The invention relates to treatment processes for bulk continuous filament (BCF) carpet and related textile fabrics, and specifically, to processes for applying dyes and performance enhancing compositions on BCF yarns during the rewind process prior to twisting, weaving, knitting or tufting. The process foregoes the need to dye and otherwise treat carpets and other textiles made from the BCF yarn using current methods. Thus, low inventory overhead is achieved and costly and environmentally unfavorable dyeing and low pH chemical treatment processes are eliminated. Also disclosed herein are systems used to apply the dye and performance enhancement formulations to the BCF yarn, and stain/soil repellent yarns, and carpets with improved anti-stain and anti-soil properties made from the BCF yarn of the disclosed process.
Carpets and other fabrics made from synthetic yarns are currently colored using two well-established processes. The first process involves converting colorless white yarns into carpet, and dyeing the carpet in a dye bath. This process is referred to as the “acid dye process.” The acid dye process can be either a batch or a continuous dyeing operation. Each dyeing operation requires a large volume of water, steam to set the dyes, and heat to dry the carpet. In addition, collection and disposal of excess dye and acidified performance enhancing solutions add manufacturing cost and place additional burden on waste management and water treatment facilities. The second process adds color pigments into the polymer during the melt spinning process. This process is referred to as the “solution dye process.” The solution dye process is a low cost operation, but in comparison to the acid dye process it imposes undesirable inventory allocation measures on the fiber producer and the carpet mill. In order to meet consumer demand, then, the fiber producer and carpet mill may need to keep a costly inventory of colored yarns produced by the solution dye process. Variable production demands and large inventory costs can affect inventory flexibility with the result being the color availability of solution dyed carpets is undesirably limited.
Topical chemistries are used to treat carpets and other fabrics for improved stain resistance and/or soil resistance. For nylon carpets, both stain blocker (e.g. acid dye blocker) and anti-soil with fluorochemicals are traditionally used. For polyester carpets, such as 2GT and 3GT carpets, and polypropylene carpets, anti-soil chemistry may be applied topically to the tufted carpet as part of the carpet finishing process. Polyester and polypropylene carpets typically do not require a stain blocker treatment because of inherent stain resistance to acid dyes and stains owing to their lack of amine end groups that function as acid dye sites.
Topical application at the carpet mill can be in the form of exhaust application and spray application. Exhaust application (i.e. flex-nip process at high (300-400 wt. %) wet pick-up), is known to provide an improvement in efficacy over spray-on applications at 10-20 wt. % wet pick-up of anti-soil. Exhaust applications typically use greater amounts of water and energy to dry and cure the carpet than do spray applications. Spray-on fluorochemical products are designed to use less water and energy than exhaust applications, but do not impart satisfactory anti-soil properties.
While various processes are in use in the carpet industry for the dyeing and finishing of carpets, some large scale and some small, most of the carpet made today is dyed and finished on a continuous dye range. This is done mainly in one of two ways: In one case, a two stage process is employed, where the carpet is steamed and dyed first, steamed, rinsed, and excess water extracted; then stain blocker (SB) is applied, the carpet is again steamed and washed, and then anti-soil fluorochemical (FC) is applied in the form of a foam or liquid spray and the carpet is finally dried. (See e.g. U.S. Pat. Nos. 5,853,814; 5,948,480 and WO2000/000691). In the second, somewhat improved case, called the co-application process, the carpet is also steamed and dyed first, steamed again, rinsed and extracted; and then a blend of SB and FC is applied together at high wet pick up, after which the carpet and chemicals are exposed once again to steam to fix the treatment, followed by drying. (See e.g. U.S. Pat. Nos. 6,197,378 and 5,520,962). In both cases, low pH solutions, excess water, and energy are required for the SB and FC to penetrate the carpet and achieve uniform coverage. In sum, the typical prior art process is as follows: BCF yarn→Twist→heat set→tufting→carpet→dye→stain block/anti-soil.
There is a desire to reduce the overall usage of dyeing solutions and stain blocker formulations for environmental and cost reasons. Further, there is also a desire to reduce the amount of water and low pH chemicals used to apply the dyeing and anti-stain formulations. Thus, processes which provide for low inventory needs while applying such beneficial compositions using less water, nominal pH chemicals, and less energy are in demand.
While the development of a process that eliminates the current carpet treatment systems for applying anti-stain and anti-soil compositions is desirable, current processes do exist for good reasons. First, because the appearance of carpet has historically depended on the ability to dye wool or nylon or even polyester tufted carpets to the desired shade, it would not be permissible to treat the carpet with compositions such as anti-stain or anti-soil chemistries beforehand that might interfere with the process of uniform dyeing. Further, the dyeing process would tend to remove the topical treatment chemistries, rendering them ineffective.
Second, as mentioned above, treatment of yarn or fabric with performance enhancement formulations for stain and soil resistance typically involves fixing with steam, and low pH may also be required especially for acid dyed fabrics. Therefore, it was deemed most practical to process carpets in the order described above, where carpet is formed, then steamed and dyed, steamed again, rinsed and extracted; and then SB and FC is applied, again involving steaming and/or rinsing in the various processes of the prior art.
Carpets have also long been constructed of dyed or pigmented yarns, which constructions are treated in numerous possible ways, including the options of further dyeing, and the application of stain and/or soil resistant compositions with the concomitant use of steam and rinse water, as in the processes described above.
The invention disclosed herein provides a process to make textile fabrics, especially tufted articles, without the requirements for dyeing and subsequent stain and soil resistant chemistry application, thus avoiding the costs associated with maintaining large inventories as well as waste generated by steam fixation and rinsing attendant with such large-scale fabric applications. As disclosed herein, the process involves application of dyes and topical chemistries to undyed single yarns during a yarn rewind process. The chemistries are then optionally heat-set onto the single yarn. The single, treated yarn can then be twisted, weaved and tufted, or weaved and tufted, into a finished fabric or carpet. Novel systems that enable the efficient application of dye solutions and topical chemistries to yarn subsequent to twisting and prior to winding and heat-setting are also disclosed.
Specifically, the disclosed process uses a dye solution and/or performance enhancing composition applicator positioned within a mechanical rewind process. In sum, the disclosed process moves the back end, large scale and wasteful stain blocker application step to a single yarn rewind process. Thus, the carpet manufacturing process now becomes: BCF yarn→dye →optional SB/FC→optional heat set→optional twist→heat set (optionally dry heat set)→tufting→carpet. Surprisingly, the disclosed process is as effective, or even more effective, than processes of the prior art in terms of fabric soil resistance. Additionally, neutral pH dye solutions (4-9 pH) can be used instead of the prior art low pH dye solutions (1-3 pH). This reduces the environmental impact of prior art processes.
As described above, the process of the disclosed invention is counterintuitive since treating the carpet yarn prior to heat setting and tufting is known to affect the quality of the finished carpet, particularly during dyeing. Further, the inventive process is also counter intuitive because soil resistant compositions tend to be very difficult to apply uniformly to twisted yarn bundles at the usual line speed without substantial waste [30 to 80 yards-per-minute (ypm)]. Moreover, the disclosed process is counter intuitive because the prior art yarn rewind apparatuses have not previously accepted topical chemistry applications to single yarn prior to rewinding. However, as shown below, nylon and polyester carpets manufactured with the treated BCF yarn show one or more of the following desirable characteristics:
In one aspect, a process for treating single BCF yarn with a dye composition is disclosed. The process comprises: (a) providing single BCF yarn; (b) winding said BCF yarn on a rewind package; and (c) contacting said BCF yarn with said dye composition while said BCF yarn is in motion and prior to said BCF yarn contacting and winding up on said rewind package. The dye composition can be comprised of an acid dye composition or a disperse dye composition.
In another aspect, a process for treating single BCF yarn with a dye composition is disclosed. The process comprises: (a) providing single BCF yarn; (b) winding said BCF yarn on a rewind package; (c) contacting said BCF yarn with said dye composition while said BCF yarn is in motion and prior to said BCF yarn contacting and winding up on said rewind package; and (d) heat setting said BCF yarn after contacting with said dye composition and prior to winding up on said rewind package. The dye composition can be comprised of an acid dye composition or a disperse dye composition.
In a further aspect, a process for treating single BCF yarn with a dye composition and at least one performance enhancing compositions is disclosed. The process comprises: (a) providing single BCF yarn; (b) winding said BCF yarn on a rewind package; (c) contacting said BCF yarn with said dye composition; (d) optionally contacting said BCF yarn with a first performance enhancing composition; and (e) contacting said BCF yarn with a second performance enhancing composition prior to said BCF yarn contacting and winding up on said rewind package, wherein said BCF yarn is in motion while contacted with said dye, said optional first performance enhancing composition, and said second performance enhancing composition. The dye composition can be comprised of an acid dye composition or a disperse dye composition. The optional first performance enhancing composition can be stain blocking compositions that are comprised of species having acidic moieties that associate with polymer amine end groups and protect them from staining by acidic dye stains. The general category of chemicals suitable to the process of the instant invention can comprise any chemical that blocks positively charged dye sites. The second performance enhancing composition can be anti-soil compositions that comprise high specific surface energy chemicals or other materials, for example a fluorochemical that imparts high specific surface energy properties such as high contact angles for water and oil, or even a non-fluorochemical particulate material having similar properties. The anti-soil composition can further comprise an anti-stain component.
In even another aspect, a process for treating single BCF yarn with a dye composition and performance enhancing compositions is disclosed. The process comprises: (a) providing single BCF yarn; (b) winding said BCF yarn on a rewind package; (c) contacting said BCF yarn with said dye composition; (d) optionally contacting said BCF yarn with a first performance enhancing composition; (e) contacting said BCF yarn with a second performance enhancing composition, wherein said BCF yarn is in motion while contacted with said dye, said first performance enhancing composition, and said second performance enhancing composition; and (f) heat setting said BCF yarn after contacting said BCF yarn with said dye composition, said first performance enhancing composition, and said second performance enhancing composition and prior to winding on said rewind package. The dye compositions and performance enhancing compositions are disclosed above.
In a further aspect, an untufted, single BCF yarn comprising a dye component is disclosed, wherein said dye component is present on said single BCF yarn prior to tufting the BCF yarn. The dye component is selected from acid and disperse dye ingredients. The yarn can comprise polyamide fiber and/or have polymer components selected from polyester. The yarn can be tufted and manufactured into carpet or fabrics.
In yet another aspect, an untufted, single BCF yarn comprising a dye component, an anti-soil component, and an optional anti-stain component is disclosed, wherein said dyeing component, anti-soil component and optional anti-stain component are present on said single BCF yarn prior to tufting the BCF yarn. The dye component is selected from acid and disperse dye ingredients. The anti-soil component and optional anti-stain component can be selected from the compositions disclosed above. The stain blocking component is optionally present at an amount on weight of fiber of about 0.5 to about 40 ppm elemental sulfur content. The anti-soil component is present at an amount on weight of fiber from about 100 ppm to about 1000 ppm elemental fluorine content. The yarn can comprise polyamide fiber and/or have polymer components selected from polyester. The yarn can be tufted and manufactured into carpet or fabrics.
In yet a further aspect, a process for manufacturing carpet is disclosed comprising providing an untufted, single BCF yarn comprising a dye component, an optional stain blocker component, and an anti-soil component, tufting said BCF yarn, and weaving into said carpet. Because of the dye and performance enhancing components present on the BCF yarn prior to tufting and weaving, there is no need to process the finished carpet by dyeing or treating with an acidified stain blocker composition and an anti-soil composition under the current state of the art processes.
In yet even another aspect, a system for applying a dye composition to single BCF yarn is disclosed. The system comprises: (a) a yarn package that transmits a single yarn member; (b) a dye composition applicator disposed downstream of said yarn package that applies said dye composition to said single yarn member; and (c) a rewind package that receives a dyed single yarn member. The dyeing composition can be comprised of acid dye or disperse dye ingredients.
In yet even a further aspect, a system for applying a dye composition and at least one performance enhancing composition to single BCF yarn is disclosed. The system comprises: (a) a yarn package that transmits a single yarn member; (b) a dye composition applicator disposed downstream of said yarn package that applies said dye composition to said single yarn member; (c) an optional first performance enhancing composition applicator disposed downstream of said dye composition applicator that applies said first performance enhancing composition to said single yarn member; (d) second performance enhancing composition applicator disposed downstream of said dye composition applicator that applies said second performance enhancing composition to said single yarn member; and (e) a rewind package disposed downstream of said performance enhancing composition applicator that receives a dyed single yarn member. The dyeing composition can be comprised of acid dye or disperse dye ingredients. The optional first performance enhancing composition can comprise anti-stain compositions having species having acidic moieties that associate with polymer amine end groups and protect them from staining by acidic dye stains. The second performance enhancing composition can comprise anti-soil compositions of a high specific surface energy chemical or other material, for example a fluorochemical that imparts high specific surface energy properties such as high contact angles for water and oil, or even a non-fluorochemical particulate material having similar properties. The anti-soil composition can further comprise an anti-stain component.
While mostly familiar to those versed in the art, the following definitions are provided in the interest of clarity.
OWF (On weight of fiber): The amount of chemistry that was applied as a % of weight of fiber.
WPU (Wet pick-up): The amount of water and solvent that was applied on carpet before drying off the carpet, expressed as a % of weight of fiber.
A process for treating single BCF yarn is disclosed comprising contacting the BCF yarn with a dye composition while said yarn is in motion and prior to contacting and rewinding the yarn into a yarn package or cake. The process can also include contacting the BCF yarn with one or more performance enhancing compositions comprising stain blockers and anti-soil compositions. The dye composition comprises a dye component and is adapted to be continuously applied onto twisted BCF yarn at around 200 to 400 ypm, preferably, around 300 ypm. The stain blocker composition comprises an anti-stain component and is adapted to be continuously applied onto single BCF yarn at a wet pick-up of 10 to 50%, preferably 15 to 30%. The anti-soil composition comprises an anti-soil component and is adapted to be continuously applied onto single BCF yarn at a wet pick-up of between about 5 wt. % and about 50 wt %., including between about 10 wt. % and about 30 wt %, about 20 wt. % to about 30 wt. %, and about 10 wt. % to about 20 wt. %. The single BCF yarn can be optionally heat set after contacting the yarn with the dye composition and the one or more performance enhancing compositions. Heat setting temperatures can range from about 125° C. to about 200° C., including from about 160° C. to about 195° C. Heat setting dwell times can range from about 0.5 to about 4 minutes, including from about 0.5 to about 3 minute and from about 0.5 to about 1 minute.
Dye components for use in the disclosed dye compositions are acid dyes or disperse dyes. Acid dye components are well known to those skilled in the art and are water-soluble ionic species containing one or more organic chromophore moieties. Acid dyes are typically provided in powder form and different acid dyes can be used in combinations to arrive at a precisely defined color choice depending on process conditions such as the use rate of each selected dye component, the use rate of the one or more acid auxiliaries employed, and the residence time of the substrate in the dyeing zone. Examples of suitable acid dye compositions are Orange 3G, Red 2B and Blue 4R. Disperse dye components are likewise well known to those skilled in the art and are water-insoluble nonionic species containing one or more organic chromophore moieties. Disperse dyes are either provided in paste form in combination with a dispersing agent or in powder form. Different disperse dyes can be used in combinations to arrive at a precisely defined color choice depending on process conditions such as the use rate of each selected disperse dye component, the specific dispersing agent or agents employed, and the residence time of the substrate in the dyeing zone. Examples of suitable disperse dye compositions are Disperse Red 60, Disperse Yellow 86 and Disperse Violet 33.
Anti-stain components for use in the disclosed stain blocker compositions have a component bearing an acidic moiety which associates with polymer amine end groups and protects them from staining by acidic dye stains. The general category of chemicals suitable to the process of the instant invention can comprise any chemical that blocks positively charged dye sites. Stain blockers are available in various forms such as syntans, sulfonated novolacs, sulfonated aromatic aldehyde condensation products (SACs) and/or reaction products of formaldehyde, phenolics, substituted phenolics, thiophenolics, sulfones, substituted sulfones, polymers or copolymers of olefins, branched olefins, cyclic olefins, sulfonated olefins, acrylates, methacrylates, maleic anyhydride, and organosulfonic acids. They are usually made by reacting formaldehyde, phenol, polymethacrylic acid, maleic anyhydride, and sulfonic acid depending on specific chemistry. Further, the stain blocker is typically water soluble and generally penetrates the fiber while the anti-soil, usually a fluorochemical, is a non-water soluble dispersion that coats the surface of fiber. More than one stain blocker can be used in the anti-stain compositions.
Examples of stain blockers include, but are not limited to: phenol formaldehyde polymers or copolymers such as CEASESTAIN and STAINAWAY (from American Emulsions Company, Inc., Dalton, Ga.), MESITOL (from Bayer Corporation, Rock Hill, N.C.), ERIONAL (from Ciba Corporation, Greensboro, N.C.), INTRATEX (from Crompton & Knowles Colors, Inc., Charlotte, N.C.), STAINKLEER (from Dyetech, Inc., Dalton, Ga.), LANOSTAIN (from Lenmar Chemical Corporation, Dalton, Ga.), and SR-300, SR-400, and SR-500 (from E. I. du Pont de Nemours and Company, Wilmington, Del.); polymers of methacrylic acid such as the SCOTCHGARD FX series carpet protectors (from 3M Company, St. Paul Minn.); sulfonated fatty acids from Rockland React-Rite, Inc., Rockmart, Ga); and stain resist chemistries from ArrowStar LLC, Dalton and Tri-Tex, Canada.
Anti-soil components for use in the disclosed anti-soil compositions impart high specific surface energy properties such as high contact angles for water and oil (e.g. water and oil “beads up” on surfaces treated by it). The anti-soil component can comprise a fluorochemical dispersion, which dispersion may be predominantly either cationic or anionic, including those selected from the group consisting of fluorochemical allophanates, fluorochemical polyacrylates, fluorochemical urethanes, fluorochemical carbodiimides, fluorochemical guanidines, non-telomeric fluorochemicals, and fluorochemicals incorporating C2 to C8 chemistries. Alternatively, the fluorochemical can have less than or equal to eight fluorinated carbons, including less than or equal to six fluorinated carbons. Example fluorochemical anti-soil components include: DuPont TLF 10816 and 10894; Daikin TG 2511, and DuPont Capstone® RCP. Non-fluorinated anti-soil components can include: silicones, silsesquioxanes and silane-modified particulates, organosilane-modified particulates and alkylated particulates, anionic non-fluorinated surfactants and anionic hydrotrope non-fluorinated surfactants, including sulfonates, sulfates, phosphates and carboxylates. (See U.S. Pat. No. 6,824,854, herein incorporated by reference). More than one anti-soil components can be used in the anti-soil compositions.
The dye composition is adapted to contact the single BCF yarn while it is in motion and prior to contacting the take-up reel or winder. Further, the dye composition can be at a neutral pH (e.g. 4 to 9, including 5.5 to 7.5) because the yarn can be optionally heat set after application of the composition. The process foregoes the need for harsh low pH chemicals; deionized water is suitable for use in the disclosed process.
The stain blocker composition is adapted to contact the single BCF yarn while it is in motion and prior to contacting the take-up reel or winder. Further, the stain blocker composition can be at a neutral pH (e.g. 6 to 8) because the yarn can be optionally heat set after application of the composition. The process foregoes the need for harsh low pH chemicals.
The anti-soil composition is adapted to contact the twisted BCF yarn while it is in motion and prior to contacting the take-up reel or winder. Further, the anti-soil composition can be at a neutral pH (e.g. 6 to 8) because the yarn can be optionally heat set after application of the composition. The process foregoes the need for harsh low pH chemicals.
The contacting can be performed by any suitable device that applies wet ingredients to a dry substrate, including, but not limited to: applicator pad, nip rollers, wet-wick, dip-tank, sprayer, and mister.
For example, cotton wicks can be stacked together to form the desired thickness (e.g. ½-3″) and submersed in the dye bath for transporting dye solution to the moving yarn at a constant flow-rate. The wick thickness selection was based on the optimum wick and yarn contacting time needed to achieve the desired color depth and color consistency. A further option is to use multiple sets of wicking applicator stations. The first wicking applicator station applies the primary color onto the yarn and the second wicking applicator station applies a second color or performance enhancing chemical onto the yarn. Each wicking applicator station can be made up of one or more wicks.
Another option is to transport dye solution to the yarn using two rotating rolls covered with wicks. Here, the yarn passes between the two rotating rolls. Further, multiple rolls can be used in series. For example, one roll can apply a first color onto one side of the moving yarn and another roll to apply a second color onto the other side of the yarn to create a unique two color yarn. Further, two sets of nip rolls can be used. The first set can apply the primary color and the second set can apply a second color or performance enhancing chemical onto the yarn.
Any combination of the above options can be used to make yarn with multiple colors, color depth and with various performance chemicals.
The wet pick-up of the anti-soil composition is between about 5 wt. % and about 50 wt. %., including between about 10 wt. % and about 30 wt %, about 20 wt. % to about 30 wt %, and about 10 wt. % to about 20 wt. %. The resulting twisted BCF yarn, if a fluorine based anti-soil component is used, can have an on weight of fiber from about 100 ppm to about 1000 ppm elemental fluorine, including from about 100 to about 500 ppm elemental fluorine, from about 200 to about 400 ppm, and from about 100 ppm to about 300 ppm elemental fluorine.
The wet pick-up of the stain blocker composition is present on weight of fiber from about 500 ppm to about 4%, including from about 1000 ppm to about 3%, from about 0.5% to about 2%, and from about 0.5% to about 1%. Common stain blockers use sulfonated moieties as part of the chemistry, which results in the presence of sulfur on the treated fiber. The sulfur content can range from about 50 ppm with 5% stain blocker to about 1 ppm with 0.1% stain blocker on weight of fiber. Thus, based on the above stain blocker concentrations, the sulfur content on weight of fiber will range from about 0.5 ppm to about 40 ppm elemental sulfur, including from about 1 ppm to about 30 ppm elemental sulfur, from about 5 ppm to about 20 ppm elemental sulfur, and from about 5 ppm to about 10 ppm elemental sulfur. Sulfur content can be determined by x-ray diffraction or other methods.
The performance enhancing compositions can further comprise one or more components selected from the group consisting of: odor control agents, anti-microbial agents, anti-fungal agents, fragrance agents, bleach resist agents, softeners, and UV stabilizers.
The single BCF yarn can be made from polyamide fibers, such as those made from nylon 6,6, nylon 6, nylon 4,6, nylon 6,10, nylon 10,10, nylon 12, its copolymers, and blends thereof. Further, the single BCF yarn can also have additional polymer components, such as polyester. The additional polymer components can be incorporated with the polyamide (by melt-blend or co-polymerization) prior to making a polyamide fiber (e.g. a polyamide/polyester fiber), or can be stand-alone fibers that are twisted with the polyamide fibers to make the twisted BCF yarn.
As stated above, the BCF yarn can be manufactured with polyamide and/or polyester polymer components. An unexpected benefit of the disclosed process has been discovered in that, whereas a small amount of anti-soil composition is applied compared to known exhaust processes, a high anti-soil component content, such as fluorine, is achieved on the surface of the yarn. Further, the anti-soil composition applied in the process of the disclosed invention can be either fluorochemical or non-fluorochemical based, or a mixture of fluorochemical or fluoropolymer material with non-fluorinated soil resistant materials.
The yarns can be made by acid dyed as well as disperse dyed fibers. Yarns suitable for use in the process may further comprise inherent stain resistance, whether by base composition as in the case of polyester, or by the inclusion of strong acid functionality in the polymer composition of the yarn, as in the case of nylon. Use of a dye applicator with the disclosed process eliminates the need for subsequent dyeing and enables the creation of colored carpets that improve inventory flexibility, improve color options, are stain resistant, and are soil resistant without the need for dyeing and performance enhancing chemical applications as practiced under the current state of the art.
The single BCF yarn made with the various aspects of the disclosed process, by itself or blended with non-treated fibers and yarns, can be tufted and manufactured into carpets or fabrics.
The disclosed process can also be advantageously applied in certain processes where a styling advantage might be derived from differential dyeing and finishing after carpet formation. For example, a soil resistant or stain resistant single yarn of the disclosed invention could optionally be tufted into a carpet among untreated yarns prior to dyeing, thus creating an aesthetic alternative.
Further disclosed is a system for applying a dye composition and one or more performance enhancing compositions to the single BCF yarn. The system includes: (a) a yarn package that transmits a single yarn member; (b) a dye composition applicator disposed downstream of said yarn package; (c) an optional first performance enhancing composition applicator disposed downstream of said dye composition applicator that applies said first performance enhancing composition to said single yarn member; (d) second performance enhancing composition applicator disposed downstream of said dye composition applicator that applies said second performance enhancing composition to said single yarn member; and (e) a rewind package disposed downstream of said performance enhancing composition applicator that receives a dyed single yarn member. The single yarn members can be single filaments or fibers, or yarns made from a plurality of filaments or fibers. Each applicator can be any suitable device that applies wet ingredients to a dry substrate, including, but not limited to: applicator pad, nip rollers, wet-wick, dip-tank, sprayer, and mister.
in one aspect, a supply package yarn is fed at a line speed of about 300 ypm, passing through a dye applicator, disposed downstream of the yarn package, which applies a dye component to the single yarn. From here, the single and dyed yarn is rewound into a package. another aspect of the disclosed process contains both a dye applicator and a steam heat treatment. Here, a supply package yarn which is fed at a line speed of about 300 ypm, passes through a dye applicator, disposed downstream of the yarn package, which applies a dye component to the single yarn. From here, the single and dyed yarn pass through a heat treatment chamber and is rewound into a package.
The disclosed process is counterintuitive and surprisingly results in yarn that contains acceptable dyed and performance enhancement properties when manufactured into a carpet or fabric. One would expect that rearranging the process as described above would fowl up down-stream carpet manufacturing processes and lead to poor quality carpet. Thus, the results reported below are surprising and unexpected.
The following are examples of carpets made from BCF fibers that have been treated according to various aspects of the process disclosed above, and similar fibers with no treatment. Selection of alternative dyeing and performance enhancing components, fibers and textiles having different surface chemistries will necessitate minor adjustments to the variables herein described.
Acid dye stain resistance is evaluated using a procedure modified from the American Association of Textile Chemists and Colorists (AATCC) Method 175-2003, “Stain Resistance: Pile Floor Coverings.” 9 wt % of aqueous staining solution is prepared, according to the manufacturer's directions, by mixing cherry-flavored KOOL-AID® powder (Kraft Foods, Northfield, IL, a powdered drink mix containing, inter alfa, FD&C Red No. 40). A carpet sample (4×6-inch) is placed on a flat non-absorbent surface. A hollow plastic 2-inch (5.1 cm) diameter cup is placed tightly over the carpet sample. Twenty milliliters of the KOOL-AID® staining solution is poured into the cup and the solution is allowed to absorb completely into the carpet sample. The cup is removed and the stained carpet sample is allowed to sit undisturbed for 24 hours. Following incubation, the stained sample is rinsed thoroughly under cold tap water, excess water is removed by centrifugation, and the sample is dried in air. The carpet sample was visually inspected and rated for staining according to the FD&C Red No. 40 Stain Scale described in AATCC Method 175-2003. Stain resistance is measured using a 1-10 scale. An undetectable test staining is accorded a value of 10.
Two 920 denier, 8 dpf, colorless nylon 6,6 BCF yarns were processed on a Volkmann twisting machine as described in to form a 5.75 tpi (twist per inch) 2-ply cable twisted yarn. The twisting speed was about 7000 rpm (turns per minute) and winding speed was about 50 meters per minute. The cable twisted yarn had no color. The cable twisted yarn was heatset using a Superba, and converted into cut pile carpet on a ⅛ ga tufting machine to 22/32 inch pile height, 35 oz/sq yard carpet and dyed on a continuous dye line to get medium pie crust color. This example was made using the state of art carpet making process with continuous dyer to add color to carpet.
A 1320 denier, 64 filament nylon BCF yarn made from deep acid dyeable polymer (Type 417A) was processed on a rewinding machine. Two wicking stations with ½″ wide, 1″ thick were inserted between the creel and rewinder. Acid dyes (Telon Yellow 4R, 137.2 g/I; Red 2BN, 21.0 g/l; Blue BRL, 34.1 g/l) were used to dye the BCF yarn to dark brown color. The winding speed was about 300 yards per minute. The test yarn was converted into a ⅛ inch pile height, 12 oz/yd loop pile carpet on a 5/64 gauge machine. The tufted carpet was treated with steam for 5 minutes to set the dye. It had a dark brown color (L=34.24, a=9.53, b=19.94 as measured using the hand held color measurement instrument sold by Minolta Corporation as “Chromameter,” model CR-210).
A 997 denier, 115 filament white BCF single yarn made from Nylon 66 cationic dyeable polymer was processed using a Suessen heatset machine. Three color wicking stations arranged in series were inserted between the yarn creel and the Suessen heatset machine. A ½″ wide, 1.5″ thick cotton wick was used in each station to apply gold color premet dyes at pH 5.0 (Isolan Yellow NW, 23.0 gram/liter; Isolan Red S-RL, 6 gram/liter; Isolan Black 2S-CP, all by Dystar, L.P., Charlotte, N.C.) onto the moving BCF yarn at 350 ypm. The colored yarn was subsequently treated with hot air (200° C.) in a Suessen heatset channel. The dwell time in the channel was about 60 seconds. The colored and heat treated single yarn was wound on a tube. It had a medium gold color (L=55.4, a=14.50, b=30.21 as measured using the hand held color measurement instrument sold by Minolta Corporation as “Chromameter,” model CR-210).
This example was same as example 3, except a different dye formulation (Isolan Yellow NW, 9.6 gram/liter; Isolan Red S-RL, 2.8 gram/liter; Isolan Black 2S-CP 7.7 gram/liter) was applied to the moving BCF cat dyeable yarn. It had a dark purple color (L=32.0, a=3.89, b=−2.08 as measured using the hand held color measurement instrument sold by Minolta Corporation as “Chromameter,” model CR-210).
This example was same as example 3, except different dye formulation (Isolan Yellow NW, 2.5 gram/liter; Isolan Red S-RL, 1.7 gram/liter; Irglan Blue 3GL, 27.6 gram/liter) was applied to the moving BCF cationic dyeable yarn. It had a dark avocado color (L=40.97, a=3.59, b=12.28 as measured using the hand held color measurement instrument sold by Minolta Corporation as “Chromameter,” model CR-210).
Yarns produced in examples 3, 4 and 5 were processed on a Volkmann twisting machine to form three ply yarn having 4.5 twists per inch. The cable twisted yarn was converted into loop pile carpet ( 1/10 ga. ⅛ inch pile height, 14 stitches per inch, 20 oz per square yard). The finished carpet had an attractive multicolor look, good color fastness and great stain resistance to acid dyes.
While there have been described what are presently believed to be the preferred embodiments of the invention, those skilled in the art will realize that changes and modifications may be made thereto without departing from the spirit of the invention, and it is intended to include all such changes and modifications as fall within the true scope of the invention.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US13/60353 | 9/18/2013 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
61702853 | Sep 2012 | US |