The invention relates generally to a n-dimensional signal processing method, apparatus and computer program, and in particular to a method, apparatus and computer program useful for processing n-dimensional signals, such as one-dimensional signals, two-dimensional images or three-dimensional data or video image sequences.
The invention is particularly pertinent to the field of signal data processing and compression. Signal compression is a process which encodes signals for storage or transmission over a communication channel, with fewer bits than what is used by the uncoded signal. The goal is to reduce the amount of degradation introduced by such an encoding, for a given data rate. The invention is also relevant to signal restoration or feature etraction for pattern recognition.
In signal processing, efficient procedures often require to compute a stable signal representation which provides precise signal approximations with few non-zero coefficients. Signal compression applications are then implemented with quantization and entropy coding procedures. At high compression rates, it has been shown in S. Mallat and F. Faizon, “Analysis of low bit rate image trunsforn coding,” IEEE Trans. Signal Processing, vol. 46, pp. 1027-1042, 1998, that the efficiency of a compression algorithm essentially depends upon the ability to construct a precise signal approximation from few non-zero coefficients in the representation.
The stability requirement of the signal representation has motivated the use of bases and in particular orthogonal bases. The signal is then represented by its inner products with the different vectors of the basis. A sparse representation is obtained by setting to zero the coefficients of smallest amplitude. During the last twenty years, different signal representations have been constructed, with fast procedures which decompose the signal in a separable basis. Block transforms and in particular block cosine bases have found important applications in signal and image processing. The JPEG still image coding standard is an application which quantizes and Huffman encodes the block cosine coefficients of an image. More recendy, separable wavelet bases which compute local image variations at different scales, have been shown to provide a sparser image representation, which therefore improves the applications. These bases are particular instances of wavelet packet bases, in R. Coifinan, Y. Meyer, M. Wickerhauser, Method and apparatus for encoding and decoding using wavelet-pacles, U.S. Pat. No. 5,526,299. The JPEG image compression standard has been replaced by the JPEG-2000 standard which quantizes and encodes the image coefficients in a separable wavelet basis: “JPEG 2000, ISO/IEC 15444-1:2000,” 2000. Wavelet and wavelet packet bases are also used to compress one dimensional signals, including medical signals such as electrocardiogram (ECG) recordings, as in M. Hilton, J. Xu, Z. Xiong, “Wavelet and wavelet packet compression of electrocardiograms”, IEEE Trans. Biomed. Eng., vol. 44, pp. 394-402, May 1997. Decomposition in three dimensional wavelet bases are also used in video image compression, in S. Li and Y-Q. Zhang, in “Three-Dimensional Embedded Subband Coding with Optimized Truncation (3-D ESCOT)”, Applied and Computational Harmonic Analysis 10, 290-315 (2001), where a video sequence is decomposed with three dimensional wavelet transform performed along motion threads in time.
Signal restoration of sparse signal representations has been developed by thresholding the wavelet co-efficients of noisy signals in D. Donoho and I. Johnstone, “Ideal spatial adaptation via wavelet shrinkage,” Biometrika, vol. 81, pp. 425-455, December 1994. Applications of wavelet packet bases to deconvolution of signals are also presented in J. Kalili, S. Mallat, “Minimax restoration and deconvolution”, in Bayesia inference in wavelet based models ed. P. Muller and B. Vidakovic, Springer-Verlag, 1999. Constructing sparse representations is also important to extract features for pattern recognition This has important applications to content based signal indexing and retrieval from digital multimedia libraries and databases. Feature vectors using histograms of wavelet coefficients are used in M. K. Mandal and T. Aboulasr, “Fast wavelet histogiam techniques for image indexing”, Computer Vision and Image Understanding, vol. 75, no. 1/2,pp. 99-110, August 1999.
The main limitation of bases such as block cosine bases, wavelet bases or more generally wavelet packet bases, currently used for signal representation, is that these bases are composed of vectors having a fixed geometry which is not adapted to the geometry of signal structures. For onenensional signals such as ECG, which are quasi-periodic, adapting the basis to the varying period allows one to take advantage of the redundancy due to the existence of a periodicity in the signal. In images, edges often correspond to piece-wise regular curves which are therefore geometrically regular. In higher dimensional signals such as video sequences, edges and singularities often belong to manifolds that are also geometrically reular. Constructing bases that take advantage of this geometrical regularity can considerably improve the efficiency of signal representations and hence improve applications such as compression, restoration and feature reaction.
In E. Le Pennec and S. Mallat, “Method and apparatus for processing or compressing dimensional signals by foveal filtering along trajectories”U.S. patent application Ser. No. 09/834,587, filed Apr. 13, 2001, and in E. Le Pennec, S. Mallat, “Image Compression with Geometrical Wavelets”, Proceeding of International Conf. on Image Processing, Vancouver, September 2000, part of the signal information is represented with wavelet foveal filters that follow foveal trajectories adapted to the geometry of the signal. The wavelet foveal coefficients are then decorrelated with linear operators that compute bandelet coefficients. The edgeprint representation of Dragottia and Vetterli, in “Footprints and edgeprints for image processing and compression”, Proceedings of the International Conference on Image Procsmg, Thessaloniki, October 2001, use a similar strategy with footprint wavelet vectors that follow edges computed from the image. Foveal bandelets and edgeprints do not provide a complete signal representation, and it is therefore necessary to incorporate a residual signal to reconstruct the original signal, which is a source of inefficiency for data compression and restoration applications.
Accordingly, there exists a need in the art for improving signal processing, by computing sparse representations by taking advantage of the signal geometrical regularity, from which one can reconstruct precise signal approximations with fast and numerically stable procedures and apply it to signal compression, restoration and pattern recognition.
It is a primary object of this invention to devise a method and means to construct a sparse and stable warped wavelet packet representation of n-dimensional signals by taking advantage of the regularity of their geometrical structure& A further object is to a compute bandelet representation from the warped wavelet packet representation, with an efficient bandeletisation adapted to the signal geometry. It is yet another object of this invention to build a system that compresses signals by quantizing and encoding the coefficients of this sparse bandlet representation. Another object of this invention is to restore signals by processing the coefficients of this bandelet representation. Another object of this invention is to use the bandelet representation for signal feature extraction for pattern recognition systems.
The invention includes a warped wavelet packet processor that computes an n-dimensional warped wavelet packet transform including warped wavelet packet coefficients and wavelet packet warping grids, from an n-dimensional digital input signal, wherein n is a positive integer. It comprises the steps of providing an n-dimensional warped signal including n-dimensional warped coefficients and dimensional signal warping grids; and computing said warped wavelet packet transform of said warped signal, with a binary tree where each node performs a one-dimensional warped subband processing along a particular dimension d, with 1≦d≦n. In dimension n≧2, said warped subband processing have a phase alignment coherent with said signal warping grids.
The invention also includes an inverse warped wavelet packet processor that computes an n-dimensional digital output signal from an n-dimensional warped wavelet packet transform It comprises the steps of: computing a warped signal including n-dimensional warped coefficients and -dimensional signal warping grids, from said n-dimensional warped wavelet packet transform, with a binary tree where each node performs a one-dimensional inverse warped subband processing along a particular dimension d, with 1≦d≦n; and computing said digital output signal from said warped signal with an inverse signal warping. The sampling grid of the output signal is identical to the sampling grid of the input signal.
As opposed to prior art wavelet packet processors, as in R. Coifman Y. Meyer, M. Wickerhauser, “Method and apparatus for encoding and decoding using wavelet-packets”, U.S. Pat. No. 5,526,299, or to J. Li, S.M. Lei, “Arbitrary shape wavelet transform with phase alignment”, U.S. Pat. No. 6,233,357, or to A. Mertirs, “Image compression via edge-based wavelet transform,” Opt. Eng., vol. 38, no. 6, pp. 991-1000, 1999, the subband furthering is not performed on the input signal sampling grid, but on different sampling grids, called warping grids, that are typically adapted to the geometrical signal properties in different regions. As opposed to the subband filtering used in the wavelet packet procedures referenced above, a warped subband filtering is not computed with a convolution operator but with space varying filters, in order to handle the nonuniform structure of the warping grids. For three-dimensional video image sequences, as opposed to 3D-ESCOT method in J. Xu, Z. Xiong, S. Li and Y-Q. Zhang, Three-Dimensional Embedded Subband Coding with Optimized Truncation (3-D ESCOT)”, Applied and Computational-Harrnonic Analysis 10, 290-315 (2001), the warping grid regions are not reduced to motion threads in time, and the warped subband processing satisfies a phase alignment constraint coherent with the warping grids, which is not satisfied by the 3D-ESCOT method. With this phase alignment property, warped wavelet packet coefficients have the same geometrical regularity as the input signal. This is particularly interesting when a bandeletisation module is located dowust of the warped wavelet packet processor.
To adapt the signal representation to the geometrical signal structures, the invention comprises a geometrical sampling module that computes said signal warping grids from a set of parameters called a warping geometry. The warping grids are typically computed to follow the directions in which the signal has regular geometrical variations. In an exemplary implementation, the warping geometry includes region parameters that specify a partition of the signal support into several regions, and includes deformation parameters that define a geometrical deformation function which specify the position of sampling points in each of said region. The signal support is divided into regions in which the signal has typically uniform geometrical properties so that one can adapt the warping grid to all structure in the region. For signals that are nearly periodic, the warping grid can adapt the sampling interval to the varying period, to obtain a nearly exactly periodic signal, which is taken advantage of, by the subsequent bandeletisation module.
Warped wavelet packet coefficients are computed with warping grids that typically follow directions in which the signals has regular variation& Because of the phase alignment property of warped subband processors, warped wavelet packet coefficients inherit the regularity of the signal in these directions. The invention preferably includes a bandeletisation module that yields a sparse representation by decorrelating said warped wavelet packet coefficients, by applying invertible one-dimensional linear operators along selected directions of said warped wavelet packet coefficients. For regions in which the signal is nearly periodic along particular directions, the bandeletisation module performs a periodic decorrelation, that takes advantage tage of the redundancy introduced by the existence of a quasi-periodicity. The resulting bandelet coefficients are decomposition coefficients in a basis composed of warped bandelet vectors. The one-dimensional linear decorrelation operators, can be chosen to be a cosine transform or a one-dimensional wavelet packet transform or a warped wavelet packet transform. The n-dimensional signal is then represented by its bandelet coefficients and the parameters of the warping geometry that specify the warping grids in each signal region.
The invention also includes an inverse bandeletisation module that computes an n-dimensional warped wavelet packet transform from a warping geometry and bandelet coefficient It comprises the steps of computing wavelet packet warping grids from said warping geometry, and computing warped wavelet packet coefficients by applying inverse one-dimensional linear operators along selected directions on said bandelet coefficients.
As opposed to the method E. Le Pernec and S. Mallat, in “Method and apparatus for processing or compressing n-dimensional signals by foveal filtering along trajectories”, U.S. patent application Ser. No. 09/834,587, filed Apr. 13, 2001, and in E. Le Pennec, S. Mallat, “Image Compression with Geometrical Wavelets”, Proceedings of International Conf. on Image Processing, Vancouver, September 2000, bandelet coefficients are not computed from foveal coefficients but from warped wavelet packet coefficients. As a consequence, no residual signal is needed to reconstruct a precise signal approximation from bandelets of warped wavelets as opposed to the above referenced method.
Signal processing procedures are efficiently implemented in a warped wavelet packet bandelet representation because of the ability to provide sparse and accurate representations by setting their smallest coefficients to zero. The invention comprises a processor compressing n-dimensional signals that quantizes the bandelet coefficients and encodes these quantized bandelet coefficients with the warping geometry to obtain a multiplexed data stream suitable for storage in a storage medium or for transmission over a transmission medium. The invention also comprises a processor that restores an input signal by applying a restoration processor on the bandelet coefficients and the warping-geometry to compute an output signal from these restored coefficients. The invention also comprises a processor that computes a signal feature vector from the warping geometry and bandelet coefficients, for pattern recognition applications including content based signal indexing or retrieval and signal matching.
The foregoing and other objects of this invention, the various features thereof as well as the invention itself may be more fully understood from the following description, when read together with the accompanying drawings in which:
In an exemplary embodiment of the present invention, each process can be carried out by a computer program. The computer program is run on a computing device which may comprise a storage device such as a magnetic disk or an optical disk on which the n-dimensional digital input signal may be stored. The n-dimensional digital input signal may also have been received by the computing device after a transmission via a network connection such as an ethernet link, a phone line, a wireless transmission, etc . . . . The computer program can be stored on the storage device or on a Read Only Memory (ROM). Each process is executed by a Central Processing Unit (CPU) coupled to a Random Access Memory (RAM). The output of each process can be stored on the storage device or transmitted via a network connection. ID another exemplary embodiment, each process can be carried out by a dedicated electronic device comprising the instructions to implement said process
Warping Grids and Warping Geometry
The input n-dimensional discrete signal in
To manipulate multidimensional indexes of arrays, the following notations are used. For any integer a and any positive integer b, there exists a unique pair (q, r) of a quotient and a remainder such that
a=bq+r
where r ε{0 . . . , b−1) (Euclidean division). We define the ‘mod’ and ‘div’ operators by a mod b=r and a div b=q. For any k=(k1, . . . ,kn)ε Zn, we write:
k modd 2=kd mod 2
k divd 2=(k1, . . . , kd−1, kd div 21kd+1 , . . . , kn)
2dk=(k1, . . . . kd−1, 2kd , kd+1, . . . , kn )
k/2d=(k1, . . . , kd−1, kd/2, kd+1, . . . kn)
and 1d=(0, . . . 0, 1, 0, . . . , 0) is a unit displacement along direction d: the coordinate d is equal to 1 and all others are equal to 0. For any x ε Rn and r ε (0, +∞) we also write
When x and u are two vectors of Rm, for some m>0, we write x.u=Σd=1m ud the inner product between two vectors x and u. When A is a matrix of any size of entries aij, AT is the conjugate transpose matrix of entries ajia, and A−T is a shorter notation for (AT)−1.
The warped wavelet packet transform is computed along a union of sampling grids called warping grids. The union of the warping grids is typically not equal to the signal sampling grid and is adapted to the geometrical structure of the signal. In an exemplary embodiment, each warping grid is represented by an array of points WG(i, k) ε Rn where i is a fixed index and k ε Zn is a position index For a fixed region index i, the warping grid WG(i, k) is only defined for a subset of values of k, and corresponds to a region Ri of the input signal support, over which the input signal has a homogeneous geometrical structure. Any other state of the art representation of arrays of sampling points may be used. The warping geometry includes parameters calculated from the n-dimensional input signal by the geometrical segmentation module (201), that characterize the warping grids which are computed by the geometrical sampling module (202) from the warping grids.
In an exemplary implementation, the warping geometry specifies a partition of Ss into regions Ri ⊂Rn, with Ss=∪iRi, and specifies a geometrical deformation whose support is the set of k εZn such that δ1(k) εRi. For each region Ri, the geometrical sampling module (202) computes a signal warping grid
The warping geometry also specifies a regularity descriptor RegWG(i) which is a vector (P1, . . . Pn) that characterizes the regularity of the signal samples along the different directions of the warping grid WG(i, h). Along each direction d if pd=0 then for k fixed, WC(i, k+l1d) can have irregular variations as a function of l. If pdd≠0 then WG(i, k+l Pd1d) has regular variations as a function of l. Thus, Pd=1 indicates that the function WC(i, k+l 1d) of l is slowly varying, whereas Pd>1 indicates that the function WC(i, k+l1d) of l is nearly periodic of period Pd. The vector RegWG is stored together with the warping grids WG and is used by the bandeletisation processor (205) to perform an appropriate decorrelation of warped wavelet packet coefficients. The geometrical segmentation module represents the partition into regions Ri with region parameters, the geometrical deformations δi(k) with deformation parameters, and the vector RegWG(i) with vector parameters, from which Ri, δi(k) and ReWG(i) can be recovered. To compute the warping grids with (1), the geometrical sampling module (202) first recovers for each i, Ri, δ1(k) and RegWG(i) by inverting these operators. The following gives exemplary embodiments to compute he warping geometry from an n-dimensional signal These embodiments are not limitative and any state of the art technique may be used to compute a warping geometry from which one can compute warping grids.
In an exemplary embodiment, each region Ri is the halo in Rn of Ri ∩Zn, and is s ed by a binarymembership map for all k εZn bi(k)=1 if k εRi and bi(k)=0 otherwise Any state of the art parameterization technique may be used to represent these binary maps, including a chain coding of their boundary. In yet another exemplary embodiment, a segmentation is calculated with a parameterized modification such as a linear warping in Rn of a predefined segmentation, in order to adapt the segmentation for the signal. The region parameters then include only the modification parameters such as the parameters of the linear warping operator. For images of human faces, a state of the art technique may be used to detect features such as the eyes. We then compute the affine warping which renormatizes the position of these features and use this affine warping to adapt a predefined segmentation of the fine into regions adapted to the geometrical face struces. In yet another exemplary embodiment of the geometrical segmentation (201), each region Ri is a pammetrized geometrical shape such as a hyperrectangle or an ellipsoid in Rn in which case the deformation parameters can include their center (c1, . . . , cn), and their widths (w1, . . . , Wn) along each of the n direction, or Ri may be a union of such geometrical shapes.
In an exemplary embodiment, the signal support is divided into hyperrectangle regions Ri that are dyadic hypercubes of width equal to w 2j with j≦0, where w is a fixedinteger parameter. In an exemplary embodiment, this partition is computed with averaged orientation vector with a splitting procedure, The signal gradient is a vector ∇S(m)=(Δ1S(m1,m2), . . . , ΔnS(m1, m2)) computed at each point m ε Zn ∩Ss with:
ΔdS(m)=S(m)−S(m−1d) for 1≦d≦n.
For any u ε Rn we define the average gradient energy over a region M, in the direction of u by:
The average orientation is defined as the unit vector in Rn that minimizes C(u):
We calculate the n by n matrix {overscore (Q)}M whose coeficients are the averages for m ε M of the coefficients of the n by n matrix QM(m)=∇S(m) ∇S(m)T. Since C(u)=uT{overscore (Q)}M u, the vector uM is a unit norm eigenvector of {overscore (Q)}M corresponding to the minimum cigenvalue which is equal to uMT{overscore (Q)}MuM=CM(uM). This value measures the signal regularity in the most regular direction over M.
The receive splitting procedure Split(R) is defined over any hypercube R and initially applied to the whole signal support R1=Ss. For any i, Split(Ri) computes the average orientation ui in Mi=Ri ∩Zn. Let T1 be a parameter and Ci=uiT{overscore (Q)}Miui. If Ci>T1 then the square region Ri is divided into a partition of 2n hypercubes of twice smaller width R2
In dimension n=3, in yet another exemplary embodiment of the geometrical segmentation (201), the regions Ri are 3-dimensional rectangles, of fixed width w along one of the direction, say Is, and whose projections on the plane (I1, I2) are dyadic squares that define a partition of the signal support, which is represented by a quad-tree. This quad-tree can be calculated with a splitting procedure similar to the quad-tree splitting procedure for n=2, using average gradient energy measurements over each of the 3-dimensional rectangles specified by a square in the plane (I1, I2) and a width w along I3.
Directional geometrical deformations are exemplary embodiments of geometrical deformations δi(k)=(δi,1(k), . . . 66 i,n(k)) that can have n+1 different directions. The direction 0 corresponds to a grid parallel to Zn for which δi(k)=k+ci, where ci is a constant vector. For any 1≧d≧n, a geometrical deformation along direction d satisfies δi,1(k)=k1+Ci1, for l≠d and δi,d(k)=kd+ci,d(k1, . . . kd−1, kd−1, kn). In an exemplary embodiment, the constants ci,1 for l ≠d are chosen to depend only upon the geometry of each region Ri and their value do not need to be stored It may be minus the minimum coordinate in the direction l among all points in Ri. Any state of the art parameterization technique may be used to define the deformation paramneters that specify the function ci,d. In an exemplary embodiment, deformation parameters are decomposition coefficients of ci,d(k1, . . . , kd−1, kd+1, kn) in a basis such as a wavelet basis or a block cosine basis defined over the set of parameter indexes (k1. . . , kd−1, kd+1, . . . , kn) from which there exists kd such that (k1+ci,1, . . . , kd−1+ci,d−1, kd, kd+1+ci,d+1, . . . , kn+ci,n) ε Ri. Fast transforms as described in S. Mallat, “A wavelet tour of signal processing”, Academic Press, 1998, can be used to compute these decomposition coefficients.
In an exemplary embodiment, for each regions Ri of a signal partition, the deforamion direction is computed by finding the direction in which the signal is the most irregular. It is done by calculating the matrix {overscore (Q)}Ri previously defined. If the trace of {overscore (Q)}Ri, is smaller than an adjustable parameter T2 then the region is uniformly regular, in which case the geometrical deformation has the direction 0 and RegWG(i)=(1,1, . . . , 1). Otherwise the direction in which the signal is the most irregular is defined as the diction d such that.
The regularity descriptor RegWG(i)=(P1,P2, . . . Pn) is then defined by P1=1 for each l≠d and Pd=0. We shall see that the value Pd=0 can later be updated if there exist quasi-periodic variations along the direction d
In dimension n=2, a directional geometrical deformation in the direction 1 can be written
δi(k)=(k1+ci,1(k2), k2+ci,2)
and in the direction 2
δi(k)=(k1+ci,1, k2+ci,2(k1)).
In an exemplary embodiment, the geometrical deformation over each region is also calculated from average orientation vectors. Let us consider a region whose deformation direction is d=2, the other case d=1 being treated similarly. For each 1 ε Z let Ri,1 be the set of integers m2 such that (l, m2) ε Ri. The first parameter of the geometrical deformation ci,1 is an integer that is set to 0. To compute ci,2(k1), we compute the average orientation vector ui(l)=(ui,1(l),ui,2(l)) over Ri,1. Let a be the minimum of all integers l such that Ri,1≠θ. We define
The discrete signal {overscore (c)}i,2 (m1) is then decomposed over a basis such as a discrete wavelet basis or a discrete cosine basis with a linear operator. To obtain a sparse paraneterization, in an exemplary embodiment, all decomposition coefficients of {overscore (c)}i,2(m1) of amplitude below a threshold Ts are set to zero. For compression applications, in yet another exemplary embodiment, the decomposition coefficients of {overscore (c)}i,2(m1) are quantized by a scalar quantization. We define ci,2(m1) as the signal reconstructed by applying the inverse linear operator on the thresholded or quantized coefficients of {overscore (c)}i,2(m1). The deformation parameters of the warping geometry spedify the direction d=2 and the tholded or quantized decomposition coefficients used to compute Ci,2(k1). An equivalent procedure computes the geometrical deformation in the direction d=1.
In yet another exemplary embodiment, in any region Ri ⊂Rn, a directional geometrical deformation is computed in dimension n in a direction 1≦d≦n by detecting local maxima of the gradien. The signal gradient ∇S(k) is calculated at each k ε Zn ∩Ss. For any p≠d we set δi,p(k)=kp. For any fixed (k1, . . . kd−1, kd+1, . . kn) we consider the set of all l such that (k1, . . . kd−1, l, kd+1 . . . , kn) ε Ri and if this set is not empty, we find in this set the integer kd such that |∇S(k)|2 is maximum in k=(k1, . . . , kd−1, kd, kd+1 . . . . , kn) and define (k1, . . . kd−1, kd, kd+1, . . . , kn) and define
{overscore (c)}i,d(k1, . . . kd−1, kd+1, . . . kn)=kd.
We decompose {overscore (c)}i,d in a discrete basis such as a wavelet basis in dimension n-I and threshold its coefficients or quantize its coefficients and denote by ci,d(k1, . . . , kd−1, kd+1, . . . , kn) the hypersurface reconstructed from the thresholded or quantized coefficients of {overscore (c)}i,d. The deformation parameters specify the direction d and the thresholded or quantized decomposition coefficients used to compute ci,2(k1).
For an input video image sequence, which is an n=3 dimensional signal, in yet another exemplary embodiment, the warping grid segmentation module (201) computes a directional geometric deformation by applying a time displacement to a 2-dimensional geometrical deformation using estimated motion vectors. The video sequence is written S(m1,m2, m3) where m3 is the time parameter, and for a fixed ms=l, S(m1, m2, l) is an image. For any region Ri and m3=l fixed, let Ri,1 be the image region of all (m1, m2) such that (m1,m2,l) ε Ri. To a three-dimensional region Ri, we associate a spatial geometrical deformation (ci,1i(k1, k2), Ci,2(k1, k2)), and a two-dimensional regularity descriptor (P1P2) which indicates the spatial direction in which the signal is regular. Let a be the minimum l for which Ri,1≠θ. In an exemplary embodiment, the said spatial geometrical deformation and two dimensional regularity descriptor (P1, P2) are provided by computing a two-dimensional directional geometrical deformation in the slice Ri,a. We define RegWG=(P1,P2, 1) which indicates that the variations in time are regular. For any l for which Ri,1 is not empty, an average motion vector is computed over Ri,1 by calculating the average displacement of the signal components in this region with respect to their position in the previous image S(m1, m2, l−1). Any state of the art motion estimation algorithm may be used, including matching procedures or gradient based computations. Let vi(l)=(vi,1(l), vi,2 (l)) be the average motion vector of the region Ri,1 and
In an exemplary embodiment, a sparse parameterization is obtained by decomposing this displacement vector in a basis, thresholding or quantizing the decomposition coefficients and reconstructing an approximate displacement vector (wi,1(ms),wi,2(m3)) from the quantized or thresholded coefficients. Deformation parameters include these thresholded or quantized decomposition coefficients. The motion geometric deformatin is then defied by
δi(k)=(ci,1(k1, k2)+wi,1(k3), ci,2(k1, k2)+wi,2(ks), ks).
The geometrical segmentation module (201) can also detect the existence of quasi-periodic signal variations, measures these quasi-periods to adapt the warping grid in each region. We shall first consider the case of an input one-dimensional signal and then describe an exemplary embodiment for n-dimensional signals.
For a one-dimensional signal S(m), the geometrical segmentation processor divides the signal support Ss into intervals [ai, ai+1] in which either the signal is quasi-periodic, with quasi-periods that have a bounded relative variation, or in which the signal has no quasi-periodicity. The value of RegWG(i) is used to indicate what is the nature of the signal in each interval. RegWG(i)=0 indicates that S is not quasiperiodic over [ai, ai+1−1], in which case the geometric deformation mapping is simply δi(k)=k+ci for some integer ci. RegWG(i)=21 for some integer l indicates that S is quasi-periodic inside [ai, ai+1−1] the varying period being close to 21. In a particular embodiment, the time-varying period in [ai, a+1−1] is defined from Ji consecutive period measurements Pi(j) for 1≦j≦Ji with Σj=1J
∀k ε[j21+1, (j+1)2l−1], δi(k)=bj+(bj+1−bj)×(2−1k−j)
Any state of the art periodic detection procedure may be used to segment the signal support and compute quasi-periods Pi(j) in each interval. In an exenrplary embodiment, the periodicity is measured with a variogmm, defined over [0, L] and for any (m,p) εZ2:
Period values are estimated in a predefined range [Pmin, Pmax]. An admissible period computed from reference point m is defined as the minimum p>Pmin with p<Pmax such that V(m, p) <T where T is a fixed threshold If such a p does not exist then S(m) is considered as non-periodic on [m, m+Pmax].
We suppose that the signal support Ss is an interval and cut iteratively this interval into regions [ai, ai+1−1], by constructing iteratively the sequence (ai)i. The sequence is initialized by setting a1 to be the first point of Ss. At each iteration, a value aj has been determined and we compute the next value ai+1 as follows.
This progressive construction of intervals [ai, ai+1−1] continues until we reach the end of the support Ss. In an exemplary embodiment, the region and deformation parameters of the warping geometry specify for each interval the size 2l, the number of quasi-periods Ji, and the thresholded or quantized decomposition coefficients used to compute the quasi-period sequence Pi(j). When the signal is not periodic in [ai, ai+1−], the length Pi(1)=ai+1−ai is stored. Since ai+1=ai+Σj=1J
We now consider for n>1 an n-dimensional signal S(m) whose support Ss has been partitioned into regions Ri over which a geometrical deformation δi(k) was calculated together with RegWG(i)=(p1, . . . pn) with p1=1 or p1=0. Several exemplary embodiments were described to compute such a partition. When the correlation type RegWG(i) of a region i is such that Pd=0 for a single direction d, an exemplary embodiment of the geometrical segmentation module (201) scans the signal in region i along the direction d for which pd=0, and if there exists some quasi-periodicity along the samples of the warping grid defined by δi(k), it further divides Pi according to these quasi-periodicity. The quasi-odicity is measured with a variogram in the direction d, with a similar strategy as the exemplary embodiment 20 described for n =1 dimensional signals. This leads to new sub-regions Ri,j inside each of which a new geometric deformation further modifies the geometrical deformation δi(k) so that the resulting warping grid has a quasi-periodicity of fixed size 2l along the direction d, and we replace the d-th component of RegWG(i,j)=(p1, . . . pn) with pd=2l. When the number of directions d such that Pd=0 is higher than 1, a similar periodicity scanning and segmentation is performed, wherein the periodicity scanning from a reference point consists in finding a family of independent period vectors by minimizing a variogram function, and wherein the periodicity scanning is performed along the samples of the warping grid defined by δi(k) along the axes for which Pd=0. After proper modification of the geometrical deformation function δi(i, k), the signal is quasi-periodic of period 2I
Signal Warping and Inverse Warping
The signal warping processor (203) computes a value WC(i, k) of the signal at each warping grid points WG(i, k) ≠nil, given the input signal sample values S(m). This calculation can be performed with any state of the art interpolation procedure. The output warped signal includes the warped coefficients WC(i, k) together with the signal warping grid WG(i, k).
An exemplary embodiment is obtained by computing the interpolation with an interpolation function φ(I) for x ε Rn which satisfies φ(0)=1 and φ(m)=0 for m ε Zn and m ε Zn and m≠0. At any location WG(i, k)=x≠nil the interpolated coefficients are then
An example of an interpolation function φ(I) is a separable function
φ(I1, . . . , In)=φ0(I1) . . . φ0(In)
where φ0(t) is an interpolation function with φ0(0)=1 and φ0(m)=0 for m ε Z amd m≠0. In an exemplary embodiment, an interpolation procedure such as described in P. Thevena; T. Bhl, M. Unser, “Interpolation Revisited,” IEEE Transactions on Medical Imaging, vol. 19, no. 7, pp. 739-758, July 2000, is used to compute WC(i, k). State of the art techniques are used to adapt the interpolation kernel at the boundary of Ss.
The inverse signal warping processor (305) in
Given the local coordinate c of the point m ε Zn in the warping grid WG(im, k), in an exemplary embodiment, So(m) is computed with an interpolation function φ(I) which satisfies φ(0)=(k) and φ(k)=0 if k ε Zn. The interpolated coefficients are then given by
In a preferred embodiment, the interpolation function φ(I) is a separable function like in (5). State of the art techniques are used to adapt the interpolation kernel at the boundary of the warping grid WG(im, k).
Warped Wavelet Packet Processor and Inverse
The warped wavelet packet processor (204) computes a warped wavelet packet transform from the input warped signal, with a binary tree of one-dimensional warped subband processings. An exemplary embodiment of this binary tree is illustrated in
A warped wavelet processor is a particular embodiment of warped wavelet packet processor, corresponding to a specific binary tree. This binary tree is the same as the one used to compute a separable n-dimensional non-warped wavelet transform as in S. Mallat, “A wavelet tour of signal processing”, Academic Press, 1998. ID dimension n=2, the biay tree is illustrated in
In dimension n=3, the biary tree of a warped wavelet processor is illustrated in
An exemplary configuration of a warped subband processor in a direction d is illustrated by the block diagram in
WG2p(i,k)=WGp(i, 2dk) and WG2p+1(i, k)=WGp(i, 2dk+1d)
and
RegWG2p(i)=RegWG2p+1(i)=RegWGp(i)/2d.
Note that in this last formula, the resulting vectors RegWG2p(i) and RegWG2p+1(i) may have non integer entries, like ½ or ¼. In the description of the present invention, warping grids WGp corresponding to separate nodes of the wavelet packet binary tree are considered as stored in separate arrays, to simplify the explanations, but can also be stored in a single array.
If the warped wavelet packet transform is done individually within each grid, when reconstructing an output signal from processed warped coefficients, it creates discontinuities at the grid boundaries. To avoid this effect, the warped wavelet packet processor performs the subband filtering across warping grids. Grid connections are computed by the neighborhood connection processor (802), which establishes neighborhood connections between boundary points of different regions along the direction d A warped subband filtering processor (803) along direction d takes in input warped wavelet coefficients WCp with the corresponding warping grids WGp and a neighborhood connection graph WNp(i, k, Δ, d) along direction d and performs a subband filtering within each grid of coefficients WCp(i, k) and across grids, with adapted filters. It outputs the subband warped coefficients WC2p and WC2p+1.
The neighborhood connection processor (802) establishes a neighborhood relation which is symmetric, meaning that if a first point is a left neighbor of a second point then the second point is the right neighbor of the first point In an exemplary embodiment, for each WGp(i, k)≠nil WNp(i, k, −1, d)=(il, kl) gives the index ii of the region where the left neighbor of WGp(i, k) in the direction d is located and kl is its index in this region. Similarly, WNp(i,k,1,d)=(ir,kr) gives the index ir of the region where the right neighbor of (i, k) in the direction d is located and kr is its index in this region. The computation of WNp(i, k, ±1, d) proceeds as follows: if WGp(i, k −1d) ≠nil then WNp(i, k, −1, d) is set equal to (i, k −1d), and otherwise (i, k) is included in the Right list that stores the indexes of all points that do not have a left neighbor in the same region. Similarly, if WGp(i, k+1d) ≠nil then WNp(i, k, 1, d) is set equal to (i, k +1d), and otherwise (i, k) is included in the Left list that includes the indexes of all points that do not have a right neighbor in the same region.
For all (i, k) in the Right list we search for a left neighbor point (i′, k′) in the Left list, with i′≠i and which minimizes Cost(WGp(i′, k′), WGp(i, k)), where Cost(I, I′) is a cost function defined over pairs of points in Rn. We then set WNp(i, k,−1, d)=(i′, k′). Similarly, for all the points (i, k) in the Left list we search for a right neighbor point (i′, k′) in the Right list, with i′≠i, which minimizes Cost(WGp(i, k), WGp(i′, k′)) and set WNp(i, k, 1,d)=(i′, k′). To guarantee that the neighborhood connection graph is symmetrical i.e. that
WNp(i, k, 1, d)=(i′, k′)WNp(i′, k′, −1, d)=(i, k)
for each point (i, k) of the Left list, if WNp(i, k, 1, d)=(i′, k′) and WNp(i′, k′, −1, d)≠(i, k) we set WNp(i, k, 1, d)≠nil which means that it has no right neighbor. Similarly, for each point (i, k) of the Right list, if WNp(i, k, −1, d)=(i′, k′) and WNp(i′, k′, 1, d)≠(i, k) we set WNp(i, k, −1, d)≠nil.
A first example of cost function is derived from a norm in Rn for some r>0
Cost(WGp(i, k), WGp(i′, k′))=||WGp(i, k)−WGp(i′, k′) ||r.
A second example computes a distance after translating the point in the Left list by a prediction vector Ti,k in the direction d
Cost(WGp(i, k), WGp(i′, h′))=||WGp(i, k)+Ti,k−WGp(i′, k′)||r
where we may choose Ti,l=WGp(i, k)−WGp(i, k −1d). Any other cost function may be used to compute the neighborhood connection graph WNp. The warped subband filtering processor (803) performs a one-dimensional subband filtering of the warped coeflicients WCp along the direction d, across the different grids, through the connections WNp of the warping grids WGp and outputs WC2p and WC2p+1. The inverse aligned subband filtering processor (903) in
A state of the art one-dimensional uniform subband filtering is computed with a Finite Impulse Response low-pass filter H and an FIR high pass filter G, which admit a dual pair of FIR reconstruction filters {overscore (H)} and {overscore (G)}, as described in S. Mallat, “A wavelet tour of signal processing”, Academic Press, 1998. The subband decomposition performs a filtering with H and G of WCp(i, k) along the direction d and subsamples the output on even index points within each grind.
Let SH and SG be the finite support of the filters H(l) and G(l) for l ε Z. If (i, k) satisfies
∀l ε SH and ∀l ε SG WGp(i, 2dk+/1d) ≠nil (6)
then a state of the art uniform subband filtering along the direction d computes:
For k=(k1, . . . , kd, . . . , kn) we write S{overscore (G)}+kd and S{overscore (G)}+kd the support of {overscore (H)} and {overscore (G)} translated by kd. The reconstruction is calculated with:
For signals of dimension n≧2, a phase aligned subband filtering computes WC2p and WCp+1 from WCp so that for all (i, k) which satisfy (6) the equality (7) and (8) are satisfied. The subband filtering processor (803) is then said to have a phase alignment coherent with the signal warping grids. To maintain this phase alignment property within each grid i, the subband filtering processor (803) adapts the filtering at the interface between warping grids. The inverse warped subband filtering processor (903) computes the inverse subband filtering (9) within each grid i and adapts the inverse filtering at the interface between warping grids. For signals of dimension n=1, the warped subband filtering processor (803) does not necessarily maintain the phase alignment property, which means that local shift may be introduced when calculating the warped coefficients.
In an exemplary implementation, the one-dimensional subband filtering along d is performed by the processors (803) and (903), by decomposing WGp as a union of connected lines along the direction d, as follows. In both processors, we traverse Wp to build an array Begin(q)=(i, k) corresponding to grid points that do not have a left neighbor, which means that WNp(i, k, −1, d)=nil. Each line indexed by q is initialized with Lq(0)=Begin(q) if k modd2=0 and Lq(1)=Begin(q) if k modd2=1. Then for any m≧0 we iteratively compute the right neighbor of Lq(m)=(i, k) and set Lq(m+1)=WNp(i, k, 1, d) and stop when it is nil For each q fixed, we compute (7) and (8), with a direct subband filtering of Lq.
We maintain the phase alignment property by imposing that even samples of Lq correspond to even samples of the grids WCp(i, k) along the direction d: if (i, k)=Lp(m) then k modd2=m mod2. To enforce this property, points are inserted with the following procedure. Because of our initialization procedure, the first point Lq(0) or Lq(1) satisfies this alignment property. Then we traverse Lq and maert a new point with a special symbol. Insert when the phase alignment is not reacted For all m≧1, if (i, k)=Lq(m) and k modd2≠m mod 2 then for all 1≧m the entry Lq(l) is shifted to Lq(l+1) and we set Lq(m)=Insert, until the end of the line where Lq(m)=nil. In dimension n=1, not maintaining the phase alignment property for the processors (803) and (903) means not inserting new points along each line Lq(m), in which case we ray have (i, k)=Lp(m) and k modd2≠m mod 2.
implement the processor (803 ) the warped coefficients values WCp(i, k) along the line Lq(m) are stored in Cq(m). If Lq(m)≠nil and Lq(m)≠Insert then Cq(m)=WCp(Lq(m)). If Lq(m)=(i, k) is a point sufficiently far from the grid boundary and satisfies (6) then the values Cq(m) are filtered with the same procedure as in (7) and (8). Otherwise, the filters are adapted to the interface between the connected grids to guarantee the perfect reconstruction property. In an exemplary implementation, the connecting filters are implemented by inserting new samples at grid connections where Lq(m)=Insert and using these inserted values in a filtering scheme using the same filters H and G. Each inserted value Cq(m) is expressed in terms of all other values Cq(l), including other inserted coefficients, with linear intpolation coefficients Im(l) Let N(q) be the number of inserted values where Lq(m)=Insert along a line Lq. We call Sq the set of indexes m such that Lq(m)≠nil and Si,q the set of indexes m such that Lq(m)=Insert. The unknown value of al these inserted coefficients are calculated by solving the N(q) by N(q) linear system:
with Im(m)=−1. If the linear system (11) does not have a unique solution, then we compute the vector of inserted coefficients (Cq(m))mεS
Warped subband coefficients are then calculated with a subband filtering of the line values:
Then values of WC2p and WC2p+1 arrays are computed as follows: if Lq(2m)=(i, k) ≠Insert then WC2p(i, k divd2)=Dq(2m) and if Lq(2m+1)=(i, k) ≠Insert then WC2p+1(i,k divd2)=Dq(2m+1). Observe that the coefficients Dq(m) corresponding to inserted coefficients, i.e. such that Lq(m)=Insert, are discarded. If (i,k) satisfies (6) then (12) and (13) give the same result as (7) and (8). State of the art boundary techniques explained for example in S. Mallat, “A wavelet tour of signal processing”, Academic Press, 1998, such as symmetric procedures are used to solve boundary issues in the convolutions (12) and (13). In an exemplary implementation, these convolutions are computed with a state of the art lifting scheme as in I. Daubechies and W. Sweldens, “Factoring wavelet transfonns into lifting steps”, Jour. of Fourier Anal. Appl., Vol. 4, No. 3, pp. 245267, 1998. In an exemplary implementation, the filters H and G are chosen to be the 7/9 Cohen, Daubechies, Feauveau filters specified in the above reference.
For a fixed q, let M(q) be the size along m of the vectors Cq(m) and Dq(m) and N(q) be the number of inserted values corresponding to m ε Si,q. We denote by Oq the linear operator from RM(q) to RM(q) which associates to any vector Cq(m) the vector Dq(m) with the filtering and subsampling formulas (12) and (13). The values of the line q in the direction d of the input WCp and of the outputs WC2p and WC2p+1 are stored in the vectors {overscore (C)}q(m) and {overscore (D)}q(m) of size M(q)−N(q), that equal respectively to Cq(m) and Dq(m) for all m ε Sq−Si,q. Inserting coefficients according to (11), computing the coefficients Dq(m) according to formulas (12) and (13) and then discarding coefficients Dq(m) corresponding to inserted coefficients for indexes m ε Si,q defines an operator {overscore (O)}q from RM(q)−N(q) to RM(q)−N(q) that maps the vector (Cq(m))mεS
The inverse processor (903), recovers the warped coefficiens values WCp along each line Lq(m) from the values of WC2p and WC2p+1 along the corresponding lines. The vectors {overscore (I)}m are defined by {overscore (I)}m={overscore (O)}q−TIm. Their expression is then for indexes m away from the boundaries:
When the coefficients Im(l) are convolution kernel coefficients, the coefficients of {overscore (I)}m(l) have a simple structure: {overscore (I)}m(l)={overscore (I)}0(l−m) for even m and {overscore (I)}m(l)={overscore (I)}1(l−m) for odd m, where {overscore (I)}0 and {overscore (I)}1 are two filters. This is not true near the boundaries, where the computation of {overscore (I)}m=Oq−TIm is obtained by using appropriate boundary techniques when evaluating the sum (14) and (15), which are apparent to those skilled in the art
Each array Dq is defined for indexes m ε Sq−Si,q as follows: if Lq(2m)=(i,k) ≠Insert then Dq(2m)=WC2p(i, k divd2) and if Lq(2m+1)=(i,k) ≠Insert then Dq(2m+1)=WC2p+1(i, k divd2). To compute Dq(m) for all m ε Si,q we solve the system of N(q) linear equations with N(q) unknowns:
If the linear system (16) does not have a unique solution, then we compute the vector of inserted coefficients (Dq(m))mεS
An inverse subband filtering is then applied on the line values Dq(m). For all l ε Sq−Si,q
and WCp(Lq(m))=Cq(m). State of the art boundary techniques, as described in S. Mallet “A wavelet tour of signal processing”, Academic Press, 1998, such as symnmetric procedures are used to solve boundary issues in the two convolutions (17). In an exemplary implementation, these convolutions are computed with a state of the art lifting scheme as in I. Daubechies and W. Sweldens, “Factoring wavelet transforms into lifting steps”, Jour. of Fourier Anal. Appl., Vol. 4, No. 3, pp. 245267, 1998. For each q, the insertion system (16) together with (17) computes the inverse {overscore (O)}q−1 of the linear operator {overscore (O)}q previously defined. Any other implementation of {overscore (O)}q−1 may be used, including a lifting scheme. In dimension n=1 if the phase alignment property is not maintained then there is no inserted coefficients and the system (16) is therefore not used.
In yet another implementation of the warped subband filtering processor (803) in direction d and its inverse (903), the subband filtering takes into account the fact that points in the sampling grids WGp(i, k) are irregularly spaced, using subband filterng on irregular point sets. In this embodiment, the position (abscissa) of each point of a line Lq(m) is stored in Xq(m). For all (q,m) with Lq(m)≠Insert and Lq(m)≠nil, we set Xq(m)=WGp(Lq(m)).1d, or any curvilinear abscissa defined along the polygonal line joining the points (WGp(Lq(m)))mεS
and if Lq(m)=nil then Xq(m)=nil.
To implement the warped subband filtering processor (803), the value of Cq(m) at the N(q) inserted positions where Lq(m)=Insert are calculated by solving an N(q) by N(q) linear system:
with Im(m)=−1. If this system does not have a single solution, the inserted values are calculated with a singular value decomposition as previously explained For l ≠m, the values of Im,(l) may depend upon m and be obtained by any state of the art interpolation kernel for irregular spaced samples located at positions Xq(m), such as a Lagrange interpolation.
The low-pass and highbpass convolutions (12) and (13) are then replaced by a state of the art subband filtering procedure for irregular point sets. In an exemplary implementation, such a subband filtering, also called subdivision scheme, or one step wavelet transform, can be calculated with a lifting scheme, with any state of the art procedure such as the 1D subdivision in I. Daubechies, I. Guskov, P. Schrier and W. Sweldens, “Wavelets on irregular point sets”, Phil. Trmas R. Soc. Lond. A., Vol. 357, No. 1760, pp. 2397-2413, 1999. For a fixed position Xq(m) of the sample points, the irregular subband filtering operator that associates Dq(m) to Cq(m) is a linear operator that we also write Oq, ie. Dq=OqCq.
In an exemplary implementation of the inverse warped subband filtering processor (903), the value of Dq(m) for m ε Si,q, are computed with the inverse kernel {overscore (I)}m=Oq−TIm, by solving the system
The solution is calculated with a singular value decomposition if the system does not have a unique solution. The inverse subband filtering operator Oq−1 for irregular point sets is then applied on the line values Dq(m) to recover Cq(m). For al m ε Sq−Si,q we set WCp(Lq(m))=Cq(m). The insertion system (19) together with Oq−1 computes the inverse {overscore (O)}q−1 of the linear operator {overscore (O)}q previously defined. Any other implementation of {overscore (O)}q−1 may be used, including a lifting scheme.
The inverse warped wavelet packet processor (304) in
WGp(i, 2dk)=WG2p(i, k) and WGp(i, 2dk+1d)=WG2p+1(i,k),
and RegWGp(i)=2d RegWG2p(i). In (902) the neighborhood connection processor in direction d is identical to the neighborhood connection processor (802) in
Warping Grid Subsampling
The wavelet packet warping grid subsampling module (302) in
Bandeletisation and Inverse Bandeletisation
The bandeletisation processor (205) takes in input a warped wavelet packet transform composed of warped coefficients (Wp)pεP and corresponding warping grids (WGp)pεP and outputs bandelet coefficients, by performing a sequence of 1-dimensional decorrelations along selected directions on the warped wavelet packet coefficients to reduce identified correlations in the signal and obtain a new, sparser representation of the signal.
The inverse bandeletisation processor (303) takes in input wavelet packet warping grids (WGp)pεP and bandelet coefficients and outputs a warped wavelet packet transform composed of computed warped wavelet packet coefficients (WCp)pεP, and of input wavelet packet warping grids (WGp)pεP.
In an exemplary embodiment the regularity descriptor of a grid RegWGp(i) is a vector of n reals (b1, . . . , bn) that are dyadic or zero, and indicates what kind of warped coefficient regularity is reacted for each grid WGp and each region i. For each direction d, bd=0 means that no regularity has been detected along direction d 0<bd≧1 means that the warped coefficient array WGp has slow variations along direction d, and bd>1 means that the signal has close to periodic variations along direction d, of period bd.
Depending on this regularity descriptor, a decorrelation descriptor DirWGp(i) is computed in module (1201) for each region i and each warping grid WGp. The decorrelation descriptor is a vector of n integers, (β1, . . . βn) indicating for each direction d if a decorrelation operation has to be performed along direction d (when βd>0), and then what kind of decorrelation has to be performed along that direction d in module (1203). Hence when βd=0, no decorrelation along direction d is to be perform When βd=1, a decorrelation operator is applied along direction d, like for example a wavelet or wavelet packet transform, or a discrete cosine transform. When βd>1, a decorrelation operator performing a periodic decorrelation of period βd is applied. In an exemplary embodiment a decorrelation operator performing a periodic decorrelation of period βd for a n-dimensional array of coefficients (L(m))mεM is implemented with a one-dimensional wavelet or wavelet packet transform, or a discrete cosine transform applied to subarrays of L of stride βd, i.e. on the subarays (L(βdm+r))βdm+rεM, for r=0, . . . , βd −1.
In an exemplary embodiment, the decorrelation descriptor DirWGp(i) is computed from RegWGp(i)=(b1, . . . , bn) by setting DirWGp(i)=(β1, . . . βn) where βd0 if bd=0, βd=1 if 0<bd≦1, and βd=bd otherwise. In a degenerate case where RegWGp(i)=(0, . . . , 0). the decorrelation descriptor is equal to (0, . . . , 0), in which case the bandeletisation performs no decorrelation and outputs coefficients that are the inputwrped wavelet.paketcoefficienis.
In yet another exemplary embodiment wherein the input warped wavelet packet coefficients are warped wavelet coefficients, the decorrelation descriptor DirWGp(i) is computed in the same way as above, except when 0<bd<1, in which case βd=1 if the warped wavelet coefficients of WCp are low-pass along the direction d and βd=0 otherwise. Warped wavelet coefficients WCp are said to be low-pass along the direction d if in the chain of warped subband processings to compute WCp from WC1, WCp is the low-pass output of the last warped subband processing in direction d, or if it has been computed from this low-pass output with further warped subband proessings in other directions but not in the diection d.
In yet. another exemplary embodiment, the decorrelation descriptor DirWGp(i) is computed according to one of the two above embodiments, except when all 0<bd<1 for all d, in which case we set DfrWGp(i)=(0, . . . , 0) instead his corresponds to the case where no further decorrelation is necessary because the warped signal is informly regular in all directions and hence the the warped wavelet packet coefficients array is already sparse. The same descriptors are needed in the inverse bandeletisadon processor, so module (1301) is identical to (1201).
In an exemplary embodiment, the bandeletisation processor applies decorrelation operators separately on each region i. In a preferred embodiment, the bandeletisation processor operates across regions whenever this is possible, i.e. whenever two regions are proceseed according to the same decorrelation descriptor DirWGp(i). An exemplary method to apply different decorrelation operators for warping grids corresponding to different regions i consists in first splitting the input warping grids WGp and warped coefficient arrays WCp into grids (WGpσ)σεΣ and subarrays (WCpσ)σεΣ, over which the decorrelation descriptor DirWGp(i) is the same, and then computing neighborhood connection graphs WNpσ for each resulting grid WGpσ. In module (1202), WGpσ and WCpσ are then defined by WGpσ(i, k)=WGp(i, k) if DirWGp(i)=σ and WGpσ(i,k)=nil otherwise, and similarly WCpσ(i,k)=WCpσ(i,k) if DirWGp(i)=σ and WCpσ(i, k)=nil otherwise, where the o index is a decorrelation descriptor. The case where the decorrelation operators act separately on each grid is implemented by splitting the warping grids WCp and warped coefficient may WCp according to the region index. We set WGpσ(i, k)=WGp(i, k) if a =i and WGpσ(i, k)=nil otherwise, and similarly for WCpσ, where a is now a region index. In all cases, the decorrelation descriptor DirWGp(i) is the same for all region indexes i of the warping grids WGpσ, (i.e. all i such that there exists a k with WGpσ(i,k) ≠nil). We thus write this decorrelation descriptor DirWGpσ. The decorrelation dimension DimWGp of the wavelet packet warping grids (WGp)pεP is then defined as the maximum number of nonzero entries in a vector DirWGpσ for all possible p and σ. It is the maximum number of directions along which a bandelet decorrelation will be performed within a single grid.
In an inverse bandeletisation, the warping grids WGpσ are computed from the warping grids WGp in module (1302) in the same way as in module (1202). Module (1302) differs however from module (1202), in that it does not compute and output the warping coefficients WCpσ.
In the degenerated case where all vectors DirWGpσ are zero vectors (0, . . . , 0), then the decorrelation dimension DimWGp is equal to 0 and the bandeletisation outputs bandelet coefficients equal to the input warped wavelet packet coefficients.
If the decorrelation dimension DimWGp is equal to 1 then the number of directions along which a decorrelation operator has to be applied is at most equal to 1, i.e. each vector DirWGpσ has at most one nonzero entry. This happens most often for 1-dimensional or 2dimensional input signals. In this case, the decorrelation operator operates along lines of the warped wavelet packet coefficients, and in particular inside each grid along a single direction. This particular implementation of a bandeletisation is called a one-dimensional bandeletiaion. For each set of warping grids WGpσ, the vector DirWGpσ either contains a single coefficient βd>0, in which case the conducting d is denoted dpσ and the corresponding value βd is denoted βpσ, or DirWGpσ only contains zero entries, in which case we set βpσ=dpσ=nil. The bandeletisation along DirWGpσ in module (1203) then consists in applying when dpσ≠nil a decorrelation operator along separate lines of each warped coefficient array WCpσ along the single direction dpσ. In an exemplary embodiment the module (1203) computes for each set of warping grids WGpσ a neighborhood connection graph WNpσ(i, k,±1, dpσ) as done for grids WGp in module (802). Then, each set of warping grids WGpσ is decomposed into a union of connected lines along direction dpσ. To do this, we traverse WNpσ to build an array of line beginning points Beginpσ(q)=(i, k) that are points of WGpσ that have no left neighbor: WNpσ(i, k, −1, dpσ)=nil. Each line indexed by q of WGpσ commences with Lpσq(0)=Beginpσ(q). The line is iteratively augmented with the right neighbor of the preceding point: if (i, k)=Lpσq(m), Lpσq(m+1)=WNpσ(i, k, 1, dpσ), until that point is nil.
Then, each line of coefficients Cpσq(m)=WCpσ(Lpσq(m)) for p and σ such that βpσ=1 is transformed into a new array Dpσq with a one dimensional inverible decorrelation operrtor. In an exemplary embodiment, this invertible decorreiation operator may be a wavelet transform a wavelet packet transform, a discrete cosine or sine transform computed with a fast algorithm as described in S. Mallat, “A wavelet tour of signal processing”, Academic Press, 1998. Each line of coefficients for which βpσ>1 is transformed with a one-dimensional decorrelation operator performing a periodic decorrelation of period βpσ. In an exemplary embodiment of a periodic decorrelation operator, for each r=0, . . . , βpσ−1, the subanray (Cpσq(βpσm+r))m is transformed by the one-dimensional invertible decorrelation operator, and the result is stored into (Dpσq(βpσm+r))m. The transformed coefficients of Dpσq are then stored back into arrays WCpσ0 by setting WCpσ0(Lpσq(m))=Dpσq(m). When dpσ=nil, the array WCpσ0 is equal to WCpσ. The bandelet transform of the warped coefficient arrays (WCp)pεP is then composed of the coefficient arrays WCpσ0 for all p and σ.
If the decorrelation dimension DimWGp is equal to 1 then the inverse bandeletisation is called an inverse one dimensional bandeletisation and it implements the inverse transform of the one-dimensional bandeletisation. In this case, the inverse bandeletisation along DirWGpσ of (1303) is implemented with the same procedure as (1203), but by replacing the one-dimensional decorrelation operators used in the bandeletisation along DirWGpσ by their inverses, called one-dimensional inverse decorrelation operators. In the exemplary embodiment, where the decorrelation operators are either wavelet transforms, wavelet packet transforms, discrete cosine or sine transforms, their inverse is computed with fast algorithms described in S. Mallat, “A wavelet tour of signal processing”, Academic Press, 1998. The inverses of one-dimensional decorrelation operators performing a periodic decorrelation are called periodic inverse decorrelation operators.
We now describe the implementation of a bandeletisation when the decorrelation dimension DimWGP is strictly larger than 1. In this case there is at least one region where the bandeletisation applies one-dimensional decorrelation operators along different directions inside the same region. Inside any such region each decorrelation operator must then be phase-aligned. The bandeletisation is then called a phase-aligned bandeletisation. In a preferred embodiment, the bandeletisation along DirWGpσ is computed with phase aligned warped wavelet packet tansforms, which are applied separately to each pair WGpσ and WCpσ. Each one-dimensional decorrelation operator is then implemented with a phase-aligned warped subband processing. For each p and σ, we write DirWGpσ as (βpσ1, . . . , βpσn). To implement periodic decorrelations with phase aligned warped wavelet packet transforms, in an exemplary embodiment the warping grids WGpσ and warped coefficients WCpσ are subsampled along each direction d for which, βpσd>1. To include the non-periodic decorrelation in the same framework, the grids are subsampled by a factor of βpσd if βpσd>1 and not subsampled, or equivalently subsampled by a factor 1, if βpσd=0 or 1. We thus define {overscore (β)}pσd=1 if, βpσd=0 and {overscore (β)}pσd=βpσd otherwise. For each p and σ, we define Rpσ as the set of integer vectors r=(r1, . . . , rn) such that 0≦rd<{overscore (β)}pσd for d=1, . . . , n. The subsampled warping grids and warped coefficient arrays WGpσr and WCpσr are then defined for each r ε Rpσ as
WGpσr(i, k1, . . . , kn)=WGpσ(i, k1{overscore (β)}1+r1, . . . , kn{overscore (β)}n+rn)
WCpσr(i, k1, . . . , kn)=WCpσ(i, k1{overscore (β)}1+r1, . . . , kn{overscore (β)}n+rn)
This subsampling for each p, σ yields a family of warping grids (WGpσr)pεP, σεΣ, rεR
The inverse phase-aligned bandeletisation implements the inverse of the operator implemented by the phase-aligned bandeletisation processor. In this case, the inverse bandeletisation along DirWGpσ (1303) computes from the warping grids WGpσ all the subsampled warping grids WGpσr with the same procedure as in the module (1203). Then for each p, σ, r, the warping grids (WGpσrq)qΣQ
WCpσ(i, k1{overscore (β)}1+r1, . . . , kn{overscore (β)}n+rn)=WCpσr(i, k1, . . . kn)
for each r in Rpσ and k such that WGpσ(i, k1{overscore (β)}1+r1, . . . , kn{overscore (β)}n+rn) ≠nil.
For both the inverse one-dimensional bandeletisation processor or the inverse phase-aligned bandeletisation processor, for each p ε P the warped coefficient arrays (WCpσ)σεΣ are merged back into WCp in the warping grid merging processor (1304) by setting WCp(i, k)=WCpσ(i, k) if σ is such that WGpσ(i, k) ≠nil.
It is apparent to those skilled in the art that is also possible to combine one-dimensional bandeletisation and phase-aligned bandeletisation. Denoting Dim WGpσ the decorelation dimension of WGpσ, which is the number of nonzero entries in DirWGpσ, the combined bandeletisation consists in applying a one-dimensional bandeletisation on all grids WGpσ such that DimWGpσ=1, and applying a phase-aligned bandeletisation on all grids WGpσ such that DimWGpσ>1. The same rule is then used for the inverse combined bandeletisation.
Restoration System
A restoration system is implemented by using a restoration r in the processor (102) of
In an exemplary embodiment, a restoration processor removes additive noises, by applying diagonal operators to bandelet coefficients. A diagonal operator applied to a bandelet coefficients stored in WCq(i, k) computes θq(WCq(i, k)) where θq(I) is a linear or non-linear function. The function θq can be chosen to be a thresholding fimction which sets to zero the bandelet coefficients whose amplitude are smaller than a threshold Tq whose value adapted to the noise properties. Examples of state-of-the-art linear or thresholding estimators are described in S. Mallat, A Wavelet Tour of Signal Processing, 2nd edition. Academic Press, San Diego, 1999. A regularization operator can also be applied to the warping geometry calculated from the input noisy signal, in order to suppress the effect of the noise on the signal geometry.
A restoration processor can also implement a signal deconvolution system, for example to deblur 2-dimensional images. In an exemplary embodiment, a diagonal operator is applied to bandelet coefficients here the diagonal operator is designed to approximate the deconvolution filter by multiplying each bandelet coefficient with an appropriate constant. A restoration processor can also implement any state of the perators on the bandelet coefficients and the warping geometry to restore an output signal for restoration systems, including inverse scattering systems, tomographic reconsruction systems, interpolation systems, or superresolution systems which reconstruct higher resolution signals.
Compression System
An exemplary embodiment of such a compression system when n=1 is a compression system for electro-cardiograms (ECG), where the periodic decorrelation in the bandeletisation is particularly pertinent for decorrelating the periodic structure of the ECG. Yet another exemplary embodiment of such a compression system when n=2 is an image compression system computed with a warped wavelet transform, with a warping geometry that defines regions that are unions of retangles. For particular class of images such as human faces, the warping geometry and its coding takes advantage of prior information known on this class of images. In yet another exemplary embodiment for special classes of images such as fingerprint images, the warped wavelet packet transform is adapted to the property of this class of images. The periodic decorrelation in the bandeletisation is pertinent for decorrelating the periodic ridge strugtles existing in fingerprint images.
Yet another embodiment of such a compression system when n=3 is a video compression system using a warping geometry that includes a directional geometric deformation obtained by applying time displacements to 2-dimensional geometrical deformations using estimated motion vectors. Yet another exemplary embodiment when n=3 of such a compression system is a compressor for seismic 3-dimensional volumetric data or for 3-dimensional medical data. Yet another embodiment of such a compression system when n=4 is a compressor for light field volumes of data, such as the data obtained by composing digital pictures of an object taken with varying tilt and pan angles.
Feature Extraction System
The present invention includes a system that computes a signal feature vector from the warping geometry and the bandelet coefficients, for pattern recognition applications including content based signal indexing and retrieval from a database, signal matching, or for detection and classification. The input signal is transformed into a warping geometry and bandelet coefficients by the warped wavelet packet bandelet processor illustrated in
In a first configuration of the system illustrated in
To reduce bandwidth and storage requirements, signals are represented in a compressed form. In a second exemplary configuration of the system illustrated in
While a detailed description of presently exemplary embodiments of the invention has been given above, various alternatives, modifications, and equivalents will be apparent to those skilled in the art. For example, while different components of the Warped wavelet packet processor and inverse warped wavelet packet processor of the present invention are described herein as performing certain specific functions, one skilled in the art will appreciate that other components or circuits in the service module may perform some or all of such functions without varying from the spirit of the invention. Therefore, the above description should not be taken as limiting the scope of the invention which is defined by the appended claims.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP02/14903 | 12/17/2002 | WO | 1/12/2006 |