog no. MOM-18179, commercially available from Creative Biolabs, Shirley, N.Y., USA.


c. OX40 (CD134) Agonists


In an embodiment, the TNFRSF agonist is an OX40 (CD134) agonist. The OX40 agonist may be any OX40 binding molecule known in the art. The OX40 binding molecule may be a monoclonal antibody or fusion protein capable of binding to human or mammalian OX40. The OX40 agonists or OX40 binding molecules may comprise an immunoglobulin heavy chain of any isotype (e.g., IgG, IgE, IgM, IgD, IgA, and IgY), class (e.g., IgG1, IgG2, IgG3, IgG4, IgA1 and IgA2) or subclass of immunoglobulin molecule. The OX40 agonist or OX40 binding molecule may have both a heavy and a light chain. As used herein, the term binding molecule also includes antibodies (including full length antibodies), monoclonal antibodies (including full length monoclonal antibodies), polyclonal antibodies, multispecific antibodies (e.g., bispecific antibodies), human, humanized or chimeric antibodies, and antibody fragments, e.g., Fab fragments, F(ab′) fragments, fragments produced by a Fab expression library, epitope-binding fragments of any of the above, and engineered forms of antibodies, e.g., scFv molecules, that bind to OX40. In an embodiment, the OX40 agonist is an antigen binding protein that is a fully human antibody. In an embodiment, the OX40 agonist is an antigen binding protein that is a humanized antibody. In some embodiments, OX40 agonists for use in the presently disclosed methods and compositions include anti-OX40 antibodies, human anti-OX40 antibodies, mouse anti-OX40 antibodies, mammalian anti-OX40 antibodies, monoclonal anti-OX40 antibodies, polyclonal anti-OX40 antibodies, chimeric anti-OX40 antibodies, anti-OX40 adnectins, anti-OX40 domain antibodies, single chain anti-OX40 fragments, heavy chain anti-OX40 fragments, light chain anti-OX40 fragments, anti-OX40 fusion proteins, and fragments, derivatives, conjugates, variants, or biosimilars thereof. In a preferred embodiment, the OX40 agonist is an agonistic, anti-OX40 humanized or fully human monoclonal antibody (i.e., an antibody derived from a single cell line).


In a preferred embodiment, the OX40 agonist or OX40 binding molecule may also be a fusion protein. OX40 fusion proteins comprising an Fc domain fused to OX40L are described, for example, in Sadun, et al., J. Immunother. 2009, 182, 1481-89. In a preferred embodiment, a multimeric OX40 agonist, such as a trimeric or hexameric OX40 agonist (with three or six ligand binding domains), may induce superior receptor (OX40L) clustering and internal cellular signaling complex formation compared to an agonistic monoclonal antibody, which typically possesses two ligand binding domains. Trimeric (trivalent) or hexameric (or hexavalent) or greater fusion proteins comprising three TNFRSF binding domains and IgG1-Fc and optionally further linking two or more of these fusion proteins are described, e.g., in Gieffers, et al., Mol. Cancer Therapeutics 2013, 12, 2735-47.


Agonistic OX40 antibodies and fusion proteins are known to induce strong immune responses. Curti, et al., Cancer Res. 2013, 73, 7189-98. In a preferred embodiment, the OX40 agonist is a monoclonal antibody or fusion protein that binds specifically to OX40 antigen in a manner sufficient to reduce toxicity. In some embodiments, the OX40 agonist is an agonistic OX40 monoclonal antibody or fusion protein that abrogates antibody-dependent cellular toxicity (ADCC), for example NK cell cytotoxicity. In some embodiments, the OX40 agonist is an agonistic OX40 monoclonal antibody or fusion protein that abrogates antibody-dependent cell phagocytosis (ADCP). In some embodiments, the OX40 agonist is an agonistic OX40 monoclonal antibody or fusion protein that abrogates complement-dependent cytotoxicity (CDC). In some embodiments, the OX40 agonist is an agonistic OX40 monoclonal antibody or fusion protein which abrogates Fc region functionality.


In some embodiments, the OX40 agonists are characterized by binding to human OX40 (SEQ ID NO:54) with high affinity and agonistic activity. In an embodiment, the OX40 agonist is a binding molecule that binds to human OX40 (SEQ ID NO:54). In an embodiment, the OX40 agonist is a binding molecule that binds to murine OX40 (SEQ ID NO:55). The amino acid sequences of OX40 antigen to which an OX40 agonist or binding molecule binds are summarized in Table 12.









TABLE 12







Amino acid sequences of OX40 antigens.








Identifier
Sequence (One-Letter Amino Acid Symbols)












SEQ ID NO: 54
MCVGARRLGR GPCAALLLLG LGLSTVTGLH CVGDTYPSND
60


human OX40
RCCHECRPGN GMVSRCSRSQ



(Homo sapiens)
NTVCRPCGPG FYNDVVSSKP CKPCTWCNLR SGSERKQLCT
120



ATQDTVCRCR AGTQPLDSYK




PGVDCAPCPP GHFSPGDNQA CKPWTNCTLA GKHTLQPASN
180



SSDAICEDRD PPATQPQETQ




GPPARPITVQ PTEAWPRTSQ GPSTRPVEVP GGRAVAAILG
240



LGLVLGLLGP LAILLALYLL




RRDQRLPPDA HKPPGGGSFR TPIQEEQADA HSTLAKI
277





SEQ ID NO: 55
MYVWVQQPTA LLLLGLTLGV TARRLNCVKH TYPSGHKCCR
60


murine OX40
ECQPGHGMVS RCDHTRDTLC



(Mus musculus)
HPCETGFYNE AVNYDTCKQC TQCNHRSGSE LKQNCTPTQD
120



TVCRCRPGTQ PRQDSGYKLG




VDCVPCPPGH FSPGNNQACK PWTNCTLSGK QTRHPASDSL
180



DAVCEDRSLL ATLLWETQRP




TFRPTTVQST TVWPRTSELP SPPTLVTPEG PAFAVLLGLG
240



LGLLAPLTVL LALYLLRKAW




RLPNTPKPCW GNSFRTPIQE EHTDAHFTLA KI
272









In some embodiments, the compositions, processes and methods described include a OX40 agonist that binds human or murine OX40 with a KD of about 100 pM or lower, binds human or murine OX40 with a KD of about 90 pM or lower, binds human or murine OX40 with a KD of about 80 pM or lower, binds human or murine OX40 with a KD of about 70 pM or lower, binds human or murine OX40 with a KD of about 60 pM or lower, binds human or murine OX40 with a KD of about 50 pM or lower, binds human or murine OX40 with a KD of about 40 pM or lower, or binds human or murine OX40 with a KD of about 30 pM or lower.


In some embodiments, the compositions, processes and methods described include a OX40 agonist that binds to human or murine OX40 with a kassoc of about 7.5×105 l/M s or faster, binds to human or murine OX40 with a kassoc of about 7.5×105 l/M s or faster, binds to human or murine OX40 with a kassoc of about 8×105 l/M s or faster, binds to human or murine OX40 with a kassoc of about 8.5×105 l/M s or faster, binds to human or murine OX40 with a kassoc of about 9×105 l/M s or faster, binds to human or murine OX40 with a kassoc of about 9.5×105 l/M·s or faster, or binds to human or murine OX40 with a kassoc of about 1×106 UM·s or faster.


In some embodiments, the compositions, processes and methods described include a OX40 agonist that binds to human or murine OX40 with a kdissoc of about 2×10−5 l/s or slower, binds to human or murine OX40 with a kdissoc of about 2.1×10−5 l/s or slower, binds to human or murine OX40 with a kdissoc of about 2.2×10−5 l/s or slower, binds to human or murine OX40 with a kdissoc of about 2.3×10−5 l/s or slower, binds to human or murine OX40 with a kdissoc of about 2.4×105 l/s or slower, binds to human or murine OX40 with a kdissoc of about 2.5×10−5 1/s or slower, binds to human or murine OX40 with a kdissoc of about 2.6×10−5 l/s or slower or binds to human or murine OX40 with a kdissoc of about 2.7×10−5 l/s or slower, binds to human or murine OX40 with a kdissoc of about 2.8×105 l/s or slower, binds to human or murine OX40 with a kdissoc of about 2.9×10−5 l/s or slower, or binds to human or murine OX40 with a kdissoc of about 3×10−5 l/s or slower.


In some embodiments, the compositions, processes and methods described include OX40 agonist that binds to human or murine OX40 with an IC50 of about 10 nM or lower, binds to human or murine OX40 with an IC50 of about 9 nM or lower, binds to human or murine OX40 with an IC50 of about 8 nM or lower, binds to human or murine OX40 with an IC50 of about 7 nM or lower, binds to human or murine OX40 with an IC50 of about 6 nM or lower, binds to human or murine OX40 with an IC50 of about 5 nM or lower, binds to human or murine OX40 with an IC50 of about 4 nM or lower, binds to human or murine OX40 with an IC50 of about 3 nM or lower, binds to human or murine OX40 with an IC50 of about 2 nM or lower, or binds to human or murine OX40 with an IC50 of about 1 nM or lower.


In some embodiments, the OX40 agonist is tavolixizumab, also known as MEDI0562 or MEDI-0562. Tavolixizumab is available from the MedImmune subsidiary of AstraZeneca, Inc. Tavolixizumab is immunoglobulin G1-kappa, anti-[Homo sapiens TNFRSF4 (tumor necrosis factor receptor (TNFR) superfamily member 4, OX40, CD134)], humanized and chimeric monoclonal antibody. The amino acid sequences of tavolixizumab are set forth in Table 13. Tavolixizumab comprises N-glycosylation sites at positions 301 and 301″, with fucosylated complex bi-antennary CHO-type glycans; heavy chain intrachain disulfide bridges at positions 22-95 (VH-VL), 148-204 (CH1-CL), 265-325 (CH2) and 371-429 (CH3) (and at positions 22″-95″, 148″-204″, 265″-325″, and 371″-429″); light chain intrachain disulfide bridges at positions 23′-88′ (VH-VL) and 134′-194′ (CH1-CL) (and at positions 23″′-88″′ and 134″′-194″′); interchain heavy chain-heavy chain disulfide bridges at positions 230-230″ and 233-233″; and interchain heavy chain-light chain disulfide bridges at 224-214′ and 224″-214″′. Current clinical trials of tavolixizumab in a variety of solid tumor indications include U.S. National Institutes of Health clinicaltrials.gov identifiers NCT02318394 and NCT02705482.


In an embodiment, a OX40 agonist comprises a heavy chain given by SEQ ID NO:56 and a light chain given by SEQ ID NO:57. In an embodiment, a OX40 agonist comprises heavy and light chains having the sequences shown in SEQ ID NO:56 and SEQ ID NO:57, respectively, or antigen binding fragments, Fab fragments, single-chain variable fragments (scFv), variants, or conjugates thereof. In an embodiment, a OX40 agonist comprises heavy and light chains that are each at least 99% identical to the sequences shown in SEQ ID NO:56 and SEQ ID NO:57, respectively. In an embodiment, a OX40 agonist comprises heavy and light chains that are each at least 98% identical to the sequences shown in SEQ ID NO:56 and SEQ ID NO:57, respectively. In an embodiment, a OX40 agonist comprises heavy and light chains that are each at least 97% identical to the sequences shown in SEQ ID NO:56 and SEQ ID NO:57, respectively. In an embodiment, a OX40 agonist comprises heavy and light chains that are each at least 96% identical to the sequences shown in SEQ ID NO:56 and SEQ ID NO:57, respectively. In an embodiment, a OX40 agonist comprises heavy and light chains that are each at least 95% identical to the sequences shown in SEQ ID NO:56 and SEQ ID NO:57, respectively.


In an embodiment, the OX40 agonist comprises the heavy and light chain CDRs or variable regions (VRs) of tavolixizumab. In an embodiment, the OX40 agonist heavy chain variable region (VH) comprises the sequence shown in SEQ ID NO:58, and the OX40 agonist light chain variable region (VL) comprises the sequence shown in SEQ ID NO:59, and conservative amino acid substitutions thereof. In an embodiment, a OX40 agonist comprises VH and VL regions that are each at least 99% identical to the sequences shown in SEQ ID NO:58 and SEQ ID NO:59, respectively. In an embodiment, a OX40 agonist comprises VH and VL regions that are each at least 98% identical to the sequences shown in SEQ ID NO:58 and SEQ ID NO:59, respectively. In an embodiment, a OX40 agonist comprises VH and VL regions that are each at least 97% identical to the sequences shown in SEQ ID NO:58 and SEQ ID NO:59, respectively. In an embodiment, a OX40 agonist comprises VH and VL regions that are each at least 96% identical to the sequences shown in SEQ ID NO:58 and SEQ ID NO:59, respectively. In an embodiment, a OX40 agonist comprises VH and VL regions that are each at least 95% identical to the sequences shown in SEQ ID NO:58 and SEQ ID NO:59, respectively. In an embodiment, an OX40 agonist comprises an scFv antibody comprising VH and VL regions that are each at least 99% identical to the sequences shown in SEQ ID NO:58 and SEQ ID NO:59.


In an embodiment, a OX40 agonist comprises heavy chain CDR1, CDR2 and CDR3 domains having the sequences set forth in SEQ ID NO:60, SEQ ID NO:61, and SEQ ID NO:62, respectively, and conservative amino acid substitutions thereof, and light chain CDR1, CDR2 and CDR3 domains having the sequences set forth in SEQ ID NO:63, SEQ ID NO:64, and SEQ ID NO:65, respectively, and conservative amino acid substitutions thereof.


In an embodiment, the OX40 agonist is a OX40 agonist biosimilar monoclonal antibody approved by drug regulatory authorities with reference to tavolixizumab. In an embodiment, the biosimilar monoclonal antibody comprises an OX40 antibody comprising an amino acid sequence which has at least 97% sequence identity, e.g., 97%, 98%, 99% or 100% sequence identity, to the amino acid sequence of a reference medicinal product or reference biological product and which comprises one or more post-translational modifications as compared to the reference medicinal product or reference biological product, wherein the reference medicinal product or reference biological product is tavolixizumab. In some embodiments, the one or more post-translational modifications are selected from one or more of: glycosylation, oxidation, deamidation, and truncation. In some embodiments, the biosimilar is a OX40 agonist antibody authorized or submitted for authorization, wherein the OX40 agonist antibody is provided in a formulation which differs from the formulations of a reference medicinal product or reference biological product, wherein the reference medicinal product or reference biological product is tavolixizumab. The OX40 agonist antibody may be authorized by a drug regulatory authority such as the U.S. FDA and/or the European Union's EMA. In some embodiments, the biosimilar is provided as a composition which further comprises one or more excipients, wherein the one or more excipients are the same or different to the excipients comprised in a reference medicinal product or reference biological product, wherein the reference medicinal product or reference biological product is tavolixizumab. In some embodiments, the biosimilar is provided as a composition which further comprises one or more excipients, wherein the one or more excipients are the same or different to the excipients comprised in a reference medicinal product or reference biological product, wherein the reference medicinal product or reference biological product is tavolixizumab.









TABLE 13







Amino acid sequences for OX40 agonist antibodies


related to tavolixizumab.








Identifier
Sequence (One-Letter Amino Acid Symbols)












SEQ ID NO: 56
QVQLQESGPG LVKPSQTLSL TCAVYGGSFS SGYWNWIRKH
60


heavy chain for
PGKGLEYIGY ISYNGITYHN



tavolixizumab
PSLKSRITIN RDTSKNQYSL QLNSVTPEDT AVYYCARYKY
120



DYDGGHAMDY WGQGTLVTVS




SASTKGPSVF PLAPSSKSTS GGTAALGCLV KDYFPEPVTV
180



SWNSGALTSG VHTFPAVLQS




SGLYSLSSVV TVPSSSLGTQ TYICNVNHKP SNTKVDKRVE
240



PKSCDKTHTC PPCPAPELLG




GPSVFLFPPK PKDTLMISRT PEVTCVVVDV SHEDPEVKFN
300



WYVDGVEVHN AKTKPREEQY




NSTYRVVSVL TVLHQDWLNG KEYKCKVSNK ALPAPIEKTI
360



SKAKGQPREP QVYTLPPSRE




EMTKNQVSLT CLVKGFYPSD IAVEWESNGQ PENNYKTTPP
420



VLDSDGSFFL YSKLTVDKSR




WQQGNVFSCS VMHEALHNHY TQKSLSLSPG K
451





SEQ ID NO: 57
DIQMTQSPSS LSASVGDRVT ITCRASQDIS NYLNWYQQKP
60


light chain for
GKAPKLLIYY TSKLHSGVPS



tavolixizumab
RFSGSGSGTD YTLTISSLQP EDFATYYCQQ GSALPWTFGQ
120



GTKVEIKRTV AAPSVFIFPP




SDEQLKSGTA SVVCLLNNFY PREAKVQWKV DNALQSGNSQ
180



ESVTEQDSKD STYSLSSTLT




LSKADYEKHK VYACEVTHQG LSSPVTKSFN RGEC
214





SEQ ID NO: 58
QVQLQESGPG LVKPSQTLSL TCAVYGGSFS SGYWNWIRKH
60


heavy chain
PGKGLEYIGY ISYNGITYHN



variable region
PSLKSRITIN RDTSKNQYSL QLNSVTPEDT AVYYCARYKY
118


for
DYDGGHAMDY WGQGTLVT



tavolixizumab







SEQ ID NO: 59
DIQMTQSPSS LSASVGDRVT ITCRASQDIS NYLNWYQQKP
60


light chain
GKAPKLLIYY TSKLHSGVPS



variable region
RFSGSGSGTD YTLTISSLQP EDFATYYCQQ GSALPWTFGQ
108


for
GTKVEIKR



tavolixizumab







SEQ ID NO: 60
GSFSSGYWN
9


heavy chain




CDR1 for




tavolixizumab







SEQ ID NO: 61
YIGYISYNGI TYH
13


heavy chain




CDR2 for




tavolixizumab







SEQ ID NO: 62
RYKYDYDGGH AMDY
14


heavy chain




CDR3 for




tavolixizumab







SEQ ID NO: 63
QDISNYLN
8


light chain




CDR1 for




tavolixizumab







SEQ ID NO: 64
LLIYYTSKLH S
11


light chain




CDR2 for




tavolixizumab







SEQ ID NO: 65
QQGSALPW
8


light chain




CDR3 for




tavolixizumab









In some embodiments, the OX40 agonist is 11D4, which is a fully human antibody available from Pfizer, Inc. The preparation and properties of 11D4 are described in U.S. Pat. Nos. 7,960,515; 8,236,930; and 9,028,824, the disclosures of which are incorporated by reference herein, The amino acid sequences of 11D4 are set forth in Table 14.


In an embodiment, a OX40 agonist comprises a heavy chain given by SEQ ID NO:66 and a light chain given by SEQ ID NO:67. In an embodiment, a OX40 agonist comprises heavy and light chains having the sequences shown in SEQ ID NO:66 and SEQ ID NO:67, respectively, or antigen binding fragments, Fab fragments, single-chain variable fragments (scFv), variants, or conjugates thereof. In an embodiment, a OX40 agonist comprises heavy and light chains that are each at least 9900 identical to the sequences shown in SEQ ID NO:66 and SEQ ID NO:67, respectively. In an embodiment, a OX40 agonist comprises heavy and light chains that are each at least 98% a identical to the sequences shown in SEQ ID NO:66 and SEQ ID NO:67, respectively. In an embodiment, a OX40 agonist comprises heavy and light chains that are each at least 97% identical to the sequences shown in SEQ ID NO:66 and SEQ ID NO:67, respectively. In an embodiment, a OX40 agonist comprises heavy and light chains that are each at least 96% identical to the sequences shown in SEQ ID NO:66 and SEQ ID NO:67, respectively. In an embodiment, a OX40 agonist comprises heavy and light chains that are each at least 95% identical to the sequences shown in SEQ ID NO:66 and SEQ ID NO:67, respectively.


In an embodiment, the OX40 agonist comprises the heavy and light chain CDRs or variable regions (VRs) of 11D4. In an embodiment, the OX40 agonist heavy chain variable region (VH) comprises the sequence shown in SEQ ID NO:68, and the OX40 agonist light chain variable region (VL) comprises the sequence shown in SEQ ID NO:69, and conservative amino acid substitutions thereof. In an embodiment, a OX40 agonist comprises VH and VL regions that are each at least 99% identical to the sequences shown in SEQ ID NO:68 and SEQ ID NO:69, respectively. In an embodiment, a OX40 agonist comprises VH and VL regions that are each at least 98% identical to the sequences shown in SEQ ID NO:68 and SEQ ID NO:69, respectively. In an embodiment, a OX40 agonist comprises VH and VL regions that are each at least 97% identical to the sequences shown in SEQ ID NO:68 and SEQ ID NO:69, respectively. In an embodiment, a OX40 agonist comprises VH and VL regions that are each at least 96% identical to the sequences shown in SEQ ID NO:68 and SEQ ID NO:69, respectively. In an embodiment, a OX40 agonist comprises VH and VL regions that are each at least 95% identical to the sequences shown in SEQ ID NO:68 and SEQ ID NO:69, respectively.


In an embodiment, a OX40 agonist comprises heavy chain CDR1, CDR2 and CDR3 domains having the sequences set forth in SEQ ID NO:70, SEQ ID NO:71, and SEQ ID NO:72, respectively, and conservative amino acid substitutions thereof, and light chain CDR1, CDR2 and CDR3 domains having the sequences set forth in SEQ ID NO:73, SEQ ID NO:74, and SEQ ID NO:75, respectively, and conservative amino acid substitutions thereof.


In an embodiment, the OX40 agonist is a OX40 agonist biosimilar monoclonal antibody approved by drug regulatory authorities with reference to 11D4. In an embodiment, the biosimilar monoclonal antibody comprises an OX40 antibody comprising an amino acid sequence which has at least 97% sequence identity, e.g., 97%, 98%, 99% or 100% sequence identity, to the amino acid sequence of a reference medicinal product or reference biological product and which comprises one or more post-translational modifications as compared to the reference medicinal product or reference biological product, wherein the reference medicinal product or reference biological product is 11D4. In some embodiments, the one or more post-translational modifications are selected from one or more of: glycosylation, oxidation, deamidation, and truncation. In some embodiments, the biosimilar is a OX40 agonist antibody authorized or submitted for authorization, wherein the OX40 agonist antibody is provided in a formulation which differs from the formulations of a reference medicinal product or reference biological product, wherein the reference medicinal product or reference biological product is 11D4. The OX40 agonist antibody may be authorized by a drug regulatory authority such as the U.S. FDA and/or the European Union's EMA. In some embodiments, the biosimilar is provided as a composition which further comprises one or more excipients, wherein the one or more excipients are the same or different to the excipients comprised in a reference medicinal product or reference biological product, wherein the reference medicinal product or reference biological product is 11D4. In some embodiments, the biosimilar is provided as a composition which further comprises one or more excipients, wherein the one or more excipients are the same or different to the excipients comprised in a reference medicinal product or reference biological product, wherein the reference medicinal product or reference biological product is 11D4.









TABLE 14







Amino acid sequences for OX40 agonist


antibodies related to 11D4.








Identifier
Sequence (One-Letter Amino Acid Symbols)












SEQ ID NO: 66
EVQLVESGGG LVQPGGSLRL SCAASGFTFS SYSMNWVRQA
60


heavy chain for
PGKGLEWVSY ISSSSSTIDY



11D4
ADSVKGRFTI SRDNAKNSLY LQMNSLRDED TAVYYCARES
120



GWYLFDYWGQ GTLVTVSSAS




TKGPSVFPLA PCSRSTSEST AALGCLVKDY FPEPVTVSWN
180



SGALTSGVHT FPAVLQSSGL




YSLSSVVTVP SSNFGTQTYT CNVDHKPSNT KVDKTVERKC
240



CVECPPCPAP PVAGPSVFLF




PPKPKDTLMI SRTPEVTCVV VDVSHEDPEV QFNWYVDGVE
300



VHNAKTKPRE EQFNSTFRVV




SVLTVVHQDW LNGKEYKCKV SNKGLPAPIE KTISKTKGQP
360



REPQVYTLPP SREEMTKNQV




SLTCLVKGFY PSDIAVEWES NGQPENNYKT TPPMLDSDGS
420



FFLYSKLTVD KSRWQQGNVF




SCSVMHEALH NHYTQKSLSL SPGK
444





SEQ ID NO: 67
DIQMTQSPSS LSASVGDRVT ITCRASQGIS SWLAWYQQKP
60


light chain for
EKAPKSLIYA ASSLQSGVPS



11D4
RFSGSGSGTD FTLTISSLQP EDFATYYCQQ YNSYPPTFGG
120



GTKVEIKRTV AAPSVFIFPP




SDEQLKSGTA SVVCLLNNFY PREAKVQWKV DNALQSGNSQ
180



ESVTEQDSKD STYSLSSTLT




LSKADYEKHK VYACEVTHQG LSSPVTKSFN RGEC
214





SEQ ID NO: 68
EVQLVESGGG LVQPGGSLRL SCAASGFTFS SYSMNWVRQA
60


heavy chain
PGKGLEWVSY ISSSSSTIDY



variable region
ADSVKGRFTI SRDNAKNSLY LQMNSLRDED TAVYYCARES
118


for 11D4
GWYLFDYWGQ GTLVTVSS






SEQ ID NO: 69
DIQMTQSPSS LSASVGDRVT ITCRASQGIS SWLAWYQQKP
60


light chain
EKAPKSLIYA ASSLQSGVPS



variable region
RFSGSGSGTD FTLTISSLQP EDFATYYCQQ YNSYPPTFGG
107


for 11D4
GTKVEIK






SEQ ID NO: 70
SYSMN
5


heavy chain




CDR1 for 11D4







SEQ ID NO: 71
YISSSSSTID YADSVKG
17


heavy chain




CDR2 for 11D4







SEQ ID NO: 72
ESGWYLFDY
9


heavy chain




CDR3 for 11D4







SEQ ID NO: 73
RASQGISSWL A
11


light chain




CDR1 for 11D4







SEQ ID NO: 74
AASSLQS
7


light chain




CDR2 for 11D4







SEQ ID NO: 75
QQYNSYPPT
9


light chain




CDR3 for 11D4









In some embodiments, the OX40 agonist is 18D8, which is a fully human antibody available from Pfizer, Inc. The preparation and properties of 18D8 are described in U.S. Pat. Nos. 7,960,515; 8,236,930; and 9,028,824, the disclosures of which are incorporated by reference herein. The amino acid sequences of 18D8 are set forth in Table 15.


In an embodiment, a OX40 agonist comprises a heavy chain given by SEQ ID NO:76 and a light chain given by SEQ ID NO:77. In an embodiment, a OX40 agonist comprises heavy and light chains having the sequences shown in SEQ ID NO:76 and SEQ ID NO:77, respectively, or antigen binding fragments, Fab fragments, single-chain variable fragments (scFv), variants, or conjugates thereof. In an embodiment, a OX40 agonist comprises heavy and light chains that are each at least 99% identical to the sequences shown in SEQ ID NO:76 and SEQ ID NO:77, respectively. In an embodiment, a OX40 agonist comprises heavy and light chains that are each at least 98% identical to the sequences shown in SEQ ID NO:76 and SEQ ID NO:77, respectively. In an embodiment, a OX40 agonist comprises heavy and light chains that are each at least 97% identical to the sequences shown in SEQ ID NO:76 and SEQ ID NO:77, respectively. In an embodiment, a OX40 agonist comprises heavy and light chains that are each at least 96% identical to the sequences shown in SEQ ID NO:76 and SEQ ID NO:77, respectively. In an embodiment, a OX40 agonist comprises heavy and light chains that are each at least 95% identical to the sequences shown in SEQ ID NO:76 and SEQ ID NO:77, respectively.


In an embodiment, the OX40 agonist comprises the heavy and light chain CDRs or variable regions (VRs) of 18D8. In an embodiment, the OX40 agonist heavy chain variable region (VH) comprises the sequence shown in SEQ ID NO:78, and the OX40 agonist light chain variable region (VL) comprises the sequence shown in SEQ ID NO:79, and conservative amino acid substitutions thereof. In an embodiment, a OX40 agonist comprises VH and VL regions that are each at least 99% identical to the sequences shown in SEQ ID NO:78 and SEQ ID NO:79, respectively. In an embodiment, a OX40 agonist comprises VH and VL regions that are each at least 98% identical to the sequences shown in SEQ ID NO:78 and SEQ ID NO:79, respectively. In an embodiment, a OX40 agonist comprises VH and VL regions that are each at least 97% identical to the sequences shown in SEQ ID NO:78 and SEQ ID NO:79, respectively. In an embodiment, a OX40 agonist comprises VH and VL regions that are each at least 96% identical to the sequences shown in SEQ ID NO:78 and SEQ ID NO:79, respectively. In an embodiment, a OX40 agonist comprises VH and VL regions that are each at least 95% identical to the sequences shown in SEQ ID NO:78 and SEQ ID NO:79, respectively.


In an embodiment, a OX40 agonist comprises heavy chain CDR1, CDR2 and CDR3 domains having the sequences set forth in SEQ ID NO:80, SEQ ID NO:81, and SEQ ID NO:82, respectively, and conservative amino acid substitutions thereof, and light chain CDR1, CDR2 and CDR3 domains having the sequences set forth in SEQ ID NO:83, SEQ ID NO:84, and SEQ ID NO:85, respectively, and conservative amino acid substitutions thereof.


In an embodiment, the OX40 agonist is a OX40 agonist biosimilar monoclonal antibody approved by drug regulatory authorities with reference to 18D8. In an embodiment, the biosimilar monoclonal antibody comprises an OX40 antibody comprising an amino acid sequence which has at least 97% sequence identity, e.g., 97%, 98%, 99% or 100% sequence identity, to the amino acid sequence of a reference medicinal product or reference biological product and which comprises one or more post-translational modifications as compared to the reference medicinal product or reference biological product, wherein the reference medicinal product or reference biological product is 18D8. In some embodiments, the one or more post-translational modifications are selected from one or more of: glycosylation, oxidation, deamidation, and truncation. In some embodiments, the biosimilar is a OX40 agonist antibody authorized or submitted for authorization, wherein the OX40 agonist antibody is provided in a formulation which differs from the formulations of a reference medicinal product or reference biological product, wherein the reference medicinal product or reference biological product is 18D8. The OX40 agonist antibody may be authorized by a drug regulatory authority such as the U.S. FDA and/or the European Union's EMA. In some embodiments, the biosimilar is provided as a composition which further comprises one or more excipients, wherein the one or more excipients are the same or different to the excipients comprised in a reference medicinal product or reference biological product, wherein the reference medicinal product or reference biological product is 18D8. In some embodiments, the biosimilar is provided as a composition which further comprises one or more excipients, wherein the one or more excipients are the same or different to the excipients comprised in a reference medicinal product or reference biological product, wherein the reference medicinal product or reference biological product is 18D8.









TABLE 15







Amino acid sequences for OX40 agonist


antibodies related to 18D8.








Identifier
Sequence (One-Letter Amino Acid Symbols)












SEQ ID NO: 76
EVQLVESGGG LVQPGRSLRL SCAASGFTFD DYAMHWVRQA
60


heavy chain for
PGKGLEWVSG ISWNSGSIGY



18D8
ADSVKGRFTI SRDNAKNSLY LQMNSLRAED TALYYCAKDQ
120



STADYYFYYG MDVWGQGTTV




TVSSASTKGP SVFPLAPCSR STSESTAALG CLVKDYFPEP
180



VTVSWNSGAL TSGVHTFPAV




LQSSGLYSLS SVVTVPSSNF GTQTYTCNVD HKPSNTKVDK
240



TVERKCCVEC PPCPAPPVAG




PSVFLFPPKP KDTLMISRTP EVTCVVVDVS HEDPEVQFNW
300



YVDGVEVHNA KTKPREEQFN




STFRVVSVLT VVHQDWLNGK EYKCKVSNKG LPAPIEKTIS
360



KTKGQPREPQ VYTLPPSREE




MTKNQVSLTC LVKGFYPSDI AVEWESNGQP ENNYKTTPPM
420



LDSDGSFFLY SKLTVDKSRW




QQGNVFSCSV MHEALHNHYT QKSLSLSPGK
450





SEQ ID NO: 77
EIVVTQSPAT LSLSPGERAT LSCRASQSVS SYLAWYQQKP
60


light chain for
GQAPRLLIYD ASNRATGIPA



18D8
RFSGSGSGTD FTLTISSLEP EDFAVYYCQQ RSNWPTFGQG
120



TKVEIKRTVA APSVFIFPPS




DEQLKSGTAS VVCLLNNFYP REAKVQWKVD NALQSGNSQE
180



SVTEQDSKDS TYSLSSTLTL




SKADYEKHKV YACEVTHQGL SSPVTKSFNR GEC
213





SEQ ID NO: 78
EVQLVESGGG LVQPGRSLRL SCAASGFTFD DYAMHWVRQA
60


heavy chain
PGKGLEWVSG ISWNSGSIGY



variable region
ADSVKGRFTI SRDNAKNSLY LQMNSLRAED TALYYCAKDQ
120


for 18D8
STADYYFYYG MDVWGQGTTV




TVSS
124





SEQ ID NO: 79
EIVVTQSPAT LSLSPGERAT LSCRASQSVS SYLAWYQQKP
60


light chain
GQAPRLLIYD ASNRATGIPA



variable region
RFSGSGSGTD FTLTISSLEP EDFAVYYCQQ RSNWPTFGQG
106


for 18D8
TKVEIK






SEQ ID NO: 80
DYAMH
5


heavy chain




CDR1 for 18D8







SEQ ID NO: 81
GISWNSGSIG YADSVKG
17


heavy chain




CDR2 for 18D8







SEQ ID NO: 82
DQSTADYYFY YGMDV
15


heavy chain




CDR3 for 18D8







SEQ ID NO: 83
RASQSVSSYL A
11


light chain




CDR1 for 18D8







SEQ ID NO: 84
DASNRAT
7


light chain




CDR2 for 18D8







SEQ ID NO: 85
QQRSNWPT
8


light chain




CDR3 for 18D8









In some embodiments, the OX40 agonist is Hu119-122, which is a humanized antibody available from GlaxoSmithKline plc. The preparation and properties of Hu119-122 are described in U.S. Pat. Nos. 9,006,399 and 9,163,085, and in International Patent Publication No. WO 2012/027328, the disclosures of which are incorporated by reference herein. The amino acid sequences of Hu119-122 are set forth in Table 16.


In an embodiment, the OX40 agonist comprises the heavy and light chain CDRs or variable regions (VRs) of Hu119-122. In an embodiment, the OX40 agonist heavy chain variable region (VH) comprises the sequence shown in SEQ ID NO:86, and the OX40 agonist light chain variable region (VL) comprises the sequence shown in SEQ ID NO:87, and conservative amino acid substitutions thereof. In an embodiment, a OX40 agonist comprises VH and VL regions that are each at least 99% identical to the sequences shown in SEQ ID NO:86 and SEQ ID NO:87, respectively. In an embodiment, a OX40 agonist comprises VH and VL regions that are each at least 98% identical to the sequences shown in SEQ ID NO:86 and SEQ ID NO:87, respectively. In an embodiment, a OX40 agonist comprises VH and VL regions that are each at least 97% identical to the sequences shown in SEQ ID NO:86 and SEQ ID NO:87, respectively. In an embodiment, a OX40 agonist comprises VH and VL regions that are each at least 96% identical to the sequences shown in SEQ ID NO:86 and SEQ ID NO:87, respectively. In an embodiment, a OX40 agonist comprises VH and VL regions that are each at least 95% identical to the sequences shown in SEQ ID NO:86 and SEQ ID NO:87, respectively.


In an embodiment, a OX40 agonist comprises heavy chain CDR1, CDR2 and CDR3 domains having the sequences set forth in SEQ ID NO:88, SEQ ID NO:89, and SEQ ID NO:90, respectively, and conservative amino acid substitutions thereof, and light chain CDR1, CDR2 and CDR3 domains having the sequences set forth in SEQ ID NO:91, SEQ ID NO:92, and SEQ ID NO:93, respectively, and conservative amino acid substitutions thereof.


In an embodiment, the OX40 agonist is a OX40 agonist biosimilar monoclonal antibody approved by drug regulatory authorities with reference to Hu119-122. In an embodiment, the biosimilar monoclonal antibody comprises an OX40 antibody comprising an amino acid sequence which has at least 97% sequence identity, e.g., 97%, 98%, 99% or 100% sequence identity, to the amino acid sequence of a reference medicinal product or reference biological product and which comprises one or more post-translational modifications as compared to the reference medicinal product or reference biological product, wherein the reference medicinal product or reference biological product is Hu119-122. In some embodiments, the one or more post-translational modifications are selected from one or more of: glycosylation, oxidation, deamidation, and truncation. In some embodiments, the biosimilar is a OX40 agonist antibody authorized or submitted for authorization, wherein the OX40 agonist antibody is provided in a formulation which differs from the formulations of a reference medicinal product or reference biological product, wherein the reference medicinal product or reference biological product is Hu119-122. The OX40 agonist antibody may be authorized by a drug regulatory authority such as the U.S. FDA and/or the European Union's EMA. In some embodiments, the biosimilar is provided as a composition which further comprises one or more excipients, wherein the one or more excipients are the same or different to the excipients comprised in a reference medicinal product or reference biological product, wherein the reference medicinal product or reference biological product is Hu119-122. In some embodiments, the biosimilar is provided as a composition which further comprises one or more excipients, wherein the one or more excipients are the same or different to the excipients comprised in a reference medicinal product or reference biological product, wherein the reference medicinal product or reference biological product is Hu119-122.









TABLE 16







Amino acid sequences for OX40 agonist


antibodies related to Hu119-122.








Identifier
Sequence (One-Letter Amino Acid Symbols)












SEQ ID NO: 86
EVQLVESGGG LVQPGGSLRL SCAASEYEFP SHDMSWVRQA
60


heavy chain
PGKGLELVAA INSDGGSTYY



variable region
PDTMERRFTI SRDNAKNSLY LQMNSLRAED TAVYYCARHY
120


for Hu119-122
DDYYAWFAYW GQGTMVTVSS






SEQ ID NO: 87
EIVLTQSPAT LSLSPGERAT LSCRASKSVS TSGYSYMHWY
60


light chain
QQKPGQAPRL LIYLASNLES



variable region
GVPARFSGSG SGTDFTLTIS SLEPEDFAVY YCQHSRELPL
111


for Hu119-122
TFGGGTKVEI K






SEQ ID NO: 88
SHDMS
5


heavy chain




CDR1 for




Hu119-122







SEQ ID NO: 89
AINSDGGSTY YPDTMER
17


heavy chain




CDR2 for




Hu119-122







SEQ ID NO: 90
HYDDYYAWFA Y
11


heavy chain




CDR3 for




Hu119-122







SEQ ID NO: 91
RASKSVSTSG YSYMH
15


light chain




CDR1 for




Hu119-122







SEQ ID NO: 92
LASNLES
7


light chain




CDR2 for




Hu119-122







SEQ ID NO: 93
QHSRELPLT
9


light chain




CDR3 for




Hu119-122









In some embodiments, the OX40 agonist is Hu106-222, which is a humanized antibody available from GlaxoSmithKline plc. The preparation and properties of Hu106-222 are described in U.S. Pat. Nos. 9,006,399 and 9,163,085, and in International Patent Publication No. WO 2012/027328, the disclosures of which are incorporated by reference herein, The amino acid sequences of Hu1106-222 are set forth in Table 17.


In an embodiment, the OX40 agonist comprises the heavy and light chain CDRs or variable regions (VRs) of Hu106-222. In an embodiment, the OX40 agonist heavy chain variable region (VH) comprises the sequence shown in SEQ ID NO:94, and the OX40 agonist light chain variable region (VL) comprises the sequence shown in SEQ ID NO:95, and conservative amino acid substitutions thereof. In an embodiment, a OX40 agonist comprises VH and VL regions that are each at least 9900 identical to the sequences shown in SEQ ID NO:94 and SEQ ID NO:95, respectively. In an embodiment, a OX40 agonist comprises VH and VL regions that are each at least 98% identical to the sequences shown in SEQ ID NO:94 and SEQ ID NO:95, respectively. In an embodiment, a OX40 agonist comprises VH and VL regions that are each at least 97% identical to the sequences shown in SEQ ID NO:94 and SEQ ID NO:95, respectively. In an embodiment, a OX40 agonist comprises VH and VL regions that are each at least 96% identical to the sequences shown in SEQ ID NO:94 and SEQ ID NO:95, respectively. In an embodiment, a OX40 agonist comprises VH and VL regions that are each at least 95% identical to the sequences shown in SEQ ID NO:94 and SEQ ID NO:95, respectively.


In an embodiment, a OX40 agonist comprises heavy chain CDR1, CDR2 and CDR3 domains having the sequences set forth in SEQ ID NO:96, SEQ ID NO:97, and SEQ ID NO:98, respectively, and conservative amino acid substitutions thereof, and light chain CDR1, CDR2 and CDR3 domains having the sequences set forth in SEQ ID NO:99, SEQ ID NO:100, and SEQ ID NO:101, respectively, and conservative amino acid substitutions thereof.


In an embodiment, the OX40 agonist is a OX40 agonist biosimilar monoclonal antibody approved by drug regulatory authorities with reference to Hu106-222. In an embodiment, the biosimilar monoclonal antibody comprises an OX40 antibody comprising an amino acid sequence which has at least 97% sequence identity, e.g., 97%, 98%, 99% or 100% sequence identity, to the amino acid sequence of a reference medicinal product or reference biological product and which comprises one or more post-translational modifications as compared to the reference medicinal product or reference biological product, wherein the reference medicinal product or reference biological product is Hu106-222. In some embodiments, the one or more post-translational modifications are selected from one or more of: glycosylation, oxidation, deamidation, and truncation. In some embodiments, the biosimilar is a OX40 agonist antibody authorized or submitted for authorization, wherein the OX40 agonist antibody is provided in a formulation which differs from the formulations of a reference medicinal product or reference biological product, wherein the reference medicinal product or reference biological product is Hu106-222. The OX40 agonist antibody may be authorized by a drug regulatory authority such as the U.S. FDA and/or the European Union's EMA. In some embodiments, the biosimilar is provided as a composition which further comprises one or more excipients, wherein the one or more excipients are the same or different to the excipients comprised in a reference medicinal product or reference biological product, wherein the reference medicinal product or reference biological product is Hu106-222. In some embodiments, the biosimilar is provided as a composition which further comprises one or more excipients, wherein the one or more excipients are the same or different to the excipients comprised in a reference medicinal product or reference biological product, wherein the reference medicinal product or reference biological product is Hu106-222.









TABLE 17







Amino acid sequences for OX40 agonist antibodies


related to Hu106-222.








Identifier
Sequence (One-Letter Amino Acid Symbols)












SEQ ID NO: 94
QVQLVQSGSE LKKPGASVKV SCKASGYTFT DYSMHWVRQA
60


heavy chain
PGQGLKWMGW INTETGEPTY



variable region
ADDFKGRFVF SLDTSVSTAY LQISSLKAED TAVYYCANPY
120


for Hu106-222
YDYVSYYAMD YWGQGTTVTV




SS
122





SEQ ID NO: 95
DIQMTQSPSS LSASVGDRVT ITCKASQDVS TAVAWYQQKP
60


light chain
GKAPKLLIYS ASYLYTGVPS



variable region
RFSGSGSGTD FTFTISSLQP EDIATYYCQQ HYSTPRTFGQ
107


for Hu106-222
GTKLEIK






SEQ ID NO: 96
DYSMH
5


heavy chain




CDR1 for




Hu106-222







SEQ ID NO: 97
WINTETGEPT YADDFKG
17


heavy chain




CDR2 for




Hu106-222







SEQ ID NO: 98
PYYDYVSYYA MDY
13


heavy chain




CDR3 for




Hu106-222







SEQ ID NO: 99
KASQDVSTAV A
11


light chain




CDR1 for




Hu106-222







SEQ ID NO: 100
SASYLYT
7


light chain




CDR2 for




Hu106-222







SEQ ID NO: 101
QQHYSTPRT
9


light chain




CDR3 for




Hu106-222









In some embodiments, the OX40 agonist antibody is MEDI6469 (also referred to as 9B12). MED16469 is a murine monoclonal antibody. Weinberg, et al., J. Immunother. 2006, 29, 575-585. In some embodiments the OX40 agonist is an antibody produced by the 9B12 hybridoma, deposited with Biovest Inc. (Malvern, Mass., USA), as described in Weinberg, et al., J. Immunother. 2006, 29, 575-585, the disclosure of which is hereby incorporated by reference in its entirety. In some embodiments, the antibody comprises the CDR sequences of MED16469. In some embodiments, the antibody comprises a heavy chain variable region sequence and/or a light chain variable region sequence of MED16469.


In an embodiment, the OX40 agonist is L106 BD (Pharmingen Product #340420). In some embodiments, the OX40 agonist comprises the CDRs of antibody L106 (BD Pharmingen Product #340420). In some embodiments, the OX40 agonist comprises a heavy chain variable region sequence and/or a light chain variable region sequence of antibody L106 (BD Pharmingen Product #340420). In an embodiment, the OX40 agonist is ACT35 (Santa Cruz Biotechnology, Catalog #20073). In some embodiments, the OX40 agonist comprises the CDRs of antibody ACT35 (Santa Cruz Biotechnology, Catalog #20073). In some embodiments, the OX40 agonist comprises a heavy chain variable region sequence and/or a light chain variable region sequence of antibody ACT35 (Santa Cruz Biotechnology, Catalog #20073). In an embodiment, the OX40 agonist is the murine monoclonal antibody anti-mCD134/mOX40 (clone OX86), commercially available from InVivoMAb, BioXcell Inc, West Lebanon, N.H.


In an embodiment, the OX40 agonist is selected from the OX40 agonists described in International Patent Application Publication Nos. WO 95/12673, WO 95/21925, WO 2006/121810, WO 2012/027328, WO 2013/028231, WO 2013/038191, and WO 2014/148895; European Patent Application EP 0672141; U.S. Patent Application Publication Nos. US 2010/136030, US 2014/377284, US 2015/190506, and US 2015/132288 (including clones 20E5 and 12H3); and U.S. Pat. Nos. 7,504,101, 7,550,140, 7,622,444, 7,696,175, 7,960,515, 7,961,515, 8,133,983, 9,006,399, and 9,163,085, the disclosure of each of which is incorporated herein by reference in its entirety.


In an embodiment, the OX40 agonist is an OX40 agonistic fusion protein as depicted in Structure I-A (C-terminal Fc-antibody fragment fusion protein) or Structure I-B (N-terminal Fc-antibody fragment fusion protein), or a fragment, derivative, conjugate, variant, or biosimilar thereof. The properties of structures I-A and I-B are described above and in U.S. Pat. Nos. 9,359,420, 9,340,599, 8,921,519, and 8,450,460, the disclosures of which are incorporated by reference herein. Amino acid sequences for the polypeptide domains of structure I-A are given in Table 9. The Fc domain preferably comprises a complete constant domain (amino acids 17-230 of SEQ ID NO:31) the complete hinge domain (amino acids 1-16 of SEQ ID NO:31) or a portion of the hinge domain (e.g., amino acids 4-16 of SEQ ID NO:31). Preferred linkers for connecting a C-terminal Fc-antibody may be selected from the embodiments given in SEQ ID NO:32 to SEQ ID NO:41, including linkers suitable for fusion of additional polypeptides. Likewise, amino acid sequences for the polypeptide domains of structure I-B are given in Table 10. If an Fc antibody fragment is fused to the N-terminus of an TNRFSF fusion protein as in structure I-B, the sequence of the Fc module is preferably that shown in SEQ ID NO:42, and the linker sequences are preferably selected from those embodiments set forth in SED ID NO:43 to SEQ ID NO:45.


In an embodiment, an OX40 agonist fusion protein according to structures I-A or I-B comprises one or more OX40 binding domains selected from the group consisting of a variable heavy chain and variable light chain of tavolixizumab, a variable heavy chain and variable light chain of 11D4, a variable heavy chain and variable light chain of 18D8, a variable heavy chain and variable light chain of Hu119-122, a variable heavy chain and variable light chain of Hu106-222, a variable heavy chain and variable light chain selected from the variable heavy chains and variable light chains described in Table 17, any combination of a variable heavy chain and variable light chain of the foregoing, and fragments, derivatives, conjugates, variants, and biosimilars thereof.


In an embodiment, an OX40 agonist fusion protein according to structures I-A or I-B comprises one or more OX40 binding domains comprising an OX40L sequence. In an embodiment, an OX40 agonist fusion protein according to structures I-A or I-B comprises one or more OX40 binding domains comprising a sequence according to SEQ ID NO:102. In an embodiment, an OX40 agonist fusion protein according to structures I-A or I-B comprises one or more OX40 binding domains comprising a soluble OX40L sequence. In an embodiment, a OX40 agonist fusion protein according to structures I-A or I-B comprises one or more OX40 binding domains comprising a sequence according to SEQ ID NO:103. In an embodiment, a OX40 agonist fusion protein according to structures I-A or I-B comprises one or more OX40 binding domains comprising a sequence according to SEQ ID NO:104.


In an embodiment, an OX40 agonist fusion protein according to structures I-A or I-B comprises one or more OX40 binding domains that is a scFv domain comprising VH and VL regions that are each at least 95% identical to the sequences shown in SEQ ID NO:58 and SEQ ID NO:59, respectively, wherein the VH and VL domains are connected by a linker. In an embodiment, an OX40 agonist fusion protein according to structures I-A or I-B comprises one or more OX40 binding domains that is a scFv domain comprising VH and VL regions that are each at least 95% identical to the sequences shown in SEQ ID NO:68 and SEQ ID NO:69, respectively, wherein the VH and VL domains are connected by a linker. In an embodiment, an OX40 agonist fusion protein according to structures I-A or I-B comprises one or more OX40 binding domains that is a scFv domain comprising VH and VL regions that are each at least 95% identical to the sequences shown in SEQ ID NO:78 and SEQ ID NO:79, respectively, wherein the VH and VL domains are connected by a linker. In an embodiment, an OX40 agonist fusion protein according to structures I-A or I-B comprises one or more OX40 binding domains that is a scFv domain comprising VH and VL regions that are each at least 95% identical to the sequences shown in SEQ ID NO:86 and SEQ ID NO:87, respectively, wherein the VH and VL domains are connected by a linker. In an embodiment, an OX40 agonist fusion protein according to structures I-A or I-B comprises one or more OX40 binding domains that is a scFv domain comprising VH and VL regions that are each at least 95% identical to the sequences shown in SEQ ID NO:94 and SEQ ID NO:95, respectively, wherein the VH and VL domains are connected by a linker. In an embodiment, an OX40 agonist fusion protein according to structures I-A or I-B comprises one or more OX40 binding domains that is a scFv domain comprising VH and VL regions that are each at least 95% identical to the VH and VL sequences given in Table 14, wherein the VH and VL domains are connected by a linker.









TABLE 18







Additional polypeptide domains useful as


OX40 binding domains in fusion proteins


(e.g., structures I-A and I-B) or as


scFv OX40 agonist antibodies.








Identifier
Sequence (One-Letter Amino Acid Symbols)












SEQ ID NO: 102
MERVQPLEEN VGNAARPRFE RNKLLLVASV IQGLGLLLCF
60


OX40L
TYICLHFSAL QVSHRYPRIQ




SIKVQFTEYK KEKGFILTSQ KEDEIMKVQN NSVIINCDGF
120



YLISLKGYFS QEVNISLHYQ




KDEEPLFQLK KVRSVNSLMV ASLTYKDKVY LNVTTDNTSL
180



DDFHVNGGEL ILIHQNPGEF




CVL
183





SEQ ID NO: 103
SHRYPRIQSI KVQFTEYKKE KGFILTSQKE DEIMKVQNNS
60


OX40L soluble
VIINCDGFYL ISLKGYFSQE



domain
VNISLHYQKD EEPLFQLKKV RSVNSLMVAS LTYKDKVYLN
120



VTTDNTSLDD FHVNGGELIL




IHQNPGEFCV L
131





SEQ ID NO: 104
YPRIQSIKVQ FTEYKKEKGF ILTSQKEDEI MKVQNNSVII
60


OX40L soluble
NCDGFYLISL KGYFSQEVNI



domain
SLHYQKDEEP LFQLKKVRSV NSLMVASLTY KDKVYLNVTT
120


(alternative)
DNTSLDDFHV NGGELILIHQ




NPGEFCVL
128





SEQ ID NO: 105
EVQLVESGGG LVQPGGSLRL SCAASGFTFS NYTMNWVRQA
60


variable heavy
PGKGLEWVSA ISGSGGSTYY



chain for 008
ADSVKGRFTI SRDNSKNTLY LQMNSLRAED TAVYYCAKDR
120



YSQVHYALDY WGQGTLVTVS






SEQ ID NO: 106
DIVMTQSPDS LPVTPGEPAS ISCRSSQSLL HSNGYNYLDW
60


variable light
YLQKAGQSPQ LLIYLGSNRA



chain for 008
SGVPDRFSGS GSGTDFTLKI SRVEAEDVGV YYCQQYYNHP
108



TTFGQGTK






SEQ ID NO: 107
EVQLVESGGG VVQPGRSLRL SCAASGFTFS DYTMNWVRQA
60


variable heavy
PGKGLEWVSS ISGGSTYYAD



chain for 111
SRKGRFTISR DNSKNTLYLQ MNNLRAEDTA VYYCARDRYF
120



RQQNAFDYWG QGTLVTVSSA






SEQ ID NO: 108
DIVMTQSPDS LPVTPGEPAS ISCRSSQSLL HSNGYNYLDW
60


variable light
YLQKAGQSPQ LLIYLGSNRA



chain for 111
SGVPDRFSGS GSGTDFTLKI SRVEAEDVGV YYCQQYYNHP
108



TTFGQGTK






SEQ ID NO: 109
EVQLVESGGG LVQPRGSLRL SCAASGFTFS SYAMNWVRQA
60


variable heavy
PGKGLEWVAV ISYDGSNKYY 



chain for 021
ADSVKGRFTI SRDNSKNTLY LQMNSLRAED TAVYYCAKDR
120



YITLPNALDY WGQGTLVTVS






SEQ ID NO: 110
DIQMTQSPVS LPVTPGEPAS ISCRSSQSLL HSNGYNYLDW
60


variable light
YLQKPGQSPQ LLIYLGSNRA



chain for 021
SGVPDRFSGS GSGTDFTLKI SRVEAEDVGV YYCQQYKSNP
108



PTFGQGTK






SEQ ID NO: 111
EVQLVESGGG LVHPGGSLRL SCAGSGFTFS SYAMHWVRQA
60


variable heavy
PGKGLEWVSA IGTGGGTYYA



chain for 023
DSVMGRFTIS RDNSKNTLYL QMNSLRAEDT AVYYCARYDN
120



VMGLYWFDYW GQGTLVTVSS






SEQ ID NO: 112
EIVLTQSPAT LSLSPGERAT LSCRASQSVS SYLAWYQQKP
60


variable light
GQAPRLLIYD ASNRATGIPA



chain for 023
RFSGSGSGTD FTLTISSLEP EDFAVYYCQQ RSNWPPAFGG
108



GTKVEIKR






SEQ ID NO: 113
EVQLQQSGPE LVKPGASVKM SCKASGYTFT SYVMHWVKQK
60


heavy chain
PGQGLEWIGY INPYNDGTKY



variable region
NEKFKGKATL TSDKSSSTAY MELSSLTSED SAVYYCANYY
119



GSSLSMDYWG QGTSVTVSS






SEQ ID NO: 114
DIQMTQTTSS LSASLGDRVT ISCRASQDIS NYLNWYQQKP
60


light chain
DGTVKLLIYY TSRLHSGVPS



variable region
RFSGSGSGTD YSLTISNLEQ EDIATYFCQQ GNTLPWTFGG
108



GTKLEIKR






SEQ ID NO: 115
EVQLQQSGPE LVKPGASVKI SCKTSGYTFK DYTMHWVKQS
60


heavy chain
HGKSLEWIGG IYPNNGGSTY



variable region
NQNFKDKATL TVDKSSSTAY MEFRSLTSED SAVYYCARMG
120



YHGPHLDFDV WGAGTTVTVS




P
121





SEQ ID NO: 116
DIVMTQSHKF MSTSLGDRVS ITCKASQDVG AAVAWYQQKP
60


light chain
GQSPKLLIYW ASTRHTGVPD



variable region
RFTGGGSGTD FTLTISNVQS EDLTDYFCQQ YINYPLTFGG
108



GTKLEIKR






SEQ ID NO: 117
QIQLVQSGPE LKKPGETVKI SCKASGYTFT DYSMHWVKQA
60


heavy chain
PGKGLKWMGW INTETGEPTY



variable region
ADDFKGRFAF SLETSASTAY LQINNLKNED TATYFCANPY
120


of humanized
YDYVSYYAMD YWGHGTSVTV



antibody
SS
122





SEQ ID NO: 118
QVQLVQSGSE LKKPGASVKV SCKASGYTFT DYSMHWVRQA
60


heavy chain
PGQGLKWMGW INTETGEPTY



variable region
ADDFKGRFVF SLDTSVSTAY LQISSLKAED TAVYYCANPY
120


of humanized
YDYVSYYAMD YWGQGTTVTV



antibody
SS
122





SEQ ID NO: 119
DIVMTQSHKF MSTSVRDRVSITCKASQDVS TAVAWYQQKP
60


light chain
GQSPKLLIYS ASYLYTGVPD



variable region
RFTGSGSGTD FTFTISSVQA EDLAVYYCQQ HYSTPRTFGG
107


of humanized
GTKLEIK



antibody







SEQ ID NO: 120
DIVMTQSHKF MSTSVRDRVS ITCKASQDVS TAVAWYQQKP
60


light chain
GQSPKLLIYS ASYLYTGVPD



variable region
RFTGSGSGTD FTFTISSVQA EDLAVYYCQQ HYSTPRTFGG
107


of humanized
GTKLEIK



antibody







SEQ ID NO: 121
EVQLVESGGG LVQPGESLKL SCESNEYEFP SHDMSWVRKT
60


heavy chain
PEKRLELVAA INSDGGSTYY



variable region
PDTMERRFII SRDNTKKTLY LQMSSLRSED TALYYCARHY
120


of humanized
DDYYAWFAYW GQGTLVTVSA



antibody







SEQ ID NO: 122
EVQLVESGGG LVQPGGSLRL SCAASEYEFP SHDMSWVRQA
60


heavy chain
PGKGLELVAA INSDGGSTYY



variable region
PDTMERRFTI SRDNAKNSLY LQMNSLRAED TAVYYCARHY
120


of humanized
DDYYAWFAYW GQGTMVTVSS



antibody







SEQ ID NO: 123
DIVLTQSPAS LAVSLGQRATISCRASKSVS TSGYSYMHWY
60


light chain
QQKPGQPPKL LIYLASNEES 



variable region
GVPARFSGSG SGTDFTLNIH PVEEEDAATY YCQHSRELPL
111


of humanized
TFGAGTKLEL K



antibody







SEQ ID NO: 124
EIVLTQSPAT LSLSPGERAT LSCRASKSVS TSGYSYMHWY
60


light chain
QQKPGQAPRL LIYLASNLES



variable region
GVPARFSGSG SGTDFTLTIS SLEPEDFAVY YCQHSRELPL
111


of humanized
TFGGGTKVEI K



antibody







SEQ ID NO: 125
MYLGLNYVFI VFLLNGVQSE VKLEESGGGL VQPGGSMKLS
60


heavy chain
CAASGFTFSD AWMDWVRQSP



variable region
EKGLEWVAEI RSKANNHATY YAESVNGRFT ISRDDSKSSV
120



YLQMNSLRAE DTGIYYCTWG




EVFYFDYWGQ GTTLTVSS
138





SEQ ID NO: 126
MRPSIQFLGL LLFWLHGAQC DIQMTQSPSS LSASLGGKVT
60


light chain
ITCKSSQDIN KYIAWYQHKP



variable region
GKGPRLLIHY TSTLQPGIPS RFSGSGSGRD YSFSISNLEP
120



EDIATYYCLQ YDNLLTFGAG




TKLELK
126









In an embodiment, the OX40 agonist is a OX40 agonistic single-chain fusion polypeptide comprising (i) a first soluble OX40 binding domain, (ii) a first peptide linker, (iii) a second soluble OX40 binding domain, (iv) a second peptide linker, and (v) a third soluble OX40 binding domain, further comprising an additional domain at the N-terminal and/or C-terminal end, and wherein the additional domain is a Fab or Fc fragment domain. In an embodiment, the OX40 agonist is a OX40 agonistic single-chain fusion polypeptide comprising (i) a first soluble OX40 binding domain, (ii) a first peptide linker, (iii) a second soluble OX40 binding domain, (iv) a second peptide linker, and (v) a third soluble OX40 binding domain, further comprising an additional domain at the N-terminal and/or C-terminal end, wherein the additional domain is a Fab or Fc fragment domain wherein each of the soluble OX40 binding domains lacks a stalk region (which contributes to trimerisation and provides a certain distance to the cell membrane, but is not part of the OX40 binding domain) and the first and the second peptide linkers independently have a length of 3-8 amino acids.


In an embodiment, the OX40 agonist is an OX40 agonistic single-chain fusion polypeptide comprising (i) a first soluble tumor necrosis factor (TNF) superfamily cytokine domain, (ii) a first peptide linker, (iii) a second soluble TNF superfamily cytokine domain, (iv) a second peptide linker, and (v) a third soluble TNF superfamily cytokine domain, wherein each of the soluble TNF superfamily cytokine domains lacks a stalk region and the first and the second peptide linkers independently have a length of 3-8 amino acids, and wherein the TNF superfamily cytokine domain is an OX40 binding domain.


In some embodiments, the OX40 agonist is MEDI6383. MEDI6383 is an OX40 agonistic fusion protein and can be prepared as described in U.S. Pat. No. 6,312,700, the disclosure of which is incorporated by reference herein.


In an embodiment, the OX40 agonist is an OX40 agonistic scFv antibody comprising any of the foregoing VH domains linked to any of the foregoing VL domains.


In an embodiment, the OX40 agonist is Creative Biolabs OX40 agonist monoclonal antibody MOM-18455, commercially available from Creative Biolabs, Inc., Shirley, N.Y., USA.


In an embodiment, the OX40 agonist is OX40 agonistic antibody clone Ber-ACT35 commercially available from BioLegend, Inc., San Diego, Calif., USA.


d. Cytokines


The first and second expansion methods described herein generally use culture media with high doses of a cytokine, in particular IL-2, as is known in the art.


Alternatively, using combinations of cytokines for the second expansion of TILs is additionally possible, with combinations of two or more of IL-2, IL-15 and IL-21 as is generally outlined in WO 2015/189356 and WO 2015/189357, hereby expressly incorporated by reference in their entirety. Thus, possible combinations include IL-2 and IL-15, IL-2 and IL-21, IL-15 and IL-21, and IL-2, IL-15 and IL-21, with the latter finding particular use in many embodiments. The use of combinations of cytokines specifically favors the generation of lymphocytes, and in particular T-cells as described therein.


Phenotypic Characteristics of Expanded TILs

In some embodiment, the TILs are analyzed for expression of numerous phenotype markers after expansion, including those described herein and in the Examples. In an embodiment, expression of one or more phenotypic markers is examined. In some embodiments, the phenotypic characteristics of the TILs are analyzed after the first expansion in Step B. In some embodiments, the phenotypic characteristics of the TILs are analyzed during the transition in Step C. In some embodiments, the phenotypic characteristics of the TILs are analyzed during the transition according to Step C and after cryopreservation. In some embodiments, the phenotypic characteristics of the TILs are analyzed after the second expansion according to Step D. In some embodiments, the phenotypic characteristics of the TILs are analyzed after two or more expansions according to Step D. In some embodiments, the marker is selected from the group consisting of TCRab, CD57, CD28, CD4, CD27, CD56, CD8a, CD45RA, CD8a, CCR7, CD4, CD3, CD38, and HLA-DR. In some embodiments, the marker is selected from the group consisting of TCRab, CD57, CD28, CD4, CD27, CD56, and CD8a. In an embodiment, the marker is selected from the group consisting of CD45RA, CD8a, CCR7, CD4, CD3, CD38, and HLA-DR. In some embodiments, expression of one, two, three, four, five, six, seven, eight, nine, ten, eleven, twelve, thirteen, or fourteen markers is examined. In some embodiments, the expression from one or more markers from each group is examined. In some embodiments, one or more of HLA-DR, CD38, and CD69 expression is maintained (i.e., does not exhibit a statistically significant difference) in fresh TILs as compared to thawed TILs. In some embodiments, the activation status of TILs is maintained in the thawed TILs.


In an embodiment, expression of one or more regulatory markers is measured. In some embodiments, the regulatory marker is selected from the group consisting of CD137, CD8a, LAG3, CD4, CD3, PD1, TIM-3, CD69, CD8a, TIGIT, CD4, CD3, KLRG1, and CD154. In some embodiments, the regulatory marker is selected from the group consisting of CD137, CD8a, LAG3, CD4, CD3, PD1, and TIM-3. In some embodiments, the regulatory marker is selected from the group consisting of CD69, CD8a, TIGIT, CD4, CD3, KLRG1, and CD154. In some embodiments, regulatory molecule expression is decreased in thawed TILs as compared to fresh TILs. In some embodiments, expression of regulatory molecules LAG-3 and TIM-3 is decreased in thawed TILs as compared to fresh TILs. In some embodiments, there is no significant difference in CD4, CD8, NK, TCRαβ expression. In some embodiments, there is no significant difference in CD4, CD8, NK, TCRαβ expression, and/or memory markers in fresh TILs as compared to thawed TILs.


In some embodiments the memory marker is selected from the group consisting of CCR7 and CD62L.


In some embodiments, the viability of the fresh TILs as compared to the thawed TILs is at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, or at least 98%. In some embodiments, the viability of both the fresh and thawed TILs is greater than 70%, greater than 75%, greater than 80%, greater than 85%, greater than 90%, greater than 95%, or greater than 98%. In some embodiments, the viability of both the fresh and thawed product is greater than 80%, greater than 81%, greater than 82%, greater than 83%, greater than 84%, greater than 85%, greater than 86%, greater than 87%, greater than 88%, greater than 89%, or greater than 90%. In some embodiments, the viability of both the fresh and thawed product is greater than 86%.


In an embodiment, restimulated TILs can also be evaluated for cytokine release, using cytokine release assays. In some embodiments, TILs can be evaluated for interferon-7 (IFN-7) secretion in response to stimulation either with OKT3 or co-culture with autologous tumor digest. For example, in embodiments employing OKT3 stimulation, TILs are washed extensively, and duplicate wells are prepared with 1×105 cells in 0.2 mL CM in 96-well flat-bottom plates precoated with 0.1 or 1.0 μg/mL of OKT3 diluted in phosphate-buffered saline. After overnight incubation, the supernatants are harvested and IFN-gamma in the supernatant is measured by ELISA (Pierce/Endogen, Woburn, Mass.). For the co-culture assay, 1×105 TIL cells are placed into a 96-well plate with autologous tumor cells. (1:1 ratio). After a 24-hour incubation, supernatants are harvested and IFN-gamma release can be quantified, for example by ELISA.


Flow cytometric analysis of cell surface biomarkers: TIL samples were aliquoted for flow cytometric analysis of cell surface markers.


In some embodiments, the TILs are being evaluated for various regulatory markers. In some embodiments, the regulatory marker is selected from the group consisting of TCR α/β, CD56, CD27, CD28, CD57, CD45RA, CD45RO, CD25, CD127, CD95, IL-2R−, CCR7, CD62L, KLRG1, and CD122. In some embodiments, the regulatory marker is TCR α/β. In some embodiments, the regulatory marker is CD56. In some embodiments, the regulatory marker is CD27. In some embodiments, the regulatory marker is CD28. In some embodiments, the regulatory marker is CD57. In some embodiments, the regulatory marker is CD45RA. In some embodiments, the regulatory marker is CD45RO. In some embodiments, the regulatory marker is CD25. In some embodiments, the regulatory marker is CD127. In some embodiments, the regulatory marker is CD95. In some embodiments, the regulatory marker is IL-2R−. In some embodiments, the regulatory marker is CCR7. In some embodiments, the regulatory marker is CD62L. In some embodiments, the regulatory marker is KLRG1. In some embodiments, the regulatory marker is CD122.


ADDITIONAL PROCESS EMBODIMENTS

In some embodiments, the invention provides a method for expanding tumor infiltrating lymphocytes (TILs) into a therapeutic population of TILs comprising: (a) obtaining a first population of TILs from a tumor resected from a subject by processing a tumor sample obtained from the subject into multiple tumor fragments; (b) performing a first expansion by culturing the first population of TILs in a cell culture medium comprising IL-2, 4-1BB agonist and OKT-3, wherein the first expansion is performed for about 21 to 35 days to obtain the second population of TILs, wherein the second population of TILs is greater in number than the first population of TILs; (c) performing a second expansion by contacting the second population of TILs with a cell culture medium comprising IL-2, 4-1BB agonist, OKT-3 and exogenous antigen presenting cells (APCs) to produce a third population of TILs, wherein the second expansion is performed for about 6 to 10 days to obtain the third population of TILs, wherein the third population of TILs is a therapeutic population of TILs; and (d) harvesting the therapeutic population of TILs obtained from step (c). In some embodiments, the step of second expansion is split into a plurality of steps to achieve a scaling up of the culture by: (1) performing the second expansion by culturing the second population of TILs in a small scale culture in a first container, e.g., a G-REX 100 MCS container, for a period of about 2 to 4 days, and then (2) effecting the transfer of the second population of TILs from the small scale culture to a second container larger than the first container, e.g., a G-REX 500MCS container, wherein in the second container the second population of TILs from the small scale culture is cultured in a larger scale culture for a period of about 4 to 8 days. In some embodiments, the step of expansion is split into a plurality of steps to achieve a scaling out of the culture by: (1) performing the second expansion by culturing the second population of TILs in a first small scale culture in a first container, e.g., a G-REX 100 MCS container, for a period of about 2 to 4 days, and then (2) effecting the transfer and apportioning of the second population of TILs from the first small scale culture into and amongst at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 second containers that are equal in size to the first container, wherein in each second container the portion of the second population of TILs from the first small scale culture transferred to such second container is cultured in a second small scale culture for a period of about 4 to 8 days. In some embodiments, the step of second expansion is split into a plurality of steps to achieve a scaling out and scaling up of the culture by: (1) performing the second expansion by culturing the second population of TILs in a small scale culture in a first container, e.g., a G-REX 100MCS container, for a period of about 2 to 4 days, and then (2) effecting the transfer and apportioning of the second population of TILs from the first small scale culture into and amongst at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 second containers that are larger in size than the first container, e.g., G-REX 500MCS containers, wherein in each second container the portion of the second population of TILs transferred from the small scale culture to such second container is cultured in a larger scale culture for a period of about 4 to 8 days. In some embodiments, the step of second expansion is split into a plurality of steps to achieve a scaling out and scaling up of the culture by: (1) performing the second expansion by culturing the second population of TILs in a small scale culture in a first container, e.g., a G-REX 100 MCS container, for a period of about 3 to 4 days, and then (2) effecting the transfer and apportioning of the second population of TILs from the first small scale culture into and amongst 2, 3 or 4 second containers that are larger in size than the first container, e.g., G-REX 500MCS containers, wherein in each second container the portion of the second population of TILs transferred from the small scale culture to such second container is cultured in a larger scale culture for a period of about 5 to 7 days.


In some embodiments, the invention provides a method for expanding tumor infiltrating lymphocytes (TILs) into a therapeutic population of TILs comprising: (a) obtaining a first population of TILs from a tumor resected from a subject by processing a tumor sample obtained from the subject into multiple tumor fragments; (b) performing a first expansion by culturing the first population of TILs in a cell culture medium comprising IL-2, 4-1BB agonist and OKT-3, wherein the first expansion is performed for about 21 to 35 days to obtain the second population of TILs, wherein the second population of TILs is greater in number than the first population of TILs; (c) performing a second expansion by contacting the second population of TILs with a cell culture medium comprising IL-2, 4-1BB agonist, OKT-3 and exogenous antigen presenting cells (APCs) to produce a third population of TILs, wherein the second expansion is performed for about 7 to 12 days to obtain the third population of TILs, wherein the third population of TILs is a therapeutic population of TILs; and (d) harvesting the therapeutic population of TILs obtained from step (c). In some embodiments, the step of second expansion is split into a plurality of steps to achieve a scaling up of the culture by: (1) performing the second expansion by culturing the second population of TILs in a small scale culture in a first container, e.g., a G-REX 100MCS container, for a period of about 2 to 4 days, and then (2) effecting the transfer of the second population of TILs from the small scale culture to a second container larger than the first container, e.g., a G-REX 500MCS container, wherein in the second container the second population of TILs from the small scale culture is cultured in a larger scale culture for a period of about 4 to 8 days. In some embodiments, the step of second expansion is split into a plurality of steps to achieve a scaling out of the culture by: (1) performing the second expansion by culturing the second population of TILs in a first small scale culture in a first container, e.g., a G-REX 100MCS container, for a period of about 2 to 4 days, and then (2) effecting the transfer and apportioning of the second population of TILs from the first small scale culture into and amongst at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 second containers that are equal in size to the first container, wherein in each second container the portion of the second population of TILs from the first small scale culture transferred to such second container is cultured in a second small scale culture for a period of about 4 to 8 days. In some embodiments, the step of second expansion is split into a plurality of steps to achieve a scaling out and scaling up of the culture by: (1) performing the second expansion by culturing the second population of TILs in a small scale culture in a first container, e.g., a G-REX 100MCS container, for a period of about 2 to 4 days, and then (2) effecting the transfer and apportioning of the second population of TILs from the first small scale culture into and amongst at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 second containers that are larger in size than the first container, e.g., G-REX 500MCS containers, wherein in each second container the portion of the second population of TILs transferred from the small scale culture to such second container is cultured in a larger scale culture for a period of about 4 to 8 days. In some embodiments, the step of second expansion is split into a plurality of steps to achieve a scaling out and scaling up of the culture by: (1) performing the second expansion by culturing the second population of TILs in a small scale culture in a first container, e.g., a G-REX 100 MCS container, for a period of about 3 to 4 days, and then (2) effecting the transfer and apportioning of the second population of TILs from the first small scale culture into and amongst 2, 3 or 4 second containers that are larger in size than the first container, e.g., G-REX 500MCS containers, wherein in each second container the portion of the second population of TILs transferred from the small scale culture to such second container is cultured in a larger scale culture for a period of about 4 to 8 days.


In some embodiments, the invention provides a method for expanding tumor infiltrating lymphocytes (TILs) into a therapeutic population of TILs comprising: (a) obtaining a first population of TILs from a tumor resected from a subject by processing a tumor sample obtained from the subject into multiple tumor fragments; (b) performing a first expansion by culturing the first population of TILs in a cell culture medium comprising IL-2, 4-1BB agonist and OKT-3, wherein the first expansion is performed for about 21 to 35 days to obtain the second population of TILs, wherein the second population of TILs is greater in number than the first population of TILs; (c) performing a second expansion by contacting the second population of TILs with a cell culture medium comprising IL-2, 4-1BB agonist, OKT-3 and exogenous antigen presenting cells (APCs) to produce a third population of TILs, wherein the second expansion is performed for about 1 to 11 days to obtain the third population of TILs, wherein the third population of TILs is a therapeutic population of TILs; and (d) harvesting the therapeutic population of TILs obtained from step (c). In some embodiments, the step of second expansion is split into a plurality of steps to achieve a scaling up of the culture by: (1) performing the second expansion by culturing the second population of TILs in a small scale culture in a first container, e.g., a G-REX 100MCS container, for a period of about 3 to 4 days, and then (2) effecting the transfer of the second population of TILs from the small scale culture to a second container larger than the first container, e.g., a G-REX 500MCS container, wherein in the second container the second population of TILs from the small scale culture is cultured in a larger scale culture for a period of about 4 to 7 days. In some embodiments, the step of second expansion is split into a plurality of steps to achieve a scaling out of the culture by: (1) performing the second expansion by culturing the second population of TILs in a first small scale culture in a first container, e.g., a G-REX 100MCS container, for a period of about 3 to 4 days, and then (2) effecting the transfer and apportioning of the second population of TILs from the first small scale culture into and amongst at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 second containers that are equal in size to the first container, wherein in each second container the portion of the second population of TILs from the first small scale culture transferred to such second container is cultured in a second small scale culture for a period of about 4 to 7 days. In some embodiments, the step of second expansion is split into a plurality of steps to achieve a scaling out and scaling up of the culture by: (1) performing the second expansion by culturing the second population of TILs in a small scale culture in a first container, e.g., a G-REX 100MCS container, for a period of about 3 to 4 days, and then (2) effecting the transfer and apportioning of the second population of TILs from the first small scale culture into and amongst at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 second containers that are larger in size than the first container, e.g., G-REX 500MCS containers, wherein in each second container the portion of the second population of TILs transferred from the small scale culture to such second container is cultured in a larger scale culture for a period of about 4 to 7 days. In some embodiments, the step of second expansion is split into a plurality of steps to achieve a scaling out and scaling up of the culture by: (1) performing the second expansion by culturing the second population of TILs in a small scale culture in a first container, e.g., a G-REX 100MCS container, for a period of about 4 days, and then (2) effecting the transfer and apportioning of the second population of TILs from the first small scale culture into and amongst 2, 3 or 4 second containers that are larger in size than the first container, e.g., G-REX 500MCS containers, wherein in each second container the portion of the second population of TILs transferred from the small scale culture to such second container is cultured in a larger scale culture for a period of about 5 days.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that 4 or 5 days after initiation of the first expansion the culture of the first population of TILs is refed with additional culture medium.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that 4 or 5 days after initiation of the first expansion the culture of the first population of TILs is refed with additional culture medium, and every 3 or 4 days thereafter until the end of the first expansion one half of the volume of the culture medium is replaced with an equal volume of fresh culture medium.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that 4 or 5 days after initiation of the first expansion the culture of the first population of TILs is refed with additional culture medium supplemented with IL-2.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that 4 or 5 days after initiation of the first expansion the culture of the first population of TILs is refed with additional culture medium supplemented with IL-2, and every 3 or 4 days thereafter until the end of the first expansion one half of the volume of the culture medium is replaced with an equal volume of fresh culture medium.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that 4 or 5 days after initiation of the first expansion the culture of the first population of TILs is refed with additional culture medium supplemented with IL-2, and every 3 or 4 days thereafter until the end of the first expansion one half of the volume of the culture medium is replaced with an equal volume of fresh culture medium supplemented with IL-2.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that 4 or 5 days after initiation of the first expansion the culture of the first population of TILs is refed with additional culture medium supplemented with IL-2 and 4-1BB agonist.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that 4 or 5 days after initiation of the first expansion the culture of the first population of TILs is refed with additional culture medium supplemented with IL-2 and 4-1BB agonist, and every 3 or 4 days thereafter until the end of the first expansion one half of the volume of the culture medium is replaced with an equal volume of fresh culture medium.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that 4 or 5 days after initiation of the first expansion the culture of the first population of TILs is refed with additional culture medium supplemented with IL-2 and 4-1BB agonist, and every 3 or 4 days thereafter until the end of the first expansion one half of the volume of the culture medium is replaced with an equal volume of fresh culture medium supplemented with IL-2.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that 4 or 5 days after initiation of the first expansion the culture of the first population of TILs is refed with additional culture medium supplemented with IL-2 and 4-1BB agonist, and every 3 or 4 days thereafter until the end of the first expansion one half of the volume of the culture medium is replaced with an equal volume of fresh culture medium supplemented with IL-2 and 4-1BB agonist.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that 4 or 5 days after initiation of the first expansion the culture of the first population of TILs is refed with additional culture medium supplemented with IL-2, 4-1BB agonist and OKT-3.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that 4 or 5 days after initiation of the first expansion the culture of the first population of TILs is refed with additional culture medium supplemented with IL-2, 4-1BB agonist and OKT-3, and every 3 or 4 days thereafter until the end of the first expansion one half of the culture medium is replaced with an equal volume of fresh culture medium.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that 4 or 5 days after initiation of the first expansion the culture of the first population of TILs is refed with additional culture medium supplemented with IL-2, 4-1BB agonist and OKT-3, and every 3 or 4 days thereafter until the end of the first expansion one half of the culture medium is replaced with an equal volume of fresh culture medium supplemented with IL-2.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that 4 or 5 days after initiation of the first expansion the culture of the first population of TILs is refed with additional culture medium supplemented with IL-2, 4-1BB agonist and OKT-3, and every 3 or 4 days thereafter until the end of the first expansion one half of the culture medium is replaced with an equal volume of fresh culture medium supplemented with IL-2 and 4-1BB agonist.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that 4 or 5 days after initiation of the first expansion the culture of the first population of TILs is refed with additional culture medium supplemented with IL-2, 4-1BB agonist and OKT-3, and every 3 or 4 days thereafter until the end of the first expansion one half of the culture medium is replaced with an equal volume of fresh culture medium supplemented with IL-2, 4-1BB agonist and OKT-3.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the refeeding with additional culture medium at day 4 or 5 of the first expansion yields a total volume of culture medium in the culture that is at least about 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, 110%, 120%, 130%, 140%, 150%, 160%, 170%, 180%, 190% or 200% greater than the volume of culture medium in the culture immediately before the refeeding.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that in step (b) the first expansion is performed by contacting the first population of TILs with a culture medium which further comprises exogenous antigen-presenting cells (APCs), wherein the number of APCs in the culture medium in step (c) is greater than the number of APCs in the culture medium in step (b).


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that in step (c) the culture medium is supplemented with additional exogenous APCs.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the ratio of number of APCs added in the second expansion step to the number of APCs added in step (b) is in a range of from at or about 1.1:1 to at or about 20:1.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the ratio of number of APCs added in the second expansion step to the number of APCs added in step (b) is in a range of from at or about 1.1:1 to at or about 10:1.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the ratio of number of APCs added in the second expansion step to the number of APCs added in step (b) is in a range of from at or about 1.1:1 to at or about 9:1.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the ratio of number of APCs added in the second expansion step to the number of APCs added in step (b) is in a range of from at or about 1.1:1 to at or about 8:1.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the ratio of number of APCs added in the second expansion step to the number of APCs added in step (b) is in a range of from at or about 1.1:1 to at or about 7:1.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the ratio of number of APCs added in the second expansion step to the number of APCs added in step (b) is in a range of from at or about 1.1:1 to at or about 6:1.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the ratio of number of APCs added in the second expansion step to the number of APCs added in step (b) is in a range of from at or about 1.1:1 to at or about 5:1.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the ratio of number of APCs added in the second expansion step to the number of APCs added in step (b) is in a range of from at or about 1.1:1 to at or about 4:1.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the ratio of number of APCs added in the second expansion step to the number of APCs added in step (b) is in a range of from at or about 1.1:1 to at or about 3:1.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the ratio of number of APCs added in the second expansion step to the number of APCs added in step (b) is in a range of from at or about 1.1:1 to at or about 2.9:1.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the ratio of number of APCs added in the second expansion step to the number of APCs added in step (b) is in a range of from at or about 1.1:1 to at or about 2.8:1.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the ratio of number of APCs added in the second expansion step to the number of APCs added in step (b) is in a range of from at or about 1.1:1 to at or about 2.7:1.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the ratio of number of APCs added in the second expansion step to the number of APCs added in step (b) is in a range of from at or about 1.1:1 to at or about 2.6:1.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the ratio of number of APCs added in the second expansion step to the number of APCs added in step (b) is in a range of from at or about 1.1:1 to at or about 2.5:1.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the ratio of number of APCs added in the second expansion step to the number of APCs added in step (b) is in a range of from at or about 1.1:1 to at or about 2.4:1.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the ratio of number of APCs added in the second expansion step to the number of APCs added in step (b) is in a range of from at or about 1.1:1 to at or about 2.3:1.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the ratio of number of APCs added in the second expansion step to the number of APCs added in step (b) is in a range of from at or about 1.1:1 to at or about 2.2:1.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the ratio of number of APCs added in the second expansion step to the number of APCs added in step (b) is in a range of from at or about 1.1:1 to at or about 2.1:1.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the ratio of number of APCs added in the second expansion step to the number of APCs added in step (b) is in a range of from at or about 1.1:1 to at or about 2:1.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the ratio of number of APCs added in the second expansion step to the number of APCs added in step (b) is in a range of from at or about 2:1 to at or about 10:1.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the ratio of number of APCs added in the second expansion step to the number of APCs added in step (b) is in a range of from at or about 2:1 to at or about 5:1.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the ratio of number of APCs added in the second expansion step to the number of APCs added in step (b) is in a range of from at or about 2:1 to at or about 4:1.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the ratio of number of APCs added in the second expansion step to the number of APCs added in step (b) is in a range of from at or about 2:1 to at or about 3:1.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the ratio of number of APCs added in the second expansion step to the number of APCs added in step (b) is in a range of from at or about 2:1 to at or about 2.9:1.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the ratio of number of APCs added in the second expansion step to the number of APCs added in step (b) is in a range of from at or about 2:1 to at or about 2.8:1.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the ratio of number of APCs added in the second expansion step to the number of APCs added in step (b) is in a range of from at or about 2:1 to at or about 2.7:1.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the ratio of number of APCs added in the second expansion step to the number of APCs added in step (b) is in a range of from at or about 2:1 to at or about 2.6:1.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the ratio of number of APCs added in the second expansion step to the number of APCs added in step (b) is in a range of from at or about 2:1 to at or about 2.5:1.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the ratio of number of APCs added in the second expansion step to the number of APCs added in step (b) is in a range of from at or about 2:1 to at or about 2.4:1.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the ratio of number of APCs added in the second expansion step to the number of APCs added in step (b) is in a range of from at or about 2:1 to at or about 2.3:1.


In another embodiment, the invention provides the method described in any of the preceding paragraph as applicable above modified such that the ratio of number of APCs added in the second expansion step to the number of APCs added in step (b) is in a range of from at or about 2:1 to at or about 2.2:1.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the ratio of number of APCs added in the second expansion step to the number of APCs added in step (b) is in a range of from at or about 2:1 to at or about 2.1:1.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the ratio of number of APCs added in the second expansion step to the number of APCs added in step (b) is at or about 2:1.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the ratio of number of APCs added in the second expansion step to the number of APCs added in step (b) is at or about 1.1:1, 1.2:1, 1.3:1, 1.4:1, 1.5:1, 1.6:1, 1.7:1, 1.8:1, 1.9:1, 2:1, 2.1:1, 2.2:1, 2.3:1, 2.4:1, 2.5:1, 2.6:1, 2.7:1, 2.8:1, 2.9:1, 3:1, 3.1:1, 3.2:1, 3.3:1, 3.4:1, 3.5:1, 3.6:1, 3.7:1, 3.8:1, 3.9:1, 4:1, 4.1:1, 4.2:1, 4.3:1, 4.4:1, 4.5:1, 4.6:1, 4.7:1, 4.8:1, 4.9:1, or 5:1.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the number of APCs added in the first expansion is at or about 1×108, 1.1×108, 1.2×108, 1.3×108, 1.4×108, 1.5×108, 1.6×108, 1.7×108, 1.8×108, 1.9×108, 2×108, 2.1×108, 2.2×108, 2.3×108, 2.4×108, 2.5×108, 2.6×108, 2.7×108, 2.8×108, 2.9×108, 3×108, 3.1×108, 3.2×108, 3.3×108, 3.4×108 or 3.5×108 APCs, and such that the number of APCs added in the second expansion is at or about 3.5×108, 3.6×108, 3.7×108, 3.8×108, 3.9×108, 4×108, 4.1×108, 4.2×108, 4.3×108, 4.4×108, 4.5×108, 4.6×108, 4.7×108, 4.8×108, 4.9×108, 5×108, 5.1×108, 5.2×108, 5.3×108, 5.4×108, 5.5×108, 5.6×108, 5.7×108, 5.8×108, 5.9×108, 6×108, 6.1×108, 6.2×108, 6.3×108, 6.4×108, 6.5×108, 6.6×108, 6.7×108, 6.8×108, 6.9×108, 7×108, 7.1×108, 7.2×108, 7.3×108, 7.4×108, 7.5×108, 7.6×108, 7.7×108, 7.8×108, 7.9×108, 8×108, 8.1×108, 8.2×108, 8.3×108, 8.4×108, 8.5×108, 8.6×108, 8.7×108, 8.8×108, 8.9×108, 9×108, 9.1×108, 9.2×108, 9.3×108, 9.4×108, 9.5×108, 9.6×108, 9.7×108, 9.8×108, 9.9×108 or 1×109 APCs.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the number of APCs added in the first expansion is in the range of at or about 1×108 APCs to at or about 3.5×108 APCs, and wherein the number of APCs added in the second expansion is in the range of at or about 3.5×108 APCs to at or about 1×109 APCs.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the number of APCs added in the first expansion is in the range of at or about 1.5×108 APCs to at or about 3×108 APCs, and wherein the number of APCs added in the second expansion is in the range of at or about 4×108 APCs to at or about 7.5×108 APCs.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the number of APCs added in the first expansion is in the range of at or about 2×108 APCs to at or about 2.5×108 APCs, and wherein the number of APCs added in the second expansion is in the range of at or about 4.5×108 APCs to at or about 5.5×108 APCs.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that at or about 2.5×108 APCs are added to the first expansion and at or about 5×108 APCs are added to the second expansion.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the antigen-presenting cells are peripheral blood mononuclear cells (PBMCs).


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the multiple tumor fragments are distributed into a plurality of separate containers, in each of which separate containers the first population of TILs is obtained in step (a), the second population of TILs is obtained in step (b), and the third population of TILs is obtained in step (c), and the therapeutic populations of TILs from the plurality of containers in step (c) are combined to yield the harvested TIL population from step (d).


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the multiple tumors are evenly distributed into the plurality of separate containers.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the plurality of separate containers comprises at least two separate containers.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the plurality of separate containers comprises from two to twenty separate containers.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the plurality of separate containers comprises from two to fifteen separate containers.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the plurality of separate containers comprises from two to ten separate containers.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the plurality of separate containers comprises from two to five separate containers.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the plurality of separate containers comprises 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 separate containers.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that for each container in which the first expansion is performed on a first population of TILs in step (b) the second expansion in step (c) is performed in the same container on the second population of TILs produced from such first population of TILs.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that each of the separate containers comprises a first gas-permeable surface area.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the multiple tumor fragments are distributed in a single container.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the single container comprises a first gas-permeable surface area.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that in step (b) the first expansion is performed by supplementing the cell culture medium of the first population of TILs with additional antigen-presenting cells (APCs), wherein the number of APCs added in step (c) is greater than the number of APCs added in step (b), and wherein in step (b) the APCs are layered onto the first gas-permeable surface area at an average thickness of at or about one cell layer to at or about three cell layers.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that in step (b) the APCs are layered onto the first gas-permeable surface area at an average thickness of at or about 1.5 cell layers to at or about 2.5 cell layers.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that in step (b) the APCs are layered onto the first gas-permeable surface area at an average thickness of at or about 2 cell layers.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that in step (b) the APCs are layered onto the first gas-permeable surface area at an average thickness of at or about 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9 or 3 cell layers.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that in step (c) the APCs are layered onto the first gas-permeable surface area at an average thickness of at or about 3 cell layers to at or about 10 cell layers.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that in step (c) the APCs are layered onto the first gas-permeable surface area at an average thickness of at or about 4 cell layers to at or about 8 cell layers.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that in step (c) the APCs are layered onto the first gas-permeable surface area at an average thickness of at or about 3, 4, 5, 6, 7, 8, 9 or 10 cell layers.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that in step (c) the APCs are layered onto the first gas-permeable surface area at an average thickness of at or about 4, 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 5, 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, 6, 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 6.8, 6.9, 7, 7.1, 7.2, 7.3, 7.4, 7.5, 7.6, 7.7, 7.8, 7.9 or 8 cell layers.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that in step (b) the first expansion is performed in a first container comprising a first gas-permeable surface area and in step (c) the second expansion is performed in a second container comprising a second gas-permeable surface area.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the second container is larger than the first container.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that in step (b) the first expansion is performed by supplementing the cell culture medium of the first population of TILs with additional antigen-presenting cells (APCs), wherein the number of APCs added in step (c) is greater than the number of APCs added in step (b), and wherein in step (b) the APCs are layered onto the first gas-permeable surface area at an average thickness of at or about one cell layer to at or about three cell layers.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that in step (b) the APCs are layered onto the first gas-permeable surface area at an average thickness of at or about 1.5 cell layers to at or about 2.5 cell layers.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that in step (b) the APCs are layered onto the first gas-permeable surface area at an average thickness of at or about 2 cell layers.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable modified such that in step (b) the APCs are layered onto the first gas-permeable surface area at an average thickness of at or about 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9 or 3 cell layers.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that in step (c) the APCs are layered onto the second gas-permeable surface area at an average thickness of at or about 3 cell layers to at or about 10 cell layers.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that in step (c) the APCs are layered onto the second gas-permeable surface area at an average thickness of at or about 4 cell layers to at or about 8 cell layers.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that in step (c) the APCs are layered onto the second gas-permeable surface area at an average thickness of at or about 3, 4, 5, 6, 7, 8, 9 or 10 cell layers.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that in step (c) the APCs are layered onto the second gas-permeable surface area at an average thickness of at or about 4, 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 5, 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, 6, 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 6.8, 6.9, 7, 7.1, 7.2, 7.3, 7.4, 7.5, 7.6, 7.7, 7.8, 7.9 or 8 cell layers.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that in step (b) the first expansion is performed in a first container comprising a first gas-permeable surface area and in step (c) the second expansion is performed in the first container.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that in step (b) the first expansion is performed by supplementing the cell culture medium of the first population of TILs with additional antigen-presenting cells (APCs), wherein the number of APCs added in step (c) is greater than the number of APCs added in step (b), and wherein in step (b) the APCs are layered onto the first gas-permeable surface area at an average thickness of at or about one cell layer to at or about three cell layers.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that in step (b) the APCs are layered onto the first gas-permeable surface area at an average thickness of at or about 1.5 cell layers to at or about 2.5 cell layers.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that in step (b) the APCs are layered onto the first gas-permeable surface area at an average thickness of at or about 2 cell layers.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that in step (b) the APCs are layered onto the first gas-permeable surface area at an average thickness of at or about 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9 or 3 cell layers.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that in step (c) the APCs are layered onto the first gas-permeable surface area at an average thickness of at or about 3 cell layers to at or about 10 cell layers.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that in step (c) the APCs are layered onto the first gas-permeable surface area at an average thickness of at or about 4 cell layers to at or about 8 cell layers.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that in step (c) the APCs are layered onto the first gas-permeable surface area at an average thickness of at or about 3, 4, 5, 6, 7, 8, 9 or 10 cell layers.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that in step (c) the APCs are layered onto the first gas-permeable surface area at an average thickness of at or about 4, 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 5, 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, 6, 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 6.8, 6.9, 7, 7.1, 7.2, 7.3, 7.4, 7.5, 7.6, 7.7, 7.8, 7.9 or 8 cell layers.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that in step (b) the first expansion is performed by supplementing the cell culture medium of the first population of TILs with additional antigen-presenting cells (APCs), wherein the number of APCs added in step (c) is greater than the number of APCs added in step (b), and wherein the ratio of the average number of layers of APCs layered in step (b) to the average number of layers of APCs layered in step (c) is in the range of at or about 1:1.1 to at or about 1:10.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that in step (b) the first expansion is performed by supplementing the cell culture medium of the first population of TILs with additional antigen-presenting cells (APCs), wherein the number of APCs added in step (c) is greater than the number of APCs added in step (b), and wherein the ratio of the average number of layers of APCs layered in step (b) to the average number of layers of APCs layered in step (c) is in the range of at or about 1:1.1 to at or about 1:9.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that in step (b) the first expansion is performed by supplementing the cell culture medium of the first population of TILs with additional antigen-presenting cells (APCs), wherein the number of APCs added in step (c) is greater than the number of APCs added in step (b), and wherein the ratio of the average number of layers of APCs layered in step (b) to the average number of layers of APCs layered in step (c) is in the range of at or about 1:1.1 to at or about 1:8.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that in step (b) the first expansion is performed by supplementing the cell culture medium of the first population of TILs with additional antigen-presenting cells (APCs), wherein the number of APCs added in step (c) is greater than the number of APCs added in step (b), and wherein the ratio of the average number of layers of APCs layered in step (b) to the average number of layers of APCs layered in step (c) is in the range of at or about 1:1.1 to at or about 1:7.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that in step (b) the first expansion is performed by supplementing the cell culture medium of the first population of TILs with additional antigen-presenting cells (APCs), wherein the number of APCs added in step (c) is greater than the number of APCs added in step (b), and wherein the ratio of the average number of layers of APCs layered in step (b) to the average number of layers of APCs layered in step (c) is in the range of at or about 1:1.1 to at or about 1:6.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that in step (b) the first expansion is performed by supplementing the cell culture medium of the first population of TILs with additional antigen-presenting cells (APCs), wherein the number of APCs added in step (c) is greater than the number of APCs added in step (b), and wherein the ratio of the average number of layers of APCs layered in step (b) to the average number of layers of APCs layered in step (c) is in the range of at or about 1:1.1 to at or about 1:5.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that in step (b) the first expansion is performed by supplementing the cell culture medium of the first population of TILs with additional antigen-presenting cells (APCs), wherein the number of APCs added in step (c) is greater than the number of APCs added in step (b), and wherein the ratio of the average number of layers of APCs layered in step (b) to the average number of layers of APCs layered in step (c) is in the range of at or about 1:1.1 to at or about 1:4.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that in step (b) the first expansion is performed by supplementing the cell culture medium of the first population of TILs with additional antigen-presenting cells (APCs), wherein the number of APCs added in step (c) is greater than the number of APCs added in step (b), and wherein the ratio of the average number of layers of APCs layered in step (b) to the average number of layers of APCs layered in step (c) is in the range of at or about 1:1.1 to at or about 1:3.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that in step (b) the first expansion is performed by supplementing the cell culture medium of the first population of TILs with additional antigen-presenting cells (APCs), wherein the number of APCs added in step (c) is greater than the number of APCs added in step (b), and wherein the ratio of the average number of layers of APCs layered in step (b) to the average number of layers of APCs layered in step (c) is in the range of at or about 1:1.1 to at or about 1:2.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that in step (b) the first expansion is performed by supplementing the cell culture medium of the first population of TILs with additional antigen-presenting cells (APCs), wherein the number of APCs added in step (c) is greater than the number of APCs added in step (b), and wherein the ratio of the average number of layers of APCs layered in step (b) to the average number of layers of APCs layered in step (c) is in the range of at or about 1:1.2 to at or about 1:8.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that in step (b) the first expansion is performed by supplementing the cell culture medium of the first population of TILs with additional antigen-presenting cells (APCs), wherein the number of APCs added in step (c) is greater than the number of APCs added in step (b), and wherein the ratio of the average number of layers of APCs layered in step (b) to the average number of layers of APCs layered in step (c) is in the range of at or about 1:1.3 to at or about 1:7.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that in step (b) the first expansion is performed by supplementing the cell culture medium of the first population of TILs with additional antigen-presenting cells (APCs), wherein the number of APCs added in step (c) is greater than the number of APCs added in step (b), and wherein the ratio of the average number of layers of APCs layered in step (b) to the average number of layers of APCs layered in step (c) is in the range of at or about 1:1.4 to at or about 1:6.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that in step (b) the first expansion is performed by supplementing the cell culture medium of the first population of TILs with additional antigen-presenting cells (APCs), wherein the number of APCs added in step (c) is greater than the number of APCs added in step (b), and wherein the ratio of the average number of layers of APCs layered in step (b) to the average number of layers of APCs layered in step (c) is in the range of at or about 1:1.5 to at or about 1:5.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that in step (b) the first expansion is performed by supplementing the cell culture medium of the first population of TILs with additional antigen-presenting cells (APCs), wherein the number of APCs added in step (c) is greater than the number of APCs added in step (b), and wherein the ratio of the average number of layers of APCs layered in step (b) to the average number of layers of APCs layered in step (c) is in the range of at or about 1:1.6 to at or about 1:4.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that in step (b) the first expansion is performed by supplementing the cell culture medium of the first population of TILs with additional antigen-presenting cells (APCs), wherein the number of APCs added in step (c) is greater than the number of APCs added in step (b), and wherein the ratio of the average number of layers of APCs layered in step (b) to the average number of layers of APCs layered in step (c) is in the range of at or about 1:1.7 to at or about 1:3.5.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that in step (b) the first expansion is performed by supplementing the cell culture medium of the first population of TILs with additional antigen-presenting cells (APCs), wherein the number of APCs added in step (c) is greater than the number of APCs added in step (b), and wherein the ratio of the average number of layers of APCs layered in step (b) to the average number of layers of APCs layered in step (c) is in the range of at or about 1:1.8 to at or about 1:3.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that in step (b) the first expansion is performed by supplementing the cell culture medium of the first population of TILs with additional antigen-presenting cells (APCs), wherein the number of APCs added in step (c) is greater than the number of APCs added in step (b), and wherein the ratio of the average number of layers of APCs layered in step (b) to the average number of layers of APCs layered in step (c) is in the range of at or about 1:1.9 to at or about 1:2.5.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that in step (b) the first expansion is performed by supplementing the cell culture medium of the first population of TILs with additional antigen-presenting cells (APCs), wherein the number of APCs added in step (c) is greater than the number of APCs added in step (b), and wherein the ratio of the average number of layers of APCs layered in step (b) to the average number of layers of APCs layered in step (c) is in the range of at or about 1:2.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that in step (b) the first expansion is performed by supplementing the cell culture medium of the first population of TILs with additional antigen-presenting cells (APCs), wherein the number of APCs added in step (c) is greater than the number of APCs added in step (b), and wherein the ratio of the average number of layers of APCs layered in step (b) to the average number of layers of APCs layered in step (c) is selected from at or about 1:1.1, 1:1.2, 1:1.3, 1:1.4, 1:1.5, 1:1.6, 1:1.7, 1:1.8, 1:1.9, 1:2, 1:2.1, 1:2.2, 1:2.3, 1:2.4, 1:2.5, 1:2.6, 1:2.7, 1:2.8, 1:2.9, 1:3, 1:3.1, 1:3.2, 1:3.3, 1:3.4, 1:3.5, 1:3.6, 1:3.7, 1:3.8, 1:3.9, 1:4, 1:4.1, 1:4.2, 1:4.3, 1:4.4, 1:4.5, 1:4.6, 1:4.7, 1:4.8, 1:4.9, 1:5, 1:5.1, 1:5.2, 1:5.3, 1:5.4, 1:5.5, 1:5.6, 1:5.7, 1:5.8, 1:5.9, 1:6, 1:6.1, 1:6.2, 1:6.3, 1:6.4, 1:6.5, 1:6.6, 1:6.7, 1:6.8, 1:6.9, 1:7, 1:7.1, 1:7.2, 1:7.3, 1:7.4, 1:7.5, 1:7.6, 1:7.7, 1:7.8, 1:7.9, 1:8, 1:8.1, 1:8.2, 1:8.3, 1:8.4, 1:8.5, 1:8.6, 1:8.7, 1:8.8, 1:8.9, 1:9, 1:9.1, 1:9.2, 1:9.3, 1:9.4, 1:9.5, 1:9.6, 1:9.7, 1:9.8, 1:9.9 or 1:10.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the ratio of the number of TILs in the second population of TILs to the number of TILs in the first population of TILs is at or about 1.5:1 to at or about 100:1.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the ratio of the number of TILs in the second population of TILs to the number of TILs in the first population of TILs is at or about 50:1.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the ratio of the number of TILs in the second population of TILs to the number of TILs in the first population of TILs is at or about 25:1.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the ratio of the number of TILs in the second population of TILs to the number of TILs in the first population of TILs is at or about 20:1.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the ratio of the number of TILs in the second population of TILs to the number of TILs in the first population of TILs is at or about 10:1.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the second population of TILs is at least at or about 50-fold greater in number than the first population of TILs.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the second population of TILs is at least at or about 1-, 2-, 3-, 4-, 5-, 6-, 7-, 8-, 9-, 10-, 11-, 12-, 13-, 14-, 15-, 16-, 17-, 18-, 19-, 20-, 21-, 22-, 23-, 24-, 25-, 26-, 27-, 28-, 29-, 30-, 31-, 32-, 33-, 34-, 35-, 36-, 37-, 38-, 39-, 40-, 41- , 42-, 43-, 44-, 45-, 46-, 47-, 48-, 49- or 50-fold greater in number than the first population of TILs.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified to further comprise the step of cryopreserving the harvested TIL population in step (d) using a cryopreservation process.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified to comprise performing after step (d) the additional step of (e) transferring the harvested TIL population from step (d) to an infusion bag that optionally contains HypoThermosol.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified to comprise the step of cryopreserving the infusion bag comprising the harvested TIL population in step (e) using a cryopreservation process.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the cryopreservation process is performed using a 1:1 ratio of harvested TIL population to cryopreservation media.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the antigen-presenting cells are peripheral blood mononuclear cells (PBMCs).


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the PBMCs are irradiated and allogeneic.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the total number of APCs added to the cell culture in step (b) is 2.5×108.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the total number of APCs added to the cell culture in step (c) is 5×108.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the APCs are PBMCs.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the PBMCs are irradiated and allogeneic.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the antigen-presenting cells are artificial antigen-presenting cells.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the harvesting in step (d) is performed using a membrane-based cell processing system.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the harvesting in step (d) is performed using a LOVO cell processing system.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the multiple fragments comprise at or about 5 to at or about 60 fragments per container in step (b).


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the multiple fragments comprise at or about 10 to at or about 60 fragments per container in step (b).


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the multiple fragments comprise at or about 15 to at or about 60 fragments per container in step (b).


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the multiple fragments comprise at or about 20 to at or about 60 fragments per container in step (b).


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the multiple fragments comprise at or about 25 to at or about 60 fragments per container in step (b).


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the multiple fragments comprise at or about 30 to at or about 60 fragments per container in step (b).


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the multiple fragments comprise at or about 35 to at or about 60 fragments per container in step (b).


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the multiple fragments comprise at or about 40 to at or about 60 fragments per container in step (b).


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the multiple fragments comprise at or about 45 to at or about 60 fragments per container in step (b).


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the multiple fragments comprise at or about 50 to at or about 60 fragments per container in step (b).


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the multiple fragments comprise at or about 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59 or 60 fragment(s) per container in step (b).


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that each fragment has a volume of at or about 27 mm3.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that each fragment has a volume of at or about 20 mm3 to at or about 50 mm3.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that each fragment has a volume of at or about 21 mm3 to at or about 30 mm3.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that each fragment has a volume of at or about 22 mm3 to at or about 29.5 mm3.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that each fragment has a volume of at or about 23 mm3 to at or about 29 mm3.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that each fragment has a volume of at or about 24 mm3 to at or about 28.5 mm3.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that each fragment has a volume of at or about 25 mm3 to at or about 28 mm3.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that each fragment has a volume of at or about 26.5 mm3 to at or about 27.5 mm3.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that each fragment has a volume of at or about 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49 or 50 mm3.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the multiple fragments comprise at or about 30 to at or about 60 fragments with a total volume of at or about 1300 mm3 to at or about 1500 mm3.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the multiple fragments comprise at or about 50 fragments with a total volume of at or about 1350 mm3.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the multiple fragments comprise at or about 50 fragments with a total mass of at or about 1 gram to at or about 1.5 grams.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the tumor fragments are small biopsies (including, for example, a punch biopsy), core biopsies, core needle biopsies or fine needle aspirates.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the tumor fragments are core biopsies.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the tumor fragments are fine needle aspirates.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the tumor fragments are small biopsies (including, for example, a punch biopsy).


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the tumor fragments are core needle biopsies.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that (i) the method comprises obtaining the first population of TILs from one or more small biopsies (including, for example, a punch biopsy), core biopsies, core needle biopsies or fine needle aspirates of tumor tissue from the subject, (ii) the method comprises performing the step of culturing the first population of TILs in a cell culture medium comprising IL-2 for a period of about 3 days prior to performing the step of the first expansion, (iii) the method comprises performing the first expansion for a period of about 21 to 35 days, and (iv) the method comprises performing the second expansion for a period of about 6 to 12 days. In some of the foregoing embodiments, the steps of the method are completed in about 30 to 50 days.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that (i) the method comprises obtaining the first population of TILs from one or more small biopsies (including, for example, a punch biopsy), core biopsies, core needle biopsies or fine needle aspirates of tumor tissue from the subject, (ii) the method comprises performing the step of culturing the first population of TILs in a cell culture medium comprising IL-2 for a period of about 3 days prior to performing the step of the first expansion, (iii) the method comprises performing the first expansion for a period of about 21 to 35 days, and (iv) the method comprises performing the second expansion by culturing the culture of the second population of TILs for about 5 days, splitting the culture into up to 5 subcultures and culturing the subcultures for about 6 days. In some of the foregoing embodiments, the up to 5 subcultures are each cultured in a container that is the same size or larger than the container in which the culture of the second population of TILs is commenced in the second expansion. In some of the foregoing embodiments, the culture of the second population of TILs is equally divided amongst the up to 5 subcultures. In some of the foregoing embodiments, the steps of the method are completed in about 35 to 50 days.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the first population of TILs is obtained from 1 to about 20 small biopsies (including, for example, a punch biopsy), core biopsies, core needle biopsies or fine needle aspirates of tumor tissue from the subject.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the first population of TILs is obtained from 1 to about 10 small biopsies (including, for example, a punch biopsy), core biopsies, core needle biopsies or fine needle aspirates of tumor tissue from the subject.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the first population of TILs is obtained from 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20 small biopsies (including, for example, a punch biopsy), core biopsies, core needle biopsies or fine needle aspirates of tumor tissue from the subject.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the first population of TILs is obtained from 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 small biopsies (including, for example, a punch biopsy), core biopsies, core needle biopsies or fine needle aspirates of tumor tissue from the subject.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the first population of TILs is obtained from 1 to about 20 core biopsies of tumor tissue from the subject.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the first population of TILs is obtained from 1 to about 10 core biopsies of tumor tissue from the subject.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the first population of TILs is obtained from 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20 core biopsies of tumor tissue from the subject.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the first population of TILs is obtained from 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 core biopsies of tumor tissue from the subject.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the first population of TILs is obtained from 1 to about 20 fine needle aspirates of tumor tissue from the subject.


paragraphs as applicable above modified such that the first population of TILs is obtained from 1 to about 10 fine needle aspirates of tumor tissue from the subject.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the first population of TILs is obtained from 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20 fine needle aspirates of tumor tissue from the subject.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the first population of TILs is obtained from 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 fine needle aspirates of tumor tissue from the subject.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the first population of TILs is obtained from 1 to about 20 core needle biopsies of tumor tissue from the subject.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the first population of TILs is obtained from 1 to about 10 core needle biopsies of tumor tissue from the subject.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the first population of TILs is obtained from 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20 core needle biopsies of tumor tissue from the subject.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the first population of TILs is obtained from 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 core needle biopsies of tumor tissue from the subject.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the first population of TILs is obtained from 1 to about 20 small biopsies (including, for example, a punch biopsy) of tumor tissue from the subject.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the first population of TILs is obtained from 1 to about 10 small biopsies (including, for example, a punch biopsy) of tumor tissue from the subject.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the first population of TILs is obtained from 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20 small biopsies (including, for example, a punch biopsy) of tumor tissue from the subject.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the first population of TILs is obtained from 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 small biopsies (including, for example, a punch biopsy) of tumor tissue from the subject.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that (i) the method comprises obtaining the first population of TILs from 1 to about 10 core biopsies of tumor tissue from the subject, (ii) the method comprises performing the step of culturing the first population of TILs in a cell culture medium comprising IL-2 for a period of about 3 days prior to performing the step of the first expansion, (iii) the method comprises performing the first expansion step by culturing the first population of TILs in a culture medium comprising IL-2, 4-1BB agonist, OKT-3 and antigen presenting cells (APCs) for a period of about 21 to 35 days to obtain the second population of TILs, and (iv) the method comprises performing the second expansion step by culturing the second population of TILs in a culture medium comprising IL-2, 4-1BB agonist OKT-3 and APCs for a period of about 11 days. In some of the foregoing embodiments, the steps of the method are completed in about 35 to 50 days.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that (i) the method comprises obtaining the first population of TILs from 1 to about 10 core biopsies of tumor tissue from the subject, (ii) the method comprises performing the step of culturing the first population of TILs in a cell culture medium comprising IL-2 for a period of about 3 days prior to performing the step of the first expansion, (iii) the method comprises performing the first expansion step by culturing the first population of TILs in a culture medium comprising IL-2, 4-1BB agonist, OKT-3 and antigen presenting cells (APCs) for a period of about 21 to 35 days to obtain the second population of TILs, and (iv) the method comprises performing the second expansion by culturing the culture of the second population of TILs in a culture medium comprising IL-2, 4-1BB agonist, OKT-3 and APCs for about 5 days, splitting the culture into up to 5 subcultures and culturing each of the subcultures in a culture medium comprising IL-2 for about 6 days. In some of the foregoing embodiments, the up to 5 subcultures are each cultured in a container that is the same size or larger than the container in which the culture of the second population of TILs is commenced in the second expansion. In some of the foregoing embodiments, the culture of the second population of TILs is equally divided amongst the up to 5 subcultures. In some of the foregoing embodiments, the steps of the method are completed in about 35 to 50 days.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that (i) the method comprises obtaining the first population of TILs from 1 to about 10 core biopsies of tumor tissue from the subject, (ii) the method comprises performing the step of culturing the first population of TILs in a cell culture medium comprising 6000 IU IL-2/ml and in 0.5 L of CM1 culture medium in a G-Rex 100M flask for a period of about 3 days prior to performing the step of the first expansion, (iii) the method comprises performing the first expansion by adding 0.5 L of CM1 culture medium containing 6000 IU/ml IL-2, 10 μg/mL of anti-4-1BB antibody agonist, 30 ng/ml OKT-3, and about 10′ feeder cells and culturing for a period of about 21 to 35 days, and (iv) the method comprises performing the second expansion by (a) transferring the second population of TILs to a G-Rex 500MCS flask containing 5 L of CM2 culture medium with 3000 IU/ml IL-2, 10 μg/mL of anti-4-1BB antibody agonist, 30 ng/ml OKT-3, and 5×109 feeder cells and culturing for about 5 days (b) splitting the culture into up to 5 subcultures by transferring 109 TILs into each of up to 5 G-Rex 500MCS flasks containing 5 L of AIM-V medium with 3000 IU/ml IL-2, and culturing the subcultures for about 6 days. In some of the foregoing embodiments, the steps of the method are completed in about 35 to 50 days.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the cell culture medium is provided in a container that is a G-container or a Xuri cellbag.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the IL-2 concentration in the cell culture medium is about 10,000 IU/mL to about 5,000 IU/mL.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the IL-2 concentration in the cell culture medium is about 6,000 IU/mL.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the cryopreservation media comprises dimethlysulfoxide (DMSO).


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the cryopreservation media comprises 7% to 10% DMSO.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the first expansion in step (b) is performed within a period of at or about 21 days, 22 days, 23 days, 24 days, 25 days, 26 days, 27 days, 28 days, 29 days, 30 days, 31 days, 32 days, 33 days, 34 days, or 35 days.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the second expansion in step (c) is performed within a period of at or about 1 day, 2 days, 3 days, 4 days, 5 days, 6 days, 7 days, 8 days, 9 days, 10 days, 11 days or 12 days.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that steps (a) through (d) are performed in a total of at or about 27 days to at or about 47 days.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that steps (a) through (d) are performed in a total of at or about 28 days to at or about 46 days.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that steps (a) through (d) are performed in a total of at or about 29 days to at or about 45 days.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that steps (a) through (d) are performed in a total of at or about 30 days to at or about 44 days.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that steps (a) through (d) are performed in a total of at or about 31 days to at or about 43 days.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that steps (a) through (d) are performed in a total of at or about 32 days to at or about 42 days.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that steps (a) through (d) are performed in a total of at or about 33 days to at or about 41 days.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that steps (a) through (d) are performed in a total of at or about 34 days to at or about 40 days.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that steps (a) through (d) are performed in a total of at or about 35 days to at or about 39 days.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that steps (a) through (d) are performed in a total of at or about 36 days to at or about 38 days.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that steps (a) through (d) are performed in a total of at or about 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46 or 47 days.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that steps (a) through (d) are performed in a total of at or about 27 days.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that steps (a) through (d) are performed in a total of at or about 28 days.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that steps (a) through (d) are performed in a total of at or about 29 days.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that steps (a) through (d) are performed in a total of at or about 30 days.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that steps (a) through (d) are performed in a total of at or about 31 days.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that steps (a) through (d) are performed in a total of at or about 32 days.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that steps (a) through (d) are performed in a total of at or about 33 days.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that steps (a) through (d) are performed in a total of at or about 34 days.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that steps (a) through (d) are performed in a total of at or about 35 days.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that steps (a) through (d) are performed in a total of at or about 36 days.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that steps (a) through (d) are performed in a total of at or about 37 days.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that steps (a) through (d) are performed in a total of at or about 38 days.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that steps (a) through (d) are performed in a total of at or about 39 days.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that steps (a) through (d) are performed in a total of at or about 40 days.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that steps (a) through (d) are performed in a total of at or about 41 days.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that steps (a) through (d) are performed in a total of at or about 42 days.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that steps (a) through (d) are performed in a total of at or about 43 days.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that steps (a) through (d) are performed in a total of at or about 44 days.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that steps (a) through (d) are performed in a total of at or about 45 days.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that steps (a) through (d) are performed in a total of at or about 46 days.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that steps (a) through (d) are performed in a total of at or about 47 days.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that steps (a) through (d) are performed in a total of at or about 27 days or less.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that steps (a) through (d) are performed in a total of at or about 28 days or less.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that steps (a) through (d) are performed in a total of at or about 29 days or less.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that steps (a) through (d) are performed in a total of at or about 30 days or less.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that steps (a) through (d) are performed in a total of at or about 31 days or less.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that steps (a) through (d) are performed in a total of at or about 32 days or less.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that steps (a) through (d) are performed in a total of at or about 33 days or less.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that steps (a) through (d) are performed in a total of at or about 34 days or less.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that steps (a) through (d) are performed in a total of at or about 35 days or less.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that steps (a) through (d) are performed in a total of at or about 36 days or less.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that steps (a) through (d) are performed in a total of at or about 37 days or less.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that steps (a) through (d) are performed in a total of at or about 38 days or less.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that steps (a) through (d) are performed in a total of at or about 39 days or less.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that steps (a) through (d) are performed in a total of at or about 40 days or less.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that steps (a) through (d) are performed in a total of at or about 41 days or less.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that steps (a) through (d) are performed in a total of at or about 42 days or less.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that steps (a) through (d) are performed in a total of at or about 43 days or less.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that steps (a) through (d) are performed in a total of at or about 44 days or less.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that steps (a) through (d) are performed in a total of at or about 45 days or less.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that steps (a) through (d) are performed in a total of at or about 46 days or less.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that steps (a) through (d) are performed in a total of at or about 47 days or less.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the second expansion step is performed during a period of up to 8 days.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the second expansion step is performed during a period of up to 9 days.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the second expansion step is performed during a period of up to 10 days.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the second expansion step is performed during a period of up to 11 days.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the first expansion step is performed during a period of 21 to 35 days and the second expansion step is performed during a period of up to 9 days.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the first expansion step is performed during a period of 21 to 35 days and the second expansion step is performed during a period of up to 10 days.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the first expansion step is performed during a period of 25 days to 31 days and the second expansion step is performed during a period of up to 9 days.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the first expansion step is performed during a period of 25 days to 31 days and the second expansion step is performed during a period of up to 10 days.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the first expansion step is performed during a period of 28 days and the second expansion step is performed during a period of up to 9 days.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the first expansion step is performed during a period of 28 days and the second expansion step is performed during a period of up to 8 days.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the therapeutic population of TILs harvested in step (d) comprises sufficient TILs for a therapeutically effective dosage of the TILs.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the number of TILs sufficient for a therapeutically effective dosage is from at or about 2.3×1010 to at or about 13.7×1010.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the third population of TILs in step (c) provides for increased efficacy, increased interferon-gamma production, and/or increased polyclonality.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that the effector T cells and/or central memory T cells obtained from the third population of TILs step (c) exhibit increased CD8 and CD28 expression relative to effector T cells and/or central memory T cells obtained from the second population of cells step (b).


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that each container recited in the method is a closed container.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that each container recited in the method is a G-container.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that each container recited in the method is a GREX-10.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that each container recited in the method is a GREX-100.


In another embodiment, the invention provides the method described in any of the preceding paragraphs as applicable above modified such that each container recited in the method is a GREX-500.


In another embodiment, the invention provides the therapeutic population of tumor infiltrating lymphocytes (TILs) made by the method described in any of the preceding paragraphs as applicable above.


In another embodiment, the invention provides a therapeutic population of tumor infiltrating lymphocytes (TILs) prepared from tumor tissue of a patient, wherein the therapeutic population of TILs provides for increased efficacy, increased interferon-gamma production, and/or increased polyclonality compared to TILs prepared by a process in which the first expansion of TILs is performed without any added antigen-presenting cells (APCs) or OKT3.


In another embodiment, the invention provides a therapeutic population of tumor infiltrating lymphocytes (TILs) prepared from tumor tissue of a patient, wherein the therapeutic population of TILs provides for increased efficacy, increased interferon-gamma production, and/or increased polyclonality compared to TILs prepared by a process in which the first expansion of TILs is performed without any added antigen-presenting cells (APCs).


In another embodiment, the invention provides a therapeutic population of tumor infiltrating lymphocytes (TILs) prepared from tumor tissue of a patient, wherein the therapeutic population of TILs provides for increased efficacy, increased interferon-gamma production, and/or increased polyclonality compared to TILs prepared by a process in which the first expansion of TILs is performed without any added OKT3.


In another embodiment, the invention provides a therapeutic population of tumor infiltrating lymphocytes (TILs) prepared from tumor tissue of a patient, wherein the therapeutic population of TILs provides for increased efficacy, increased interferon-gamma production, and/or increased polyclonality compared to TILs prepared by a process in which the first expansion of TILs is performed with no added antigen-presenting cells (APCs) and no added OKT3.


In another embodiment, the invention provides for the therapeutic population of TILs described in any of the preceding paragraphs as applicable above that provides for increased interferon-gamma production.


In another embodiment, the invention provides for the therapeutic population of TILs described in any of the preceding paragraphs as applicable above that provides for increased polyclonality.


In another embodiment, the invention provides for the therapeutic population of TILs described in any of the preceding paragraphs as applicable above that provides for increased efficacy.


In another embodiment, the invention provides for a therapeutic population of tumor infiltrating lymphocytes (TILs) that is capable of at least one-fold more interferon-gamma production as compared to TILs prepared by a process in which the first expansion of TILs is performed without any added antigen-presenting cells (APCs). In some embodiments, the TILs are rendered capable of the at least one-fold more interferon-gamma production due to the expansion process described herein, for example as described in steps (a) through (d) of the method described in any of the preceding paragraphs as applicable or according to Steps A through F shown in FIG. 1.


In another embodiment, the invention provides for a therapeutic population of tumor infiltrating lymphocytes (TILs) that is capable of at least one-fold more interferon-gamma production as compared to TILs prepared by a process in which the first expansion of TILs is performed without any added OKT3. In some embodiments, the TILs are rendered capable of the at least one-fold more interferon-gamma production due to the expansion process described herein, for example as described in steps (a) through (d) of the method described in any of the preceding paragraphs as applicable or according to Steps A through F shown in FIG. 1.


In another embodiment, the invention provides for a therapeutic population of TILs that is capable of at least two-fold more interferon-gamma production as compared to TILs prepared by a process in which the first expansion of TILs is performed without any added APCs. In some embodiments, the TILs are rendered capable of the at least two-fold more interferon-gamma production due to the expansion process described herein, for example as described in steps (a) through (d) of the method described in any of the preceding paragraphs as applicable or according to Steps A through F shown in FIG. 1.


In another embodiment, the invention provides for a therapeutic population of TILs that is capable of at least two-fold more interferon-gamma production as compared to TILs prepared by a process in which the first expansion of TILs is performed without any added OKT3. In some embodiments, the TILs are rendered capable of the at least two-fold more interferon-gamma production due to the expansion process described herein, for example as described in steps (a) through (d) of the method described in any of the preceding paragraphs as applicable or according to Steps A through F shown in FIG. 1.


In another embodiment, the invention provides for a therapeutic population of TILs that is capable of at least three-fold more interferon-gamma production as compared to TILs prepared by a process in which the first expansion of TILs is performed without any added APCs. In some embodiments, the TILs are rendered capable of the at least one-fold more interferon-gamma production due to the expansion process described herein, for example as described in steps (a) through (d) of the method described in any of the preceding paragraphs as applicable or according to Steps A through F shown in FIG. 1.


In another embodiment, the invention provides for a therapeutic population of TILs that is capable of at least three-fold more interferon-gamma production as compared to TILs prepared by a process in which the first expansion of TILs is performed without any added OKT3. In some embodiments, the TILs are rendered capable of the at least three-fold more interferon-gamma production due to the expansion process described herein, for example as described in steps (a) through (d) of the method described in any of the preceding paragraphs as applicable or according to Steps A through F shown in FIG. 1.


Pharmaceutical Compositions, Dosages, and Dosing Regimens

In an embodiment, TILs expanded using APCs of the present disclosure are administered to a patient as a pharmaceutical composition. In an embodiment, the pharmaceutical composition is a suspension of TILs in a sterile buffer. TILs expanded using PBMCs of the present disclosure may be administered by any suitable route as known in the art. In some embodiments, the T-cells are administered as a single intra-arterial or intravenous infusion, which preferably lasts approximately 30 to 60 minutes. Other suitable routes of administration include intraperitoneal, intrathecal, and intralymphatic administration.


Any suitable dose of TILs can be administered. In some embodiments, a therapeutically sufficient number of TILs are needed for a suitable dosage. In some embodiments, from about 2.3×1010 to about 13.7×1010 TILs are administered, with an average of around 7.8×1010 TILs, particularly if the cancer is melanoma. In an embodiment, about 1.2×1010 to about 4.3×1010 of TILs are administered. In some embodiments, about 3×1010 to about 12×1010 TILs are administered. In some embodiments, about 4×1010 to about 10×1010 TILs are administered. In some embodiments, about 5×1010 to about 8×1010 TILs are administered. In some embodiments, about 6×1010 to about 8×1010 TILs are administered. In some embodiments, about 7×1010 to about 8×1010 TILs are administered. In some embodiments, the therapeutically effective dosage is about 2.3×1010 to about 13.7×1010. In some embodiments, the therapeutically effective dosage is about 7.8×1010 TILs, particularly of the cancer is melanoma. In some embodiments, the therapeutically effective dosage is about 1.2×1010 to about 4.3×1010 of TILs. In some embodiments, the therapeutically effective dosage is about 3×1010 to about 12×1010 TILs. In some embodiments, the therapeutically effective dosage is about 4×1010 to about 10×1010 TILs. In some embodiments, the therapeutically effective dosage is about 5×1010 to about 8×1010 TILs. In some embodiments, the therapeutically effective dosage is about 6×1010 to about 8×1010 TILs. In some embodiments, the therapeutically effective dosage is about 7×1010 to about 8×1010 TILs.


In some embodiments, the number of the TILs provided in the pharmaceutical compositions of the invention is about 1×106, 2×106, 3×106, 4×106, 5×106, 6×106, 7×106, 8×106, 9×106, 1×107, 2×107, 3×107, 4×107, 5×107, 6×107, 7×107, 8×107, 9×107, 1×109, 2×109, 3×109, 4×108, 5×108, 6×108, 7×108, 8×108, 9×108, 1×109, 2×109, 3×109, 4×109, 5×109, 6×109, 7×109, 8×109, 9×109, 1×1010, 2×1010, 3×1010 4×1010 5×1010, 6×1010, 7×1010, 8×1010, 9×1010, 1×101, 2×1011, 3×1011, 4×1011, 5×1011, 6×1011, 7×1011, 8×1011, 9×1011, 1×1012, 2×1012, 3×1012, 4×1012, 5×101, 6×101, 7×1012 8×102, 9×102, 1×101, 2×10′, 3×101, 4×1013, 5×103 6×101, 7×1013 8×1013, and 9×1013. In an embodiment, the number of the TILs provided in the pharmaceutical compositions of the invention is in the range of 1×106 to 5×106, 5×106 to 1×107, 1×107 to 5×107, 5×107 to 1×109, 1×109 to 5×109, 5×109 to 1×109, 1×109 to 5×109, 5×109 to 1×1010, 1×1010 to 5×1010, 5×1010 to 1×1011, 5×1011 to 1×1012, 1×1012 to 5×1012, and 5×1012 to 1×1013. In some embodiments, the therapeutically effective dosage is about 1×106, 2×106, 3×106, 4×106, 5×106, 6×106, 7×106, 8×106, 9×106, 1×107, 2×107, 3×107 4×107, 5×107, 6×107 7×107 8×10 9×10 1×10, 2×108, 3×108, 4×108, 5×108, 6×108, 7×108, 8×108, 9×108, 1×109, 2×109, 3×109, 4×109, 5×109, 6×109, 7×109, 8×109, 9×109, 1×1010, 2×1010, 3×1010, 4×1010, 5×1010, 6×1010, 7×1010, 8×1010, 9×101,×1011, 2×1011, 3×1011, 4×1011, 5×1011, 6×1011, 7×1011, 8×1011, 9×1011,×1012 2×1012, 3×1012, 4×1012 5×1012, 6×1012, 7×1012, 8×1012, 9×101, 1×1013, 2×1013, 3×1013, 4×1013 5×1013, 6×1013, 7×1013, 8×1013, and 9×1013.


In some embodiments, the concentration of the TILs provided in the pharmaceutical compositions of the invention is less than, for example, 100%, 90%, 80%, 70%, 60%, 50%, 40%, 30%, 20%, 19%, 18%, 17%, 16%, 15%, 14%, 13%, 12%, 11%, 10%, 9%, 8% 7% 6% 5% 4% 3%, 2%1, 1%, 0.5%, 0.4%, 0.3%, 0.2%, 0.1%, 0.09%, 0.08%, 0.07%, 0.06%, 0.05%, 0.04%, 0.03% 0.02% 0.01%, 0.009%, 0.008%, 0.007%, 0.006%, 0.005%, 0.004%, 0.003%, 0.002%, 0.001%, 0.0009%, 0.0008%, 0.0007%, 0.0006%, 0.0005%, 0.0004%, 0.0003%, 0.0002% or 0.0001% w/w, w/v or v/v of the pharmaceutical composition.


In some embodiments, the concentration of the TILs provided in the pharmaceutical compositions of the invention is greater than 90%, 80%, 70%, 60%, 50%, 40%, 30%, 20%, 19.75%, 19.50%, 19.25% 19%, 18.75%, 18.50%, 18.25% 18%, 17.75%, 17.50%, 17.25% 17%, 16.75%, 16.50%, 16.25% 16%, 15.75%, 15.50%, 15.25% 15%, 14.75%, 14.50%, 14.25% 14%, 13.75%, 13.50%, 13.25% 13%, 12.75%, 12.50%, 12.25% 12%, 11.75%, 11.50%, 11.25% 11%, 10.75%, 10.50%, 10.25% 10%, 9.75%, 9.50%, 9.25% 9%, 8.75%, 8.50%, 8.25% 8%, 7.75%, 7.50%, 7.25% 7%, 6.75%, 6.50%, 6.25% 6%, 5.75%, 5.50%, 5.25% 5%, 4.75%, 4.50%, 4.25%, 4% 3.75%, 3.50%, 3.25%, 3%, 2.75%, 2.50%, 2.25%, 2%, 1.75%, 1.50%, 125%, 1%, 0.5%, 0.4% 0.3%, 0.2%, 0.1%, 0.09%, 0.08%, 0.07% 0.06%, 0.05%, 0.04% 0.03%, 0.02%, 0.01%, 0.009%, 0.008%, 0.007%, 0.006%, 0.005%, 0.004%, 0.003%, 0.002%, 0.001%, 0.0009%, 0.0008%, 0.0007%, 0.0006%, 0.0005%, 0.0004%, 0.0003%, 0.0002% or 0.0001% w/w, w/v, or v/v of the pharmaceutical composition.


In some embodiments, the concentration of the TILs provided in the pharmaceutical compositions of the invention is in the range from about 0.0001% to about 50%, about 0.001% to about 40%, about 0.01% to about 30%, about 0.02% to about 29%, about 0.03% to about 28%, about 0.04% to about 27%, about 0.05% to about 26%, about 0.06% to about 25%, about 0.07% to about 24%, about 0.08% to about 23%, about 0.09% to about 22%, about 0.1% to about 21%, about 0.2% to about 20%, about 0.3% to about 19%, about 0.4% to about 18%, about 0.5% to about 17%, about 0.6% to about 16%, about 0.7% to about 15%, about 0.8% to about 14%, about 0.9% to about 12% or about 1% to about 10% w/w, w/v or v/v of the pharmaceutical composition.


In some embodiments, the concentration of the TILs provided in the pharmaceutical compositions of the invention is in the range from about 0.001% to about 10%, about 0.01% to about 5%, about 0.02% to about 4.5%, about 0.03% to about 4%, about 0.04% to about 3.5%, about 0.05% to about 3%, about 0.06% to about 2.5%, about 0.07% to about 2%, about 0.08% to about 1.5%, about 0.09% to about 1%, about 0.1% to about 0.9% w/w, w/v or v/v of the pharmaceutical composition.


In some embodiments, the amount of the TILs provided in the pharmaceutical compositions of the invention is equal to or less than 10 g, 9.5 g, 9.0 g, 8.5 g, 8.0 g, 7.5 g, 7.0 g, 6.5 g, 6.0 g, 5.5 g, 5.0 g, 4.5 g, 4.0 g, 3.5 g, 3.0 g, 2.5 g, 2.0 g, 1.5 g, 1.0 g, 0.95 g, 0.9 g, 0.85 g, 0.8 g, 0.75 g, 0.7 g, 0.65 g, 0.6 g, 0.55 g, 0.5 g, 0.45 g, 0.4 g, 0.35 g, 0.3 g, 0.25 g, 0.2 g, 0.15 g, 0.1 g, 0.09 g, 0.08 g, 0.07 g, 0.06 g, 0.05 g, 0.04 g, 0.03 g, 0.02 g, 0.01 g, 0.009 g, 0.008 g, 0.007 g, 0.006 g, 0.005 g, 0.004 g, 0.003 g, 0.002 g, 0.001 g, 0.0009 g, 0.0008 g, 0.0007 g, 0.0006 g, 0.0005 g, 0.0004 g, 0.0003 g, 0.0002 g, or 0.0001 g.


In some embodiments, the amount of the TILs provided in the pharmaceutical compositions of the invention is more than 0.0001 g, 0.0002 g, 0.0003 g, 0.0004 g, 0.0005 g, 0.0006 g, 0.0007 g, 0.0008 g, 0.0009 g, 0.001 g, 0.0015 g, 0.002 g, 0.0025 g, 0.003 g, 0.0035 g, 0.004 g, 0.0045 g, 0.005 g, 0.0055 g, 0.006 g, 0.0065 g, 0.007 g, 0.0075 g, 0.008 g, 0.0085 g, 0.009 g, 0.0095 g, 0.01 g, 0.015 g, 0.02 g, 0.025 g, 0.03 g, 0.035 g, 0.04 g, 0.045 g, 0.05 g, 0.055 g, 0.06 g, 0.065 g, 0.07 g, 0.075 g, 0.08 g, 0.085 g, 0.09 g, 0.095 g, 0.1 g, 0.15 g, 0.2 g, 0.25 g, 0.3 g, 0.35 g, 0.4 g, 0.45 g, 0.5 g, 0.55 g, 0.6 g, 0.65 g, 0.7 g, 0.75 g, 0.8 g, 0.85 g, 0.9 g, 0.95 g, 1 g, 1.5 g, 2 g, 2.5, 3 g, 3.5, 4 g, 4.5 g, 5 g, 5.5 g, 6 g, 6.5 g, 7 g, 7.5 g, 8 g, 8.5 g, 9 g, 9.5 g, or 10 g.


The TILs provided in the pharmaceutical compositions of the invention are effective over a wide dosage range. The exact dosage will depend upon the route of administration, the form in which the compound is administered, the gender and age of the subject to be treated, the body weight of the subject to be treated, and the preference and experience of the attending physician. The clinically-established dosages of the TILs may also be used if appropriate. The amounts of the pharmaceutical compositions administered using the methods herein, such as the dosages of TILs, will be dependent on the human or mammal being treated, the severity of the disorder or condition, the rate of administration, the disposition of the active pharmaceutical ingredients and the discretion of the prescribing physician.


In some embodiments, TILs may be administered in a single dose. Such administration may be by injection, e.g., intravenous injection. In some embodiments, TILs may be administered in multiple doses. Dosing may be once, twice, three times, four times, five times, six times, or more than six times per year. Dosing may be once a month, once every two weeks, once a week, or once every other day. Administration of TILs may continue as long as necessary.


In some embodiments, an effective dosage of TILs is about 1×106, 2×106, 3×106, 4×106, 5×106 6×106, 7×106 8×106, 9×106 1×107, 2×107, 3×107, 4×107, 5×107, 6×107, 7×107, 8×107, 9×107, 1×108, 2×108, 3×108, 4×108, 5×108, 6×108, 7×109, 8×109, 9×10, 1×109, 2×109, 3×109, 4×109, 5×109, 6×109, 7×109, 8×109, 9×109, 1×1010, 2×1010, 3×1010, 4×1010, 5×1010, 6×1010, 7×1010, 8×1010, 9×1010, 1×101, 2×1011, 3×1011, 4×1011, 5×1011, 6×1011, 7×1011, 8×1011, 9×1011, 1×1012, 2×1012, 3×1012, 4×1010, 5×102, 6×1012, 7×102, 8×1012, 9×10, 1×1013, 2×1011, 3×1013, 4×1013, 5×1013, 6×1013, 7×1013, 8×1013, and 9×1013. In some embodiments, an effective dosage of TILs is in the range of 1×106 to 5×106, 5×106 to 1×107, 1×107 to 5×107, 5×107 to 1×108, 1×108 to 5×108, 5×108 to 1×109, 1×109 to 5×109, 5×109 to 1×10, 1×1011 to 5×1010, 5×1010 to 11×1011, 5×1011 to 1×1012, 1×1012 to 5×1012, and 5×1012 to 1×10.


In some embodiments, an effective dosage of TILs is in the range of about 0.01 mg/kg to about 4.3 mg/kg, about 0.15 mg/kg to about 3.6 mg/kg, about 0.3 mg/kg to about 3.2 mg/kg, about 0.35 mg/kg to about 2.85 mg/kg, about 0.15 mg/kg to about 2.85 mg/kg, about 0.3 mg to about 2.15 mg/kg, about 0.45 mg/kg to about 1.7 mg/kg, about 0.15 mg/kg to about 1.3 mg/kg, about 0.3 mg/kg to about 1.15 mg/kg, about 0.45 mg/kg to about 1 mg/kg, about 0.55 mg/kg to about 0.85 mg/kg, about 0.65 mg/kg to about 0.8 mg/kg, about 0.7 mg/kg to about 0.75 mg/kg, about 0.7 mg/kg to about 2.15 mg/kg, about 0.85 mg/kg to about 2 mg/kg, about 1 mg/kg to about 1.85 mg/kg, about 1.15 mg/kg to about 1.7 mg/kg, about 1.3 mg/kg mg to about 1.6 mg/kg, about 1.35 mg/kg to about 1.5 mg/kg, about 2.15 mg/kg to about 3.6 mg/kg, about 2.3 mg/kg to about 3.4 mg/kg, about 2.4 mg/kg to about 3.3 mg/kg, about 2.6 mg/kg to about 3.15 mg/kg, about 2.7 mg/kg to about 3 mg/kg, about 2.8 mg/kg to about 3 mg/kg, or about 2.85 mg/kg to about 2.95 mg/kg.


In some embodiments, an effective dosage of TILs is in the range of about 1 mg to about 500 mg, about 10 mg to about 300 mg, about 20 mg to about 250 mg, about 25 mg to about 200 mg, about 1 mg to about 50 mg, about 5 mg to about 45 mg, about 10 mg to about 40 mg, about 15 mg to about 35 mg, about 20 mg to about 30 mg, about 23 mg to about 28 mg, about 50 mg to about 150 mg, about 60 mg to about 140 mg, about 70 mg to about 130 mg, about 80 mg to about 120 mg, about 90 mg to about 110 mg, or about 95 mg to about 105 mg, about 98 mg to about 102 mg, about 150 mg to about 250 mg, about 160 mg to about 240 mg, about 170 mg to about 230 mg, about 180 mg to about 220 mg, about 190 mg to about 210 mg, about 195 mg to about 205 mg, or about 198 to about 207 mg.


An effective amount of the TILs may be administered in either single or multiple doses by any of the accepted modes of administration of agents having similar utilities, including intranasal and transdermal routes, by intra-arterial injection, intravenously, intraperitoneally, parenterally, intramuscularly, subcutaneously, topically, by transplantation, or by inhalation.


In another embodiment, the invention provides an infusion bag comprising the therapeutic population of TILs described in any of the preceding paragraphs as applicable above.


In another embodiment, the invention provides a tumor infiltrating lymphocyte (TIL) composition comprising the therapeutic population of TILs described in any of the preceding paragraphs as applicable above and a pharmaceutically acceptable carrier.


In another embodiment, the invention provides an infusion bag comprising the TIL composition described in any of the preceding paragraphs as applicable above.


In another embodiment, the invention provides a cryopreserved preparation of the therapeutic population of TILs described in any of the preceding paragraphs as applicable above.


In another embodiment, the invention provides a tumor infiltrating lymphocyte (TIL) composition comprising the therapeutic population of TILs described in any of the preceding paragraphs as applicable above and a cryopreservation media.


In another embodiment, the invention provides the TIL composition described in any of the preceding paragraphs as applicable above modified such that the cryopreservation media contains DMSO.


In another embodiment, the invention provides the TIL composition described in any of the preceding paragraphs as applicable above modified such that the cryopreservation media contains 7-10% DMSO.


In another embodiment, the invention provides a cryopreserved preparation of the TIL composition described in any of the preceding paragraphs as applicable above.


In another embodiment, the invention provides a tumor infiltrating lymphocyte (TIL) composition comprising the therapeutic population of TILs described in any of the preceding paragraphs as applicable above and any defined medium or serum free medium described in any of the preceding paragraphs as applicable above.


Methods of Treating Patients

Methods of treatment begin with the initial TIL collection and culture of TILs. Such methods have been both described in the art by, for example, Jin et al. (J. Immunotherapy, 2012, 35(3):283-292), incorporated by reference herein in its entirety.


The present invention provides novel methods for TIL generation that have not been previously described. The expanded TILs produced according to Steps A through F above or as otherwise produced as described herein find particular use in the treatment of patients with cancer. General methods of using TILs for the treatment of cancer have been described in Goff, et al., J. Clinical Oncology, 2016, 34(20).2389-239, as well as the supplemental content; incorporated by reference herein in its entirety.) Similarly, the TILs produced according to the present invention can also be used for the treatment of cancer. In some embodiments, TIL were grown from resected deposits of metastatic melanoma as previously described (see, Dudley, et al., J Immunother., 2003, 26:332-342; incorporated by reference herein in its entirety). Fresh tumor can be dissected under sterile conditions. A representative sample can be collected for formal pathologic analysis. Single fragments of 2 mm3 to 3 mm3. In some embodiments, 5, 10, 15, 20, 25 or 30 samples per patient are obtained. In some embodiments, 20, 25, or 30 samples per patient are obtained. In some embodiments, 20, 22, 24, 26, or 28 samples per patient are obtained. In some embodiments, 24 samples per patient are obtained. Samples can be placed in individual wells of a 24-well plate, maintained in growth media with high-dose IL-2 (6,000 IU/mL), and monitored for destruction of tumor and/or proliferation of TIL. Any tumor with viable cells remaining after processing can be enzymatically digested into a single cell suspension and cryopreserved, as described herein.


In some embodiments, expanded TILs can be sampled for phenotype analysis (CD3, CD4, CD8, and CD56) and tested against autologous tumor when available. TILs can be considered reactive if overnight co-culture yielded interferon-gamma (IFN-γ) levels>200 μg/mL and twice background. (Goff, et al., J Immunother., 2010, 33:840-847; incorporated by reference herein in its entirety). In some embodiments, cultures with evidence of autologous reactivity or sufficient growth patterns can be selected for a second expansion (for example, a second expansion as provided in according to Step D), including second expansions that are sometimes referred to as rapid expansion (REP). In some embodiments, expanded TILs with high autologous reactivity (for example, high proliferation during a second expansion), are selected for an additional second expansion. In some embodiments, TILs with high autologous reactivity (for example, high proliferation during second expansion as provided in Step D), are selected for an additional second expansion according to Step D.


In some embodiments, the patient is not moved directly to ACT (adoptive cell transfer), for example, in some embodiments, after tumor harvesting and/or a first expansion, the cells are not utilized immediately. In such embodiments, TILs can be cryopreserved and thawed 2 days before the second expansion step (for example, in some embodiments, 2 days before a step referred to as a REP step). In such embodiments, TILs can be cryopreserved and thawed 2 days before the second expansion step (for example, in some embodiments, 2 days before a Step D). As described in various embodiments throughout the present application, the second expansion (including processes referred to as REP) used OKT3 (anti-CD3) antibody (Miltenyi Biotech, San Diego, Calif.) and IL-2 (3,000 IU/mL; Prometheus, San Diego, Calif.) in the presence of irradiated feeder cells, autologous when possible, at a 100:1 ratio (see, Dudley, et al., J Immunother., 2003, 26:332-342; incorporated by reference herein in its entirety). In some embodiments, the TILs can be cryopreserved and thawed 5 days before the second expansion step. In some embodiments, the TILs can be cryopreserved and thawed 4 days before the second expansion step. In some embodiments, the TILs can be cryopreserved and thawed 3 days before the second expansion step. In some embodiments, the TILs can be cryopreserved and thawed 2 days before the second expansion step. In some embodiments, the TILs can be cryopreserved and thawed 1 day before the second expansion step. In some embodiments, the TILs can be cryopreserved and thawed immediately before the second expansion step.


Cell phenotypes of cryopreserved samples of infusion bag TIL can be analyzed by flow cytometry (FlowJo) for surface markers CD3, CD4, CD8, CCR7, and CD45RA (BD BioSciences), as well as by any of the methods described herein. Serum cytokines were measured by using standard enzyme-linked immunosorbent assay techniques. A rise in serum IFN-g was defined as >100 pg/mL and greater than 4-fold or at least 3-fold or at least 2-fold or at least 1-fold greater than baseline levels of serum IFN-g. In some embodiments, a rise in serum IFN-g is defined as >1000 pg/mL. In some embodiments, a rise in serum IFN-g is defined as >200 pg/mL. In some embodiments, a rise in serum IFN-g is defined as >250 pg/mL. In some embodiments, a rise in serum IFN-g is defined as >300 pg/mL. In some embodiments, a rise in serum IFN-g is defined as >350 pg/mL. In some embodiments, a rise in serum IFN-g is defined as >400 pg/mL. In some embodiments, a rise in serum IFN-g is defined as >450 pg/mL. In some embodiments, a rise in serum IFN-g is defined as >500 pg/mL. In some embodiments, a rise in serum IFN-g is defined as >550 pg/mL. In some embodiments, a rise in serum IFN-g is defined as >600 pg/mL. In some embodiments, a rise in serum IFN-g is defined as >650 pg/mL. In some embodiments, a rise in serum IFN-g is defined as >700 pg/mL. In some embodiments, a rise in serum IFN-g is defined as >750 pg/mL. In some embodiments, a rise in serum IFN-g is defined as >800 pg/mL. In some embodiments, a rise in serum IFN-g is defined as >850 pg/mL. In some embodiments, a rise in serum IFN-g is defined as >900 pg/mL. In some embodiments, a rise in serum IFN-g is defined as >950 pg/mL. In some embodiments, a rise in serum IFN-g is defined as >1000 pg/mL.


Measures of efficacy can include the disease control rate (DCR) as well as overall response rate (ORR), as known in the art as well as described herein.


1. Methods of Treating Cancers and Other Diseases

The compositions and methods described herein can be used in a method for treating diseases. In an embodiment, they are for use in treating hyperproliferative disorders. They may also be used in treating other disorders as described herein and in the following paragraphs.


In some embodiments, the hyperproliferative disorder is cancer. In some embodiments, the hyperproliferative disorder is a solid tumor cancer. In some embodiments, the solid tumor cancer is selected from the group consisting of glioblastoma (GBM), gastrointestinal cancer, melanoma, ovarian cancer, endometrial cancer, thyroid cancer, colorectal cancer, cervical cancer, non-small-cell lung cancer (NSCLC), lung cancer, bladder cancer, breast cancer, cancer caused by human papilloma virus, head and neck cancer (including head and neck squamous cell carcinoma (HNSCC)), renal cancer, and renal cell carcinoma. In some embodiments, the hyperproliferative disorder is a hematological malignancy. In some embodiments, the solid tumor cancer is selected from the group consisting of chronic lymphocytic leukemia, acute lymphoblastic leukemia, diffuse large B cell lymphoma, non-Hodgkin's lymphoma, Hodgkin's lymphoma, follicular lymphoma, and mantle cell lymphoma.


In some embodiments, the cancer is a hypermutated cancer phenotype. Hypermutated cancers are extensively described in Campbell, et al. (Cell, 171.1042-1056 (2017); incorporated by reference herein in its entirety for all purposes). In some embodiments, a hypermutated tumors comprise between 9 and 10 mutations per megabase (Mb). In some embodiments, pediatric hypermutated tumors comprise 9.91 mutations per megabase (Mb). In some embodiments, adult hypermutated tumors comprise 9 mutations per megabase (Mb). In some embodiments, enhanced hypermutated tumors comprise between 10 and 100 mutations per megabase (Mb). In some embodiments, enhanced pediatric hypermutated tumors comprise between 10 and 100 mutations per megabase (Mb). In some embodiments, enhanced adult hypermutated tumors comprise between 10 and 100 mutations per megabase (Mb). In some embodiments, an ultra-hypermutated tumors comprise greater than 100 mutations per megabase (Mb). In some embodiments, pediatric ultra-hypermutated tumors comprise greater than 100 mutations per megabase (Mb). In some embodiments, adult ultra-hypermutated tumors comprise greater than 100 mutations per megabase (Mb).


In some embodiments, the hypermutated tumors have mutations in replication repair pathways. In some embodiments, the hypermutated tumors have mutations in replication repair associated DNA polymerases. In some embodiments, the hypermutated tumors have microsatellite instability. In some embodiments, the ultra-hypermutated tumors have mutations in replication repair associated DNA polymerases and have microsatellite instability. In some embodiments, hypermutation in the tumor is correlated with response to immune checkpoint inhibitors. In some embodiments, hypermutated tumors are resistant to treatment with immune checkpoint inhibitors. In some embodiments, hypermutated tumors can be treated using the TILs of the present invention. In some embodiments, hypermutation in the tumor is caused by environmental factors (extrinsic exposures). For example, UV light can be the primary cause of the high numbers of mutations in malignant melanoma (see, for example, Pfeifer, G. P., You, Y. H., and Besaratinia, A. (2005). Mutat. Res. 571, 19-31.; Sage, E. (1993). Photochem. Photobiol. 57, 163-174). In some embodiments, hypermutation in the tumor can be caused by the greater than 60 carcinogens in tobacco smoke for tumors of the lung and larynx, as well as other tumors, due to direct mutagen exposure (see, for example, Pleasance, E. D., Stephens, P. J., O'Meara, S., McBride, D. J., Meynert, A., Jones, D., Lin, M. L., Beare, D., Lau, K. W., Greenman, C., et al. (2010). Nature 463, 184-190). In some embodiments, hypermutation in the tumor is caused by dysregulation of apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like (APOBEC) family members, which has been shown to result in increased levels of C to T transitions in a wide range of cancers (see, for example, Roberts, S. A., Lawrence, M. S., Klimczak, L. J., Grimm, S. A., Fargo, D., Stojanov, P., Kiezun, A., Kryukov, G. V., Carter, S. L., Saksena, G., et al. (2013). Nat. Genet. 45, 970-976). In some embodiments, hypermutation in the tumor is caused by defective DNA replication repair by mutations that compromise proofreading, which is performed by the major replicative enzymes Pol3 and Poldl. In some embodiments, hypermutation in the tumor is caused by defects in DNA mismatch repair, which are associated with hypermutation in colorectal, endometrial, and other cancers (see, for example, Kandoth, C., Schultz, N., Cherniack, A. D., Akbani, R., Liu, Y., Shen, H., Robertson, A. G., Pashtan, I., Shen, R., Benz, C. C., et al.; (2013). Nature 497, 67-73.; Muzny, D. M., Bainbridge, M. N., Chang, K., Dinh, H. H., Drummond, J. A., Fowler, G., Kovar, C. L., Lewis, L. R., Morgan, M. B., Newsham, I. F., et al.; (2012). Nature 487, 330-337). In some embodiments, DNA replication repair mutations are also found in cancer predisposition syndromes, such as constitutional or biallelic mismatch repair deficiency (CMMRD), Lynch syndrome, and polymerase proofreading-associated polyposis (PPAP).


In an embodiment, the invention includes a method of treating a cancer with a population of TILs, wherein the cancer is a hypermutated cancer. In an embodiment, the invention includes a method of treating a cancer with a population of TILs, wherein the cancer is an enhanced hypermutated cancer. In an embodiment, the invention includes a method of treating a cancer with a population of TILs, wherein the cancer is an ultra-hypermutated cancer.


In an embodiment, the invention includes a method of treating a cancer with a population of TILs, wherein a patient is pre-treated with non-myeloablative chemotherapy prior to an infusion of TILs according to the present disclosure. In an embodiment, the non-myeloablative chemotherapy is cyclophosphamide 60 mg/kg/d for 2 days (days 27 and 26 prior to TIL infusion) and fludarabine 25 mg/m2/d for 5 days (days 27 to 23 prior to TIL infusion). In an embodiment, after non-myeloablative chemotherapy and TIL infusion (at day 0) according to the present disclosure, the patient receives an intravenous infusion of IL-2 intravenously at 720,000 IU/kg every 8 hours to physiologic tolerance.


Efficacy of the compounds and combinations of compounds described herein in treating, preventing and/or managing the indicated diseases or disorders can be tested using various models known in the art, which provide guidance for treatment of human disease. For example, models for determining efficacy of treatments for ovarian cancer are described, e.g., in Mullany, et al., Endocrinology 2012, 153, 1585-92; and Fong, et al., J. Ovarian Res. 2009, 2, 12. Models for determining efficacy of treatments for pancreatic cancer are described in Herreros-Villanueva, et al., World J. Gastroenterol. 2012, 18, 1286-1294. Models for determining efficacy of treatments for breast cancer are described, e.g., in Fantozzi, Breast Cancer Res. 2006, 8, 212. Models for determining efficacy of treatments for melanoma are described, e.g., in Damsky, et al., Pigment Cell & Melanoma Res. 2010, 23, 853-859. Models for determining efficacy of treatments for lung cancer are described, e.g., in Meuwissen, et al., Genes & Development, 2005, 19, 643-664. Models for determining efficacy of treatments for lung cancer are described, e.g., in Kim, Clin. Exp. Otorhinolaryngol. 2009, 2, 55-60; and Sano, Head Neck Oncol. 2009, 1, 32.


2. Optional Lymphodepletion Preconditioning of Patients

In an embodiment, the invention includes a method of treating a cancer with a population of TILs, wherein a patient is pre-treated with non-myeloablative chemotherapy prior to an infusion of TILs according to the present disclosure. In an embodiment, the invention includes a population of TILs for use in the treatment of cancer in a patient which has been pre-treated with non-myeloablative chemotherapy. In an embodiment, the population of TILs is for administration by infusion. In an embodiment, the non-myeloablative chemotherapy is cyclophosphamide 60 mg/kg/d for 2 days (days 27 and 26 prior to TIL infusion) and fludarabine 25 mg/m2/d for 5 days (days 27 to 23 prior to TIL infusion). In an embodiment, after non-myeloablative chemotherapy and TIL infusion (at day 0) according to the present disclosure, the patient receives an intravenous infusion of IL-2 (aldesleukin, commercially available as PROLEUKIN) intravenously at 720,000 IU/kg every 8 hours to physiologic tolerance. In certain embodiments, the population of TILs is for use in treating cancer in combination with IL-2, wherein the IL-2 is administered after the population of TILs.


Experimental findings indicate that lymphodepletion prior to adoptive transfer of tumor-specific T lymphocytes plays a key role in enhancing treatment efficacy by eliminating regulatory T cells and competing elements of the immune system (‘cytokine sinks’). Accordingly, some embodiments of the invention utilize a lymphodepletion step (sometimes also referred to as “immunosuppressive conditioning”) on the patient prior to the introduction of the second expansion TILs or second additional expansion TILs (such as, for example, those described in Step D, including TILs referred to as reREP TILs) of the invention.


In general, lymphodepletion is done using fludarabine and/or cyclophosphamide (the active form being referred to as mafosfamide) and combinations thereof. Such methods are described in Gassner et al. (Cancer Immunol Immunother. 2011, 60(1):75-85, Muranski, et al., Nat Clin Pract Oncol., 2006 3(12):668-681, Dudley, et al., J Clin Oncol 2008, 26:5233-5239, and Dudley, et al., J Clin Oncol. 2005, 23(10):2346-2357, all of which are incorporated by reference herein in their entireties.


In some embodiments, the fludarabine is at a concentration of 0.5 μg/ml-10 μg/ml fludarabine (Sigma-Aldrich, MO, USA). In some embodiments, the fludarabine is at a concentration of 1 μg/ml fludarabine (Sigma-Aldrich, MO, USA). In some embodiments, the fludarabine treatment is for 1 day, 2 days, 3 days, 4 days, 5 days, 6 days, or 7 days or more. In some embodiments, the fludarabine is administered at a dosage of 10 mg/kg/day, 15 mg/kg/day, 20 mg/kg/day, 25 mg/kg/day, 30 mg/kg/day, 35 mg/kg/day, 40 mg/kg/day, or 45 mg/kg/day. In some embodiments, the fludarabine treatment is for 2-7 days at 35 mg/kg/day. In some embodiments, the fludarabine treatment is for 4-5 days at 35 mg/kg/day. In some embodiments, the fludarabine treatment is for 4-5 days at 25 mg/kg/day.


In some embodiments, the mafosfamide, the active form of cyclophosphamide, is at a concentration of 0.5 μg/ml-10 μg/ml. In some embodiments, the mafosfamide, the active form of cyclophosphamide, is at a concentration of 1 μg/ml. In some embodiments, the cyclophosphamide treatment is for 1 day, 2 days, 3 days, 4 days, 5 days, 6 days, or 7 days or more. In some embodiments, the cyclophosphamide is administered at a dosage of 100 mg/m2/day, 150 mg/m2/day, 175 mg/m2/day, 200 mg/m2/day, 225 mg/m2/day, 250 mg/m2/day, 275 mg/m2/day, or 300 mg/m2/day. In some embodiments, the cyclophosphamide is administered intravenously (i.e., i.v.) In some embodiments, the cyclophosphamide treatment is for 2-7 days at 35 mg/kg/day. In some embodiments, the cyclophosphamide treatment is for 4-5 days at 250 mg/m2/day i.v. In some embodiments, the cyclophosphamide treatment is for 4 days at 250 mg/m2/day i.v.


In some embodiments, the fludarabine and the cyclophosphamide are administered together to a patient. In some embodiments, fludarabine is administered at 25 mg/m2/day i.v. and cyclophosphamide is administered at 250 mg/m2/day i.v. over 4 days.


This protocol includes administration of fludarabine (25 mg/m2/day i.v.) and cyclophosphamide (250 mg/m2/day i.v.) over 4 days.


3. Methods of Co-Administration

In some embodiments, the TILs produced as described herein in Steps A through F can be administered in combination with one or more immune checkpoint regulators, such as the antibodies described below. For example, antibodies that target PD-1 and which can be co-administered with the TILs of the present invention include, e.g., but are not limited to nivolumab (BMS-936558, Bristol-Myers Squibb; Opdivo®), pembrolizumab (lambrolizumab, MK03475 or MK-3475, Merck; Keytruda®), humanized anti-PD-1 antibody JS001 (ShangHai JunShi), monoclonal anti-PD-1 antibody TSR-042 (Tesaro, Inc.), Pidilizumab (anti-PD-1 mAb CT-011, Medivation), anti-PD-1 monoclonal Antibody BGB-A317 (BeiGene), and/or anti-PD-1 antibody SHR-1210 (ShangHai HengRui), human monoclonal antibody REGN2810 (Regeneron), human monoclonal antibody MDX-1106 (Bristol-Myers Squibb), and/or humanized anti-PD-1 IgG4 antibody PDR001 (Novartis). In some embodiments, the PD-1 antibody is from clone. RMP1-14 (rat IgG)—BioXcell cat #BPO146. Other suitable antibodies suitable for use in co-administration methods with TILs produced according to Steps A through F as described herein are anti-PD-1 antibodies disclosed in U.S. Pat. No. 8,008,449, herein incorporated by reference. In some embodiments, the antibody or antigen-binding portion thereof binds specifically to PD-L1 and inhibits its interaction with PD-1, thereby increasing immune activity. Any antibodies known in the art which bind to PD-L1 and disrupt the interaction between the PD-1 and PD-L1, and stimulates an anti-tumor immune response, are suitable for use in co-administration methods with TILs produced according to Steps A through F as described herein. For example, antibodies that target PD-L1 and are in clinical trials, include BMS-936559 (Bristol-Myers Squibb) and MPDL3280A (Genentech). Other suitable antibodies that target PD-L1 are disclosed in U.S. Pat. No. 7,943,743, herein incorporated by reference. It will be understood by one of ordinary skill that any antibody which binds to PD-1 or PD-L1, disrupts the PD-1/PD-L1 interaction, and stimulates an anti-tumor immune response, are suitable for use in co-administration methods with TILs produced according to Steps A through F as described herein. In some embodiments, the subject administered the combination of TILs produced according to Steps A through F is co-administered with a and anti-PD-1 antibody when the patient has a cancer type that is refractory to administration of the anti-PD-1 antibody alone. In some embodiments, the patient is administered TILs in combination with and anti-PD-1 when the patient has refactory melanoma. In some embodiments, the patient is administered TILs in combination with and anti-PD-1 when the patient has non-small cell lung carcinoma (NSCLC).


4. IL-2 Regimens

In an embodiment, the IL-2 regimen comprises a high-dose IL-2 regimen, wherein the high-dose IL-2 regimen comprises aldesleukin, or a biosimilar or variant thereof, administered intravenously starting on the day after administering a therapeutically effective portion of the therapeutic population of TILs, wherein the aldesleukin or a biosimilar or variant thereof is administered at a dose of 0.037 mg/kg or 0.044 mg/kg LU/kg (patient body mass) using 15-minute bolus intravenous infusions every eight hours until tolerance, for a maximum of 14 doses. Following 9 days of rest, this schedule may be repeated for another 14 doses, for a maximum of 28 doses in total.


In an embodiment, the IL-2 regimen comprises a decrescendo IL-2 regimen. Decrescendo IL-2 regimens have been described in O'Day, et al., J. Clin. Oncol. 1999, 17, 2752-61 and Eton, et al., Cancer 2000, 88, 1703-9, the disclosures of which are incorporated herein by reference. In an embodiment, a decrescendo IL-2 regimen comprises 18×106 IU/m2 administered intravenously over 6 hours, followed by 18×106 IUMm2 administered intravenously over 12 hours, followed by 18×106 IU/m2 administered intravenously over 24 hrs, followed by 4.5×106 IU/m2 administered intravenously over 72 hours. This treatment cycle may be repeated every 28 days for a maximum of four cycles. In an embodiment, a decrescendo IL-2 regimen comprises 18,000,000 IU/m2 on day 1, 9,000,000 IU/m2 on day 2, and 4,500,000 IU/m2 on days 3 and 4.


In an embodiment, the IL-2 regimen comprises administration of pegylated IL-2 every 1, 2, 4, 6, 7, 14 or 21 days at a dose of 0.10 mg/day to 50 mg/day.


5. Adoptive Cell Transfer

Adoptive cell transfer (ACT) is a very effective form of immunotherapy and involves the transfer of immune cells with antitumor activity into cancer patients. ACT is a treatment approach that involves the identification, in vitro, of lymphocytes with antitumor activity, the in vitro expansion of these cells to large numbers and their infusion into the cancer-bearing host. Lymphocytes used for adoptive transfer can be derived from the stroma of resected tumors (tumor infiltrating lymphocytes or TILs). TILs for ACT can be prepared as described herein. In some embodiments, the TILs are prepared, for example, according to a method as described in the figures. They can also be derived or from blood if they are genetically engineered to express antitumor T-cell receptors (TCRs) or chimeric antigen receptors (CARs), enriched with mixed lymphocyte tumor cell cultures (MLTCs), or cloned using autologous antigen presenting cells and tumor derived peptides. ACT in which the lymphocytes originate from the cancer-bearing host to be infused is termed autologous ACT. U.S. Publication No. 2011/0052530 relates to a method for performing adoptive cell therapy to promote cancer regression, primarily for treatment of patients suffering from metastatic melanoma, which is incorporated by reference in its entirety for these methods.


In some embodiments, TILs can be administered as described herein. In some embodiments, TILs can be administered in a single dose. Such administration may be by injection, e.g., intravenous injection. In some embodiments, TILs and/or cytotoxic lymphocytes may be administered in multiple doses. Dosing may be once, twice, three times, four times, five times, six times, or more than six times per year. Dosing may be once a month, once every two weeks, once a week, or once every other day. Administration of TILs and/or cytotoxic lymphocytes may continue as long as necessary.


6. Additional Methods of Treatment

In another embodiment, the invention provides a method for treating a subject with cancer comprising administering to the subject a therapeutically effective dosage of the therapeutic TIL population described in any one of the preceding paragraphs as applicable above.


In another embodiment, the invention provides a method for treating a subject with cancer comprising administering to the subject a therapeutically effective dosage of the TIL composition described in any of the preceding paragraph as applicable above.


In another embodiment, the invention provides the method for treating a subject with cancer described in any of the preceding paragraphs as applicable above modified such that prior to administering the therapeutically effective dosage of the therapeutic TIL population described in any of the preceding paragraphs as applicable above or the therapeutically effective dosage of the TIL composition described in any of the preceding paragraphs as applicable above, a non-myeloablative lymphodepletion regimen has been administered to the subject.


In another embodiment, the invention provides the method for treating a subject with cancer described in any of the preceding paragraph as applicable above modified such that the non-myeloablative lymphodepletion regimen comprises the steps of administration of cyclophosphamide at a dose of 60 mg/m2/day for two days followed by administration of fludarabine at a dose of 25 mg/m2/day for five days.


In another embodiment, the invention provides the method for treating a subject with cancer described in any of the preceding paragraphs as applicable above modified to further comprise the step of treating the subject with a high-dose IL-2 regimen starting on the day after administration of the TIL cells to the subject.


In another embodiment, the invention provides the method for treating a subject with cancer described in any of the preceding paragraphs as applicable above modified such that the high-dose IL-2 regimen comprises 600,000 or 720,000 IU/kg administered as a 15-minute bolus intravenous infusion every eight hours until tolerance.


In another embodiment, the invention provides the method for treating a subject with cancer described in any of the preceding paragraphs as applicable above modified such that the cancer is a solid tumor.


In another embodiment, the invention provides the method for treating a subject with cancer described in any of the preceding paragraphs as applicable above modified such that the cancer is melanoma, including uveal melanoma and cutaneous melanoma, thyroid cancer, endometrial cancer, colorectal cancer, colon cancer, ovarian cancer, cervical cancer, non-small-cell lung cancer (NSCLC), lung cancer, bladder cancer, breast cancer, cancer caused by human papilloma virus, head and neck cancer (including head and neck squamous cell carcinoma (HNSCC)), glioblastoma (including GBM), gastrointestinal cancer, renal cancer, or renal cell carcinoma.


In another embodiment, the invention provides the method for treating a subject with cancer described in any of the preceding paragraphs as applicable above modified such that the cancer is melanoma, HNSCC, cervical cancers, NSCLC, glioblastoma (including GBM), and gastrointestinal cancer.


In another embodiment, the invention provides the method for treating a subject with cancer described in any of the preceding paragraphs as applicable above modified such that the cancer is melanoma.


In another embodiment, the invention provides the method for treating a subject with cancer described in any of the preceding paragraphs as applicable above modified such that the cancer is thyroid cancer.


In another embodiment, the invention provides the method for treating a subject with cancer described in any of the preceding paragraphs as applicable above modified such that the cancer is endometrial cancer.


In another embodiment, the invention provides the method for treating a subject with cancer described in any of the preceding paragraphs as applicable above modified such that the cancer is colorectal cancer.


In another embodiment, the invention provides the method for treating a subject with cancer described in any of the preceding paragraphs as applicable above modified such that the cancer is colon cancer.


In another embodiment, the invention provides the method for treating a subject with cancer described in any of the preceding paragraphs as applicable above modified such that the cancer is uveal melanoma.


In another embodiment, the invention provides the method for treating a subject with cancer described in any of the preceding paragraphs as applicable above modified such that the cancer is cutaneous melanoma.


In another embodiment, the invention provides the method for treating a subject with cancer described in any of the preceding paragraphs as applicable above modified such that the cancer is HNSCC.


In another embodiment, the invention provides the method for treating a subject with cancer described in any of the preceding paragraphs as applicable above modified such that the cancer is a cervical cancer.


In another embodiment, the invention provides the method for treating a subject with cancer described in any of the preceding paragraphs as applicable above modified such that the cancer is NSCLC.


In another embodiment, the invention provides the method for treating a subject with cancer described in any of the preceding paragraphs as applicable above modified such that the cancer is glioblastoma (including GBM).


In another embodiment, the invention provides the method for treating a subject with cancer described in any of the preceding paragraphs as applicable above modified such that the cancer is gastrointestinal cancer.


In another embodiment, the invention provides the method for treating a subject with cancer described in any of the preceding paragraphs as applicable above modified such that the cancer is a hypermutated cancer.


In another embodiment, the invention provides the method for treating a subject with cancer described in any of the preceding paragraphs as applicable above modified such that the cancer is a pediatric hypermutated cancer.


In another embodiment, the invention provides the therapeutic TIL population described in any one of the preceding paragraphs as applicable above for use in a method for treating a subject with cancer comprising administering to the subject a therapeutically effective dosage of the therapeutic TIL population.


In another embodiment, the invention provides the TIL composition described in any of the preceding paragraphs as applicable above for use in a method for treating a subject with cancer comprising administering to the subject a therapeutically effective dosage of the TIL composition.


In another embodiment, the invention provides the therapeutic TIL population described in any of the preceding paragraphs as applicable above or the TIL composition described in any of the preceding paragraphs as applicable above modified such that prior to administering to the subject the therapeutically effective dosage of the therapeutic TIL population described in any of the preceding paragraphs as applicable above or the TIL composition described in any of the preceding paragraphs as applicable above, a non-myeloablative lymphodepletion regimen has been administered to the subject.


In another embodiment, the invention provides the therapeutic TIL population or the TIL composition described in any of the preceding paragraphs as applicable above modified such that the non-myeloablative lymphodepletion regimen comprises the steps of administration of cyclophosphamide at a dose of 60 mg/m2/day for two days followed by administration of fludarabine at a dose of 25 mg/m2/day for five days.


In another embodiment, the invention provides the therapeutic TIL population described in any of the preceding paragraphs as applicable above or the TIL composition described in any of the preceding paragraphs as applicable above modified to further comprise the step of treating patient with a high-dose IL-2 regimen starting on the day after administration of the TIL cells to the patient.


In another embodiment, the invention provides the therapeutic TIL population or the TIL composition described in any of the preceding paragraphs as applicable above modified such that the high-dose IL-2 regimen comprises 600,000 or 720,000 IU/kg administered as a 15-minute bolus intravenous infusion every eight hours until tolerance.


In another embodiment, the invention provides the therapeutic TIL population described in any of the preceding paragraphs as applicable above or the TIL composition described in any of the preceding paragraphs as applicable above modified such that the cancer is a solid tumor.


In another embodiment, the invention provides the therapeutic TIL population described in any of the preceding paragraphs as applicable above or the TIL composition described in any of the preceding paragraphs as applicable above modified such that the cancer is melanoma, ovarian cancer, endometrial cancer, thyroid cancer, colorectal cancer, cervical cancer, non-small-cell lung cancer (NSCLC), lung cancer, bladder cancer, breast cancer, cancer caused by human papilloma virus, head and neck cancer (including head and neck squamous cell carcinoma (HNSCC)), glioblastoma (including GBM), gastrointestinal cancer, renal cancer, or renal cell carcinoma.


In another embodiment, the invention provides the therapeutic TIL population described in any of the preceding paragraphs as applicable above or the TIL composition described in any of the preceding paragraphs as applicable above modified such that the cancer is melanoma, HNSCC, cervical cancers, NSCLC, glioblastoma (including GBM), and gastrointestinal cancer.


In another embodiment, the invention provides the therapeutic TIL population described in any of the preceding paragraphs as applicable above or the TIL composition described in any of the preceding paragraphs as applicable above modified such that the cancer is melanoma.


In another embodiment, the invention provides the therapeutic TIL population described in any of the preceding paragraphs as applicable above or the TIL composition described in any of the preceding paragraphs as applicable above modified such that the cancer is thyroid cancer.


In another embodiment, the invention provides the therapeutic TIL population described in any of the preceding paragraphs as applicable above or the TIL composition described in any of the preceding paragraphs as applicable above modified such that the cancer is endometrial cancer.


In another embodiment, the invention provides the therapeutic TIL population described in any of the preceding paragraphs as applicable above or the TIL composition described in any of the preceding paragraphs as applicable above modified such that the cancer is colorectal cancer.


In another embodiment, the invention provides the therapeutic TIL population described in any of the preceding paragraphs as applicable above or the TIL composition described in any of the preceding paragraphs as applicable above modified such that the cancer is colon cancer.


In another embodiment, the invention provides the therapeutic TIL population described in any of the preceding paragraphs as applicable above or the TIL composition described in any of the preceding paragraphs as applicable above modified such that the cancer is uveal melanoma.


In another embodiment, the invention provides the therapeutic TIL population described in any of the preceding paragraphs as applicable above or the TIL composition described in any of the preceding paragraphs as applicable above modified such that the cancer is cutaneous melanoma.


In another embodiment, the invention provides the therapeutic TIL population or the TIL composition described in any of the preceding paragraphs as applicable above modified such that the cancer is HNSCC.


In another embodiment, the invention provides the therapeutic TIL population or the TIL composition described in any of the preceding paragraphs as applicable above modified such that the cancer is a cervical cancer.


In another embodiment, the invention provides the therapeutic TIL population or the TIL composition described in any of the preceding paragraphs as applicable above modified such that the cancer is NSCLC.


In another embodiment, the invention provides the therapeutic TIL population or the TIL composition described in any of the preceding paragraphs as applicable above modified such that the cancer is glioblastoma (including GBM).


In another embodiment, the invention provides the therapeutic TIL population or the TIL composition described in any of the preceding paragraphs as applicable above modified such that the cancer is gastrointestinal cancer.


In another embodiment, the invention provides the therapeutic TIL population or the TIL composition described in any of the preceding paragraphs as applicable above modified such that the cancer is a hypermutated cancer.


In another embodiment, the invention provides the therapeutic TIL population or the TIL composition described in any of the preceding paragraphs as applicable above modified such that the cancer is a pediatric hypermutated cancer.


In another embodiment, the invention provides the use of the therapeutic TIL population described in any one of the preceding paragraphs as applicable above in a method of treating cancer in a subject comprising administering to the subject a therapeutically effective dosage of the therapeutic TIL population.


In another embodiment, the invention provides the use of the TIL composition described in any of the preceding paragraphs as applicable above in a method of treating cancer in a subject comprising administering to the subject a therapeutically effective dosage of the TIL composition.


In another embodiment, the invention provides the use of the therapeutic TIL population described in any of the preceding paragraphs as applicable above or the TIL composition described in any of the preceding paragraphs as applicable above in a method of treating cancer in a subject comprising administering to the subject a non-myeloablative lymphodepletion regimen and then administering to the subject a therapeutically effective dosage of the therapeutic TIL population described in any of the preceding paragraphs as applicable above or a therapeutically effective dosage of the TIL composition described in any of the preceding paragraphs as applicable above.


In another embodiment, the invention provides the use of the therapeutic TIL population or the TIL composition described in any of the preceding paragraphs as applicable above modified such that prior to administering to the subject the therapeutically effective dosage of the therapeutic TIL population or the therapeutically effective dosage of the TIL composition, a non-myeloablative lymphodepletion regimen has been administered to the subject.


In another embodiment, the invention provides the use of the therapeutic TIL population or the TIL composition described in any of the preceding paragraphs as applicable above modified such that the non-myeloablative lymphodepletion regimen comprises the steps of administration of cyclophosphamide at a dose of 60 mg/m2/day for two days followed by administration of fludarabine at a dose of 25 mg/m2/day for five days.


In another embodiment, the invention provides the use of the therapeutic TIL population described in any of the preceding paragraphs as applicable above or the use of the TIL composition described in any of the preceding paragraphs as applicable above modified to further comprise the step of treating patient with a high-dose IL-2 regimen starting on the day after administration of the TIL cells to the patient.


In another embodiment, the invention provides the use of the therapeutic TIL population or the TIL composition described in any of the preceding paragraphs as applicable above modified such that the high-dose IL-2 regimen comprises 600,000 or 720,000 IU/kg administered as a 15-minute bolus intravenous infusion every eight hours until tolerance.


In another embodiment, the invention provides the use of the therapeutic TIL population or the TIL composition described in any of the preceding paragraphs as applicable above modified such that the cancer is a solid tumor.


In another embodiment, the invention provides the use of the therapeutic TIL population or the TIL composition described in any of the preceding paragraphs as applicable above modified such that the cancer is melanoma, ovarian cancer, endometrial cancer, thyroid cancer, colorectal cancer, cervical cancer, non-small-cell lung cancer (NSCLC), lung cancer, bladder cancer, breast cancer, cancer caused by human papilloma virus, head and neck cancer (including head and neck squamous cell carcinoma (HNSCC)), glioblastoma (including GBM), gastrointestinal cancer, renal cancer, or renal cell carcinoma.


In another embodiment, the invention provides the use of the therapeutic TIL population or the TIL composition described in any of the preceding paragraphs as applicable above modified such that the cancer is melanoma, HNSCC, cervical cancers, NSCLC, glioblastoma (including GBM), and gastrointestinal cancer.


In another embodiment, the invention provides the use of the therapeutic TIL population or the TIL composition described in any of the preceding paragraphs as applicable above modified such that the cancer is melanoma.


In another embodiment, the invention provides the use of the therapeutic TIL population or the TIL composition described in any of the preceding paragraphs as applicable above modified such that the cancer is thyroid cancer.


In another embodiment, the invention provides the use of the therapeutic TIL population or the TEL composition described in any of the preceding paragraphs as applicable above modified such that the cancer is endometrial cancer.


In another embodiment, the invention provides the use of the therapeutic TIL population or the TIL composition described in any of the preceding paragraphs as applicable above modified such that the cancer is colorectal cancer.


In another embodiment, the invention provides the use of the therapeutic TIL population or the TIL composition described in any of the preceding paragraphs as applicable above modified such that the cancer is colon cancer.


In another embodiment, the invention provides the use of the therapeutic TIL population or the TIL composition described in any of the preceding paragraphs as applicable above modified such that the cancer is uveal melanoma.


In another embodiment, the invention provides the use of the therapeutic TIL population or the TIL composition described in any of the preceding paragraphs as applicable above modified such that the cancer is cutaneous melanoma.


In another embodiment, the invention provides the use of the therapeutic TIL population or the TIL composition described in any of the preceding paragraphs as applicable above modified such that the cancer is HNSCC.


In another embodiment, the invention provides the use of the therapeutic TIL population or the TEL composition described in any of the preceding paragraphs as applicable above modified such that the cancer is a cervical cancer.


In another embodiment, the invention provides the use of the therapeutic TIL population or the TIL composition described in any of the preceding paragraphs as applicable above modified such that the cancer is NSCLC.


In another embodiment, the invention provides the use of the therapeutic TIL population or the TIL composition described in any of the preceding paragraphs as applicable above modified such that the cancer is glioblastoma (including GBM).


In another embodiment, the invention provides the use of the therapeutic TIL population or the TIL composition described in any of the preceding paragraphs as applicable above modified such that the cancer is gastrointestinal cancer.


In another embodiment, the invention provides the use of the therapeutic TIL population or the TIL composition described in any of the preceding paragraphs as applicable above modified such that the cancer is a hypermutated cancer.


In another embodiment, the invention provides the use of the therapeutic TIL population or the TIL composition described in any of the preceding paragraphs as applicable above modified such that the cancer is a pediatric hypermutated cancer.


Optional Genetic Engineering of TILs

In some embodiments, as more fully set forth below, the TILs are optionally genetically engineered to include additional functionalities, including, but not limited to, a high-affinity T cell receptor (TCR), e.g., a TCR targeted at a tumor-associated antigen such as MAGE-1, HER2, or NY-ESO-1, or a chimeric antigen receptor (CAR) which binds to a tumor-associated cell surface molecule (e.g., mesothelin) or lineage-restricted cell surface molecule (e.g., CD19).


In some embodiments, the expanded TILs of the present invention are further manipulated before, during, or after an expansion step, including during closed, sterile manufacturing processes, each as provided herein, in order to alter protein expression in a transient manner. In some embodiments, the transiently altered protein expression is due to transient gene editing. In some embodiments, the expanded TILs of the present invention are treated with transcription factors (TFs) and/or other molecules capable of transiently altering protein expression in the TILs. In some embodiments, the TFs and/or other molecules that are capable of transiently altering protein expression provide for altered expression of tumor antigens and/or an alteration in the number of tumor antigen-specific T cells in a population of TILs.


In certain embodiments, the method comprises genetically editing a population of TILs. In certain embodiments, the method comprises genetically editing the first population of TILs, the second population of TILs and/or the third population of TILs.


In some embodiments, the present invention includes genetic editing through nucleotide insertion, such as through ribonucleic acid (RNA) insertion, including insertion of messenger RNA (mRNA) or small (or short) interfering RNA (siRNA), into a population of TILs for promotion of the expression of one or more proteins or inhibition of the expression of one or more proteins, as well as simultaneous combinations of both promotion of one set of proteins with inhibition of another set of proteins.


In some embodiments, the expanded TILs of the present invention undergo transient alteration of protein expression. In some embodiments, the transient alteration of protein expression occurs in the bulk TIL population prior to first expansion, including, for example in the TIL population obtained from for example, Step A. In some embodiments, the transient alteration of protein expression occurs during the first expansion, including, for example in the TIL population expanded in for example, Step B. In some embodiments, the transient alteration of protein expression occurs after the first expansion, including, for example in the TIL population in transition between the first and second expansion (e.g. the second population of TILs as described herein), the TIL population obtained from for example, Step B and included in Step C. In some embodiments, the transient alteration of protein expression occurs in the bulk TIL population prior to second expansion, including, for example in the TIL population obtained from for example, Step C and prior to its expansion in Step D. In some embodiments, the transient alteration of protein expression occurs during the second expansion, including, for example in the TIL population expanded in for example, Step D (e.g. the third population of TILs). In some embodiments, the transient alteration of protein expression occurs after the second expansion, including, for example in the TIL population obtained from the expansion in for example, Step D.


In an embodiment, a method of transiently altering protein expression in a population of TILs includes the step of electroporation. Electroporation methods are known in the art and are described, e.g., in Tsong, Biophys. J. 1991, 60, 297-306, and U.S. Patent Application Publication No. 2014/0227237 A1, the disclosures of each of which are incorporated by reference herein. In an embodiment, a method of transiently altering protein expression in population of TILs includes the step of calcium phosphate transfection. Calcium phosphate transfection methods (calcium phosphate DNA precipitation, cell surface coating, and endocytosis) are known in the art and are described in Graham and van der Eb, Virology 1973, 52, 456-467; Wigler, et al., Proc. Natl. Acad. Sci. 1979, 76, 1373-1376; and Chen and Okayarea, Mol. Cell. Biol. 1987, 7, 2745-2752; and in U.S. Pat. No. 5,593,875, the disclosures of each of which are incorporated by reference herein. In an embodiment, a method of transiently altering protein expression in a population of TILs includes the step of liposomal transfection. Liposomal transfection methods, such as methods that employ a 1:1 (w/w) liposome formulation of the cationic lipid N-[1-(2,3-dioleyloxy)propyl]-n,n,n-trimethylammonium chloride (DOTMA) and dioleoyl phophotidylethanolamine (DOPE) in filtered water, are known in the art and are described in Rose, et al., Biotechniques 1991, 10, 520-525 and Felgner, et al., Proc. Natl. Acad. Sci. USA, 1987, 84, 7413-7417 and in U.S. Pat. Nos. 5,279,833; 5,908,635; 6,056,938; 6,110,490; 6,534,484; and 7,687,070, the disclosures of each of which are incorporated by reference herein. In an embodiment, a method of transiently altering protein expression in a population of TILs includes the step of transfection using methods described in U.S. Pat. Nos. 5,766,902; 6,025,337; 6,410,517; 6,475,994; and 7,189,705; the disclosures of each of which are incorporated by reference herein.


In some embodiments, transient alteration of protein expression results in an increase in Stem Memory T cells (TSCMs). TSCMs are early progenitors of antigen-experienced central memory T cells. TSCMs generally display the long-term survival, self-renewal, and multipotency abilities that define stem cells, and are generally desirable for the generation of effective TIL products. TSCM have shown enhanced anti-tumor activity compared with other T cell subsets in mouse models of adoptive cell transfer (Gattinoni et al. Nat Med 2009, 2011; Gattinoni, Nature Rev. Cancer, 2012; Cieri et al. Blood 2013). In some embodiments, transient alteration of protein expression results in a TIL population with a composition comprising a high proportion of TSCM. In some embodiments, transient alteration of protein expression results in an at least 5%, at least 10%, at least 10%, at least 20%, at least 25%, at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, or at least 95% increase in TSCM percentage. In some embodiments, transient alteration of protein expression results in an at least a 1-fold, 2-fold, 3-fold, 4-fold, 5-fold, or 10-fold increase in TSCMs in the TIL population. In some embodiments, transient alteration of protein expression results in a TIL population with at least at least 5%, at least 10%, at least 10%, at least 20%, at least 25%, at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, or at least 95% TSCMs. In some embodiments, transient alteration of protein expression results in a therapeutic TIL population with at least at least 5%, at least 10%, at least 10%, at least 20%, at least 25%, at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, or at least 95% TSCMs.


In some embodiments, transient alteration of protein expression results in rejuvenation of antigen-experienced T-cells. In some embodiments, rejuvenation includes, for example, increased proliferation, increased T-cell activation, and/or increased antigen recognition.


In some embodiments, transient alteration of protein expression alters the expression in a large fraction of the T-cells in order to preserve the tumor-derived TCR repertoire. In some embodiments, transient alteration of protein expression does not alter the tumor-derived TCR repertoire. In some embodiments, transient alteration of protein expression maintains the tumor-derived TCR repertoire.


In some embodiments, transient alteration of protein results in altered expression of a particular gene. In some embodiments, the transient alteration of protein expression targets a gene including but not limited to PD-1 (also referred to as PDCD1 or CC279), TGFBR2, CCR4/5, CBLB (CBL-B), CISH, CCRs (chimeric co-stimulatory receptors), IL-2, IL-12, IL-15, IL-21, NOTCH 1/2 ICD, TIM3, LAG3, TIGIT, TGFβ, CCR2, CCR4, CCR5, CXCR1, CXCR2, CSCR3, CCL2 (MCP-1), CCL3 (MIP-la), CCL4 (MIP1-β), CCL5 (RANTES), CXCL1/CXCL8, CCL22, CCL17, CXCL1/CXCL8, VHL, CD44, PIK3CD, SOCS1, and/or cAMP protein kinase A (PKA). In some embodiments, the transient alteration of protein expression targets a gene selected from the group consisting of PD-1, TGFBR2, CCR4/5, CBLB (CBL-B), CISH, CCRs (chimeric co-stimulatory receptors), IL-2, IL-12, IL-15, IL-21, NOTCH 1/2 ICD, TIM3, LAG3, TIGIT, TGFβ, CCR2, CCR4, CCR5, CXCR1, CXCR2, CSCR3, CCL2 (MCP-1), CCL3 (MIP-1α), CCL4 (MIP1-β), CCL5 (RANTES), CXCL1/CXCL8, CCL22, CCL17, CXCL1/CXCL8, VHL, CD44, PIK3CD, SOCS1, and/or cAMP protein kinase A (PKA). In some embodiments, the transient alteration of protein expression targets PD-1. In some embodiments, the transient alteration of protein expression targets TGFBR2. In some embodiments, the transient alteration of protein expression targets CCR4/5. In some embodiments, the transient alteration of protein expression targets CBLB. In some embodiments, the transient alteration of protein expression targets CISH. In some embodiments, the transient alteration of protein expression targets CCRs (chimeric co-stimulatory receptors). In some embodiments, the transient alteration of protein expression targets IL-2. In some embodiments, the transient alteration of protein expression targets IL-12. In some embodiments, the transient alteration of protein expression targets IL-15. In some embodiments, the transient alteration of protein expression targets IL-21. In some embodiments, the transient alteration of protein expression targets NOTCH 1/2 ICD. In some embodiments, the transient alteration of protein expression targets TIM3. In some embodiments, the transient alteration of protein expression targets LAG3. In some embodiments, the transient alteration of protein expression targets TIGIT. In some embodiments, the transient alteration of protein expression targets TGFβ. In some embodiments, the transient alteration of protein expression targets CCR1. In some embodiments, the transient alteration of protein expression targets CCR2. In some embodiments, the transient alteration of protein expression targets CCR4. In some embodiments, the transient alteration of protein expression targets CCR5. In some embodiments, the transient alteration of protein expression targets CXCR1. In some embodiments, the transient alteration of protein expression targets CXCR2. In some embodiments, the transient alteration of protein expression targets CSCR3. In some embodiments, the transient alteration of protein expression targets CCL2 (MCP-1). In some embodiments, the transient alteration of protein expression targets CCL3 (MIP-la). In some embodiments, the transient alteration of protein expression targets CCL4 (MIP1-0). In some embodiments, the transient alteration of protein expression targets CCL5 (RANTES). In some embodiments, the transient alteration of protein expression targets CXCL1. In some embodiments, the transient alteration of protein expression targets CXCL8. In some embodiments, the transient alteration of protein expression targets CCL22. In some embodiments, the transient alteration of protein expression targets CCL17. In some embodiments, the transient alteration of protein expression targets VHL. In some embodiments, the transient alteration of protein expression targets CD44. In some embodiments, the transient alteration of protein expression targets PIK3CD. In some embodiments, the transient alteration of protein expression targets SOCS1. In some embodiments, the transient alteration of protein expression targets cAMP protein kinase A (PKA).


In some embodiments, the transient alteration of protein expression results in increased and/or overexpression of a chemokine receptor. In some embodiments, the chemokine receptor that is overexpressed by transient protein expression includes a receptor with a ligand that includes but is not limited to CCL2 (MCP-1), CCL3 (MIP-1α), CCL4 (MIP1-β), CCL5 (RANTES), CXCL1, CXCL8, CCL22, and/or CCL17.


In some embodiments, the transient alteration of protein expression results in a decrease and/or reduced expression of PD-1, CTLA-4, TIM-3, LAG-3, TIGIT, TGFβR2, and/or TGFβ (including resulting in, for example, TGFβ pathway blockade). In some embodiments, the transient alteration of protein expression results in a decrease and/or reduced expression of CBLB (CBL-B). In some embodiments, the transient alteration of protein expression results in a decrease and/or reduced expression of CISH.


In some embodiments, the transient alteration of protein expression results in increased and/or overexpression of chemokine receptors in order to, for example, improve TIL trafficking or movement to the tumor site. In some embodiments, the transient alteration of protein expression results in increased and/or overexpression of a CCR (chimeric co-stimulatory receptor). In some embodiments, the transient alteration of protein expression results in increased and/or overexpression of a chemokine receptor selected from the group consisting of CCR1, CCR2, CCR4, CCR5, CXCR1, CXCR2, and/or CSCR3.


In some embodiments, the transient alteration of protein expression results in increased and/or overexpression of an interleukin. In some embodiments, the transient alteration of protein expression results in increased and/or overexpression of an interleukin selected from the group consisting of IL-2, IL-12, IL-15, and/or IL-21.


In some embodiments, the transient alteration of protein expression results in increased and/or overexpression of NOTCH 1/2 ICD. In some embodiments, the transient alteration of protein expression results in increased and/or overexpression of VHL. In some embodiments, the transient alteration of protein expression results in increased and/or overexpression of CD44. In some embodiments, the transient alteration of protein expression results in increased and/or overexpression of PIK3CD. In some embodiments, the transient alteration of protein expression results in increased and/or overexpression of SOCS1,


In some embodiments, the transient alteration of protein expression results in decreased and/or reduced expression of cAMP protein kinase A (PKA).


In some embodiments, the transient alteration of protein expression results in decreased and/or reduced expression of a molecule selected from the group consisting of PD-1, LAG3, TIM3, CTLA-4, TIGIT, CISH, TGFβR2, PKA, CBLB, BAFF (BR3), and combinations thereof. In some embodiments, the transient alteration of protein expression results in decreased and/or reduced expression of two molecules selected from the group consisting of PD-1, LAG3, TIM3, CTLA-4, TIGIT, CISH, TGFβR2, PKA, CBLB, BAFF (BR3), and combinations thereof. In some embodiments, the transient alteration of protein expression results in decreased and/or reduced expression of PD-1 and one molecule selected from the group consisting of LAG3, TIM3, CTLA-4, TIGIT, CISH, TGFβR2, PKA, CBLB, BAFF (BR3), and combinations thereof. In some embodiments, the transient alteration of protein expression results in decreased and/or reduced expression of PD-1, LAG-3, CISH, CBLB, TIM3, and combinations thereof. In some embodiments, the transient alteration of protein expression results in decreased and/or reduced expression of PD-1 and one of LAG3, CISH, CBLB, TIM3, and combinations thereof. In some embodiments, the transient alteration of protein expression results in decreased and/or reduced expression of PD-1 and LAG3. In some embodiments, the transient alteration of protein expression results in decreased and/or reduced expression of PD-1 and CISH. In some embodiments, the transient alteration of protein expression results in decreased and/or reduced expression of PD-1 and CBLB. In some embodiments, the transient alteration of protein expression results in decreased and/or reduced expression of LAG3 and CISH. In some embodiments, the transient alteration of protein expression results in decreased and/or reduced expression of LAG3 and CBLB. In some embodiments, the transient alteration of protein expression results in decreased and/or reduced expression of CISH and CBLB. In some embodiments, the transient alteration of protein expression results in decreased and/or reduced expression of TIM3 and PD-1. In some embodiments, the transient alteration of protein expression results in decreased and/or reduced expression of TIM3 and LAG3. In some embodiments, the transient alteration of protein expression results in decreased and/or reduced expression of TIM3 and CISH. In some embodiments, the transient alteration of protein expression results in decreased and/or reduced expression of TIM3 and CBLB.


In some embodiments, an adhesion molecule selected from the group consisting of CCR2, CCR4, CCR5, CXCR2, CXCR3, CX3CR1, and combinations thereof, is inserted by a gammaretroviral or lentiviral method into the first population of TILs, second population of TILs, or harvested population of TILs (e.g., the expression of the adhesion molecule is increased).


In some embodiments, the transient alteration of protein expression results in decreased and/or reduced expression of a molecule selected from the group consisting of PD-1, LAG3, TIM3, CTLA-4, TIGIT, CISH, TGFβR2, PKA, CBLB, BAFF (BR3), and combinations thereof, and increased and/or enhanced expression of CCR2, CCR4, CCR5, CXCR2, CXCR3, CX3CR1, and combinations thereof. In some embodiments, the transient alteration of protein expression results in decreased and/or reduced expression of a molecule selected from the group consisting of PD-1, LAG3, TIM3, CISH, CBLB, and combinations thereof, and increased and/or enhanced expression of CCR2, CCR4, CCR5, CXCR2, CXCR3, CX3CR1, and combinations thereof.


In some embodiments, there is a reduction in expression of about 5%, about 10%, about 10%, about 20%, about 25%, about 30%, about 35%, about 40%, about 45%, about 50%, about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, or about 95%. In some embodiments, there is a reduction in expression of at least about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, or about 95%. In some embodiments, there is a reduction in expression of at least about 75%, about 80%, about 85%, about 90%, or about 95%. In some embodiments, there is a reduction in expression of at least about 80%, about 85%, about 90%, or about 95%. In some embodiments, there is a reduction in expression of at least about 85%, about 90%, or about 95%. In some embodiments, there is a reduction in expression of at least about 80%. In some embodiments, there is a reduction in expression of at least about 85%, In some embodiments, there is a reduction in expression of at least about 90%. In some embodiments, there is a reduction in expression of at least about 95%. In some embodiments, there is a reduction in expression of at least about 99%.


In some embodiments, there is an increase in expression of about 5%, about 10%, about 10%, about 20%, about 25%, about 30%, about 35%, about 40%, about 45%, about 50%, about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, or about 95%. In some embodiments, there is an increase in expression of at least about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, or about 95%. In some embodiments, there is an increase in expression of at least about 75%, about 80%, about 85%, about 90%, or about 95%. In some embodiments, there is an increase in expression of at least about 80%, about 85%, about 90%, or about 95%. In some embodiments, there is an increase in expression of at least about 85%, about 90%, or about 95%. In some embodiments, there is an increase in expression of at least about 80%. In some embodiments, there is an increase in expression of at least about 85%, In some embodiments, there is an increase in expression of at least about 90%. In some embodiments, there is an increase in expression of at least about 95%. In some embodiments, there is an increase in expression of at least about 99%.


In some embodiments, transient alteration of protein expression is induced by treatment of the TILs with transcription factors (TFs) and/or other molecules capable of transiently altering protein expression in the TILs. In some embodiments, the SQZ vector-free microfluidic platform is employed for intracellular delivery of the transcription factors (TFs) and/or other molecules capable of transiently altering protein expression. Such methods demonstrating the ability to deliver proteins, including transcription factors, to a variety of primary human cells, including T cells (Sharei et al. PNAS 2013, as well as Sharei et al. PLOS ONE 2015 and Greisbeck et al. J. Immunology vol. 195, 2015) have been described; see, for example, International Patent Publications WO 2013/059343A1, WO 2017/008063A1, and WO 2017/123663A1, all of which are incorporated by reference herein in their entireties. Such methods as described in International Patent Publications WO 2013/059343A1, WO 2017/008063A1, and WO 2017/123663A1 can be employed with the present invention in order to expose a population of TILs to transcription factors (TFs) and/or other molecules capable of inducing transient protein expression, wherein said TFs and/or other molecules capable of inducing transient protein expression provide for increased expression of tumor antigens and/or an increase in the number of tumor antigen-specific T cells in the population of TILs, thus resulting in reprogramming of the TIL population and an increase in therapeutic efficacy of the reprogrammed TIL population as compared to a non-reprogrammed TIL population. In some embodiments, the reprogramming results in an increased subpopulation of effector T cells and/or central memory T cells relative to the starting or prior population (i.e., prior to reprogramming) population of TILs, as described herein.


In some embodiments, the transcription factor (TF) includes but is not limited to TCF-1, NOTCH 1/2 ICD, and/or MYB. In some embodiments, the transcription factor (TF) is TCF-1. In some embodiments, the transcription factor (TF) is NOTCH 1/2 ICD. In some embodiments, the transcription factor (TF) is MYB. In some embodiments, the transcription factor (TF) is administered with induced pluripotent stem cell culture (iPSC), such as the commercially available KNOCKOUT Serum Replacement (Gibco/ThermoFisher), to induce additional TIL reprogramming. In some embodiments, the transcription factor (TF) is administered with an iPSC cocktail to induce additional TIL reprogramming. In some embodiments, the transcription factor (TF) is administered without an iPSC cocktail. In some embodiments, reprogramming results in an increase in the percentage of TSCMs. In some embodiments, reprogramming results in an increase in the percentage of TSCMs by about 5%, about 10%, about 10%, about 20%, about 25%, about 30%, about 35%, about 40%, about 45%, about 50%, about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, or about 95% TSCMs.


In some embodiments, a method of transient altering protein expression, as described above, may be combined with a method of genetically modifying a population of TILs includes the step of stable incorporation of genes for production of one or more proteins. In certain embodiments, the method comprises a step of genetically modifying a population of TILs. In certain embodiments, the method comprises genetically modifying the first population of TILs, the second population of TILs and/or the third population of TILs. In an embodiment, a method of genetically modifying a population of TILs includes the step of retroviral transduction. In an embodiment, a method of genetically modifying a population of TILs includes the step of lentiviral transduction. Lentiviral transduction systems are known in the art and are described, e.g., in Levine, et al., Proc. Nat'l Acad. Sci. 2006, 103, 17372-77; Zufferey, et al., Nat. Biotechnol. 1997, 15, 871-75; Dull, et al., J. Virology 1998, 72, 8463-71, and U.S. Pat. No. 6,627,442, the disclosures of each of which are incorporated by reference herein. In an embodiment, a method of genetically modifying a population of TILs includes the step of gamma-retroviral transduction. Gamma-retroviral transduction systems are known in the art and are described, e.g., Cepko and Pear, Cur. Prot. Mol. Biol. 1996, 9.9.1-9.9.16, the disclosure of which is incorporated by reference herein. In an embodiment, a method of genetically modifying a population of TILs includes the step of transposon-mediated gene transfer. Transposon-mediated gene transfer systems are known in the art and include systems wherein the transposase is provided as DNA expression vector or as an expressible RNA or a protein such that long-term expression of the transposase does not occur in the transgenic cells, for example, a transposase provided as an mRNA (e.g., an mRNA comprising a cap and poly-A tail). Suitable transposon-mediated gene transfer systems, including the salmonid-type Tel-like transposase (SB or Sleeping Beauty transposase), such as SB10, SB11, and SB100×, and engineered enzymes with increased enzymatic activity, are described in, e.g., Hackett, et al., Mol. Therapy 2010, 18, 674-83 and U.S. Pat. No. 6,489,458, the disclosures of each of which are incorporated by reference herein.


In some embodiments, transient alteration of protein expression is a reduction in expression induced by self-delivering RNA interference (sdRNA), which is a chemically-synthesized asymmetric siRNA duplex with a high percentage of 2′-OH substitutions (typically fluorine or —OCH3) which comprises a 20-nucleotide antisense (guide) strand and a 13 to 15 base sense (passenger) strand conjugated to cholesterol at its 3′ end using a tetraethylenglycol (TEG) linker. In some embodiments, the method comprises transient alteration of protein expression in a population of TILs, comprising the use of self-delivering RNA interference (sdRNA), which is a chemically-synthesized asymmetric siRNA duplex with a high percentage of 2′-OH substitutions (typically fluorine or —OCH3) which comprises a 20-nucleotide antisense (guide) strand and a 13 to 15 base sense (passenger) strand conjugated to cholesterol at its 3′ end using a tetraethylenglycol (TEG) linker. Methods of using sdRNA have been described in Khvorova and Watts, Nat. Biotechnol. 2017, 35, 238-248; Byrne, et al., J. Ocul. Pharmacol. Ther. 2013, 29, 855-864; and Ligtenberg, et al., Mol. Therapy, 2018, in press, the disclosures of which are incorporated by reference herein. In an embodiment, delivery of sdRNA to a TIL population is accomplished without use of electroporation, SQZ, or other methods, instead using a 1 to 3 day period in which a TIL population is exposed to sdRNA at a concentration of 1 μM/10,000 TILs in medium. In certain embodiments, the method comprises delivery sdRNA to a TILs population comprising exposing the TILs population to sdRNA at a concentration of 1 μM/10,000 TILs in medium for a period of between 1 to 3 days. In an embodiment, delivery of sdRNA to a TIL population is accomplished using a 1 to 3 day period in which a TIL population is exposed to sdRNA at a concentration of 10 μM/10,000 TILs in medium. In an embodiment, delivery of sdRNA to a TIL population is accomplished using a 1 to 3 day period in which a TIL population is exposed to sdRNA at a concentration of 50 μM/10,000 TILs in medium. In an embodiment, delivery of sdRNA to a TIL population is accomplished using a 1 to 3 day period in which a TIL population is exposed to sdRNA at a concentration of between 0.1 μM/10,000 TILs and 50 μM/10,000 TILs in medium. In an embodiment, delivery of sdRNA to a TIL population is accomplished using a 1 to 3 day period in which a TIL population is exposed to sdRNA at a concentration of between 0.1 μM/10,000 TILs and 50 μM/10,000 TILs in medium, wherein the exposure to sdRNA is performed two, three, four, or five times by addition of fresh sdRNA to the media. Other suitable processes are described, for example, in U.S. Patent Application Publication No. US 2011/0039914 A1, US 2013/0131141 A1, and US 2013/0131142 A1, and U.S. Pat. No. 9,080,171, the disclosures of which are incorporated by reference herein.


In some embodiments, sdRNA is inserted into a population of TILs during manufacturing. In some embodiments, the sdRNA encodes RNA that interferes with NOTCH 1/2 ICD, PD-1, CTLA-4 TIM-3, LAG-3, TIGIT, TGFβ, TGFBR2, cAMP protein kinase A (PKA), BAFF BR3, CISH, and/or CBLB. In some embodiments, the reduction in expression is determined based on a percentage of gene silencing, for example, as assessed by flow cytometry and/or qPCR. In some embodiments, there is a reduction in expression of about 5%, about 10%, about 10%, about 20%, about 25%, about 30%, about 35%, about 40%, about 45%, about 50%, about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, or about 95%. In some embodiments, there is a reduction in expression of at least about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, or about 95%. In some embodiments, there is a reduction in expression of at least about 75%, about 80%, about 85%, about 90%, or about 95%. In some embodiments, there is a reduction in expression of at least about 80%, about 85%, about 90%, or about 95%. In some embodiments, there is a reduction in expression of at least about 85%, about 90%, or about 95%. In some embodiments, there is a reduction in expression of at least about 80%. In some embodiments, there is a reduction in expression of at least about 85%, In some embodiments, there is a reduction in expression of at least about 90%. In some embodiments, there is a reduction in expression of at least about 95%. In some embodiments, there is a reduction in expression of at least about 99%.


The self-deliverable RNAi technology based on the chemical modification of siRNAs can be employed with the methods of the present invention to successfully deliver the sdRNAs to the TILs as described herein. The combination of backbone modifications with asymmetric siRNA structure and a hydrophobic ligand (see, for example, Ligtenberg, et al., Mol. Therapy, 2018 and US20160304873) allow sdRNAs to penetrate cultured mammalian cells without additional formulations and methods by simple addition to the culture media, capitalizing on the nuclease stability of sdRNAs. This stability allows the support of constant levels of RNAi-mediated reduction of target gene activity simply by maintaining the active concentration of sdRNA in the media. While not being bound by theory, the backbone stabilization of sdRNA provides for extended reduction in gene expression effects which can last for months in non-dividing cells.


In some embodiments, over 95% transfection efficiency of TILs and a reduction in expression of the target by various specific sdRNA occurs. In some embodiments, sdRNAs containing several unmodified ribose residues were replaced with fully modified sequences to increase potency and/or the longevity of RNAi effect. In some embodiments, a reduction in expression effect is maintained for 12 hours, 24 hours, 36 hours, 48 hours, 5 days, 6 days, 7 days, or 8 days or more. In some embodiments, the reduction in expression effect decreases at 10 days or more post sdRNA treatment of the TILs. In some embodiments, more than 70% reduction in expression of the target expression is maintained. In some embodiments, more than 70% reduction in expression of the target expression is maintained TILs. In some embodiments, a reduction in expression in the PD-1/PD-L1 pathway allows for the TILs to exhibit a more potent in vivo effect, which is in some embodiments, due to the avoidance of the suppressive effects of the PD-1/PD-L1 pathway. In some embodiments, a reduction in expression of PD-1 by sdRNA results in an increase TIL proliferation.


Small interfering RNA (siRNA), sometimes known as short interfering RNA or silencing RNA, is a double stranded RNA molecule, generally 19-25 base pairs in length. siRNA is used in RNA interference (RNAi), where it interferes with expression of specific genes with complementary nucleotide sequences.


Double stranded DNA (dsRNA) can be generally used to define any molecule comprising a pair of complementary strands of RNA, generally a sense (passenger) and antisense (guide) strands, and may include single-stranded overhang regions. The term dsRNA, contrasted with siRNA, generally refers to a precursor molecule that includes the sequence of an siRNA molecule which is released from the larger dsRNA molecule by the action of cleavage enzyme systems, including Dicer.


sdRNA (self-deliverable RNA) are a new class of covalently modified RNAi compounds that do not require a delivery vehicle to enter cells and have improved pharmacology compared to traditional siRNAs. “Self-deliverable RNA” or “sdRNA” is a hydrophobically modified RNA interfering-antisense hybrid, demonstrated to be highly efficacious in vitro in primary cells and in vivo upon local administration. Robust uptake and/or silencing without toxicity has been demonstrated. sdRNAs are generally asymmetric chemically modified nucleic acid molecules with minimal double stranded regions. sdRNA molecules typically contain single stranded regions and double stranded regions, and can contain a variety of chemical modifications within both the single stranded and double stranded regions of the molecule. Additionally, the sdRNA molecules can be attached to a hydrophobic conjugate such as a conventional and advanced sterol-type molecule, as described herein. sdRNAs and associated methods for making such sdRNAs have also been described extensively in, for example, US20160304873, WO2010033246, WO2017070151, WO2009102427, WO2011119887, WO2010033247A2, WO2009045457, WO2011119852, all of which are incorporated by reference herein in their entireties for all purposes. To optimize sdRNA structure, chemistry, targeting position, sequence preferences, and the like, a proprietary algorithm has been developed and utilized for sdRNA potency prediction (see, for example, US 20160304873). Based on these analyses, functional sdRNA sequences have been generally defined as having over 70% reduction in expression at 1 μM concentration, with a probability over 40%.


In some embodiments, the sdRNA sequences used in the invention exhibit a 70% reduction in expression of the target gene. In some embodiments, the sdRNA sequences used in the invention exhibit a 75% reduction in expression of the target gene.


In some embodiments, the sdRNA sequences used in the invention exhibit an 80% reduction in expression of the target gene. In some embodiments, the sdRNA sequences used in the invention exhibit an 85% reduction in expression of the target gene. In some embodiments, the sdRNA sequences used in the invention exhibit a 90% reduction in expression of the target gene. In some embodiments, the sdRNA sequences used in the invention exhibit a 95% reduction in expression of the target gene. In some embodiments, the sdRNA sequences used in the invention exhibit a 99% reduction in expression of the target gene. In some embodiments, the sdRNA sequences used in the invention exhibit a reduction in expression of the target gene when delivered at a concentration of about 0.25 μM to about 4 μM. In some embodiments, the sdRNA sequences used in the invention exhibit a reduction in expression of the target gene when delivered at a concentration of about 0.25 μM. In some embodiments, the sdRNA sequences used in the invention exhibit a reduction in expression of the target gene when delivered at a concentration of about 0.5 μM. In some embodiments, the sdRNA sequences used in the invention exhibit a reduction in expression of the target gene when delivered at a concentration of about 0.75 μM. In some embodiments, the sdRNA sequences used in the invention exhibit a reduction in expression of the target gene when delivered at a concentration of about 1.0 μM. In some embodiments, the sdRNA sequences used in the invention exhibit a reduction in expression of the target gene when delivered at a concentration of about 1.25 μM. In some embodiments, the sdRNA sequences used in the invention exhibit a reduction in expression of the target gene when delivered at a concentration of about 1.5 μM. In some embodiments, the sdRNA sequences used in the invention exhibit a reduction in expression of the target gene when delivered at a concentration of about 1.75 μM. In some embodiments, the sdRNA sequences used in the invention exhibit a reduction in expression of the target gene when delivered at a concentration of about 2.0 μM. In some embodiments, the sdRNA sequences used in the invention exhibit a reduction in expression of the target gene when delivered at a concentration of about 2.25 μM. In some embodiments, the sdRNA sequences used in the invention exhibit a reduction in expression of the target gene when delivered at a concentration of about 2.5 μM. In some embodiments, the sdRNA sequences used in the invention exhibit a reduction in expression of the target gene when delivered at a concentration of about 2.75 μM. In some embodiments, the sdRNA sequences used in the invention exhibit a reduction in expression of the target gene when delivered at a concentration of about 3.0 μM. In some embodiments, the sdRNA sequences used in the invention exhibit a reduction in expression of the target gene when delivered at a concentration of about 3.25 μM. In some embodiments, the sdRNA sequences used in the invention exhibit a reduction in expression of the target gene when delivered at a concentration of about 3.5 μM. In some embodiments, the sdRNA sequences used in the invention exhibit a reduction in expression of the target gene when delivered at a concentration of about 3.75 μM. In some embodiments, the sdRNA sequences used in the invention exhibit a reduction in expression of the target gene when delivered at a concentration of about 4.0 μM.


In some embodiments, the oligonucleotide agents comprise one or more modification to increase stability and/or effectiveness of the therapeutic agent, and to effect efficient delivery of the oligonucleotide to the cells or tissue to be treated. Such modifications can include a 2′-O-methyl modification, a 2′-O-Fluro modification, a diphosphorothioate modification, 2′ F modified nucleotide, a2′-O-methyl modified and/or a 2′deoxy nucleotide. In some embodiments, the oligonucleotide is modified to include one or more hydrophobic modifications including, for example, sterol, cholesterol, vitamin D, naphtyl, isobutyl, benzyl, indol, tryptophane, and/or phenyl. In an additional particular embodiment, chemically modified nucleotides are combination of phosphorothioates, 2′-O-methyl, 2′deoxy, hydrophobic modifications and phosphorothioates. In some embodiments, the sugars can be modified and modified sugars can include but are not limited to D-ribose, 2′-O-alkyl (including 2′-O-methyl and 2′-O-ethyl), i.e., 2′-alkoxy, 2′-amino, 2′-S-alkyl, 2′-halo (including 2′-fluoro), T-methoxyethoxy, 2′-allyloxy (—OCH2CH═CH2), 2′-propargyl, 2′-propyl, ethynyl, ethenyl, propenyl, and cyano and the like. In one embodiment, the sugar moiety can be a hexose and incorporated into an oligonucleotide as described (Augustyns, K., et al., Nucl. Acids. Res. 18:4711 (1992)).


In some embodiments, the double-stranded oligonucleotide of the invention is double-stranded over its entire length, i.e., with no overhanging single-stranded sequence at either end of the molecule, i.e., is blunt-ended. In some embodiments, the individual nucleic acid molecules can be of different lengths. In other words, a double-stranded oligonucleotide of the invention is not double-stranded over its entire length. For instance, when two separate nucleic acid molecules are used, one of the molecules, e.g., the first molecule comprising an antisense sequence, can be longer than the second molecule hybridizing thereto (leaving a portion of the molecule single-stranded). In some embodiments, when a single nucleic acid molecule is used a portion of the molecule at either end can remain single-stranded.


In some embodiments, a double-stranded oligonucleotide of the invention contains mismatches and/or loops or bulges, but is double-stranded over at least about 70% of the length of the oligonucleotide. In some embodiments, a double-stranded oligonucleotide of the invention is double-stranded over at least about 80% of the length of the oligonucleotide. In another embodiment, a double-stranded oligonucleotide of the invention is double-stranded over at least about 90%-95% of the length of the oligonucleotide. In some embodiments, a double-stranded oligonucleotide of the invention is double-stranded over at least about 96%-98% of the length of the oligonucleotide. In some embodiments, the double-stranded oligonucleotide of the invention contains at least or up to 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15 mismatches.


In some embodiments, the oligonucleotide can be substantially protected from nucleases e.g., by modifying the 3′ or 5′ linkages (e.g., U.S. Pat. No. 5,849,902 and WO 98/13526). For example, oligonucleotides can be made resistant by the inclusion of a “blocking group.” The term “blocking group” as used herein refers to substituents (e.g., other than OH groups) that can be attached to oligonucleotides or nucleomonomers, either as protecting groups or coupling groups for synthesis (e.g., FITC, propyl (CH2—CH2—CH3), glycol (—O—CH2—CH2—O—) phosphate (PO32″), hydrogen phosphonate, or phosphoramidite). “Blocking groups” can also include “end blocking groups” or “exonuclease blocking groups” which protect the 5′ and 3′ termini of the oligonucleotide, including modified nucleotides and non-nucleotide exonuclease resistant structures.


In some embodiments, at least a portion of the contiguous polynucleotides within the sdRNA are linked by a substitute linkage, e.g., a phosphorothioate linkage.


In some embodiments, chemical modification can lead to at least a 1.5, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165, 170, 175, 180, 185, 190, 195, 200, 225, 250, 275, 300, 325, 350, 375, 400, 425, 450, 475, 500 enhancements in cellular uptake. In some embodiments, at least one of the C or U residues includes a hydrophobic modification. In some embodiments, a plurality of Cs and Us contain a hydrophobic modification. In some embodiments, at least 10%, 15%, 20%, 30%, 40%, 50%, 55%, 60% 65%, 70%, 75%, 80%, 85%, 90% or at least 95% of the Cs and Us can contain a hydrophobic modification. In some embodiments, all of the Cs and Us contain a hydrophobic modification.


In some embodiments, the sdRNA or sd-rxRNAs exhibit enhanced endosomal release of sd-rxRNA molecules through the incorporation of protonatable amines. In some embodiments, protonatable amines are incorporated in the sense strand (in the part of the molecule which is discarded after RISC loading). In some embodiments, the sdRNA compounds of the invention comprise an asymmetric compound comprising a duplex region (required for efficient RISC entry of 10-15 bases long) and single stranded region of 4-12 nucleotides long; with a 13 nucleotide duplex. In some embodiments, a 6 nucleotide single stranded region is employed. In some embodiments, the single stranded region of the sdRNA comprises 2-12 phosphorothioate internucleotide linkages (referred to as phosphorothioate modifications). In some embodiments, 6-8 phosphorothioate internucleotide linkages are employed. In some embodiments, the sdRNA compounds of the invention also include a unique chemical modification pattern, which provides stability and is compatible with RISC entry.


The guide strand, for example, may also be modified by any chemical modification which confirms stability without interfering with RISC entry. In some embodiments, the chemical modification pattern in the guide strand includes the majority of C and U nucleotides being 2′ F modified and the 5′ end being phosphorylated.


In some embodiments, at least 30% of the nucleotides in the sdRNA or sd-rxRNA are modified. In some embodiments, at least 30%, 31%, 32%, 33%, 34%, 35%, 36%, 37%, 38%, 39%, 40%, 41%, 42%, 43%, 44%, 45%, 46%, 47%, 48%, 49%, 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% of the nucleotides in the sdRNA or sd-rxRNA are modified. In some embodiments, 100% of the nucleotides in the sdRNA or sd-rxRNA are modified.


In some embodiments, the sdRNA molecules have minimal double stranded regions. In some embodiments the region of the molecule that is double stranded ranges from 8-15 nucleotides long. In some embodiments, the region of the molecule that is double stranded is 8, 9, 10, 11, 12, 13, 14 or 15 nucleotides long. In some embodiments the double stranded region is 13 nucleotides long. There can be 100% complementarity between the guide and passenger strands, or there may be one or more mismatches between the guide and passenger strands. In some embodiments, on one end of the double stranded molecule, the molecule is either blunt-ended or has a one-nucleotide overhang. The single stranded region of the molecule is in some embodiments between 4-12 nucleotides long. In some embodiments, the single stranded region can be 4, 5, 6, 7, 8, 9, 10, 11 or 12 nucleotides long. In some embodiments, the single stranded region can also be less than 4 or greater than 12 nucleotides long. In certain embodiments, the single stranded region is 6 or 7 nucleotides long.


In some embodiments, the sdRNA molecules have increased stability. In some instances, a chemically modified sdRNA or sd-rxRNA molecule has a half-life in media that is longer than 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24 or more than 24 hours, including any intermediate values. In some embodiments, the sd-rxRNA has a half-life in media that is longer than 12 hours.


In some embodiments, the sdRNA is optimized for increased potency and/or reduced toxicity. In some embodiments, nucleotide length of the guide and/or passenger strand, and/or the number of phosphorothioate modifications in the guide and/or passenger strand, can in some aspects influence potency of the RNA molecule, while replacing 2′-fluoro (2′F) modifications with 2′-O-methyl (2′OMe) modifications can in some aspects influence toxicity of the molecule. In some embodiments, reduction in 2′F content of a molecule is predicted to reduce toxicity of the molecule. In some embodiments, the number of phosphorothioate modifications in an RNA molecule can influence the uptake of the molecule into a cell, for example the efficiency of passive uptake of the molecule into a cell. In some embodiments, the sdRNA has no 2′F modification and yet are characterized by equal efficacy in cellular uptake and tissue penetration.


In some embodiments, a guide strand is approximately 18-19 nucleotides in length and has approximately 2-14 phosphate modifications. For example, a guide strand can contain 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 or more than 14 nucleotides that are phosphate-modified. The guide strand may contain one or more modifications that confer increased stability without interfering with RISC entry. The phosphate modified nucleotides, such as phosphorothioate modified nucleotides, can be at the 3′ end, 5′ end or spread throughout the guide strand. In some embodiments, the 3′ terminal 10 nucleotides of the guide strand contain 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 phosphorothioate modified nucleotides. The guide strand can also contain 2′F and/or 2′OMe modifications, which can be located throughout the molecule. In some embodiments, the nucleotide in position one of the guide strand (the nucleotide in the most 5′ position of the guide strand) is 2′OMe modified and/or phosphorylated. C and U nucleotides within the guide strand can be 2′F modified. For example, C and U nucleotides in positions 2-10 of a 19 nt guide strand (or corresponding positions in a guide strand of a different length) can be 2′F modified. C and U nucleotides within the guide strand can also be 2′OMe modified. For example, C and U nucleotides in positions 11-18 of a 19 nt guide strand (or corresponding positions in a guide strand of a different length) can be 2′OMe modified. In some embodiments, the nucleotide at the most 3′ end of the guide strand is unmodified. In certain embodiments, the majority of Cs and Us within the guide strand are 2′F modified and the 5′ end of the guide strand is phosphorylated. In other embodiments, position 1 and the Cs or Us in positions 11-18 are 2′OMe modified and the 5′ end of the guide strand is phosphorylated. In other embodiments, position 1 and the Cs or Us in positions 11-18 are 2′OMe modified, the 5′ end of the guide strand is phosphorylated, and the Cs or Us in position 2-10 are 2′F modified.


The self-deliverable RNAi technology provides a method of directly transfecting cells with the RNAi agent, without the need for additional formulations or techniques. The ability to transfect hard-to-transfect cell lines, high in vivo activity, and simplicity of use, are characteristics of the compositions and methods that present significant functional advantages over traditional siRNA-based techniques, and as such, the sdRNA methods are employed in several embodiments related to the methods of reduction in expression of the target gene in the TILs of the present invention. The sdRNAi methods allows direct delivery of chemically synthesized compounds to a wide range of primary cells and tissues, both ex-vivo and in vivo. The sdRNAs described in some embodiments of the invention herein are commercially available from Advirna LLC, Worcester, Mass., USA.


The sdRNA are formed as hydrophobically-modified siRNA-antisense oligonucleotide hybrid structures, and are disclosed, for example in Byrne et al., December 2013, J. Ocular Pharmacology and Therapeutics, 29(10): 855-864, incorporated by reference herein in its entirety.


In some embodiments, the sdRNA oligonucleotides can be delivered to the TILs described herein using sterile electroporation. In certain embodiments, the method comprises sterile electroporation of a population of TILs to deliver sdRNA oligonucleotides.


In some embodiments, the oligonucleotides can be delivered to the cells in combination with a transmembrane delivery system. In some embodimets, this transmembrane delivery system comprises lipids, viral vectors, and the like. In some embodiments, the oligonucleotide agent is a self-delivery RNAi agent, that does not require any delivery agents. In certain embodiments, the method comprises use of a transmembrane delivery system to deliver sdRNA oligonucleotides to a population of TILs.


Oligonucleotides and oligonucleotide compositions are contacted with (e.g., brought into contact with, also referred to herein as administered or delivered to) and taken up by TILs described herein, including through passive uptake by TILs. The sdRNA can be added to the TILs as described herein during the first expansion, for example Step B, after the first expansion, for example, during Step C, before or during the second expansion, for example before or during Step D, after Step D and before harvest in Step E, during or after harvest in Step F, before or during final formulation and/or transfer to infusion Bag in Step F, as well as before any optional cryopreservation step in Step F. Moreover, sdRNA can be added after thawing from any cryopreservation step in Step F. In an embodiment, one or more sdRNAs targeting genes as described herein, including PD-1, LAG-3, TIM-3, CISH, and CBLB, may be added to cell culture media comprising TILs and other agents at concentrations selected from the group consisting of 100 nM to 20 mM, 200 nM to 10 mM, 500 nm to 1 mM, 1 μM to 100 μM, and 1 μM to 100 μM. In an embodiment, one or more sdRNAs targeting genes as described herein, including PD-1, LAG-3, TIM-3, CISH, and CBLB, may be added to cell culture media comprising TILs and other agents at amounts selected from the group consisting of 0.1 μM sdRNA/10,000 TILs/100 μL media, 0.5 μM sdRNA/10,000 TILs/100 μL media, 0.75 μM sdRNA/10,000 TILs/100 μL media, 1 μM sdRNA/10,000 TILs/100 μL media, 1.25 μM sdRNA/10,000 TILs/100 μL media, 1.5 μM sdRNA/10,000 TILs/100 μL media, 2 μM sdRNA/10,000 TILs/100 μL media, 5 μM sdRNA/10,000 TILs/100 μL media, or 10 μM sdRNA/10,000 TILs/100 μL media. In an embodiment, one or more sdRNAs targeting genes as described herein, including PD-1, LAG-3, TIM-3, CISH, and CBLB, may be added to TIL cultures during the pre-REP or REP stages twice a day, once a day, every two days, every three days, every four days, every five days, every six days, or every seven days.


Oligonucleotide compositions of the invention, including sdRNA, can be contacted with TILs as described herein during the expansion process, for example by dissolving sdRNA at high concentrations in cell culture media and allowing sufficient time for passive uptake to occur. In certain embodiments, the method of the present invention comprises contacting a population of TILs with an oligonucleotide composition as described herein. In certain embodiments, the method comprises dissolving an oligonucleotide e.g. sdRNA in a cell culture media and contacting the cell culture media with a population of TILs. The TILs may be a first population, a second population and/or a third population as described herein.


In some embodiments, delivery of oligonucleotides into cells can be enhanced by suitable art recognized methods including calcium phosphate, DMSO, glycerol or dextran, electroporation, or by transfection, e.g., using cationic, anionic, or neutral lipid compositions or liposomes using methods known in the art (see, e.g., WO 90/14074; WO 91/16024; WO 91/17424; U.S. Pat. No. 4,897,355; Bergan et a 1993. Nucleic Acids Research. 21 0.3567).


In some embodiments, more than one sdRNA is used to reduce expression of a target gene. In some embodiments, one or more of PD-1, TIM-3, CBLB, LAG3 and/or CISH targeting sdRNAs are used together. In some embodiments, a PD-1 sdRNA is used with one or more of TIM-3, CBLB, LAG3 and/or CISH in order to reduce expression of more than one gene target. In some embodiments, a LAG3 sdRNA is used in combination with a CISH targeting sdRNA to reduce gene expression of both targets. In some embodiments, the sdRNAs targeting one or more of PD-1, TIM-3, CBLB, LAG3 and/or CISH herein are commercially available from Advirna LLC, Worcester, Mass., USA.


In some embodiments, the sdRNA targets a gene selected from the group consisting of PD-1, LAG3, TIM3, CTLA-4, TIGIT, CISH, TGFβR2, PKA, CBLB, BAFF (BR3), and combinations thereof. In some embodiments, the sdRNA targets a gene selected from the group consisting of PD-1, LAG3, TIM3, CTLA-4, TIGIT, CISH, TGFβR2, PKA, CBLB, BAFF (BR3), and combinations thereof. In some embodiments, one sdRNA targets PD-1 and another sdRNA targets a gene selected from the group consisting of LAG3, TIM3, CTLA-4, TIGIT, CISH, TGFβR2, PKA, CBLB, BAFF (BR3), and combinations thereof. In some embodiments, the sdRNA targets a gene selected from PD-1, LAG-3, CISH, CBLB, TIM3, and combinations thereof. In some embodiments, the sdRNA targets a gene selected from PD-1 and one of LAG3, CISH, CBLB, TIM3, and combinations thereof. In some embodiments, one sdRNA targets PD-1 and one sdRNA targets LAG3. In some embodiments, one sdRNA targets PD-1 and one sdRNA targets CISH. In some embodiments, one sdRNA targets PD-1 and one sdRNA targets CBLB. In some embodiments, one sdRNA targets LAG3 and one sdRNA targets CISH. In some embodiments, one sdRNA targets LAG3 and one sdRNA targets CBLB. In some embodiments, one sdRNA targets CISH and one sdRNA targets CBLB. In some embodiments, one sdRNA targets TIM3 and one sdRNA targets PD-1. In some embodiments, one sdRNA targets TIM3 and one sdRNA targets LAG3. In some embodiments, one sdRNA targets TIM3 and one sdRNA targets CISH. In some embodiments, one sdRNA targets TIM3 and one sdRNA targets CBLB.


As discussed above, embodiments of the present invention provide tumor infiltrating lymphocytes (TILs) that have been genetically modified via gene-editing to enhance their therapeutic effect. Embodiments of the present invention embrace genetic editing through nucleotide insertion (RNA or DNA) into a population of TILs for both promotion of the expression of one or more proteins and inhibition of the expression of one or more proteins, as well as combinations thereof. Embodiments of the present invention also provide methods for expanding TILs into a therapeutic population, wherein the methods comprise gene-editing the TILs. There are several gene-editing technologies that may be used to genetically modify a population of TILs, which are suitable for use in accordance with the present invention,


In some embodiments, the method comprises a method of genetically modifying a population of TILs which include the step of stable incorporation of genes for production of one or more proteins. In an embodiment, a method of genetically modifying a population of TILs includes the step of retroviral transduction. In an embodiment, a method of genetically modifying a population of TILs includes the step of lentiviral transduction. Lentiviral transduction systems are known in the art and are described, e.g., in Levine, et al., Proc. Nat'l Acad. Sci. 2006, 103, 17372-77; Zufferey, et al., Nat. Biotechnol. 1997, 15, 871-75; Dull, et al., J. Virology 1998, 72, 8463-71, and U.S. Pat. No. 6,627,442, the disclosures of each of which are incorporated by reference herein. In an embodiment, a method of genetically modifying a population of TILs includes the step of gamma-retroviral transduction. Gamma-retroviral transduction systems are known in the art and are described, e.g., Cepko and Pear, Cur. Prot. Mol. Biol. 1996, 9.9.1-9.9.16, the disclosure of which is incorporated by reference herein. In an embodiment, a method of genetically modifying a population of TILs includes the step of transposon-mediated gene transfer. Transposon-mediated gene transfer systems are known in the art and include systems wherein the transposase is provided as DNA expression vector or as an expressible RNA or a protein such that long-term expression of the transposase does not occur in the transgenic cells, for example, a transposase provided as an mRNA (e.g., an mRNA comprising a cap and poly-A tail). Suitable transposon-mediated gene transfer systems, including the salmonid-type Tel-like transposase (SB or Sleeping Beauty transposase), such as SB10, SB11, and SB100×, and engineered enzymes with increased enzymatic activity, are described in, e.g., Hackett, et al., Mol. Therapy 2010, 18, 674-83 and U.S. Pat. No. 6,489,458, the disclosures of each of which are incorporated by reference herein.


In an embodiment, the method comprises a method of genetically modifying a population of TILs e.g. a first population, a second population and/or a third population as described herein. In an embodiment, a method of genetically modifying a population of TILs includes the step of stable incorporation of genes for production or inhibition (e.g., silencing) of one ore more proteins. In an embodiment, a method of genetically modifying a population of TILs includes the step of electroporation. Electroporation methods are known in the art and are described, e.g., in Tsong, Biophys. J. 1991, 60, 297-306, and U.S. Patent Application Publication No. 2014/0227237 A1, the disclosures of each of which are incorporated by reference herein. Other electroporation methods known in the art, such as those described in U.S. Pat. Nos. 5,019,034; 5,128,257; 5,137,817; 5,173,158; 5,232,856; 5,273,525; 5,304,120; 5,318,514; 6,010,613 and 6,078,490, the disclosures of which are incorporated by reference herein, may be used. In an embodiment, the electroporation method is a sterile electroporation method. In an embodiment, the electroporation method is a pulsed electroporation method. In an embodiment, the electroporation method is a pulsed electroporation method comprising the steps of treating TILs with pulsed electrical fields to alter, manipulate, or cause defined and controlled, permanent or temporary changes in the TILs, comprising the step of applying a sequence of at least three single, operator-controlled, independently programmed, DC electrical pulses, having field strengths equal to or greater than 100 V/cm, to the TILs, wherein the sequence of at least three DC electrical pulses has one, two, or three of the following characteristics: (1) at least two of the at least three pulses differ from each other in pulse amplitude; (2) at least two of the at least three pulses differ from each other in pulse width; and (3) a first pulse interval for a first set of two of the at least three pulses is different from a second pulse interval for a second set of two of the at least three pulses. In an embodiment, the electroporation method is a pulsed electroporation method comprising the steps of treating TILs with pulsed electrical fields to alter, manipulate, or cause defined and controlled, permanent or temporary changes in the TILs, comprising the step of applying a sequence of at least three single, operator-controlled, independently programmed, DC electrical pulses, having field strengths equal to or greater than 100 V/cm, to the TILs, wherein at least two of the at least three pulses differ from each other in pulse amplitude. In an embodiment, the electroporation method is a pulsed electroporation method comprising the steps of treating TILs with pulsed electrical fields to alter, manipulate, or cause defined and controlled, permanent or temporary changes in the TILs, comprising the step of applying a sequence of at least three single, operator-controlled, independently programmed, DC electrical pulses, having field strengths equal to or greater than 100 V/cm, to the TILs, wherein at least two of the at least three pulses differ from each other in pulse width. In an embodiment, the electroporation method is a pulsed electroporation method comprising the steps of treating TILs with pulsed electrical fields to alter, manipulate, or cause defined and controlled, permanent or temporary changes in the TILs, comprising the step of applying a sequence of at least three single, operator-controlled, independently programmed, DC electrical pulses, having field strengths equal to or greater than 100 V/cm, to the TILs, wherein a first pulse interval for a first set of two of the at least three pulses is different from a second pulse interval for a second set of two of the at least three pulses. In an embodiment, the electroporation method is a pulsed electroporation method comprising the steps of treating TILs with pulsed electrical fields to induce pore formation in the TILs, comprising the step of applying a sequence of at least three DC electrical pulses, having field strengths equal to or greater than 100 V/cm, to TILs, wherein the sequence of at least three DC electrical pulses has one, two, or three of the following characteristics: (1) at least two of the at least three pulses differ from each other in pulse amplitude; (2) at least two of the at least three pulses differ from each other in pulse width; and (3) a first pulse interval for a first set of two of the at least three pulses is different from a second pulse interval for a second set of two of the at least three pulses, such that induced pores are sustained for a relatively long period of time, and such that viability of the TILs is maintained. In an embodiment, a method of genetically modifying a population of TILs includes the step of calcium phosphate transfection. Calcium phosphate transfection methods (calcium phosphate DNA precipitation, cell surface coating, and endocytosis) are known in the art and are described in Graham and van der Eb, Virology 1973, 52, 456-467; Wigler, et al., Proc. Natl. Acad. Sci. 1979, 76, 1373-1376; and Chen and Okayarea, Mol. Cell. Biol. 1987, 7, 2745-2752; and in U.S. Pat. No. 5,593,875, the disclosures of each of which are incorporated by reference herein. In an embodiment, a method of genetically modifying a population of TILs includes the step of liposomal transfection. Liposomal transfection methods, such as methods that employ a 1:1 (w/w) liposome formulation of the cationic lipidN-[1-(2,3-dioleyloxy)propyl]-n,n,n-trimethylammonium chloride (DOTMA) and dioleoyl phophotidylethanolamine (DOPE) in filtered water, are known in the art and are described in Rose, et al., Biotechniques 1991, 10, 520-525 and Felgner, et al., Proc. Natl. Acad. Sci. USA, 1987, 84, 7413-7417 and in U.S. Pat. Nos. 5,279,833; 5,908,635; 6,056,938; 6,110,490; 6,534,484; and 7,687,070, the disclosures of each of which are incorporated by reference herein. In an embodiment, a method of genetically modifying a population of TILs includes the step of transfection using methods described in U.S. Pat. Nos. 5,766,902; 6,025,337; 6,410,517; 6,475,994; and 7,189,705; the disclosures of each of which are incorporated by reference herein. The TILs may be a first population, a second population and/or a third population of TILs as described herein.


According to an embodiment, the gene-editing process may comprise the use of a programmable nuclease that mediates the generation of a double-strand or single-strand break at one or more immune checkpoint genes. Such programmable nucleases enable precise genome editing by introducing breaks at specific genomic loci, i.e., they rely on the recognition of a specific DNA sequence within the genome to target a nuclease domain to this location and mediate the generation of a double-strand break at the target sequence. A double-strand break in the DNA subsequently recruits endogenous repair machinery to the break site to mediate genome editing by either non-homologous end-joining (NHEJ) or homology-directed repair (HDR). Thus, the repair of the break can result in the introduction of insertion/deletion mutations that disrupt (e.g., silence, repress, or enhance) the target gene product.


Major classes of nucleases that have been developed to enable site-specific genomic editing include zinc finger nucleases (ZFNs), transcription activator-like nucleases (TALENs), and CRISPR-associated nucleases (e.g., CRISPR/Cas9). These nuclease systems can be broadly classified into two categories based on their mode of DNA recognition: ZFNs and TALENs achieve specific DNA binding via protein-DNA interactions, whereas CRISPR systems, such as Cas9, are targeted to specific DNA sequences by a short RNA guide molecule that base-pairs directly with the target DNA and by protein-DNA interactions. See, e.g., Cox et al., Nature Medicine, 2015, Vol. 21, No. 2.


Non-limiting examples of gene-editing methods that may be used in accordance with TIL expansion methods of the present invention include CRISPR methods, TALE methods, and ZFN methods, which are described in more detail below. According to an embodiment, a method for expanding TILs into a therapeutic population may be carried out in accordance with any embodiment of the methods described herein (e.g., GEN 3 process) or as described in PCT/US2017/058610, PCT/US2018/012605, or PCT/US2018/012633, wherein the method further comprises gene-editing at least a portion of the TILs by one or more of a CRISPR method, a TALE method or a ZFN method, in order to generate TILs that can provide an enhanced therapeutic effect. According to an embodiment, gene-edited TILs can be evaluated for an improved therapeutic effect by comparing them to non-modified TILs in vitro, e.g., by evaluating in vitro effector function, cytokine profiles, etc. compared to unmodified TILs. In certain embodiments, the method comprises gene editing a population of TILs using CRISPR, TALE and/or ZFN methods.


In some embodiments of the present invention, electroporation is used for delivery of a gene editing system, such as CRISPR, TALEN, and ZFN systems. In some embodiments of the present invention, the electroporation system is a flow electroporation system. An example of a suitable flow electroporation system suitable for use with some embodiments of the present invention is the commercially-available MaxCyte STX system. There are several alternative commercially-available electroporation instruments which may be suitable for use with the present invention, such as the AgilePulse system or ECM 830 available from BTX-Harvard Apparatus, Cellaxess Elektra (Cellectricon), Nucleofector (Lonza/Amaxa), GenePulser MXcell (BIORAD), iPorator-96 (Primax) or siPORTer96 (Ambion). In some embodiments of the present invention, the electroporation system forms a closed, sterile system with the remainder of the TIL expansion method. In some embodiments of the present invention, the electroporation system is a pulsed electroporation system as described herein, and forms a closed, sterile system with the remainder of the TIL expansion method.


A method for expanding TILs into a therapeutic population may be carried out in accordance with any embodiment of the methods described herein (e.g., process GEN 3) or as described in PCT/US2017/058610, PCT/US2018/012605, or PCT/US2018/012633, wherein the method further comprises gene-editing at least a portion of the TILs by a CRISPR method (e.g., CRISPR/Cas9 or CRISPR/Cpf1). According to particular embodiments, the use of a CRISPR method during the TIL expansion process causes expression of one or more immune checkpoint genes to be silenced or reduced in at least a portion of the therapeutic population of TILs. Alternatively, the use of a CRISPR method during the TIL expansion process causes expression of one or more immune checkpoint genes to be enhanced in at least a portion of the therapeutic population of TILs.


CRISPR stands for “Clustered Regularly Interspaced Short Palindromic Repeats.” A method of using a CRISPR system for gene editing is also referred to herein as a CRISPR method. There are three types of CRISPR systems which incorporate RNAs and Cas proteins, and which may be used in accordance with the present invention: Types I, II, and III. The Type II CRISPR (exemplified by Cas9) is one of the most well-characterized systems.


CRISPR technology was adapted from the natural defense mechanisms of bacteria and archaea (the domain of single-celled microorganisms). These organisms use CRISPR-derived RNA and various Cas proteins, including Cas9, to foil attacks by viruses and other foreign bodies by chopping up and destroying the DNA of a foreign invader. A CRISPR is a specialized region of DNA with two distinct characteristics: the presence of nucleotide repeats and spacers. Repeated sequences of nucleotides are distributed throughout a CRISPR region with short segments of foreign DNA (spacers) interspersed among the repeated sequences. In the type II CRISPR/Cas system, spacers are integrated within the CRISPR genomic loci and transcribed and processed into short CRISPR RNA (crRNA). These crRNAs anneal to trans-activating crRNAs (tracrRNAs) and direct sequence-specific cleavage and silencing of pathogenic DNA by Cas proteins. Target recognition by the Cas9 protein requires a “seed” sequence within the crRNA and a conserved dinucleotide-containing protospacer adjacent motif (PAM) sequence upstream of the crRNA-binding region. The CRISPR/Cas system can thereby be retargeted to cleave virtually any DNA sequence by redesigning the crRNA. The crRNA and tracrRNA in the native system can be simplified into a single guide RNA (sgRNA) of approximately 100 nucleotides for use in genetic engineering. The CRISPR/Cas system is directly portable to human cells by co-delivery of plasmids expressing the Cas9 endo-nuclease and the necessary crRNA components. Different variants of Cas proteins may be used to reduce targeting limitations (e.g., orthologs of Cas9, such as Cpf1).


Non-limiting examples of genes that may be silenced or inhibited by permanently gene-editing TILs via a CRISPR method include PD-1, CTLA-4, LAG-3, HAVCR2 (TIM-3), Cish, TGFβ, PKA, CBL-B, PPP2CA, PPP2CB, PTPN6, PTPN22, PDCD1, BTLA, CD160, TIGIT, CD96, CRTAM, LAIR1, SIGLEC7, SIGLEC9, CD244, TNFRSF10B, TNFRSF10A, CASP8, CASP10, CASP3, CASP6, CASP7, FADD, FAS, SMAD2, SMAD3, SMAD4, SMAD10, SKI, SKIL, TGIF1, IL10RA, IL10RB, HMOX2, IL6R, IL6ST, EIF2AK4, CSK, PAG1, SIT1, FOXP3, PRDM1, BATF, GUCYIA2, GUCYIA3, GUCYIB2, and GUCYIB3.


Non-limiting examples of genes that may be enhanced by permanently gene-editing TILs via a CRISPR method include CCR2, CCR4, CCR5, CXCR2, CXCR3, CX3CR1, IL-2, IL12, IL-15, and IL-21.


Examples of systems, methods, and compositions for altering the expression of a target gene sequence by a CRISPR method, and which may be used in accordance with embodiments of the present invention, are described in U.S. Pat. Nos. 8,697,359; 8,993,233; 8,795,965; 8,771,945; 8,889,356; 8,865,406; 8,999,641; 8,945,839; 8,932,814; 8,871,445; 8,906,616; and 8,895,308, which are incorporated by reference herein. Resources for carrying out CRISPR methods, such as plasmids for expressing CRISPR/Cas9 and CRISPR/Cpf1, are commercially available from companies such as GenScript.


In an embodiment, genetic modifications of populations of TILs, as described herein, may be performed using the CRISPR/Cpf1 system as described in U.S. Pat. No. 9,790,490, the disclosure of which is incorporated by reference herein.


A method for expanding TILs into a therapeutic population may be carried out in accordance with any embodiment of the methods described herein (e.g., process 2A) or as described in PCT/US2017/058610, PCT/US2018/012605, or PCT/US2018/012633, wherein the method further comprises gene-editing at least a portion of the TILs by a TALE method. According to particular embodiments, the use of a TALE method during the TIL expansion process causes expression of one or more immune checkpoint genes to be silenced or reduced in at least a portion of the therapeutic population of TILs. Alternatively, the use of a TALE method during the TIL expansion process causes expression of one or more immune checkpoint genes to be enhanced in at least a portion of the therapeutic population of TILs.


TALE stands for “Transcription Activator-Like Effector” proteins, which include TALENs (“Transcription Activator-Like Effector Nucleases”). A method of using a TALE system for gene editing may also be referred to herein as a TALE method. TALEs are naturally occurring proteins from the plant pathogenic bacteria genus Xanthomonas, and contain DNA-binding domains composed of a series of 33-35-amino-acid repeat domains that each recognizes a single base pair. TALE specificity is determined by two hypervariable amino acids that are known as the repeat-variable di-residues (RVDs). Modular TALE repeats are linked together to recognize contiguous DNA sequences. A specific RVD in the DNA-binding domain recognizes a base in the target locus, providing a structural feature to assemble predictable DNA-binding domains. The DNA binding domains of a TALE are fused to the catalytic domain of a type IIS FokI endonuclease to make a targetable TALE nuclease. To induce site-specific mutation, two individual TALEN arms, separated by a 14-20 base pair spacer region, bring FokI monomers in close proximity to dimerize and produce a targeted double-strand break.


Several large, systematic studies utilizing various assembly methods have indicated that TALE repeats can be combined to recognize virtually any user-defined sequence. Custom-designed TALE arrays are also commercially available through Cellectis Bioresearch (Paris, France), Transposagen Biopharmaceuticals (Lexington, Ky., USA), and Life Technologies (Grand Island, N.Y., USA). TALE and TALEN methods suitable for use in the present invention are described in U.S. Patent Application Publication Nos. US 2011/0201118 A1; US 2013/0117869 A1; US 2013/0315884 A1; US 2015/0203871 A1 and US 2016/0120906 A1, the disclosures of which are incorporated by reference herein.


Non-limiting examples of genes that may be silenced or inhibited by permanently gene-editing TILs via a TALE method include PD-1, CTLA-4, LAG-3, HAVCR2 (TIM-3), Cish, TGFβ, PKA, CBL-B, PPP2CA, PPP2CB, PTPN6, PTPN22, PDCD1, BTLA, CD160, TIGIT, CD96, CRTAM, LAIR1, SIGLEC7, SIGLEC9, CD244, TNFRSF10B, TNFRSF10A, CASP8, CASP10, CASP3, CASP6, CASP7, FADD, FAS, SMAD2, SMAD3, SMAD4, SMAD10, SKI, SKIL, TGIF1, IL10RA, IL10RB, HMOX2, IL6R, IL6ST, EIF2AK4, CSK, PAGI, SITI, FOXP3, PRDM1, BATF, GUCY1A2, GUCY1A3, GUCY1B2, and GUCYIB3.


Non-limiting examples of genes that may be enhanced by permanently gene-editing TILs via a TALE method include CCR2, CCR4, CCR5, CXCR2, CXCR3, CX3CR1, IL-2, IL12, IL-15, and IL-21.


Examples of systems, methods, and compositions for altering the expression of a target gene sequence by a TALE method, and which may be used in accordance with embodiments of the present invention, are described in U.S. Pat. No. 8,586,526, which is incorporated by reference herein.


A method for expanding TILs into a therapeutic population may be carried out in accordance with any embodiment of the methods described herein (e.g., process GEN 3) or as described in PCT/US2017/058610, PCT/US2018/012605, or PCT/US2018/012633, wherein the method further comprises gene-editing at least a portion of the TILs by a zinc finger or zinc finger nuclease method. According to particular embodiments, the use of a zinc finger method during the TIL expansion process causes expression of one or more immune checkpoint genes to be silenced or reduced in at least a portion of the therapeutic population of TILs. Alternatively, the use of a zinc finger method during the TIL expansion process causes expression of one or more immune checkpoint genes to be enhanced in at least a portion of the therapeutic population of TILs.


An individual zinc finger contains approximately 30 amino acids in a conserved spa configuration. Several amino acids on the surface of the α-helix typically contact 3 bp in the major groove of DNA, with varying levels of selectivity. Zinc fingers have two protein domains. The first domain is the DNA binding domain, which includes eukaryotic transcription factors and contain the zinc finger. The second domain is the nuclease domain, which includes the FokI restriction enzyme and is responsible for the catalytic cleavage of DNA.


The DNA-binding domains of individual ZFNs typically contain between three and six individual zinc finger repeats and can each recognize between 9 and 18 base pairs. If the zinc finger domains are specific for their intended target site then even a pair of 3-finger ZFNs that recognize a total of 18 base pairs can, in theory, target a single locus in a mammalian genome. One method to generate new zinc-finger arrays is to combine smaller zinc-finger “modules” of known specificity. The most common modular assembly process involves combining three separate zinc fingers that can each recognize a 3 base pair DNA sequence to generate a 3-finger array that can recognize a 9 base pair target site. Alternatively, selection-based approaches, such as oligomerized pool engineering (OPEN) can be used to select for new zinc-finger arrays from randomized libraries that take into consideration context-dependent interactions between neighboring fingers. Engineered zinc fingers are available commercially; Sangamo Biosciences (Richmond, Calif., USA) has developed a propriety platform (CompoZr®) for zinc-finger construction in partnership with Sigma-Aldrich (St. Louis, Mo., USA).


Non-limiting examples of genes that may be silenced or inhibited by permanently gene-editing TILs via a zinc finger method include PD-1, CTLA-4, LAG-3, HAVCR2 (TIM-3), Cish, TGFβ, PKA, CBL-B, PPP2CA, PPP2CB, PTPN6, PTPN22, PDCD1, BTLA, CD160, TIGIT, CD96, CRTAM, LAIR1, SIGLEC7, SIGLEC9, CD244, TNFRSF10B, TNFRSF10A, CASP8, CASP10, CASP3, CASP6, CASP7, FADD, FAS, SMAD2, SMAD3, SMAD4, SMAD10, SKI, SKIL, TGIF1, ILRA, IL10RB, HMOX2, IL6R, IL6ST, EIF2AK4, CSK, PAG1, SIT1, FOXP3, PRDM1, BATF, GUCYJA2, GUCYJA3, GUCYlB2, and GUCY1B3.


Non-limiting examples of genes that may be enhanced by permanently gene-editing TILs via a zinc finger method include CCR2, CCR4, CCR5, CXCR2, CXCR3, CX3CR1, IL-2, IL12, IL-15, and IL-21.


Examples of systems, methods, and compositions for altering the expression of a target gene sequence by a zinc finger method, which may be used in accordance with embodiments of the present invention, are described in U.S. Pat. Nos. 6,534,261, 6,607,882, 6,746,838, 6,794,136, 6,824,978, 6,866,997, 6,933,113, 6,979,539, 7,013,219, 7,030,215, 7,220,719, 7,241,573, 7,241,574, 7,585,849, 7,595,376, 6,903,185, and 6,479,626, which are incorporated by reference herein.


Other examples of systems, methods, and compositions for altering the expression of a target gene sequence by a zinc finger method, which may be used in accordance with embodiments of the present invention, are described in Beane, et al., Mol. Therapy, 2015, 23 1380-1390, the disclosure of which is incorporated by reference herein.


In some embodiments, the TILs are optionally genetically engineered to include additional functionalities, including, but not limited to, a high-affinity T cell receptor (TCR), e.g., a TCR targeted at a tumor-associated antigen such as MAGE-1, HER2, or NY-ESO-1, or a chimeric antigen receptor (CAR) which binds to a tumor-associated cell surface molecule (e.g., mesothelin) or lineage-restricted cell surface molecule (e.g., CD19). In certain embodiments, the method comprises genetically engineering a population of TILs to include a high-affinity T cell receptor (TCR), e.g., a TCR targeted at a tumor-associated antigen such as MAGE-1, HER2, or NY-ESO-1, or a chimeric antigen receptor (CAR) which binds to a tumor-associated cell surface molecule (e.g., mesothelin) or lineage-restricted cell surface molecule (e.g., CD19). Aptly, the population of TILs may be a first population, a second population and/or a third population as described herein.


EXAMPLES
Example 1: Expansion of TIL from Endometrial Carcinoma

Endometrial carcinoma tumor samples were obtained from patients. TILs were expanded using the method described in Tavera et al., (J. Immunother., 41(9):399-405, 2018). The tumor samples were cut into 1-3 mm3 fragments and five fragments were placed in a G-Rex 10 flask in 20 mL of complete TIL culture media (TIL-CM) with 30 ng/mL OKT-3, 10 μg/mL of anti-4-1BB antibody agonist, and 6000 IU/mL IL-2. Four to five days after initiation of culture, an additional 20 mL of TIL-CM and 6000 IU/mL IL-2 was added to the culture flask. Half of the media was changed and 6000 IU/mL IL-2 was added to the flask every 3-4 days until cell growth covered the bottom of the flask, about 3-4 weeks total culture time.


TIL were then characterized by phenotype. Each patient, to the extent possible, provided a normal sample, a tumor sample, and a Pre-REP TIL at freeze sample for further characterization. FIGS. 3A and 3B show that Pre-REP TIL at freeze have a higher percentage of CD45+ cells and CD3+ cells than either normal or tumor tissue. FIGS. 4A and 4B show that while normal and tumor samples have similar CD4+ and CD8+ subpopulations in the CD45+CD3+ compartment, Pre-REP TIL at freeze as compared with tumor tissue appear to have a lower percentage of CD4+ subpopulation and a higher percentage in the CD8+ subpopulation.


Further, CD8+ subset phenotyping was also completed. The percent CD3+CD8+ TIL positive for the following markers were compared in normal and tumor tissue: BTLA, CTLA-4, ICOS, Ki67, LAG3, PD-1, CD103+CD69+, CD103+CD69−, TIGIT and TIM3. FIG. 5A shows the comparison data. In almost all cases, except for CD103+CD69+, the data indicate similar CD3+CD8+ TIL percentages for normal and tumor samples for each marker, FIG. 5B shows comparison data for tumor vs. Pre-REP TIL at freeze. These data indicate a difference in CD3+CD8+ TIL with the Ki67 marker, as well as CD103+CD69+. FIG. 6 illustrates the data collected for the percentage of CD3+CD8+CD103+CD69+ TIL expressing each marker for tumor samples and preREP TIL at freeze samples. Differences are seen with Ki67, LAG3, and TIM3.


CD4+ subset phenotyping was also completed. FIGS. 7A and 7B illustrate the percentage of CD3+CD4+ TIL that express each of the following markers: BTLA, CTLA-4, ICOS, Ki67, LAG3, PD-1, CD103+CD69+, CD103+CD69−, TIGIT, TIM3 and Treg. FIG. 7A illustrates the data for normal vs. tumor samples and FIG. 7B illustrates the data from tumor vs. Pre-REP TIL at freeze. The normal vs. tumor sample show similar percentages for each marker. The tumor vs. Pre-REP TIL at freeze show similar percentages except for Ki67, which shows an increase in expression over the tumor sample and CD69+CD103+, which shows a decrease in expression over the tumor sample. FIG. 8 illustrates percentages for CD3+CD4+CD103+CD69+ TIL and shows increased percentages in Pre-REP TIL at freeze samples for Ki67, and TIM3.


Example 2: Expansion of TIL from Anaplastic Thyroid Cancer

TIL were expanded using the process described above and the resulting TIL were phenotyped as discussed above.



FIGS. 9A and 9B show that Pre-REP TIL at freeze have a higher percentage of CD45+ cells and CD3+ cells than either normal or tumor tissue. FIGS. 10A and 10B show that while normal and tumor samples have similar CD4+ and CD8+ subpopulations, Pre-REP TIL at freeze as compared with tumor tissue appears to have a lower percentage of CD4+ subpopulation but a higher percentage in the CD8+ subpopulation.


CD8+ subset phenotyping was also completed. The percent CD3+CD8+ TIL positive for the following markers were compared in normal and tumor tissue: BTLA, CTLA-4, ICOS, Ki67, LAG3, PD-1, CD103+CD69+, CD103+CD69−, TIGIT and TIM3. FIG. 11A shows the comparison data. In almost all cases except for BTLA and CD103+CD69+, the data indicate differences in CD3+CD8+ TIL percentages for normal vs. tumor samples for each marker. FIG. 11B shows comparison data for tumor vs. Pre-REP TIL at freeze. These data indicate a difference in CD3+CD8+ TIL with most markers as well, except for CTLA-4, ICOS, LAG3, TIGIT, and to a lesser extent, TIM-3. FIG. 12 illustrates the data collected for the percentage of CD3+CD8+CD103+CD69+ TIL expressing each marker for tumor samples and Pre-REP TIL at freeze samples. Differences are seen with CTLA-4, Ki67, TIGIT, and TIM3.


CD4+ subset phenotyping was also completed. FIGS. 13A and 13B illustrate the percentage of CD3+CD4+ TIL that express each of the following markers: BTLA, CTLA-4, ICOS, Ki67, LAG3, PD-1, CD103+CD69+, CD103+CD69−, TIGIT, TIM3 and Treg. FIG. 13A illustrates the data for normal vs. tumor samples and FIG. 13B illustrates the data from tumor vs. Pre-REP TIL at freeze. The normal vs. tumor samples show similar percentages for each marker except ICOS and LAG3. The tumor vs. Pre-REP TIL at freeze show similar percentages except for Ki67, which shows increased expression in the Pre-REP TIL at freeze over the tumor sample and PD1, which shows decreased expression in pre-REP TIL relative to tumor TIL. FIG. 14 illustrates percentages for CD3+CD4+CD103+CD69+ TIL and shows increased percentages in Pre-REP TIL at freeze samples relative to tumor TIL for BTLA, CTLA-4, Ki67, and TIM3.


Discussion of Results from Examples 1 and 2:


The ex vivo pre-REP expansion products were mostly comprised of CD45+CD3+ cells (i.e., T cells). The method of expansion resulted in skewing of CD8+ T cells over CD4+ T cells. The ex vivo pre-REP expansion restored high levels of proliferation to the TIL.


The CD69+CD103+CD8+ endometrial TIL were enriched in the tumor tissue relative to normal and expanded pre-REP samples, likely due to the presence of tissue-resident memory T cells (TRM) in tumor tissue. Surprisingly, this was not observed in thyroid TIL.


Example 3: Expansion of TIL with REP

Tumor samples are collected from patients. TIL are expanded from 1-5 mm3 tumor fragments in TIL complete media (TIL-CM) supplemented with 6000 IU/mL of IL-2 as expanded for a period averaging between 3 to 4 weeks as described in Example 1 above or 3 to 5 weeks as previously described in Tavera et al. TILs are then further propagated by REP with anti-CD3 (OKT-3) and pooled allogeneic irradiated PBMC feeder cells at a ratio of 1 TIL to 200 feeder cells. The entire REP is performed in a G-Rex 100M flask (Wilson Wolf Mfg.) for 14 days.


Each patient is treated with a course of non-myeloablative lymphodepletion chemotherapy starting 1 week (7 days) prior to TIL infusion (which occurs on day 0). The chemotherapy administered is 60 mg/kg cyclophosphamide daily for 2 days, followed by 25 mg/m2 fludarabine daily for the remainder of the week. Autologous TILs are administered by intravenous infusion on day 0, and a 720,000 IU/kg dose of IL-2 administered on day 1 every 8 hours to tolerance (a max of 15 doses). The 720,000 IU/kg dose of IL-2 is administered again at day 21.


Example 4: Expansion of TIL with REP

Tumor samples are collected from patients. TIL are expanded from 1-5 mm3 tumor fragments in TIL complete media (TIL-CM) supplemented with 6000 IU/mL of IL-2 for a period averaging between 3 to 4 weeks as described in Example 1 above or 3 to 5 weeks as previously described in Tavera et al. TILs are then further propagated by REP with additional anti-CD3 (OKT-3), anti-4-1BB antibody agonist, and IL-2, and allogeneic irradiated PBMC feeder cells at a ratio of 1 TILL to 200 feeder cells. The entire REP is performed in a G-Rex 100M flask (Wilson Wolf Mfg.) for 7 days.


Each patient is treated with a course of non-myeloablative lymphodepletion chemotherapy starting 1 week (7 days) prior to TILL infusion (which occurs on day 0). The chemotherapy administered is 60 mg/kg cyclophosphamide daily for 2 days, followed by 25 mg/m2 fludarabine daily for the remainder of the week. Autologous TILs are administered by intravenous infusion on day 0, and a 720,000 IU/kg dose of ILL-2 administered on day 1 every 8 hours to tolerance (a max of 15 doses). The 720,000 IU/kg dose of ILL-2 is administered again at day 21.


The examples set forth above are provided to give those of ordinary skill in the art a complete disclosure and description of how to make and use the embodiments of the compositions, systems and methods of the invention, and are not intended to limit the scope of what the inventors regard as their invention. Modifications of the above-described modes for carrying out the invention that are obvious to persons of skill in the art are intended to be within the scope of the following claims. All patents and publications mentioned in the specification are indicative of the levels of skill of those skilled in the art to which the invention pertains.


All headings and section designations are used for clarity and reference purposes only and are not to be considered limiting in any way. For example, those of skill in the art will appreciate the usefulness of combining various aspects from different headings and sections as appropriate according to the spirit and scope of the invention described herein.


All references cited herein are hereby incorporated by reference herein in their entireties and for all purposes to the same extent as if each individual publication or patent or patent application was specifically and individually indicated to be incorporated by reference in its entirety for all purposes.


Many modifications and variations of this application can be made without departing from its spirit and scope, as will be apparent to those skilled in the art. The specific embodiments and examples described herein are offered by way of example only, and the application is to be limited only by the terms of the appended claims, along with the full scope of equivalents to which the claims are entitled.

Claims
  • 1. A method for expanding tumor infiltrating lymphocytes (TILs) into a therapeutic population of TILs comprising: (a) obtaining a first population of TILs from a tumor resected from a subject;(b) performing a first expansion for a period of about 21 day to about 35 days by culturing the first population of TILs in a cell culture medium comprising 4-1BB agonist, IL-2, and OKT-3 to produce a second population of TILs; and(c) performing a second expansion for a period of about 7 days to about 10 days by supplementing the cell culture medium of the second population of TILs with antigen presenting cells (APCs) and additional 4-1BB agonist, IL-2, and OKT-3 and culturing to produce a third population of TILs, wherein the third population of TILs is a therapeutic population of TILs.
  • 2. The method of claim 1, further comprising: (d) harvesting the therapeutic population of TILs obtained from step (c); and(e) transferring the harvested TIL population from step (d) to an infusion bag.
  • 3. The method of claim 1, further comprising performing the culturing step (b) in the presence of antigen presenting cells (APCs).
  • 4. The method of any of the preceding claims, wherein the APCs are peripheral blood mononuclear cells (PBMCs).
  • 5. The method of claim 3, wherein the ratio of the number of APCs in the second expansion to the number of APCs in the first expansion is in a range of from about 1.5:1 to about 20:1.
  • 6. The method of claim 5, wherein the ratio is about 2:1.
  • 7. The method of claim 1, wherein the second population of TILs is cryopreserved.
  • 8. The method of claim 1, wherein the first expansion is performed over a period of about 21 to 28 days, and the second expansion is performed over a period of about 7 days to 9 days.
  • 9. The method of claim 1, wherein the first expansion is performed over a period of about 28 days to 35 days, and the second expansion is performed over a period of about 7 days to 9 days.
  • 10. The method of claim 1, wherein the first expansion is performed over a period of about 21 days, and the second expansion is performed over a period of about 7 days to 9 days.
  • 11. The method of claim 1, wherein one or both of the second or third population of TILs comprises an increased subpopulation of effector T cells and/or central memory T cells relative to the first or second population of TILs.
  • 12. The method of claim 1, wherein one or both of the second or third population of TILs comprises an increased subpopulation of cells expressing one or more of BTLA, Ki67, LAG3, TIGIT, and TIM3.
  • 13. The method of claim 1, wherein one or both of the second or third population of TILs comprises a decreased subpopulation of cells expressing one or more of CTLA-4, ICOS, PD-1, CD103+CD69+, and CD103+CD69−.
  • 14. The method of claim 1, wherein one or both of the second or third population of TILs comprises an increased subpopulation of CD45+ cells.
  • 15. The method of claim 1, wherein one or both of the second or third population of TILs comprises an increased subpopulation of CD45+CD3+ cells.
  • 16. The method of claim 1, wherein one or both of the second or third population of TILs comprises an increased subpopulation of CD8+ cells.
  • 17. The method of claim 1, wherein one or both of the second or third population of TILs comprises a decreased subpopulation of CD4+ cells.
  • 18. The method of claim 1, wherein the tumor is a of a cancer type selected from the group consisting of thyroid cancer, melanoma, cervical cancer, endometrial cancer, colon cancer, and colorectal cancer.
  • 19. The method of any one of claims 1-18, wherein the second population of TILs is at least 50-fold greater in number than the first population of TILs.
  • 20. The method of any one of claims 1-18, wherein the second population of TILs is at least 4×107 cells.
  • 21. The method of any one of claims 1-18, wherein the 4-1BB agonist is utomilumab or urelumab.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority to and the benefit of U.S. Provisional Application No. 62/946,620, filed Dec. 11, 2019, which is incorporated herein by reference in its entirety.

PCT Information
Filing Document Filing Date Country Kind
PCT/US2020/063767 12/8/2020 WO
Provisional Applications (1)
Number Date Country
62946620 Dec 2019 US