This application relates to a process, a stator, a use and an arrangement for improved processing of fermented products, and in particular to a process, a stator, a use and an arrangement for improved handling of fermented soybeans to extract soysauce and the like.
The soybean is a species of legume native to East Asia, widely grown for its edible bean which has numerous uses. The plant is classed as an oilseed rather than a pulse by the Food and Agricultural Organization (FAO). Soybeans produce significantly more protein per acre than most other uses of land. Traditional fermented foods include soy sauce, fermented bean paste, natto, and tempeh, among others.
The traditional process for producing for example soy sauce is performed by sorting, rinsing and then cooking the soybeans to a desired level. After the cooking the soybeans are cooled to an optimum fermentation temperature and thereafter transferred to inoculation vats where the inoculation is done by adding a starter culture, for example a Bacillus or Aspergillus strain of bacteria. The mixture is then fermented for a time span of a few days to a couple of weeks in these large vats. The resulting culture is traditionally called Koji and is transferred to fermentation tanks where brine, or individual salt and water, is added to form a mixture traditionally called Moroni. The Moroni is fermented for a minimum of three months and sometimes up to a year. After this period the Moroni (which is a mash) is pressed or washed to extract the sauce. The pressing and washing is a batch process where sieving in several stages which are essential for the purity of the resulting soy sauce.
The quality of the resulting soy sauce is determined by the protein content and the purity of the soy sauce. The effectiveness of the soybean protein extraction and the purification of the resulting product is thus of importance.
The batch process, not being continuous is a disadvantage as it prevents the process from being fully automated and increases operation costs in that the batches need to be prepared, delivered and retrieved.
There is thus a need for an improved manner of continuously extracting protein at a high yield. There is also a need for an improved manner of continuously purifying fermented products such as soy sauce.
According to one aspect, it is an object of the teachings of this application to overcome the problems listed above by providing an arrangement for extraction of soy sauce comprising a decanter for separating the soy sauce from a fermented mixture through decanting.
According to one aspect, it is an object of the teachings of this application to overcome the problems listed above by providing an arrangement for extracting protein from soybeans comprising a means for splitting the soybeans into discernible pieces.
According to one aspect, it is an object of the teachings of this application to overcome the problems listed above by providing an arrangement for processing soybeans comprising a decanter for extraction of soy sauce by separating the soy sauce from a fermented mixture through decanting and a means for splitting the soybeans into discernible pieces.
Such arrangements provide simple solutions allowing continuous operation and that result in end products having high quality.
In one embodiment the means for splitting the soybeans is comprised of a stator arranged to revolve at high speeds having a series of holes.
Arrangements according to the teachings herein are beneficial in that they provide an end product of a high qualitative purity in a continuous manner. This is achieved by an insightful combination of the splitting means (the stator) and the decanter, which combination removes the need for a seperate buffering process of removing top floculation and bottom sediment.
In one embodiment the arrangement further comprises a clarifier which increases the purity of the end product. In fact, after the clarifier the resulting product is ready to be sold. The arrangement as disclosed herein is thus highly efficient and cost efficient to operate providing an end result of high quality.
According to one aspect, it t is an object of the teachings of this application to overcome the problems listed above by providing a stator for use as means for splitting soybeans, said stator comprising a circular member arranged with a series of holes.
According to one aspect, it t is an object of the teachings of this application to overcome the problems listed above by providing a use of a stator for splitting soybeans. According to one aspect, it t is an object of the teachings of this application to overcome the problems listed above by providing a process for extraction of soy sauce, said process comprising separating the soy sauce from a fermented mixture through decanting.
According to one aspect, it t is an object of the teachings of this application to overcome the problems listed above by providing a process for extracting protein from soybeans, said process comprising splitting the soybeans into discernible pieces.
According to one aspect, it t is an object of the teachings of this application to overcome the problems listed above by providing a process for processing soybeans, said process comprising separating the soy sauce from a fermented mixture through decanting and splitting the soybeans into discernible pieces.
It is an object of the teachings of this application to overcome the problems listed above by providing a soysauce produced according to a process according to above.
The inventors of the present invention have realized, after inventive and insightful reasoning that by decanting a fermented solution the solution can effectively be used to separate the desired product from husks or impurities and also other particles in a simple and elegant solution that allows for continuous operation. This has been confirmed by extensive experimentation.
The inventors of the present invention have also realized, after inventive and insightful reasoning, that by splitting the beans an increased surface for protein extraction is achieved without risking that an emulsion is generated thereby providing a simple and elegant solution that allows for continuous operation. The inventors have further realized that to perform such splitting a stator designed according to herein may beneficially be used to provide a simple and elegant solution that allows for continuous operation.
The teachings herein find use in, but is not limited to, extraction and production of soy sauce, fish sauce and other fermented products. The manner disclosed herein also find use in fermenting wheat products.
An arrangement and a process according to the teachings herein can beneficially be used in and integrated into the production Ketjap Manis and like products, the teachings herein being combined with other processes and arrangements enabling such production.
Other features and advantages of the disclosed embodiments will appear from the following detailed disclosure, from the attached dependent claims as well as from the drawings.
Generally, all terms used in the claims are to be interpreted according to their ordinary meaning in the technical field, unless explicitly defined otherwise herein. All references to “a/an/the [element, device, component, means, step, etc]” are to be interpreted openly as referring to at least one instance of the element, device, component, means, step, etc., unless explicitly stated otherwise. The steps of any method disclosed herein do not have to be performed in the exact order disclosed, unless explicitly stated.
The invention will be described in further detail under reference to the accompanying drawings in which:
The disclosed embodiments will now be described more fully hereinafter with reference to the accompanying drawings, in which certain embodiments of the invention are shown. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided by way of example so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. Like numbers refer to like elements throughout.
Decanters are known in other fields, but have not been used for the purpose of extracting soy sauce from the Moron mixtures. By realizing, after insightful reasoning, that decanters may also be used for separating the husks and impurities from the mixture, a simple and elegant, yet effective solution is provided to enable an efficient continuous process.
The use of decanters can also be used for separating soymilk from husks and impurities.
A problem that arises when pressing the Moroni mixture is that the resulting mash is prone to generate an emulsion of the fats and the proteins. It is nearly impossible to mechanically separate the fats from the proteins in such an emulsion.
The stator is further arranged to have large holes. The holes should be large enough to at least partially receive a bean to be processed. The edges of the holes will interact with the soybeans by splitting them into smaller pieces. The resulting increased surface of the soybeans enables a higher yield of soy protein. The desired size of the resulting pieces depends on the finished product. The smaller the pieces, the higher the protein yield, but if the pieces are too small, the risk for generating an emulsion increases. The pieces should therefore be of a size where the pieces are still individually discernible and does not form a powder. By having rectangular cross sections of the stator holes a cleaner cut of the soybeans is achieved resulting in a cleaner product and less risk of an emulsion. It also provides a higher protein yield. In one embodiment the stator is arranged to split the soybeans into quarter-sized pieces. As will be described later on, the holes may also have other cross sections such as circular.
The size of the holes and the revolving speed of the stator interact in such a way that the higher the speed and the smaller the holes, the higher the risk of creating an emulsion. Smaller holes allows for less adjustment of the revolving speed. The holes should be at least the same substantial size as the particle to be split, in the case of the soysauce, the same size of the soybean.
In one embodiment the stator is implemented as a Tetra Almix in-line® mixer with a specially adapted stator. More details of the stator will be given with reference to
The use of stators is known in other fields, but stators have not been used for the purpose of extracting soy sauce from Moroni mixtures and like mixes. By realizing, after insightful reasoning and careful and extensive experimentation, that stators may also be used for slicing or chopping the soybeans to provide a resulting increased surface for extracting the protein, a simple and elegant, yet effective solution is provided to enable an efficient continuous process which provides a high protein yield. For example, a prior art system produces soysauce having a protein yield of 2.1% per each produced litre. A system according to the teachings herein will produce a soysauce having a protein yield of more than 2.5% per each produced litre, thus providing an increase by over 20% for the protein yield.
To facilitate the handling of the Moroni mixture, the process and arrangement includes a station or step where brine (or individual salt and water) is added to the mixture. The brine affects the qualities of the resulting product, and also facilitates the run of the resulting mixture through the revolving stator and the subsequent decanter as the mixture is more fluid than the Moroni mixture on its own. The brine further affects the resulting yield of protein and the more brine that is added, the larger the total amount of extracted protein.
In one embodiment the process is arranged to keep the mixture at a temperature at a stable or low temperature, for example below 45 degrees Celsius. Increasing the temperature will affect the quality and cleanliness of the resulting product and it is therefore beneficial to maintain a low temperature all through the process.
To further clarify and clean the resulting product a further step of running the mixture through a clarifier is performed in step 550. Depending on the desired finished product and the quality of the product the resulting mixture may also be run through a sieve in step 540. These steps are optional and indicated as such in
Experiments have shown that using a process as described above, soy sauce with a fat content of less than 0.5% can be achieved.
The addition of the brine which allows for the beans to be split with a stator also makes the solution suitable for decanting with a decanter.
The use of a decanter and a stator is thus technically linked to provide an improved process and arrangement for such a process for processing soybeans.
One aspect of the disclosure here involves an arrangement (2, 3, 4, 7) for extraction of soy sauce comprising a decanter (74) for separating the soy sauce from a fermented mixture through decanting. Another aspect of the disclosure involves a stator (73, 10) for use as means for splitting soybeans, wherein the stator (10) comprises a circular member (11) arranged with a series of holes (12). A further aspect involves the use of a stator (73, 10) for splitting soybeans. Further aspects of the disclosure include a process for extraction of soy sauce, wherein the process comprises separating the soy sauce from a fermented mixture through decanting, and a process for processing soybeans, wherein the process comprises separating the soy sauce from a fermented mixture through decanting and splitting the soybeans into discernible pieces.
One benefit of the teachings herein is that the process and arrangement provides an end product of high quality.
Another benefit of the teachings herein is that the process and arrangement provides a high yield of protein. The process and arrangement provides a lowered fat content.
One more benefit of the teachings herein is that the process and arrangement enables continuous operation and is cheaper to operate. The process and arrangement also prevents an emulsion from being generated.
The teachings herein relating to the use of the decanter and/or the stator find use in manufacturing and producing soy sauce, but also find use in producing other fermented products such as fish sauce, wheat-based products and other grain-based products.
The invention has mainly been described above with reference to a few embodiments. However, as is readily appreciated by a person skilled in the art, other embodiments than the ones disclosed above are equally possible within the scope of the invention, as defined by the appended patent claims.
Number | Date | Country | Kind |
---|---|---|---|
1250904-8 | Aug 2012 | SE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2013/065909 | 7/29/2013 | WO | 00 |